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1 Counting Spanning Trees

Problem 1 (number of labeled spanning trees) Given n labeled vertices v1, ..., vn How man
different spanning trees are there?

Theorem 1 (Cayley) there are nn−2 labeled trees on n vertices.

Proof. (Bijection) Let Tn be the set of labeled trees on n vertices, and Cn(n − 2) be the set of
(n− 2) element sequences with alphabet {1, 2, ..., n}. We give bijection C : Tn ↔ Cn(n− 2). Given
t ∈ Tn create a code C(t) ∈ Cn(n− 2) as follows:

1. let t1 = t

2. for i = 1 to n− 2

(a) Let v be the largest leaf in ti.

(b) let (u, v) be the edge in ti

(c) set ci = u

(d) set ti+1 = ti − (u, v)− v

We show this is a bijection by giving its inverse. Given C ∈ Cn(n− 2) let [n] := {1, 2, ..., n}

1. For j = 1 to n− 2

(a) let lj = max{[n]− {l1, ..., lj−1, cj , cj+1, ..., cn−2}}
(b) let (lj , cj) be edge of T

2. the last edge is (v, cn−2) where v = [n]− {l1, ..., ln−2, cn−2}

Claim 1 1. Any number not in (ci, ci+1, ..., cn−2) is a leaf in t1, t2, ..., ti

2. Any number in (ci, ..., cn−2) is an interior vertex of ti.

Proof.

• By construction cj in C(T ) is an internal vertex in ti

• Any interior node in ti will appear in (ci, ..., cn−2) as it has degree 0 or 1 in Tn−2. It had
deg ≥ 2 in ti so we must remove a (leaf) neighbor later on. In other words the number of
times a node of ti appears in (ci, ..., cn−2) is equal to its degree minus one.



Therefore l1 = max{[n]− {c1, ..., cn}} , and more generally

li = max{[n]− {{ci, ..., cn} ∪ {l1, ..., li−1}}}

Thus given C(T ) we can uniquely determine li. In other words our function is reversible.
Proof. (Generating Functions) Let t(n; d1, ..., dn) be the number of labeled trees in which vertex
vi has degree di.

γn =
∑

d1,...,dn

t(n; d1, ..., dn)

We can assume d1 ≥ d2 ≥ ... ≥ dn = 1. So dn = 1 and so vn has a neighbor. It could be any of the
other vertices. Removing vn and conditioning on the possible neighbor we have:

1. t(n, d1, ..., dn) =
∑n−1

i=1 t(n− 1, d1, ..., di − 1, ..., dn−1)

2. Now consider the multinomial coefficients
( m
a1,a2,...,ak

)
The number of ways to pick k disjoint

subsets S1, ..., Sk from [n] of sizes a1, ..., ak

3. We know Multinomial Theorem: (x1 + x2 + ... + xk)m =
∑

a1,...,ak

( m
a1...ak

)
xa1

1 xa2
2 · · ·xak

k

4. Since (x1 + x2 + ... + xk)m = (x1 + x2 + ... + xk)m−1(x1 + x2 + ... + xk) it follows that( m
a1...ak

)
=
∑k

i=1

( m−1
a1,...,ai−1,...,ak

)
5. Induction t(n, d1, ..., dn) =

( n−2
d1−1,d2−1,...,dn−1

)
or let the children of each node v denote a set

Sv. Since there are 2 leaves in any tree the claim follows.

6. Base case n = 3 works.

recurrences 1,4 are the same so the claim is true by induction. Finally setting xi = 1, k = n, m =
n− 2, ai = di − 1 we have

nn−2 =
∑
d−1

(
n− 2

d1 − 1, ..., dn − 1

)
=
∑
d

t(n; d1, ..., dn) = γ(n)

Proof. (double counting) Consider a more complicated problem. Let Fn,k = # forests with
k rooted trees. |Fn,1| = n|Tn| Take Forest Fn,k ∈ Fn,k direct edge away from roots. We say Fi

contains Fj if Fi contains Fj as a directed subgraph. We say F1, ..., Fk is a refining sequence if
Fi ∈ Fn,k and Fi contains Fi+1∀i. Fix a forest Fk ∈ Fn,k set

1. N(Fk) = # rooted spanning trees containing Fk

2. N∗(Fk) = # refining sequences in in Fk

We count N(Fk) in 2 ways.

1. Start at spanning tree. Suppose F1 ∈ Fn contains Fk. F1 − Fk contains k − 1 edges. We can
remove them in any order to get a refining sequence from F1 to Fk N∗(Fk) = (k − 1)!N(Fk)

2. Start at Fk to get an Fk−1 from Fk.



3. Pick any v add an arc from v to one of the other k − 1 roots.

Can do this in n(k − 1) ways. So

N∗(Fk) = n(k − 1)n(k − 2)...n(1)

= nk−1(k − 1)!

nk−1(k − 1) = (k − 1)!N(Fk)

For k = n N(Fn) = nn−1 So Fn = set of n singleton vertices. So N(Fn) = # of rooted spanning
trees = nn−1 therefore γ = nn−2

2 Enumerative Combinatorics

The main question in enumerative combinatorics is to count the number of objects in a set. Often
we have an infinite collection S1, ... of sets and we try to count the number of items f(i) in Si(err
|Si|?) simultatiously for all i. Counting can be done in many ways.

1. Closed formula(nicest way but rare). e.g.

• f(n) = |power.set[n]| = 2n

• f(n) = |Tn| = nn−2 where Tn := labled trees on n vertices.

• f(n) = #0, 1 matrices such that each row sum and, each col sum = 3 this is
1
6

∑
a,b,c:a+b+c=n

(−1)3n!2(b+3c)!2a3b

a!b!c!6c

• f(n) = number of ways a postman can deliver n letters tp all the wrong houses. =
n!
∑n

i=0
(−1)i

i! A derangement is a set of non empty cycles

2. By recurrence: A recurrence formula often allows us to find f(n). e.g. g(n) = # of subsets
of [n] that dont contain two consecutive integers. g(n) = g(n− 1) + g(n− 2) (consider n)

3. Asymptotic Formula: We say f(n) ≈ g(n) if limn→∞
f(n)
g(n) = 1. This gives an estimate g(n) of

f(n). e.g. f(n) ≈ e−236−n(3n)! if f(n) = #0, 1 matrices such that each row sum and, each
col sum = 3

4. Generating Functions: this is the most useful way. We count an object using a formal
power series.

2.1 Generating functions

Definition 1 (Ordinary GF) F (x) =
∑

n≥0 f(n)xn

Definition 2 (Exponential GF) F (x) =
∑

n≥0 f(n)xn

n!

The major advantage with generating functions is that we can perform many combinatorial
operations on them. e.g. addition multiplication, convolution, calculus.

From this we can extract information:



1. find exact formulas

2. find recurrences

3. find asymptotics

4. statistical properties

5. prove unimodal/convex properties

6. proving combinatorial identities

7. Allows us to tackle much harder problems.

Example: consider
ex · e−x = 1

1 =
∑
n≥0

xn

n!
·
∑
n≥0

(−1)n xn

n!

=
∑
n≥0

(
n∑

r=0

(−1)r

r!n− r!
)xn

=
∑
n≥0

[
n∑

r=0

(−1)r

(
n

r

)
]
xn

n!
= 1

⇒
n∑

r=0

(−1)r

(
n

r

)
= 1 if n = 0, 0 otherwise

We have shown that the number of even sized subsets is equal to the number of odd sized subsets
of [n].

3 Compositions

A composition of an integer n is an expression of that integer as a sum of positive integers. e.g.

3 = 1 + 1 + 1, 2 + 1, 1 + 2, 3

4 = 1 + 1 + 1 + 1, 2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2, 3 + 1, 1 + 3, 2 + 2, 4

A composition of n has k pars if n = x1 + x2 + ... + xk Let g(n) = # compositions of n into parts
all of value 1 or 2. Let G(x) be the ordinary generating function for g(O.G.F). We have

G(x) =
∑
n≥0

g(n)xn =
∑
k≥0

(x + x2)k

More generally if f(n) = # of compositions of n into parts that belong to a set A of integers,
then

F (x) =
∑
k≥0

(
∑
a∈A

xa)k



e.g. if A := {2, 3, ...} we have F (x) = 1−x
1−x−x2 = 1 + x2 · 1

1−x−x2

G(x) =
∑
k≥0

(x + x2)k = 1 + (x + x2)
∑
k≥0

(x + x2)k

G(x) = 1 + (x + x2)G(x)

so
F (x) = 1 + x2 1

1− x− x2
= 1 + x2G(x) = 1 + x2

∑
n≥0

g(n)xn

= 1 +
∑
n≥2

g(n− 2)xn =
∑
n≥0

f(n)xn

thus
f(n) = g(n− 2)

Theorem 2 # of compositions of n into parts greater then 1 equals the number of compositions of
n− 2 into parts of value 1 or 2

Exercise: Try to give a combinatorial proof
Remark:g(n) satisfies the Fibinoci recurrence

g(n) = g(n− 1)1st part=1 + g(n− 2)1st part =2

Let A := set of odd integers. h(n) = #comps into parts with odd value.

H(x) =
∑
n≥0

h(n)xn =
∑
k≥0

(
∑
i odd

xi)k

=
1

1−
∑

i odd xi
=

1
1− x

1−x2

=
1− x2

1− x− x2

= 1 +
x

1− x− x2

= 1 + xG(x)

⇒ h(n) = g(n− 1)

Theorem 3 # of compositions of h into n odd parts = # of compositions of n− 1 into parts 1 or
2.

Exercise: Try to give a combinatorial proof



4 Elementary Counting

Given an n − set X we let
(n
k

)
denote the number of subsets of size k of X. Let nk denote the

number of ordered k − subsets. So

nk = n · n− 1 · · · (n− k + 1)

we could also write

nk =

(
n

k

)
k!

(
n

k

)
=

nk

k!
=

n · n− 1 · · · (n− k + 1)
k!

Remark this formulation is better then n!
k!(n−k)! as it allows to evaluate

(n
k

)
when n is negative or

complex!. Recall:

Theorem 4 (Binomial)

(1 + x)n =
n∑

k=0

(
n

k

)
xk

therefore

• x := 1

2n =
n∑

k=0

(
n

k

)

• x := −1

0 =
n∑

k=0

(−1)k

(
n

k

)

• Differentiate

n(1 + x)n−1 =
k∑

k=1

k

(
n

k

)
xk−1

set x := 1

n2n−1 =
n∑

k=1

k

(
n

k

)
this shows that the number of ways to choose an element and a subset on the remaining
elements is equal to the number of ways to choose a subset and then choose an element of
the subset.



4.1 Compositions

How are binomial coefficients related to compositions? let c(n, k) := number of compositions of n
into exactly k parts(order matters)

Lemma 1 c(n, k) =
(n−1
k−1

)
Proof. Draw n dots in a line.

. . . . . . . . . . .

there are n− 1 spaces. We need to choose k − 1 of them. so there are
(n−1
k−1

)
ways to do this.

Corollary 1 the number of solutions to
∑n

i=1 xi = n into non negative solutions is
(n+k−1

k−1

)
Proof. Add 1 to all xi. Get the number of solutions to

∑n
i=1 yi = n + k in positive solutions.

4.2 Multisets

A k subset of a n set X does not allow repitions of elements. What if elements of X can be chosen
multiple times? We denote the number of ways by

(n
k

)
M

.

Theorem 5
(n
k

)
M

=
(n+k−1

k

)
A multiset of X := {x1, ..., xn} has the form {xa1

1 , ..., xan
n } where ai is the number of copies of

xi in the multiset. So the number of ways is equal to the number of non negative solutions to
a1 + ... + an = k this is

(k+n−1
n−1

)
=
(n+k−1

k

)
Proof. (2) Or let 1 ≤ s1 < s2... < sk ≤ n + k− 1 be a subset of [n + k− 1] Let ti := si + 1− i.

then
1 ≤ t1 ≤ ... ≤ tk ≤ n

is a k multiset of [n]. This is a bijection.

4.2.1 Multisets and GFs

consider the GF

(1 + x1 + x2
1 + ...)(1 + x2 + x2

2 + ...) · · · (1 + xn + x2
n + ...)

=
∑

a:X→Nn

∏
xi∈X

xi

=
∑

a1,...,an

∏
xi∈X

xi

Set xi = x∀i
(1 + x + x2 + ...)n =

∑
a1,...,an

xa1+...+xn =
∑

H is multiset

x|H|

=
∑
k≥0

(
n

k

)
M

xk



But
(1 + x + x2....)n =

1
(1− x)n

= (1− x)−n

Now define

(1− x)−n :=
∑
k≥0

(
−n

k

)
(−1)kxk

So (
n

k

)
M

= (−1)k

(
−n

k

)

=
−n(−n− 1)(−n− 2) · · · (−n− k + 1)

k!
(−1)k

=
n(n + 1)(n + 2) · · · (n + k − 1)

k!
=

(
n + k − 1

k

)

4.2.2 example

F (x) =
∏
n≥1

∑
i≥0

(
µ(n)

n

i

)
M

xin

=
∏
n≥1

(1− xn)−
µ(n)

n

where µ is the Mobius function

G(x) = lg[F (x)] =
∑
n≥1

lg(1− xn)
−µ(n)

n

= −
∑
n≥1

µ(n)
n

lg(1− xn)

= −
∑
n≥1

µ(n)
n

(
∑
i≥1

−xin

i
)

G(x) =
∑
n≥1

µ(n)
n

(
∑
i≥1

xin

i
)

What is the coefficient of xm in G(x)? 1
m

∑
d|m µ(d)

but
∑

d|m µ(d) = 1 if m = 1,= 0 if m 6= 1, m = pa1
1 · · · pak

k Subsets of p1 · · · pk that don’t give
0. Even subset give µ(d) = 1 odd give µ(d) = −1. #even = #odd. So

∑
d|m µ(d) = 0m6=1 = 1m=1

G(x) = x F (x) = ex



4.3 Multinomial Coefficients

The binomial coefficient
(n
k

)
can be interpreted as splitting X into 2 sets. This generalises. Let( n

a1a2...ak

)
= # of ways to split X into k sets of sizes a1...ak resp. Equiv place place n balls into k

boxes such that box i has ai balls. Take ai balls of color i. How many ways can we arrange the balls
in a row (in a distinguishable manner). There are n! orderings there are n!

a1!···ak! distinguishable
arrangements. There are

( n
a1a2...ak

)
arrangements as the positions of balls of color i give a subset

Xi of X. Ho many ways to partition [n] into bi subsets of size i when
∑k

i=1 i− bi = n.
Partition [n] into unordered sets. Apply above method, but the collections of subsets of size i

can themselves be permuted. So

1
b1!b2! · · · bk!

n!
(1!)b1 · · · (k!)bk

Problem 2 How many sequences A1, A2, ..., Ak of subsets of [n] are there such that ∪i=1Ai = [n]?

Answere:(2k − 1)n

5 Inclusion-Exclusion

Notice: if A1, A2 are sets, |A1 ∪A2| = |A1|+ |A2| − |A1 ∩A2|. Take a collection of sets {Ai : i ∈ I}

Theorem 6 I-E
| ∪i∈I Ai|

=
∑

S⊆I:|S|=1 | ∩i∈ Ai| −
∑

S⊆I:|S|=2 | ∩i∈S Ai|+ ... + (−1)|I|−1| ∩i∈I Ai|

Proof. If x is in k of the Ai. How many times is x counted by RHS?

k −
(

k

2

)
+

(
k

3

)
− ... + (−1)k−1

(
k

k

)

By the binomial theoremvariable:=1

0 =
∑
i=0

(−1)i

(
k

i

)

5.1 Examples

• Derangements: A permutation π such that πi 6= i. Let Ai be the set of π such that πi = i

| ∪n
i=1 Ai| = n · (n− 1)!−

(
n

2

)
(n− 2)! +

(
n

3

)
(n− 3)!... + (−1)n−1

(
n

n

)
(n− n)!

= n!− n!
2

+
n!
3!

.... + (−1)n−1

(
n

n

)
(n− n)!



so
dn = n!− | ∪n

i=1 Ai| = n!(1− 1 +
1
2!
− 1

3!
+ ...)

= n!
n∑

i=0

−1i

i!
≈ n!

e

• Can also derive this using generating functions. aside: Sn = eC so Dn = eC−x

Let D(x) :=
∑

n≥0 dn
xn

n! be exponential GF . Now

ex ·D(x) = (
∑
r≥0

xr

r!
)(
∑
s≥0

ds
xs

s!
)

=
∑
k≥0

xk
k∑

i=0

di

i!
· 1
(k − i)!

=
∑
n≥0

xk

k!

k∑
i=0

di

(
k

i

)
=
∑

xk =
1

1− x

⇒ D(x) =
e−x

1− x

D(x) = (1− x +
x2

2!
− x3

3!
...)(1 + x + x2 + ...)

So
dn

n!
=

n∑
i=0

−1i

i!

• Binomial Coeffs (
m

k

)
=

n∑
i=0

(−1)i

(
n

i

)(
m + n− i

k − i

)
Assume m ≥ k. For the LHS there are

(m
k

)
ways to pick k blue balls from m blue balls. For

the RHS add n red balls r1, ..., rn. Let Aj be a collection of k subsets of R ∪B that contains
rj . The number of ways to pick a blue k − set from R ∪B is then(

n + m

k

)
− (

n∑
i=1

(−1)i−1

(
n

i

)(
m + n− i

k − i

)
)

pick i of r1, ..., rn and we have k − i choices for the other balls

• Euler Function: let n := pa1
1 · · · pak

k be prime decomposition of n. Let φ(n) = # of integers
coprime with n and less then n. Set Ai =set of integers divisible by pi. Set Ai := set of
integers divisible by pi. So

φ(n) = n− [
k∑

i=1

n

pi
−

∑
1≤i1<i2≤r

n

pi1pi2

. . . + (−1)r
∑

1≤i1≤...ir≤r

n

p1 · · · pr
]



= n
k∏

i=1

(1− 1
pi

)

Theorem 7 Euler φ n =
∑

d|n φ(d)

Proof. The number of integers m such that gcd(m,n) = d is φ(n
d ). [m = m, d, n = n, d] So∑

d|n φ(n
d ) =

∑
d|n φ(d) = n

• This relates to the Mobius function: µ(1) = 1, µ(n) = 1 if n is a product of even number of
distinct primes. µ(n)− 1 if n is a product of odd number of distinct primes, µ(n) = 0 if n is
not square free.

Theorem 8 ∑
d|n

µ(d) = 1 if n = 1 0 otherwise

Proof. n = 1, n = pa1
1 · · · pak

k then

∑
d|n

µ(d) =
k∑

i=0

(−1)i

(
k

i

)

= (1− 1)k = 0

Corollary 2

φ(n)
n

=
∑
d|n

µ(d)
d

Proof.
φ(n)

n = 1 −
∑k

i=1
1
pi

+
∑

1≤i1<i2≤k
1

pi1
pi2

... = µ(1) +
∑

d|n µ(d)1
d +

∑
d|n µ(d)1

d + ... =
∑

d|n
µ(d)

d

d = some pi

6 Mobius Inversion

Theorem 9 Let f(n) =
∑

d|n g(d) then g(n) =
∑

d|n µ(d)f(n
d )

Proof. ∑
d|n

µ(d) · f(
n

d
) =

∑
d|n

µ(
n

d
)f(d)

=
∑
d|n

µ(
n

d
)
∑
d′|d

g(d′) =
∑
d′|n

g(d′)
∑

d′′| n
d′

µ(d′′) = g(n)

which is equal to 0 or 1, and is only 1 when n
d′ = 1. i.e. when d′ = n.



Example: Let Hn = the number of circular 0− 1 sequences of size n, sequences are distinct if
not rotations of each other. Let µ(d) = # sequences of period d.

Hn =
∑
d|n

µ(d)

we know ∑
d|n

d · µ(d) = 2n

Let f(n) = 2n, g(n) =
∑

d|n µ(d)2
n
d = n · µ(n) in the Mobius Inversion Formula. So Hn =∑

d|n µ(d) =
∑

d|n
1
d

∑
d′|d µ(d′)2 d

d′

=
∑
d|n

1
d

∑
l|d

µ(
d

l
)2l

=
∑
l|n

∑
k|n

l

2l

l
· µ(k)

k

=
∑
l|n

2l

l

∑
k|n

l

µ(k)
k

⇒ Hn =
1
n

∑
l|n

φ(
n

l
)2l

7 Stirling numbers of the first kind

Let π := π1, π2, ..., πn ∈ Sn be a permutation of [n]. We can view π as a collection of disjoint cycles.
So we can write π as a set of disjoint cycles:

• π := (a1, ..., ak), (b1, ..., br), ...

• Each cycle starts with its largest element.

• The cycles are written in increasing order of their largest element.

for example (726)(84513)(9).
Now we can forget about the parenthesis. Let f(π) =π− parenthesis. For example

f(368517249) = f((726)(84513)(9)) = 726845139

Theorem 10 (surprizing) f is a bijection.

Proof. To see this take f(π) and we insert ( before every left-right maxima.

Corollary 3 π ∈ Sn has k cycles iff f(π) has k left, right maxima.

Now given π ∈ Sn let ci := ci(π) = # of cycles of length π We say π has type (c1, c2, ...., cn)



Lemma 1 number of permutations of type (c1, c2, ..., cn) is

n!
1c1 · 2c2 · · ·ncnc1! · c2! · · · cn!

Proof. Write π in a non-standard cycle form. Place cycles of length 1 first, then cycles of length
2, etc... We can order the −cycles in ci! ways and we can pick thier first element in ici ways.

Definition 3 (Stirling number of the first kind) Let s̄(n, k) = # permutations of [n] with k
cycles. s(n, k) = (−1)n−ks̄(n, k)

Lemma 2 s̄(n, k) satisfy:

s̄(n, k) = (n− 1)s̄(n− 1, k) + s̄(n− 1, k − 1)

Proof. Given π ∈ Sn−1 with k − 1 cycles we a π ∈ Sn with k cycles by setting πn = n. Given
π ∈ Sn−1 with k cycles then we have n − 1 ‘slots’ to insert n. (add n as a midpoint in one of the
n− 1 edges of the cycles)

Theorem 11
∑n

k=0 s̄(n, k)xk = (x + n− 1)n

Proof. Set Fn(x) = (x + n− 1)n = (x + n− 1)(x + n− 2) · · · (x + 1)− x . We can write this as

n∑
k=0

b(n, k)xk

and determine what b is. Now b(0, 0) = 1, and set b(n, k) = 0 if n < 0 or k < 0.

Fn(x) = (x + n− 1) · Fn−1(x) = xFn−1(x) + (n− 1)Fn−1(x)

=
n−1∑
k=0

xb(n− 1, k)xk + (n− 1)
n−1∑
k=0

b(n− 1, k)xk

So
n∑

n=0

b(n, k)xk =
n∑

k=1

b(n− 1, k − 1)xk + (n− 1)
n−1∑
k=0

b(n− 1, k)xk

So b(n, k) = b(n− 1, k − 1) + (n− 1)b(n− 1, k). The base cases for s̄(n, k) are the same so

s̄(n, k) = b(n, k)

We can prove combinatorial via a bijection show coeffs on the LHS equal coeff on RHS. Instead
we give a different type of combinatorial proof.

• Two polynomials are the same if they agree on sufficiently many values of the
variable x

Using this we give a second proof of the theorem. Proof. (2) We show



• ∗

–
∑

s̄(n, k)xk = (x + n− 1)n

for all positive integers x. Let C(π) be the set of cycles of π. The LHS counts pairs (π, f) with
f : C(π) → [x]k The RHS counts integer sequences (1, b2, ..., bn) where 1 ≤ bi ≤ x + n− i.

Given sequence (b1, ..., bn) find a bijection to (π, f)

1. Write down n and assume it starts cycle C1. Let f(C1) = bn

2. Given n, n− 1, ..., n− i + 1 have been inserted into cycles

(a) if 1 ≤ bn−i ≤ x start a new cycle Cj with (n − i) to the left of previous elements. Set
f(Cj) = bn−1

(b) If bn−i = x+p insert (n− i) into an odd cycle such that it is to the right of p elements(it
doesnt start a cycle)

7.1 Example

(b1 . . . b9) = (596186352) n = 9 x = 4

• b9 = 2 (9) so f(C1) = 2

• b8 = 4 + 1 p = 1 (98)

• b7 = 3 (7)(98) f(C2) = 3

• (7)(968)

• (7)(9685)

• (4)(7)(9685)

• (4)(73)(9685)

• (4)(73)(96285)

• (41)(73)(96285)

this is in standard form by construction. given (π, f) for example (41)color=1(73)col=3(96285)col=2

1. 1 has one element to the left ⇒ p = 1 cross off 1 (5 . . .)

2. 2 now has 5 elements to the left ⇒ p = 5 (5, 9 . . .)

3. 3 has 2 elements to the left so p = 2 (5, 9, 6)

4. ....

5. (5, 9, 6, 1, 8, 6, 3, 5, 2)

e.g. set x := 1



Corollary 4 the number of integer sequences (b1, ..., bn) such that 1 ≤ bi ≤ n + 1− i with exactly
k of the bi = 1 is s̄(n, k).

Corollary 5

n∑
k=0

s(n, k)xk = (x)n

Proof. Take
∑

s̄(n, k)xk = (x + n− 1)n set y = −x.

(−1)n
∑

s̄(n, k)(−1)kyk = (n− 1− y)n(−1)n

∑
s̄(n, k)(−1)n+kyk = (−1)n(n− 1− y)(n− 2− y) · · · (1− y)− y

= y(y − 1) · · · (y − (n− 1))

=
∑

s̄(n, k)(−1)n−kyk∑
s(n, k)yk = (y)n

8 Stirling numbers of the second kind

Definition 4 (Partition) A partition of [n] is an unordered collection of subsets(blocks) B1, ..., Bk

such that

• Bi 6= 0

• Bi ∩Bj = ∅

• B1 ∪B2 . . . ∪Bk = [n]

Definition 5 (second kind) Let S(n, k) := # of partitions of [n] into exactly k blocks. We say
S(n, k) is a Stirling number of the second kind.

By convention S(0, 0) = 1. We have

1. S(n, k) = 0 if k > n

2. S(n, 0) = 0 for n > 0

3. S(n, 1) = 1

4. S(n, 2) = 2n−1 − 1

5. S(n, n− 1) =
(n
2

)
6. S(n, n) = 1

We have the following recurrence



Lemma 3 S(n, k) = kS(n− 1, k) + S(n− 1, k − 1)

Proof. Look at element n. We can add it to any block in a k − block partition of [n − 1] or we
can put it in a block of its own. We have a (k − 1)− block partition of [n− 1]

Theorem 12
∑n

k=0 S(n, k)(x)k = xn

Proof. Let X be a set of size x. The RHS is the number of functions f : [n] → X. Each function
is a surjection onto a unique subset Y ⊆ X. Fix |y| = k. There are k!S(n, k) such surjections.
There are

(x
k

)
choices for Y . Thus

xn =
n∑

k=0

k!S(n, k)

(
x

k

)
=

n∑
k=0

S(n, k)(x)k

Recall
∑n

k=0 s(n, k)xk = (x)n.

Theorem 13 •
∑n

k=r S(n, k)s(k, r) = 0r 6=n

•
∑n

k=r S(n, k)s(k, r) = 1r=n

Proof. xn =
∑n

k=0 S(n, k)(x)k =
∑n

k=0 S(n, k) ·
∑k

r=0 s(k, r)xr

=
n∑

r=0

xr(
n∑

k=r

S(n, k)s(k, r)) = xn

8.0.1 Interpritation

• Let s be ∞ matrix with ij entry s(i, j)

• Let S be ∞ matrix with ij entry S(i, j)

• Then the theorem implies that S and s are inverses

8.0.2 Example

B := {1, x1, x2, ...} is a basis for the complex vector space defined by polynomials with complex
coefficients. But the B2 := {1, (x)1, (x)2, ...} is also a basis as S is transition matrix for bases B2

to B1. Remark: The equations

1. (x)n =
∑

s(n, k)xk

2. xn =
∑

S(n, k)(x)k

Are important in the theory of “calculus of finite differences”.



8.1 Generating Functions

Let
Fk(x) :=

∑
n≥k

S(n, k)
xn

n!

So
Fk(x) = k

∑
n≥k

S(n− 1, k)
xn

n!
+
∑
n≥k

S(n− 1, k − 1)
xn

n!

F ′
k(x) = k

∑
n−1≥k

S(n− 1, k)
xn−1

(n− 1)!
+
∑
n≥k

S(n− 1, k − 1)
xn−1

(n− 1)!

= k
∑
n≥k

S(n, k)
xn

n!
+

∑
n−1≥k−1

S(n− 1, k − 1)
xn−1

(n− 1)!

= kFk(x) + Fk−1(x)

Lemma 4
∑

n≥k S(n, k)xn

n! = (ex−1)k

k!

Proof. Induction:
S(n, 1) =

∑
n≥1

xn

n!
= ex − 1

then
F ′

k(x) = kFk(x) +
1

(k − 1)!
(ex − 1)k−1

has solution
Fk(x) =

1
k!

(ex − 1)k

unique since the coefficient of xk is 1
k!

Corollary 6 S(n, k) = 1
n!

∑k
i=0(−1)k−i

(k
i

)
in

Proof. Coeff of xn in
∑

S(n, k)xn

n! is the coefficient of xn in

1
k!

(ex − 1)k =
1
k!

k∑
i=0

(−1)k−i

(
k

i

)
eix

=
1
k!

∑
(−1)k−i

(
k

i

)
(
∑
r≥0

(ix)r

r!
)

1
k!

k∑
i=0

(−1)k−i

(
k

i

)
in

n!
=

S(n, k)
n!



8.1.1 Bell Numbers

The total number B(n) of partitions of an n−set is called the Bell number. So B(n) =
∑n

k=0 S(n, k)

Corollary 7 B(x) :=
∑

n≥0 B(n)xn

n! = exp(ex − 1)

Proof. ∑
B(n)

xn

n!
=
∑
n≥0

(
n∑

k=0

S(n, k))
xn

n!

=
∑
k≥0

∑
n≥k

S(n, k)
xn

n!

=
∑
k≥0

1
k!

(ex − 1)k = exp(ex − 1)

So lets extract some information

B(x) = exp(ex − 1)

B′(x) = exexp(ex − 1)

B′(x) =
∑

B(n)
xn−1

(n− 1)!∑
B(n + 1)

xn

n!
=

B(n + 1) =
n∑

k=0

(
n

k

)
B(k)

Consider the exponential generating function for the first kind

8.1.2 SNOTFK

Theorem 14
∑

n≥k s(n, k)xn

n! = 1
k!(lg(1 + x))k

Proof.
(1 + y)x = exp(x log(1 + y)) =

∑
k≥0

1
k!

[lg(1 + y)]kxk

Also

(1 + y)x =
∑
n≥0

(
x

n

)
yn

=
∑
n≥0

1
n!

(x)nyn

=
∑
n≥0

yn

n!
(

n∑
k=0

s(n, k)xk)

∑
k≥0

xk
∑
n≥k

yk

n!
s(n, k)



9 Catalan Numbers

How man sequences of n ′+′ signs and n ′−′ signs are there such that each partial sum is non-
negative? This is the same as the number of paths from (0, 0) to (2n, 0) using arcs (1, 1) if we are
not allowed to go below the x−axis. Such waks are called byck walks. The number of these walks
is equal to the catalan number

Theorem 15 Cn := 1
n+1

(2n
n

)
Proof.

• Clearly the number of walks from (0, 0) to (2n, 0) is
(2n

n

)
if there is no restriction of staying

non negative

• Any path that goes below the x − axis hits y = −1 . These are “bad” walks. Count the
number of bad walks.

Let P go below the x− axis, therefore it hits y = −1 for the first time at (x′,−1). Say this
divides P into P1 and P2. i.e. P1 goes from (0, 0) ; (x′,−1). Let P̄ be the reflection of P1

in y = −1. So (P ′
1, P2) is a walk from (0,−2) to (2n, 0). This is a one to one mapping as

any walk from (0,−2) to (2n, 0) crosses y = −1 from below at least once. There are
( 2n
n+1

)
of

these walks.

• So the number of Dyck paths is(
2n

n

)
−
(

2n

n + 1

)
=

(
2n

n

)
1

n + 1
= Cn

Lets see more examples of Cn

• Plane Trees on n + 1 vertices. Consider a caterpiller(i.e. DFS order) walking around the
tree. If he goes up we have a +, if he goes down we write a −.

• Planted trivalent trees on 2n + 2 vertices.

T = x(1 + T 2)

solve using quadratic equation.

• Decompositions of (n+2)-gon into n triangles using n−1 non intersection diagonals.
Outer face = root + leaves....

• Linear extensions(full ordering such that x ≤ y if x ≤ y) of the poset 2 × n. For
each odd number we have a + and for each even number we have a −. For example

π := 1 3 5 2 4 7 6 8 ⇒ + + + − − + − −



• Covering non-comparable intervals on {1, ..., n}

(1, 2)(3, 4, 5, 6) + (2, 3, 4)

covers (1, 2, 3, 4, 5, 6).

Construct a Lattice:
123

12 23

1 2 3

any maximal antichain in this lattice defines a linear extension and gives us a corresponding
Dyck path.

• Binary Bracketing. A recursive partition of a non associative product x1, x2, ..., xn+1 into
products of 2 non empty products. Bijection with Dyck paths by sending ‘(′⇒ +, ‘)′ ⇒ −
and reading from left to right.

9.1 Catalan GF

let f(n) = # of binary bracketings of (1, ..., n). then fn = Cn−1 Clearly

f(n) =
n−1∑
j=1

f(j)f(n− j)

Let
F (x) =

∑
n≥1

f(n)xn = x +
∑
n≥2

f(n)xn

= x +
∑
n≥2

(
n−2∑
j=1

f(j)f(n− j))xn

= x + F (x)2

so
F (x) = x + F (x)2

thus

F (x) =
1±

√
1− 4x

2
How can we go backwards? we have

F (0) = 0

so we have

F (x) =
1−

√
1− 4x

2
= (1− 4x)

1
2 =

∑
n≥0

(
1
2

n

)
(−4)nxn

=

(
1
2

0

)
+
∑
n≥1

(−4)nxn
1
2 · −

1
2 ·

3
2 · · ·

−(2n−3)
2

n!



= 1−
∑
n≥1

4nxn (2n− 3) · · · 5 · 3 · 1
2nn!

= 1−
∑

4nxn (2n− 2)!
2n−1(n− 1)!2nn!

= 1−
∑
n≥1

2
n

(
2n− 2
n− 1

)
xn

So

F (x) =
1
2

∑ 2
n

(
2n− 2
n− 1

)
xn

=
∑
n≥1

Cn−1x
n

10 Partitions of an integer

We say that p(n) = # of ordered partitions of n. e.g. p(5) = they are

5, 4 + 1 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1

We often represent a partition λ⊥n by a Ferrers diagram. We obtain the conjugate λ′ of λ by
transposing the rows and cols. A partition is self conjugate if λ = λ′.

Theorem 16 The number of partitions of n into at most k parts is equal to the number of partitions
of n + k into exactly k parts. i.e.

k∑
j=1

pk(n) = pk(n + k)

Proof. take a partition of n + k into exactly k parts and remove the first column.

Theorem 17 the number of partitions of n into distinct odd parts is equal to the number of self
conjugate partitions of n

Proof. Take the ‘hooks’ i.e. first column + first row, ...2nd col + 2nd row ..etc

10.1 Generating Functions

Consider
∏

i≥1
1

1−xi
and take a term xα1

1 xα2
2 · · ·xαr

r setting xi to xi we have xα1x2α2 · · ·xrαr . It
follows that the coefficient of xn in ∏

i≥1

1
1− xi

is p(n). Similarly we have generating functions for

1. Partitions into distinct parts: D(x) =
∏

i≥1(1 + xi).

2. Partition into odd parts: O(x) =
∏

i≥1
1

1−x2i−1



3. Partitions into size at most r

R(x) =
∏

r≥i≥1

1
1− xi

Theorem 18 The number of partitions of n into distinct parts is equal to the number of partitions
of n into odd parts.

Proof.

D(x) =
∏
k≥1

(1 + xk) =
∏
k≥1

(1 + xk)(1− xk)
(1− xk)

=
∏
k≥1

(1− x2k)
(1− xk)

=
∏
i≥1

1
1− x2k−1

= O(x)

Lets investigate P (x) more. Consider the inverse of P (x) i.e. P (x) · P (x)−1 = 1. Clearly
P (x)−1 =

∏
k≥1(1− xk). This looks like D(x)! It follows that in the expansion of P (x)−1

• any partition of n into an even number of distinct parts contributes 1 to the coefficient of xn

• any partition of n into an odd number of distinct parts contributes −1 to the coefficient of
xn

• ê(n) := number of partitions of n into distinct parts with even number of parts

• ô(n) := number of partitions of n into distinct parts with odd number of parts

Lemma 5

P (x)−1 = 1 +
∑
n≥1

[ê(n)− ô(n)]xn

What is ê(n)− ô(n) ? Set up a bijection between partition of ê(n) and ô(n). Take a partition
λ⊥n . Set s(λ) := size of smallest part. d(λ) := length of 45◦ angle starting at top right.

We give a transformation λ → λ′ as follows

1. If s(λ) ≤ d(λ) then λ → λ′ by moving the smallest part to the far right diagonal.

2. If s(λ) > d(λ) then move diagonal to the bottom row.

These transformations keep parts distinct but change the parity of # parts. Also case 1 changes
s(λ) ≤ d(λ) to d(λ′) < s(λ′). Similarly for case 2. Are we done ? no its not a bijection! We have 2
problems.

• in Case 1: what if s(λ) = d(λ) and the row and diagonal intersect? This is not a valid
diagonal.



• in Case 2: what if s(λ) = d(λ) + 1 and they intersect?

These are the only two problems . So we “nearly” have a bijection. Moreover the bad examples in
case 1 satisfy

n = s(λ) + (s(λ)− 1) + (s(λ) + 2) + ... + (s(λ) + s(λ)− 1)

= s + (s + 1) + ...(2s− 1)

n is of the form
n2 +

1
2
n(n− 1) =

1
2
n(3n− 1)

The Case 2 bad example has n = s + (s + 1) . . . (s + s − 2) thus n is of the form 1
2m(3m + 1).

Remarkably we have shown :

Theorem 19 ê(n)− ô(n) =

• (−1)m if n = 1
2m(3m± 1)

• 0 otherwise

for some m ≥ 1

For example

P (x)−1 = 1− (x− x2)m=1 + (x5 + x7)m=2 − (x12 − x15)m=3 + (x22 + x26)m=4 + ...

We remark that the numbers 1, 5, 12, 22, ... are the “pentagonal numbers”. For 2, 7, 15, ... add
one dot per pentagon. Observe:

(1 + p1 + p2x
2...)(1− x− x2 + x5 + x7...) = 1

So we can recursively compute p(n) then

p(n) = p(n− 1) + p(n− 2)− p(n− 5)− ...

10.2 Asymptotics

First 2 terms are p(n) = p(n + 1) + p(n− 2) But Fib grows much quicker than p(n).

Lemma 6 p(n) ≤ π√
6(n−1)

eπ·
√

2/3
√

n

Proof.
lg(P (x)) = − lg

∏
k≥1

(1− xk)−1

= −
∑
k≥1

lg(1− xk)

=
∑
k≥1

∑
j≥1

(xk)j

j
=
∑
j≥1

1
j

∑
k≥1

xjk

=
∑
j≥1

1
j

xj

1− xj

...



11 Inversions

Definition 6 (Inversion) Given a permutation π := π1, π2, ..., πn we say a pair (i, j) forms an
inversion if

• i < j

• πi > πj

We say i(π) := the number of inversions in π.

Lemma 7 There is a one to one mapping between permutations and sequences b := (b1, ..., bn) such
that 0 ≤ bi ≤ n− i

Proof. Take π ∈ Sn let bc be the number of elements to the left of c in π that form an inversion
with c. Given b we can recover π by first writting n, then n− 1,... using b.

Definition 7 (q-factorial) (k)! := (k)(k − 1)(k − 2)...(2)(1) where (j) := 1 + q + q2 + ... + qj−1.

Notice when q = 1 we have (k)! = k!.

Theorem 20
∑

π∈Sn
qi(π) = (n)!

Proof. Construct b as before such that i(π) =
∑n

j=1 bj . We have

∑
π∈Sn

ai(π) =
n−1∑
b1=0

n−2∑
b2=0

. . .
0∑

bn=0

qb1+b2+...+bn

=
n−1∑
b1=0

qb1
n−2∑
b2=0

qb2 . . .
0∑

bn=0

qbn

= (1 + q + q2 + ... + qn−1)(1 + ... + qn−2) . . . (1 + q)1 = (n)!

This generalizes to permutations of multisets. Take M := {1α1 , 2α2 , ...,mαm} let π ∈ S(M).
Again an inversion is a pair i < j with πi > πj

Definition 8 (q-multinomial coeff)(
n

a1, ..., am

)
=

(n)!
(a1)!(a2)!...(am)!



11.1 remarks
1. (

n

a1, ..., am

)

is polynomial in q.

2. (
n

a1, ..., an

)
=

(
n

a1

)(
n− a1

a2

)
...

(
n

k

)
=

(
n− 1

k

)
+ qn−k

(
n− 1
k − 1

)
(

n

0

)
= 1

Theorem 21 For M = {1a1 , ....mam}

∑
π∈S(M)

qi(π) =

(
n

a1, ..., am

)

Proof. Define a map φ : S(M) × Sa1 × Sa2 × ... × Sam as follows. Given π ∈ S(M) and
π1 ∈ Sa1 , ..., π

n ∈ San . Convert the ai i′s to the numbers a1+a2+....+ai−1+1,a1+a2+....+ai−1+2,...
a1 + a2 + .... + ai−1 + ai. Let π̂ ∈ Sn. Place these numbers in π in the order created by π1, ..., πm

for example
(π ∈ S(m), π1, π2, π3)

(21331223, 21, 231, 312)

21331223

42861537 = π̂ ∈ S8

This is a bijection. Moreover i(π̂) = i(π1) + i(π2) + ... + i(πm) + i(π) So

∑
π̂

qi(π̂) =
∑

π∈S(M)

qi(π)
m∏

j=1

∑
πj∈Saj

qi(πj)

(n)! =
∑

π∈S(m)

qi(π)(a1)! . . . (am)!

by the previous theorem.



12 Vector Spaces

Let q be prime and Fq be a finite field with q elements. Let Vn(q) be the n dimensional vector
space

Fn
q := {(α1, ..., αn)|αi ∈ Fq}

Theorem 22 The number of k dimensional subspaces of Vk(q)
(n
k

)
Proof. Let this number be S(n, k). Let N(n, k) := the number of ordered k tuples (v1, ..., vk) of
linearly independent vectors in Vn(q). We can choose

• v1 in qn − 1 ways

• v2 in qn − q ways

• v3 in qn − q2 ways

• ....

So N(n, k) = (qn − 1)(qn − q) · · · (qn − qk−1). On the other hand we choose (v1, ..., vk) by first
choosing a k dimensional subspace in S(n, k) ways then choosing v1 in (qk − 1) ways.

13 Posets

Definition 9 (Poset) A partially ordered set P is a set P with a binary relation ≤ such that

1. Reflexivity: a ≤ a ∀a ∈ P

2. Transitivity: a ≤ b, b ≤ c ⇒ a ≤ c

3. Anti-symmetry: a ≤ b, b ≤ a ⇒ a = b

A partial order is a total order(linear order) if all pairs are comparable. Hasse Diagram: draw
covering relations .

Definition 10 (Chain) C ⊆ P is a chain if it is totally ordered.

Definition 11 (Anti-chain) A ⊆ P is an antichain if all pairs in A are not comparable.

Theorem 23 (Dilworth) In a poset P the maximum size of an antichain is equal to the minimum
number of chains needed to cover the elements of P.

Proof. A chain covers at most one element in an antichain thus max antichain ≤ min chain cover.
We prove the other direction for finite |P | but this result is also true in the infinite case. We induct
on |P | if |P | = 1 the statement is satisfied. Take |P | ≥ 2 with max antichain = k. Pick a max
chain C in P and a max antichain A in P − C. If |A| = k − 1 we are done by induction. Create
2 new posets P+ := {x : x ≥ qi some i}, P− := {x : x ≤ ai some i}. Let y be max element in
C, z min element. We have y /∈ P−, z /∈ P+ or C is not maximal. So by induction P− or P+ can



be covered by k chains. We claim a1, ..., ak are minimal elements of the chains for P+ and max
elements for the chains in P−.

Every element is in P− or P+, otherwise we get an antichain of size k + 1. So if claim is true
we can put the chains together to cover P . Consider P+ and suppose there is some x in some
chain such that x ≤ a1. This cant happen since x ∈ P+ so x ≥ ai. So a1, ai are comparable by
transitivity. Similar for P−

There is a dual result:

Theorem 24 Max size of a chain = minimum number of antichains needed to cover P.

Proof. min ≥ max is obvious. To prove max ≤ min use induction on size k of maximum chain.
If k = 1 all elements are incomparable. If k ≥ 2 let Amax := set of maximal elements in poset.
Clearly Amax is an antichain. The maximum chain in P −Amax has size at least k − 1. So we are
done by induction.

Theorem 25 Let S1, ..., Sm be subsets of an n− set such that Si 6= Sj, i 6= j. Then

m ≤
(

n

bn
2 c

)

Proof. Consider Poset of subsets of {1, 2, ..., n} with Si ≤ Sj iff Si ⊆ Sj . We want the maximum
antichain in P .

Let a be an antichain of size
∑n

k=0 nk where nk := the number of subsets in a. There are n!
chains from ∅ to {1, 2, ..., n}. Exactly k!(n− k)! of the chains intersect a particular k− subset. No
chain contains more than 1 element of a. So the number of chains containing some element of a is

n∑
k=0

(nk · k!(n− k)!) ≤ n!

n∑
k=0

nk(n
k

) ≤ 1

since (
n

k

)
≤
(

n

bn
2 c

)
We have ∑

nk ≤
(

n

bn
2 c

)

Here is a less obvious application of Dilworth

Theorem 26 In any n2 + 1 sequences of numbers there is either a non decreasing subsequence of
n + 1 numbers or a non increasing

Proof. Take x1, x2, ..., xn2+1 = x. we create a poset on x. For i < j : xi ≤p xj if xi ≤
xj , xi4xj if xi > xj . A chain of size n + 1 gives a non-decreasing subsequence of size n + 1. If
there is no such chain then we can cover P with n antichains. Therefore there is an antichain of
size dn2+1

n e = n + 1. This gives decreasing subsequence of size n + 1.



13.1 Graph Theory

We will be considering bipartite graphs G := (X, Y )

Definition 12 (Matching) A matching M ⊆ E is a set of vertex disjoint edges. A matching M
is complete if every vertex in X is adjacent to an edge in M .

Theorem 27 |Γ(S)| ≥ |S|∀S ⊆ X iff there is a complete matching.

Proof. If |Γ(S)| < |S| you can’t match up S. Let |X| = n1, n2 := |Y | ≥ |Γ(X)| ≥ |X| = n1.
Create a poset P by setting xi ≤ yi if there is an edge (xi, yj). Take a maximum antichain a of
size k. a = {x1, x2, ..., xr, y1, ..., ys}. Since Γ(x1, ..., xr) ⊆ Y − {y1, ..., ys} . So n2 − s ≥ r. Hence
n2 ≥ r + s = k. y is antichain so n2 ≤ k. By Dilworth there are k chains that cover P . Antichain
has size 1 or 2, so the k chains consist of k1 vertices plus k2 edges. The k2 edges form a matching
(or we don’t need one of them). Thus k = (n1−k2)+ (n2−k2)+k2 and k1 = (n1−k2)+ (n2−k2),
so k2 = n1 + n2 − k = n1

One last example

Theorem 28 Let S := {S∞, ...,Sm} be pairwise intersecting k-subsets of an n − set. Then m ≤(n−1
k−1

)
.

Proof. We can obtain this bound. Take all k − subsets that contain element 1. Draw a‘Drum’
labled from 1, .., n. Let {F1, F2, ..., Fn} = F be the k-subsets induced by this ordering starting at
1, 2, ..., n respectively. |S∩F| ≤ ‖. The left points differ by at most k−1 if they intersect. The same
statement holds for any π on the drum. Let Fπ = (Fπ∞ , ...,Fπ\) Let m̄ =

∑
π∈Sn

|S ∩ Fπ| ≤ ‖ · \!.
We can count m̄ in another way. Fix Si ∈ S and see how many π have Si as an interval. There are
k!(n− k)! ways to start a permutation with Si. There are n ways to pick the start position on the
drum. So m̄ =

∑m
j=1 n · k!(n− k)! = m · nk!(n− k)! ≤ kn! So m ≤

(n−1
k−1

)
14 Posets

A poset P has a maximum element 1̂ if there exists element x = 1̂ such that y ≤ x∀y ∈ P. We
define 0̂ similarly. A poset is graded if every maximal saturated chain has the same length. A
graded poset has a rank function ρ : P → {0, 1, ..., n} such that ρ(x) = i if every maximal chain
from a minimal element to x has length i.

Definition 13 (boolean algebra) Bn := the boolean algebra of set [n].

Bn is a graded poset. We let ri := the number of nodes of rank i in a graded poset.

Definition 14 (Combining Posets) Given posets P,Q

• Difect sum P + Q: x ≤ y in P + Q if

– x ≤ y in P

– or x ≤ y in Q

• Direct Producr P ×Q: (x, y) ≤ (x′, y′) in P ×Q if



– x ≤ x′ in P and

– y ≤ y′ in Q

Definition 15 (Sperners Property) We say that a graded poset has the Sperner Property if the
size of a maximum antichain is equal to ri for some level i(any level is an antichain)

Note that Bn, Dn,n are Sperner. Where n is a chain, Dn is the divisor poset.

Definition 16 (Rank Symmetric) A graded poset is rank-symmetric if ri = rn−i ∀i. A chain is
symmetric if it starts at level i and finishes at level n− i.

Definition 17 (Sym Chain Decomp) A poset has a symmetric chain decomposition(SCD) if it
can be covered by disjoint symmetric chains

Lemma 8 If P has a SCD then it is Sperner

Proof. Take a SCD and suppose it has k chains. Then a a maximum antichain has size at most
k. Each chain covers the middle row or middle two rows if n is odd. By symmetry δ middle levels
has antichain of size k.

EX:The converse is not true, find a counter example.

Lemma 9 Bn has a SCD.

Proof. Observe Bn = 2 × 2 × ... × 2 i.e. a 0, 1 vector corresponds to a subset. Clearly 2 (along
with chains in general) has a SCD i.e. itself. The lemma will follow from the observation that if P
and Q have SCDs then so does P ×Q. To see this let c1, ..., cr be SCD of P and c′1, ..., c

′
r be SCD

of Q. Now ci × c′j has SCD obtained by taking ‘hooks’.

14.1 Order Ideals

Definition 18 (Order Ideals) An order ideal I of P is a subset such that if x ∈ I then y ≤ x ⇒
y ∈ I.

If P is finite then there is a one to one correspondence between antichains and order ideals. The
maximal elements in I are an antichain. We write I =< a1, ...., ak > if I is generated by antichains
a1, ..., ak. The order ideals form a poset J(P ) when ordered by inclusion.
Remarks

1. the number of elements in J(P ) that ‘cover’ exactly k elements is equal to the number of k
element antichains in P . [Remove a generator for < a1, ..., ak > to get another order ideal.

2. the number of elements of rank k in J(P ) is the number of order ideals of rank k in P .

Theorem 29 Let P be a finite poset. Then the number of surjective order preserving maps γ :
P → [k] is equal to the number of chains 0̂ = I0 < I1 < . . . < Ik = 1̂ of length k in J(P ).



Proof. Construct a bijection between chains and such surjection. Given valid γ : P → [k] set
Ij = ∪j

r=1γ
−1(r)

Of particular interest is the special case k = n := |P |. Then the number of bijective order
preserving maps γ : P → [n] is equal to the number of saturated maximal chains in J(P ). This is
called a linear extension of P . The number of such extensions is denoted e(P ) and is perhaps the
most useful measure of the complexity of a poset. So finding e(P ) is equivalent to counting lattice
paths from 0̂ to 1̂ in J(P ).(permutation π such that π1, ..., πi is an order ideal ∀i = 1, ..., n).

If P := P1 + P2 + ... + Pk where ni = |Pi| then e(P ) =
(n1+....+nk
n1,n2,...,nk

)
· e(P1) · e(P2) · · · e(Pk) the

multinomial coefficient picks image points of P1, ..., Pk then the e(Pi) points can be ordered.

15 Posets Mobius Inversion

An interval I(x, y) of P is the induced poset formed by {z ∈ P : x ≤ z ≤ y}. Consider all functions
f : Int(P ) → C. Where multiplication(convolution) is defined by :

fg(x, y) =
∑

x≤z≤y

f(x, z)g(z, y)

The following functions are of interest

1. identity : δ(x, y) = 1(x, y) = 1 if x = y 0 otherwise

2. zeta function ζ(x, y) = 1 if x ≤ y 0 otherwise

3. mobius inversion: µ(x, y) = 1, µ(x, y) = −
∑

x≤z<y µ(x, z) ∀x < y

µ is the left inverse of ζ
µζ(x, y) =

∑
x≤z<y

µ(x, z)ζ(z, y)

= µ(x, y) +
∑

x≤z<y

µ(x, z) = 1 if x = y 0 otherwise

Lemma 10 Left inverse = right inverse = inverse if it exists

15.1 Examples of zeta function

1.

ζ2(x, y) =
∑

x≤z≤y

ζ(x, y)ζ(z, y) =
∑

x≤z≤y

1 = |I(x, y)|

2.

ζk(x, y) =
∑

x=x0≤x1≤...≤xk=y

1

this is the number of multichains of length k from x to y.

3.

(ζ − 1)(x, y) = 1 if x < y 0 otherwise



So
(ζ − 1)k =

∑
x=x0≤x1...≤xk=y

(ζ − 1)(x0, x1)(ζ − 1)(x1x2)...(ζ − 1)(xk−1xk)

=
∑

x=x0<...<xk=y

1

equals the number of chains of length k starting at x and ending at y.

Lemma 11 (2− ζ)−1(x, y) = total number of chains from x to y

Proof. (2 − ζ)(x, y) = 1 if x = y − 1 if x < y Let l be the longest chain in I(x, y). Then
(ζ − 1)l+1(u, v) = 0 ∀x ≤ u ≤ v ≤ y So (2− 3)(1 + (3− 1) + (3− 1)2 + . . . + (3− 1)l(u, v)

(1− (ζ − 1)) = (1− (ζ − 1)l+1)(u, v) = l(u, v)

So
(2− 3)−1 = (1 + (3− 1) . . . (3− 1)l)

Theorem 30 (Mobius Inversion Formula) Finite P and f, g : P → C. Then

g(x) =
∑
y≤x

f(y) ∀x ∈ P ⇔ f(x) =
∑
y≤x

g(y)µ(y, x) ∀x ∈ P

Proof. Follows from the fact that µ is inverse of ζ. (g(x) =
∑

y≥x f(x) ⇔ f(x) =∑
y≥x µ(x, y)g(y))

15.2 Examples

1. P = chain N

2. µ(x, x) = 1

3. µ(x, y) = −
∑

x=z<y µ(x, z) = −1 y≥̇x 0 otherwise

µ(i, j) = 1 if i = j ,−1 if i = j − 1 0 otherwise

g(n) =
∑n

j=0 f(i) = f(n) = g(n)− g(n− 1).

Theorem 31 (Product theorem) If (x, y) ≤ (x′, y′) in P × Q then µP×Q((x, y), (x′, y′)) =
µP (x, x′) · µQ(y, y′)

Proof. Take (x, y) ≤ (x′, y′) Then
∑

(x,y)≤(u,v)≤(x′,y′) µP (x, u)µQ(y, v)

=
∑

x≤u≤x′

µP (x, u)
∑

y≤v≤y′

µQ(y, v)

= δP (x, x′)δQ(y, y′) = δP×Q((x, y), (x′, y′))



But ∑
(x,y)≤(u,v)≤(x′,y′)

µP×Q((x, y), (u, v)) = δP×Q((x, y), (x′, y′))

Lets see where this takes us with the Boolean algebra Bn = 2 × 2 × ... × 2 Identify Bn with
subsets of an n set X.

µBn(S, T ) = µ1(s1, t1)µ2(s2, t2) . . . µn(sn, tn) si ∈ {0, 1}

µi corresponds to chain Ci = 2.
= (−1)|T−S|

Mobius Inversion:

g(T ) =
∑
S⊆T

f(S) ∀t ⇔ f(t) =
∑
S⊆T

(−1)|T−S|g(S)∀t

or
g(t) =

∑
S≥T

f(S)∀t ⇔ f(T ) =
∑
S≥t

(−1)|S−T |g(S) ∀T

Lets interpret this . Let {Ai : i ∈ I} be family of subsets of X. I−E is |∪i∈IAi| =
∑
∅6=S⊆I(−1)|S|−1|∩i∈S

Ai| Let

• g(T ) = | ∩i∈T Ai|

• f(T ) = | ∩i∈T Ai − ∪i/∈T Ai| ⇒ get I − E

• T = ∅

Consider the divisor poset Dn. Dn is the poset of divisors of n ordered by divisibility. if n :=
pa1
1 · · · pak

k then Dn = a1 + 1 × a2 + 1 × · · · × ak + 1 Hence µDn(x, y) = µ1(x, y) · · ·µk(xk, yk) =
(−1)t if y

x is product of t distinct primes, 0 otherwise.
So g(x) =

∑
y≤x f(y) ⇔ f(x) =

∑
y≤x g(y)µ(yx)

g(n) =
∑
d|n

f(d) ⇔ f(n) =
∑
d|n

g(d)µ(
n

d
)

16 Lattices

Given x, y ∈ P z is an upper bound of x , y if z ≤ x, z ≥ y. z is a least upper bound or join if
z ≤ w ∀w upperbounds of x and y.

Definition 19 (Lattice) A lattice is a poset in which every pair x, y has a

• Join x ∨ y

• Meet x ∧ y

Clearly a finite lattice has a 0̂ and 1̂.



Definition 20 (Modular) A finite lattice L is modular if it is graded and

ρ(x) + ρ(y) = ρ(x ∧ y) + ρ(x ∨ y) ∀x, y ∈ L

Lemma 12 In a finite lattice the follow are equivalent

1. L is graded: ρ(x) + ρ(y) ≥ ρ(x ∧ y) + ρ(x ∨ y) ∀x, y

2. If x and y both cover x ∧ y then x ∨ y covers x and y

Proof. (1) → (2) trivial. For (2) →(1): First show L is graded. Suppose not , take smallest
interval I(u, v) that is not graded. u is covered by x1, x2 ∈ I or I is not graded. But I[x1, v], I[x2, v]
are graded, i.e. maximal chains have the same lengths sayli in I[xi, v] So WLOG l1 6= l2.

By (2) x1 ∨ x2 covers x1, x2 But then l1 = l2(use chains through x1 ∨ x2) . So L is graded.
Choose x, y ∈ L such that

ρ(x) + ρ(y) < ρ(x ∧ y) + ρ(x ∨ y)

such that l(x ∧ y, x ∨ y) is minimized. (such that ρ(x) + ρ(y) is minimized).

Lemma 13 In a finite lattice TFAE

1. L is graded and ρ(x) + ρ(y) ≥ ρ(x ∧ y) + ρ(x ∨ y)∀x, y

2. Both x, y can not cover x ∧ y.

Proof. WLOG x > x′ > x ∧ y by minimality

ρ(x′) + ρ(y) ≥ ρ(x′ ∧ y) + ρ(x′ ∨ y) = ρ(x ∧ y) + ρ(x ∨ y)

But
x ∧ (x′ ∨ y) ≥ x′

and
x ∨ (x′ ∨ y) = x ∨ y

i.e. this pair violates the choice of x, y

17 Distributive Lattices

Combinatorially the most important lattices are distributive lattices.

Definition 21 (Distributive Lattices) Distributive Lattices if satisfy

1. x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

2. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

There is a nice way to view distributive lattices

Theorem 32 (Fundamental thm for finite DL) If L is finite D.L then there exists a unique
P such that J(P ) ∼= L



Proof. We say that x ∈ L is join(meet) irreducible if we can’t write x = y ∨ z where x > y, z. Let
P ⊆ L be join irreducible elements in L. Then J(P ) ∼= L. Take x ∈ L and let Ix := {y ∈ P : y ≤ x}.
Clearly Ix ∈ J(P ). The resulting map φ : L → J(P ) is an order preserving injection. We want
to show it is surjective. Take I ∈ J(P ) and set x =

∨
{y : y ∈ I}. We want I = Ix, now I ⊆ Ix.

Suppose z ∈ Ix want to show that z ∈ I.

x =
∨
{y : y ∈ I} ≤

∨
{y : y ∈ Ix} = x

So apply
∧

z by distributivity.∨
{y ∧ z : y ∈ I} =

∨
{y ∧ z : y ∈ Ix}

= z

So there exists y ∈ I such that y ∧ z = z ⇒ y ≥ z since I is an order ideal this means that z ∈ I
as well.

18 Binet- Cauchy Thm

From linear algebra:

Theorem 33 (Binet-Cauchy) Let A be n×m matrix, B m× n , D a m×m diagonal matrix.
Then

|ADB| =
∑
S

|AS | · |BS |
∏
i∈S

di

where the sum is over all n-subsets S ⊆ [1, 2, ...,m]

• AS is n× n submatrix of A induced by cols corresponding to S.

• BS is n× n submatrix of B induced by cols corresponding to S.

All we need is

Theorem 34 |AAT | =
∑

S |AS |2

18.1 Example

Take graph G with labeled vertices v1, ..., vn. Let C be vertex arc adjacency matrix induced by
“some” orientation of the edges. Take C · CT is a square matrix with mii = deg(vi), mij =
−1 if(vi, vj) ∈ E, else 0. = D − A where A is vertex -vertex adjacency matrix, and D is the
diagonal matrix of degrees.

Let Mii be the matrix obtained by deleting the ith row and ith column of M .

Mii = (C − rowi)(C − rowi)T

write as
C−i · (C−i)T

Theorem 35 (Matrix Tree thm) The number of spanning trees of G is equal to |Mii|.



Proof. By Binet-Cauchy
|Mii| =

∑
B

|B| · |BT | =
∑
B

|B|2

where B runs over (n − 1) × (n − 1) submatrices of C−i. So if |B| = ±1 then the edges ofB
correspond to a spanning tree, 0 otherwise. To show this suppose B does not give a spanning tree.
WLOG let i = 1. So B induces at least 2 components . So there is a component R that does not
contain vi. But row sum of vertices in R is 0 since each edge has +1,−1 in rows of R.

Therefore |B| = 0. Take B a spanning tree. Renumber vertices s.t. w1 6= vi and v1 has degree
= 1 with respect to B. A tree has at least 2 leaves, so w1 exists. Repeat on B−w1, (let e1 be edge
of B incident to w1. To get w2 6= v2, e2, w3, e3. By construction if e = (ws, wt) then s < t. i.e.
Lower triangular. Therefore ±1 on diagonals. Therefore |B| = ±1

Corollary 8 (Cayley’s Theorem) The number of spanning trees of Kn is nn−2.

Proof. M11(Kn) = product of n − 1 on diagonal −1’s everywhere else and Add
∑

i>1 ri to give
row 1 all ones. is upper diagonal with n− 2 n’s on diagonal.

19 Generating Functions

Let f(n) be the number of objects of type f of size n. Then the basic generating function method
is

• find a recurrence for f(n)

• multiply both sides of the recurrence by xn and sum over values of n for which recurrence
holds

• Solve the resulting equation for F (x) :=
∑

n≥0 f(n)xn

• Use this generating function , e.g. we may using partial sums find an exact formula for f(n).

for example
f(n) = 2f(n− 1) + n− 1∑

n≥1

f(n) = 2
∑
n≥1

f(n− 1)xn +
∑
n≥1

(n− 1)xn

F (x)− f(0) = 2xF (x) + x
∑
n≥0

(n)xn

F (x)− f(0) = 2xF (x) + x2 1
(1− x)2

F (x)− 1 = 2xF (x) + x2 1
(1− x)2

F (x) =
1− 2x + 2x2

(1− 2x)(1− x)2



Now we can find nicer representation using partial fractions

F (x) =
A

(1− x)2
+

B

1− x
+

C

1− 2x
=

1− 2x + 2x2

(1− 2x)(1− x)2

multiply by (1− 2x)(1− x)2

A(1− 2x) + B(1− x)(1− 2x) + C(1− x)2 = 1− 2x + 2x2

substitute some convenient values for x and solve for A = −1, B = 0, C = 2. So

F (x) = −1 · 1
(1− x)2

+ 2 · 1
1− 2x

[xn]F (x) = f(n) = −1[xn]
1

(1− x)2
+ 2[xn]

1
1− 2x

= −1 · (n + 1) + 2n+1

Lets look at a multi-variable example: f(n, k) := # of k-subsets of an n-set Have

f(n, k) = f(n− 1, k) + f(n− 1, k − 1)

Let Fn(x) =
∑

k≥0 f(n, k)xk

Fn(x) = f(n, 0) +
∑
k≥1

(f(n− 1, k)xk + f(n− 1, k − 1)xk)

= 1 +
∑
k≥1

f(n− 1, k)xk +
∑
k≥1

f(n− 1, k − 1)xk

= 1 + (Fn−1(x)− 1) + Fn−1(x)

F0(x) = 1 so
Fn(x) = (1 + x)n

So

[xk]Fn(x) =

(
n

k

)
Summing over n and multiplying by yn∑

n≥0

Fn(x)yn =
∑
n≥0

(
∑
k

f(n, k)xk)yn

∑
n≥0

(1 + x)nyn

=
1

1− y(1 + x)

For example consider ∑
n≥0

(
n

k

)
yn =

∑
n≥0

[xk]Fn(x)yn



= [xk]
∑
n≥0

Fn(x)yn

= [xk]
1

1− y(1 + x)

[xk]
1

1− y
· 1
1− yx

1−y

=
1

1− y
[xk]

1
1− y

1−yx

=
yk

(1− y)k+1

20 Formal Power Series

Take formal power series F (x) =
∑

n≥0 f(n)xn. We work in the ring of f.p.s here issues of con-
vergence are non-existent(if after applying operations in the ring our series does converge then we
may also apply analytic techniques). If not our algebraic work still applies. e.g. exact formulas for
the series still apply.

F (x) =
∑
n≥0

n!xn

converges at x = 0 but is a nice formal power series.
We have operations on formal power series :

1. Addition
F (x) + G(x) =

∑
n≥0

(f(n) + g(n))xn

2. Multiply

F (x)G(x) =
∑
n≥0

(
n∑

k=0

f(x)g(n− k))xn

∑
n≥0

h(n)xn = H(x)

We say that G(x) = F−1(x) is the multiplicative inverse or reciprocal of F if F (x)G(x) = 1.

Lemma 14 A formal power series F (x) =
∑

n≥0 f(n)xn has a multiplicative inverse iff f(0) 6= 0.
if so it is unique.

Proof. If F has a reciprocal then f0 + f1x + f2x
2 + ...)(g0 + g1x + ...) = 1 + 0x + 0x2 + ... So

f0 · g0 = 1 ⇒ f0 6= 0 if f0 6= 0 then g0 = 1
f0

But then

f0g0 = 1

f0g1 + f1g0 = 0

f0g2 + f1g1 + f2g0 = 0



so we can find G(x) = F (x)−1.

H(x) = F (x)−1 is the compositional inverse of F if F (H(x)) = x

F (H(x)) =
∑
n≥0

f(n)(H(x))n = x2

Lemma 15 A formal power series F has compositional inverse iff f(1) 6= 0 , f(0) = 0

Proof. If F has computable inverse then

f(0) + f(1)H(x) + f(2)H(x)2 + ..... = x

f0 + f1(h0 + h1x + h2x
2 + ...) + f2(h0 + h1x + ...) + ... = x

This means h0 = 0 or we need convergence which we cant do. Therefore f0 = 0 therefore f1h1 = 1
so f1h2 + f2h1 = 0... etc So we can find H For example

B(x) = eex−1

is a well defined formal power series. Other operations in the ring including calculus exist dont
need limiting operations.

20.1 Ordinary Generating Functions

Let
F (x) :=

∑
n≥0

f(n)xn

be an ordinary generating function.

1.

sumn≥0fn+kx
n =

F (x)− f0 − f1x− ...− fk−1x
k−1

xk

2. Let xD = x x
dx

3.

xDF (x) =
∑
n≥0

nf(n)xn

4.

(xD)kF (x) =
∑
n≥0

fnxn

5.

F (x)G(x) =
∑
n≥0

(
n∑

k=0

fkgn−k)xn



For example let G(x) = 1
1−x . Then F (x) ·G(x) =

∑
n≥0(

∑n
k=0 fk)xn. This generalizes to more

than 2 products. It is typically the product rule that determines the best choice of generating
function. Here for ordinary generating functions hn :=

∑n
k=0 fn−kgk means that these h structures

are made up of an f object of size n − k and a g object of size k. (Here elements are unlabeled).
For example suppose we want to find

∑N
n=1 n2. Observer

1
1− x

=
∑
n≥0

xn

(xD)2
1

1− x
=
∑
n≥0

n2xn

So

[xn 1
1− x

(xD)2
1

1− x
=

n∑
j=0

j2

= [xn]
x(1− x)
(1− x)4

=

(
n− 1 + 3

3

)
−
(

n− 2 + 3
3

)

20.2 Exponential Generating functions

Let F (x) =
∑

n≥0 fn
xn

n! be an exponential generating function. Then

1. ∑
n≥0

f(n + k)
xn

n!
= DkF (x)

2.

(xD)k =
∑
n≥0

nk f(n)
n!

xn

3.

F (x)G(x) =
∑
n≥0

(
n∑

k=0

(
n

k

)
f(k)g(n− k))

xn

n!
= H(x)

This is useful when the elements are labeled . An h object of size n consists of an f − object of
size k and a g object of size n− k.

For example consider derangements: d(n).

=
n∑

k=0

(
n

k

)
f(k)d(n− k) =

n∑
k=0

(
n

k

)
1d(n− k)

H(x) =
∑
n≥0

n! · xn

n!
=

1
1− x

= exD(x) =
e−x

1− x



Another example are the Bell numbers. i.e. The number of ways to partition an n− set. Recall

b(n + 1) =
n∑

k=0

(
n

k

)
b(k) · 1

∑
n≥0

b(n + 1)
xn

n!
=
∑
n≥0

(
n∑

k=0

(
n

k

)
· 1 · b(k))

xn

n!

So
DB(x) = B(x) · ex

B(x) = cexp(ex)

B(0) = 1 ⇒ c =
1
e

therefore
B(x) = exp(ex − 1)

20.3 Dirchlet Series GFs (DGF)

Let F (x) =
∑

n≥1 f(n) 1
nx is a d.g.f. Take F (x) ·G(x) = (f1

1
1x + f2

1
2x + ...)( g1

1x + g2

2x + ...)

= f1g1 +
f1g2 + f2g1

2x
+

f1g3 + f3g1

3x
+ . . .

∑
n≥1

(
∑
d|n

f(d)g(
n

d
))

1
nx

= H(x)

What if f(n) = 1 ? ∑
n≥1

1
nx

= ζ(x)Rieman Zeta Function

ζ(x)ζ(x) =
∑
n≥1

(
∑
d|n

z(d)z(
n

d
))

1
nx

=
∑
n≥1

#divisors(n)
1
nx

=
∑

p(n)
1
nx

A number theoretic function f is multiplicative if f(mn) = f(m)f(n) when m,n relatively prime.
i.e.

f(n) = f(pr1)f(pr2) · · · f(prk)

Theorem 36 If f is a multiplicative function then

∑
n≥1

f(n)
1
nx

=
∏

prime

(1 +
f(p)
px

+
f(p2)
p2x

+ ...



Proof. Multiply it out...

ζ(x) =
∏

p prime

(1 +
1
px

+
1

p2x
+

1
p3x

+ . . .)

=
∏

p prime

1
1− 1

px

=
1∏

p prime(1− 1
px )

Take the mobius function

µ(pa) = 1 if a = 0, −1 if a = 1, 0 if a ≥ 2

µ(x) =
∑
n≥1

µ(n)
1
nx

=
∏

p prime

(1 +
µ(P )
px

)

=
∏

p prime

(1− 1
px

)

Theorem 37 (Mobius Inversion Formula)

an =
∑
d|n

bd ⇔ bn =
∑
d|n

a(d)µ(
n

d
)

Proof.
A(x) = B(x)ζ(x) ⇔ B(x) = A(x)µ(x)

21 Combinatorial Identities

Here we give a general technique for proving combinatorial identities.

• Identify free variable say n, and call function f(n).

• Consider the generating function for f .

• Change order of summation

• Solve the new inner summation and the outer one.

• Equate coefficients to give f(n).



21.1 Examples

Evaluate ∑
k≥0

(
k

n− k

)

• f(n) =
∑

k≥0

( k
n−k

)
•

∑
n≥0

f(n)xn =
∑
n≥0

∑
k≥0

(
k

n− k

)
xn

=
∑
k≥0

∑
n≥0

(
k

n− k

)
xn

=
∑
k≥0

xk
∑
n≥0

(
k

n− k

)
xn−k

=
∑
k≥0

xk(1 + x)k

=
∑
k≥0

(x + x2)k

=
1

1− x− x2

What is f(n) =
∑

k≤n
2
(−1)k

(n−k
k

)
yn−2k

∑
n≥0

∑
k≤n

2

(−1)k

(
n− k

k

)
yn−2kxn

∑
k

(−1)kxky−k
∑

n≥2k

(
n− k

k

)
(xy)n−k

∑
k

(−1)k(
x

y
)k
∑
r≥k

(
r

k

)
(xy)r

=
∑
n

(−1)k(
x

y
)k (xy)k

(1− xy)k+1

=
1

(1− xy)

∑
k

(
−x2

1− xy
)k

1
1− xy

· 1
1 + x2

1−xy

=
1

1− xy + x2



Solving by partial fractions...

f(n) =
1√

y2 − 4
[(

y +
√

y2 − 4
2

)n+1 − (
y −

√
y2 + 4
2

)n+1]

Heres another one ∑
2k≤n

(−1)k

(
n− k

k

)
2n−2k = n + 1

Another example ∑
k

(
m

k

)(
n + k

m

)
=
∑
k

(
m

k

)(
n

k

)
2k m,n ≥ 0

LHS ∑
n≥0

∑
k

(
m

k

)(
n + k

m

)
xn

=
∑
k

(
m

k

)
x−k

∑
n≥0

(
n + k

m

)
xn+k

=
∑
k

(
m

k

)
x−k xm

(1− x)m+1

=
xm

(1− x)m+1

∑
k≥0

(
1
k
)k

(
m

k

)

=
xm

(1− x)m+1
(1 +

1
x

)m =
(x + 1)m

(1− x)m+1

for the RHS we have ∑
n≥0

∑
k

(
m

k

)(
n

k

)
2kxn =

∑
k

2k

(
m

k

)∑
n≥0

(
n

k

)
xn

=
∑
k

2k

(
m

k

)
xk

(1− x)k+1

=
1

1− x

∑
k

(
m

k

)
(

2x

1− x
)k =

1
1− x

(1 +
2x

1− x
)m

=
(1 + x)m

(1− x)m+1

Heres an exponential generating function one: What is f(n) =
∑

k s(n, k)b(k) ? where s(n, k)
is the Stirling number of the first kind, and b(k) are the Bernoulli numbers which satisfy∑

n≥0

b(n)
xn

n!
=

x

ex − 1

∑
n

f(n)
xn

n!
=
∑
n

∑
k

s(n, k)b(k)
xn

n!



=
∑
k

b(k)
∑
n

s(n, )
xn

n!

=
∑
k

b(k)
(log( 1

1−x))k

k!

=
∑
k

b(k)
zk

k!
=

z

ez − 1

So far we used the method in cases where the free variable appears once. What is

sumk

(
n

k

)(
2n

n− k

)

?? Solve ∑
k

(
n

k

)(
m

r − k

)
instead. Specialize the answer.

22 Combinatorial Interpretation of Generating Functions

Consider F (x)G(x) exponential generating functions.

Lemma 16 Take f, g, h : N → C suppose h(#X) =
∑

S,T f(#S)g(#T ) where S, T are ordered
partitions over a finite set X. Then H(x) = F (x)G(x).

Let n := #X there are
(n
k

)
partitions (S, T ) with #S = k so h(n) =

∑
k

(n
k

)
f(k)g(n− k)

Interpretation: We put 2 structures f, g on a set X, then a “combined” structure h = f ∪ g
is obtained by splitting X into two and putting an f structure on one part and a g structure
on the other. If the number of structures (f or g) depends only on the set size then h(n) =∑

k

(n
k

)
f(k)g(n− k) is the number of h structures.

e.g. Let h(n) be the number of ways to partition an n set X into S, T and to linearly order S
and choose a subset of T . There are f(k) = k! ways to order the k set, and there are g(k) = 2k

ways to pick a subset of a k set.
H(x) = F (x)G(x)

=
∑

n!
xn

n!
·
∑

2n xn

n!

=
1

1− x
· e2x

More generally

Lemma 17 Take f1, ..., fk : N → C such that h(#X) =
∑

(S1,...,Sk) f1(#S1) · · · f(#Sk) where
(S1, ..., Sk) ranges over ordered partitions of X into k sets. Then H(x) = F1(x)F2(x) · · ·Fk(x)

What is the interpretation of composition(algebraic)?



Theorem 38 (Compositional Formula) f, g, h : N → C g(0) = 1, f(0) = 0

h(|X|) =
∑

B1,...,Bk∈Π(X)

f(|B1)f(|B2|) · · · f(|Bk|)g(k)

h(0) = 1 where B1, ..., Bk is over unordered partitions of X. Then H(x) = G(F (x))

Proof. Let n := |X| and for fixed k let hk(|X|) =
∑

(B1,..,Bk) f(|B1|) · · · f(|Bk|)g(k) Since Bi

are non-empty we can order them in k! ways. So by the previous lemma

k!
g(k)

Hk(x) = (F (x))k

h(|X|) =
∑

k≥1 hk(|X|) . So

H(x) =
∑
k≥1

g(k)F (x)k

k!
+ h(0)

= G(F (x))

Interpretation: many structures on a set, graph, poset, permutation can be considered as
structures on a disjoint union of structures. More over some additional structure ordering may be
put on the components themselves. Of particular interest is the case g(k) = 1 ∀k.

Theorem 39 (Exponential Formula) f, h : N → C f(0) = 0, h(0) = 1, h(|X|) =
∑

B1,...,Bk
f(|B1|) · · · f(|Bk|)

then H(x) = eF (x)

22.1 Examples

Permutations: A permutation π is a collection of disjoint directed cycles.

h(|X|) =
∑

B1,...,Bk

f(|B1|) · · · f(|Bk|)

where f(n) = (n− 1)! = # of dicycles on n set. So H(x) = eF (x). We have

1
1− x

= eF (x)

so
F (x) = log(

1
1− x

).

How many labeled connected graphs c(n) are there on an n − set V ? It is easy to
count simple graphs. h(|V | = n) = 2(n

2) . So

h(n) =
∑

B1,...,Bk

c(|B1|) · · · c(|Bk|)

So
H(x) =

∑
n≥0

2(n
2)xn

n!
= eC(x)

C(x) = log(
∑
n≥0

2(n
2)xn

n!
)

We see that a useful operation: xD log



• log simplifies RHS

• D then simplifies LHS

• x puts back power lost by D.

xD log(H(x)) = xDC(x)

x
H ′(x)
H(x)

= xDC(x)

xDH(x) = H(x)xDC(x)∑
n≥1

nh(n)
xn

n!
= H(x)

∑
n≥1

nc(n)
xn

n!

n2n =
∑
k

(
n

k

)
kc(k)h(n− k)

n2n =
∑
k

(
n

k

)
kc(k)2(n−k

k )

This is a recurrence for c(n).

22.2 Exponential Formula (two variables)

Suppose we want to keep track of the number of blocks. e.g. the number of connected components
, number of cycles in π... We do this with a 2 variable generating function.

H(x, y) :=
∑
n≥0

(
∑
k≥0

h(n, k)yk)
xn

n!

Its easy to evaluate H(x, y) using compositional formula

Theorem 40 (two variable exponential formula) Take f, h : N → C h(|X|) =
∑

B1,...,Bk
f(|B1|) · · · f(|Bk|)

with h(0) = 1. Then H(x, y) = eyF (x)

Proof. Set g(k) = yk in the compositional formula to keep track of the number of blocks. So
G(x) =

∑
n≥0 yn xn

n! = exy. So H(x, y) = G(F (x)) by compositional formula.

= e(F (x)y)

Corollary 9 H(x, y) = (H(x))y

Proof. H(x) = eF (x)



22.3 Exponential Formula -cont

H(x, y) = eyF (x) = H(x)y

22.3.1 Examples

Let h(n) be the number of permutations , we have

H(x, y) = H(x)y =
1

(1− x)y

h(n, k) = s(n, k) = signless Stirling number of the first kind. So

∑
k

s(n, k)yk = [
xn

n!
]

1
(1− x)y

= n![xn]
1

(1− x)y

= n![xn](1 + x + x2 + ...)y

= n!

(
n + y − 1

y − 1

)
= n!

(
n + y − 1

y − 1

)
= (n + y − 1)(n + y − 2) · · · (y + 1)

= y(y + 1)(y + 2) · · · (y + n− 1)

Since H(x, y) = ey log( 1
1−x

)

[yk]H(x, y) =
1
k!

(log(
1

1− x
))k

s(n, k) = [
xn

n!
]
1
k!

(log(
1

1− x
))k

= [xn]
n!
k!

(log(
1

1− x
))k

Another example. For graphs

H(x, y) = H(x)y = (
∑
n≥0

2(n
2)xn

n!
)y

Lets count permutations such that πm = 1. This means that π consists of cycles whose lengths
divide m. So

F (x) =
∑
d|m

(d− 1)!
xd

d!

So H(x) = exp(
∑

d|m
xd

d ). e.g. if m = 2 we count involutions( π2 = 1). t(n) := # of involutions.
T (x) = exp(x + 1

2x2).
Suppose we want to count h(n) for specific values of n. e.g. n ∈ S ⊆ N .

Corollary 10 H(x) =
∑

n∈S
F (x)n

n!



Example: take h(n) := number of permutations with even number of odd cycles, and no even
cycles.

F (x) =
∑

n odd

(n− 1)!
xn

n!
=
∑

n odd

xn

n

=
1
2

log(
1 + x

1− x
)

So by the corollary

H(x) =
∑

n even

F (x)n

n!

= Cosh(F (x)) =
1
2
(ex + e−x)

= Cosh(log(

√
1 + x

1− x
))

=
1√

1− x2
= (1− x)

1
2

=
∑
n≥0

(
−1

2

n

)
(−x2)n

=
∑

n even

1
2n

(
n
n
2

)
xn

i.e.

h(n) =
n!
2n

(
n
n
2

)
Corollary 11 The probability that a random π consists of an even number of odd cycles is equal
to the probability that we get n

2 heads in n coin tosses.

22.4 Combinatorial Interpretations of Generating Functions

So we know what multiplication and composition mean. What about addition, differentiation?

Lemma 18 Let x be finite set f, g → N , if h(|X|) = f(|X|) + g(|X|) then H(x) = F (x) + G(x).

Interpretation: Place either f structure of g structure on X.

Lemma 19 If h(|X|) = |x|f(|Y |) where |Y | = |X| − 1, then

H(x) = xF (x)

Interpretation: Pick “node” r in X. Put f structure on x− r.

Lemma 20 If h(|X|) = f(|Z|) when |Z| = |X|+ 1 then H(x) = F ′(x)

Interpretation: Add a new element z to x , put f structure on X ∪ z.

Lemma 21 If h(|X|) = |X|f(|X|) then H(x) = xF ′(x)



Interpretation: Place f structure on X , then pick root of X.

Theorem 41 (Exp Formula) h(|X|) =
∑

B1,...,Bk
f(|B1|) · · · f(|Bk|) ⇒ H(x) = exp(F (x))

H ′(x) = F ′(x) expF (x) = F ′(x)H(x)

Compare coefficients of xn

n! to get

h(n + 1) =
n∑

k=1

(
n

k

)
h(k)f(n + 1− k)

f(n + 1) = h(n + 1)−
n∑

k=1

(
n

k

)
h(k)f(n + 1− k)

By Lemma 3 H ′(x) : add z to X put H structure on X ∪ z.

F ′(x)H(x)

Pick subset S ⊆ X. Add z to S, put f structure on S ∪ z. Put h structure on X − S.
But h is a disjoint set of f structures. So these are the same things.

23 Enumeration of Trees

Labeled vertices. Let

• t(n) := the number of trees on [n].

• f(n) := the number of forests on [n]

• r(n) := the number of rooted (planted) trees on [n]

• p(n) := the number of rooted (planted forests) on [n]

Theorem 42 R(x) = xeR(x)

Proof. R(x) :=
∑

n≥1 r(n)xn

n! So P (x) = eR(x). But xP (x) is a root and a P structure on the rest,
i.e. a root and a forest on the rest i.e. a rooted tree. So

R(x) = x exp(R(x))

Similarly
F (x) = exp(T (x))

and also
P (x) = T ′(x)



24 Lagrange Inversion Formula

Theorem 43 (Lagrange Inversion) Let G(x) = g0 +g1
x
1! +g2

x2

2! + ... with g0 6= 0 and let f(x) =
xG[F (x)]. Then n[xn]f(x)k = k[x−k]G(x)n (k, n ∈ Z)

Proof.
Let F (x)(−1) = H(x) be the compositional inverse of F (x) if H(F (x)) = F (H(x)) = x

Corollary 12 Let F (x) = f1x + f2x
22! + ... , fi 6= 0. then n[xn](F (x)−1)k = k[x−k]F (x)−n

Proof. This follows as f(x) = F−1(x) is the same as f(x) = xG(f(x)) where G(x) = x
F (x)

24.1 Example

Let r(n) be the number of rooted trees on [n]. Know R(x) = xeR(x) i.e. x = R(x)e−R(x) so
R(x) = H−1(x) where H(x) = xe−x

Lemma 22 The number of rooted trees is nn−1

Proof. R(x) = (xe−x)(−1) Set F (x) = xe−x set k = 1

[xn](xe−x)(−1) =
1
n

[xn−1](
x

xe−x
)n

[xn]R(x) =
1
n

[xn−1]enx

=
1
n

[xn−1]
∑
t≥0

(nx)t

t!
=

1
n

nn−1

(n− 1)!
=

nn−1

n!

Lemma 23 The number of k forests is
(n−1
k−1

)
nn−k

Proof.

[xn]R(x)k =
k

n
[xn−k](

xn

xe−x
)n =

k

n

nn−k

(n− k)!

Recall from our exponential formula

∑
n

∑
k

p(n, k)yk xn

n!
= exp(yR(x))

where p(n, k) = the number of planted k forests on [n] So p(n,k)
n! = [xn]R(x)k

k! i.e.

p(n, k) =
n!
k!

k

n

nn−k

(n− k)!

So the number of planted k forests is
(no1
k−1

)
xn−k



Corollary 13 Take F (x) = f1x + f2
x2

2 + ... and H(x) a Laurant series. Then

n[xn]H(F (x)(−1)) = [xn−1]H ′(x)(
x

F (x)
)n

Proof. By linearity it suffices to prove for H(x) = xk This is Lagrange inversion formula as
H(x) = kxk−1.

another example Find the sum of the first n terms in binomial expansion of (1− 1
2)−n

We need to compute f(n) = [xn−1](1− 1
2x)−n(1− x)−1 . Let

x

F (x)
= (1− 1

2
x)−1

and
H ′(x) =

1
1− x

n[xn]H(F (x)(−1)) = [xn−1]H ′(x)(
x

F (x)
)n

= [xn−1](1− x)−1(1− 1
2
x)−n

F (x)(−1) = 1−
√

1− 2x

H(x) = − log(1− x)

s(n) = n[xn]− log(1− (1−
√

1− 2x))

= n[xn]− log(
√

1− 2x)

=
n

2
[xn] log(1− 2x)

=
n

2
[xn]

(2x)n

n
= 2n−1

25 Young Tableau

Definition 22 ( Standard Young Tableau) A standard Young Tableau is an n box Young dia-
gram filled with the numbers 1, 2, ..., n such that numbers increase rightwards along rows and increase
downwards along columns.

Definition 23 (Young Tableau) Weakly increasing along rows. Strictly increasing down columns.

Let fλ be the number of standard Young Tableau of shape λ. Then

Theorem 44 (Frobenius-Young) ∑
λ`n

(fλ)2 = n!



Proof.
We give a bijection between permutations and pairs (P,Q) of SY T of the same shape on n

boxes. Take π ∈ Sn. We build P as follows:

• Given partial SYT built by π1, ..., πi−1.

• We insert πi in row 1 in place of the smallest entry y greater than πi(exists as put ∞ at the
end of each row). Insert y into row z by same procedure etc. This is called Bumping.

e.g Take
2761354

2 27 26 16 13 135 134

− −− 7 2 26 26 25

− −− − 7 7 7 6

− −− − − − − 6

How do we get Q? Q has the same shape but numbers are given according to the order in which
boxes are added.

Note: P is a SYT.

• Rows are fine as we insert x after smaller number in row before bigger numbers.

• Columns are fine as a number bumped down can not move further to the right in the row
below.

• Q is a SYT by a similar argument. Numbers are bigger than the previous ones added.

This is a bijection. Given (P,Q) we recover π as follows. We pick boxes in reverse order based
on numbering in Q. We then bump upwards the corresponding element x in P . Push x to row
above replacing largest number smaller than it y. Repeat with y on row above. Repeat until pops
out of the top.

Corollary 14 ∑
λ`n

fλ = # of involutions

Proof. Suppose π → (P,Q). Look at π−1. Show π−1 → (Q,P ). So involutions π → (P, P ).
To count involutions:

an+1 = an + nan−1∑
an

xn

n!
= ex+ 1

2
x2

Since we can view each involution is a matching with singletons

#involutions =
∑

l,k,l+2k=n

(
n

l

)
(2k − 1)(2k − 3) · · · 3 · 1

=
∑
k

(
n

n− 2k

)
(2k)!
2kk!



26 Schur Polynomials

Let T be a Young tableau(opposed to standard) of shape λ(weakly increasing in rows). Then

f(T ) =
∏
i≥1

xni
i

and the Schur polynomial for shape λ is

Sλ(x1, ..., xm) =
∑

T with shape λ lables in [m]

f(T )

Two important cases are: complete symmetric polynomial, and elementary symmetric polyno-
mial . In fact Schur polynomials are symmetric for general λ. To show this we first use the
Schensted bumping algorithm to define a product of tableau

T = U · V

as follows:

• Repeatedly insert the first element of the last row of V into U .

Lemma 24 This is associative.

(can prove it using a sliding algorithm U · V = Rect[U · V ])

Lemma 25 if T = Y · [.][.][.][.] then the boxes we add to U to get T are in different columns.

(As we add numbers in increasing order the elements that get bumped move rightwards.)

Lemma 26 If T = U · column then the boxes we add to U to get T are in different rows.

As corollaries

Theorem 45 sλ(x1...xm)srow length k(x1...xm) =
∑

x̂ sx̂(x1...xm) where x̂ is obtained from λ by
adding k boxes in different columns.

Theorem 46 Sλ(x1, ..., xm)Scolumn(x1, ..., xm) =
∑

x̂ sλ̂(x1, ..., xm)

where λ̂ is obtained from λ by adding k boxes in different rows.

26.1 Kostka Numbers

Kλµ := # of tableau of shape λ with µ1 1′s µ2 2′s etc

where
µ1 ≥ µ2 ≥ µ3 ≥ ... ≥ µm

So
Kλµ = # of sequences λ1 ⊆ ... ⊆ λm = λ

where λi+1 − λi has µi+1 boxes in different columns.



Corollary 15

sµ1sµ2 · · · sµm =
∑
λ

Kλµsλ(x1...xm)

sp1 ...spm =
∑
λ

KλT psλ(x1, ..., xm) =
∑
λ

KλpSλT (x1, ..., xm)

We can order the λ lexicographically as follows

λ ≤ λ∗ if λi < λ∗i and λj = λ∗j

So
Kλ,µ = 1 if λ = µ 0 ifλ > µ

Corollary 16 Schur polynomial is symmetric

26.2 The Hooklength Formula

So the number of standard young tableau on n boxes is equal to the number of involutions. How
many standard Young tableau are there for a fixed shape λ? Is there a nice formula for fλ =
f(λ1, ..., λm) where |λ| = n.

First lets investigate f(λ1, .., λm) clearly

1. f(λ1, ..., λm) = 0 unless λ1 ≥ λ2 ≥ ... ≥ λm ≥ 0

2. f(0, 0, ..., 0) = 1, f(n) = 1

3. f(λ1, ..., λm, 0, 0..) = f(λ1, ..., λm)

We also have a recurrence

f(λ1...λm) = f(λ1 − 1, λ2, ..., λm) + f(λ1, λ2 − 1, ..., λm) + · · ·+ f(λ1, λ2, ..., λm)− 1

if λ1 ≥ λ2 ≥ ... ≥ λm ≥ 0. (Look at where #n goes). We will relate fλ to the Vandermode
Determinate V (α1, ..., αm) =

∏
i<j(αi − αj).

Lemma 27 if g(α1, ..., αm;∆) =
∑

i αiV (α1, ...αi + ∆, ...αm). Then g(α1, ..., αm;∆) = (α1 + α2 +
... + αm +

(n
2

)
∆)V (α1, ..., αm)

Proof. g is a homogeneous polynomial of degree 1 + degV (α1, ..., αm) moreover if we interchange
αi and αj then g changes sign. So (αi − αj) divides g and so is

∏
i<j(αi − αj)

If ∆ = 0 the result is trivial. So if ∆ 6= 0 what is its coefficient?

α1V (α1 + D,α2, ..., αm)

= α1

∏
j≥2

(∆ + (α1 − αj))
∏

2≤i<j

∏
(αi − αj)



So the coefficient of ∆ in this term is

α1

∑
j≥2

1
α1 − αj

V (α1, ..., αm)

It follows that the coefficient of ∆ in g is∑
i<j

(
αi

αi − αj
+

αj

αj − αi
)

=

(
m

2

)
V (α1, ..., αm)

Theorem 47 The number of Standard Young Tableau of shape λ

f(λ1, ..., λm) =
n!

(λ1 + m− 1)!(λ2 + m− 2)! · · ·λm!
· V (λ1 + m− 1, λ2 + m− 2, · · · , λm

Proof. If λi + m− i = λi + m− (i + 1) then LHS = RHS = 0 So λi + m− i > λi+1 + m− (i + 1).
Want to show RHS h satisfies i, ii, iii, iv. The base cases are easy to check. So consider (iv). Set

αi = λi + m− i

and ∆ = −1 in claim. Then (n−1)!
(λ1+m−1)!···λm!(λ1 + m − 1)V (λ1 + m − 2, λ2 + m − 2) + (λ2 + m −

2)V (λ1 + m− 1, λ2 + m− 3) + ... + λmV (λ1 + m− 1, ..., λm−1)
= (n−1)!

(λ1+m−1)!···λm!(
∑

λi + m2 − (1 + 2 + ... + m)− 1 ·
(m

2

)
)V (λ1 + m− 1, ..., λm)

= (n−1)!
∑

λi

1! V = n!
λ1+m−1...λm

V (..)
This is not very illuminating(!) We can rewrite it in a nice way. Let hij = hooklength of box

ij = 1 + # of boxes below + number of boxes to the right.

Theorem 48 fλ = n!∏
ij∈λ

hij

let hij = hooklength of box ij = 1+ number of boxes below + number of boxes to right.
Proof. Consider the products of hook lengths in row i. e.g. i = row1. We can check

(λ1 + m− 1)!∏
2≤j≤m[(λ1 + m− 1)− (λj + m− j)]

= product of row 1 hooks.

So
∏

fij ∈ λhij =
∏m

i=1
(λi+m−i)!∏

i

∏
i<j≤m

(αi−αj)
=

∏
(λi+m−i)!

V (λ1+m−1,...,λm) Therefore fλ = n!∏
hij



27 The Transfer Matrix Method

Take a directed graph D with arc weights wa. Let A be the corresponding adjacency matrix.
Let Pn

ij be the set of paths (walks) from i to j containing exactly n arcs. The weight of a path
P := {a1, a2, ..., ak} is

w(P ) =
∏
a∈P

wa

Theorem 49

an
ij =

∑
P∈Pn

ij

w(P )

Proof. True for n = 1. Follows by induction using the definition of matrix multiplication

an
ij =

∑
k

an−1
ik akj =

∑
k

an−1
ik wkj

=
∑
k

wkj

∑
P∈Pn−1

k

w(P )

=
∑

P∈Pn
ij

w(P )

This observation is useful.

Theorem 50 Fij(x) = Cofij(I−xA)
Det(I−xA) (cofactor , det after removing the ith row, jth col, signed by

(−1)i+j may be slightly incorrect...)

Proof. Fij(x) is just ijth entry at ∑
n≥0

xnAn = (I − xA)−1

If we just consider circuits

Corollary 17 If d(x) = det(I −Ax) then∑
i

∑
n≥1

an
iix

n =
−xd′(x)

d(x)

Proof.
∑

i a
n
ii = tr(An) = λn

1 + λn
2 + ... + λn

q where the λi are eigen values of A. So

=
∑
n≥1

tr(An)xn =
λ1x

1− λ1x
+

λ2x

1− λ2x
+ ... +

λqx

1− λqx

Now

d(x) =
q∏

i=1

(1− λix)

and the result follows.
For example



27.1 Restricted Walks

Let f(n) be the number of grid walks using only N,E, W such that NN and EW cannot be
consecutive. We set this up as

N E W
N 0 1 1
E 1 1 0
W 1 1 1

Observe that a walk of k arcs is k + 1 nodes.∑
n≥0

f(n + 1)xn =
∑
ij

Fij(x)

=
3 + x− x2

1− 2x− x2 + x3

(find −det(I − xA) , and then find coefficients in numerator).

∑
n≥0

f(n)xn = 1 +
x(3 + x− x2)

1− 2x− x2 + x3
=

1 + x

1− 2x− x2 + x3

Note to prohibit subsequence NSNN say , label the nodes by sequences of size 3.

28 Free Monoids

• Let A be an alphabet(finite set).

• A∗ is the set of all words.

• A∗
n is words with n letters.

Then (A∗, ·) is a Free Monoid on A where · is concatenation. If B ⊆ A∗ then B∗ consists of
all words that can be obtained by concatenating words in B. We say that B∗ is freely generated if
b ∈ B∗ has a unique factorization in terms of words in B. Give each letter a a weight w(a), and let
w(a1, ..., ak) = w(a1) · · ·w(ak).

For any subset H ⊆ A∗ let
H(x) =

∑
v∈H

w(v)xL(v)

where L(v) is the number of letters of v. So the coefficient h(n) of H(x) is∑
v∈Hn

w(v)

Theorem 51 Let B freely generate B∗. Then

B∗(x) =
1

1−B(x)



Proof.

b∗(n) =
∑

n=n1+n2+...+nk

k∏
j=1

∑
v∈Bnj

w(v)

by uniqueness.
For example: Dominoes How many ways can we fill a 2×n grid of dominoes of size 1× 1 and

1× 2 (rotations not allowed) ?
Here factorising breaks the grid into smaller 2×k grids. What grids can not be factored further?(

[.]
[.]

)
,

(
[..]
[..]

)
,

(
[..][.]
[.][..]

)
→,

(
[..][..]...[..][.]
[.][..]...[..]

)
,

(
[.][..]...[..]

[..][..]...[..][.]

)

Words in B.

B(x) = x + x2 + 2
∑
n≥2

xn = x + x2 +
2x2

1− x

So
B∗(x) =

1
1− (x2 + x2 + 2x2

1−x)
=

1− x

1− 2x− 2x2 + x3

Another example: f(n) = the number of permutations such that πi − i ∈ {0,±1,±2}

B(x) = x + x2 + x3 + x4 + 2
∑
n≥3

xn

B∗(x) = (1− x− x2 − x4 − 2x3

1− x
)−1

=
1− x

1− 2x− 2x3 + x5

29 Statistics

Generating functions can easily be used to find moments of distributions etc, so they can be useful
in statistics. For example, let Ω be a finite set of objects. Let each w ∈ Ω possess a collection
of properties. Let f(k) be the number of objects with exactly k properties. What is the average
number of properties that an object has?

µ =
1
|Ω|

∑
w∈Ω

p(w) =
1
|Ω|

∑
k

kf(k)

where p(w) is the number of properties of w.

µ =
∑

k k · f(k)∑
k f(k)

=
xDF (x)

F (x)
|x=1

D log(F (x))|x=1



How about variance?
V ar =

1
|Ω|

∑
w∈Ω

(p(w)− µ)2

=
1
|Ω|

∑
k

(k − µ)2f(k)

=
1
|Ω|

∑
k

k2f(k)− 2µkf(k) + µ2f(k)

=
(xD)2F − 2µ(xD)F + µ2F

F
|x=1

therefore

µ =
F ′

F
|x=1

(xD)2F = xD(xF ′) = x2F ′′ + xF ′

=
x2F ′′

F
+

xF ′

F
− 2µF ′

F
+ µ2|x=1

=
x2F ′′

F
+

xF ′

F
− (

F ′

F
)2|x=1

Now

D log(F ) =
F ′

F

D2 log F = D(
F ′

F
) =

FF ′′ − F ′F ′

F 2

So

D log(F ) + D2 log(F )|x=1 =
F ′′

F
− (

F ′

F
)2 +

F ′

F
|x=1 = V ar

29.1 example: signless Stirling numbers

Let f(k) = s(n, k) be the number of permutations with k cycles. So

F (x) = S(x) =
∑
k

s(n, k)xk = x(x + 1) · · · (x + n− 1)

µ = D log(F )|x=1

log(F ) = log(x) + log(x + 1) + ... + log(x + n− 1)

D log(F ) =
1
x

+
1

x + 1
+ ... +

1
x + n− 1

D log(F )|x=1 = 1 +
1
2

+
1
3

+ ... +
1
n

= Hn



Now
D2 log(F ) =

−1
x2

− 1
(x + 1)2

− ...− 1
(x + n− 1)2

D2 log(F )|x=1 = −(1 +
1
22

+
1
32

+ ... +
1
n2

) =
−π2

6
+ o(1)

so

V ar = σ2 = D log(F ) + D2 log(F )|x=1 = Hn −
π2

6
+ o(1)

σ ≈
√

log(n)

i.e. the number of cycles is concentrated around log(n) if we take a random permutation. What
about other functions that can be viewed in terms of the exponential formula?

Let h(n, k) be the number of objects of size n with k blocks. Then

µ(n) =
∑

k kh(n, k)
h(n)

But
H(x, y) =

∑
n

∑
k

h(n, k)
xn

n!
yk = exp(yF (x))

d

dy
H(x, y)|y=1 =

∑
n

xn

n!

∑
k

h(n, k)k = F (x) exp(F (x))

= F (x)H(x)

∑
n

xn

n!
h(n)µ(n) = H(x)F (x)

Lemma 28 µ(n) = 1
h(n)

∑
i

(n
i

)
f(i)h(n− i)

Proof.

µ(n) = [
h(n)
n!

xn]H(x)F (x)

= [xn]
n!

h(n)
H(x)F (x)

=
1

h(n)

∑
i

(
n

i

)
f(i)g(n− i)

e.g. consider s(n, k) again.

µ(n) =
1

h(n)

∑
i

(
n

i

)
f(i)h(n− i)



=
1
n!

∑
i

(
n

i

)
(i− 1)!(n− i)!

=
1
n!

∑
i

n!
i!(n− i)!

(i− 1)!(n− i)!

=
∑

i

1
i

= Hn

30 Inclusion Exclusion

What do generating functions have to do with IE? We have a set Ω of objects, and a collection P
of properties which objects may or may not posses. For example a property is just q ∈ P. Basically
, IE is useful when

• It is hard to see how many objects have exactly k properties.

• But it is easy to see how many have at least k properties: Given a set P ⊆ P let

– N+
p be the number of objects with at least the properties in P

– P (w) ⊆ P be the properties of w ∈ Ω.

Set ln :=
∑
|P |=n N+

P

=
∑
|P |=n

∑
w:P⊆P (w)

1 =
∑
w∈Ω

∑
|P |=n,P⊆P (w)

1

Consider the ordinary generating function for L

L(x) =
∑
n≥0

Lnxn =
∑
n≥0

(
∑
t≥0

(
t

n

)
et)xn

=
∑
t≥0

et

∑
n≥0

(
t

n

)
xn

=
∑
t≥0

et(x + 1)t = E(x + 1)

So
E(x) = L(x− 1)

e.g. To find a formula for en we equate coefficients of xn ([xn]
∑

Lt(x− 1)t)

en =
∑

t

(−1)t−n

(
t

n

)
Lt

e.g.(objects with no properties)
e0 =

∑
t

(−1)tLt

So IE method is:



1. Given Ω and P

2. Find N+
P ’s

3. Find Ln’s

4. Find en’s by E(x) = L(x− 1)

30.1 Non-Attacking Rooks

How many ways can we place k rooks on a chess board of size C ⊆ [n]× [n] such that no rooks can
take each other?

Look at something similar. Let ek be the number of permutations that hit C in exactly k
squares. We have a property for each square s = (i, j) ∈ C. P (s) = set of π that hit s. (π(i) = j)
.So a set P ⊆ P of properties is just a set of squares in C.

Lk =
∑
|P |=k

N+
P

= rk · (n− k)!

Given k hit squares then we can complete π in (n− k)! ways.

L(x) =
∑
k

rk(n− k)!xk

So
ej = [xj ]C(x− 1) = [xj ]

∑
k

rk(n− k)!(x− 1)k

In particular e0 is the number of permutations that miss C.

=
∑
k

(−1)krk(n− k)!

e.g. if C := diagonal : {(1, 1), (2, 2), ..., (n, n)} then e0 is the number of derangements. rk =
(n
k

)
=

the number of ways to put k non attacking rooks on diagonal.

e0 =
∑
k

(−1)k

(
n

k

)
(n− k)!

=
∑
k

(−1)k n!
k!

Next let C := {(1, 1), (2, 2), ..., (n, n), (1, 2), (2, 3), ..., (n, 1)}
rk is the number of ways to put non attacking rooks on C or the number of ways to pick k non
adjacent points in a 2n cycle.

Lemma 29 The number of ways to pick k non adjacent points in an m cycle is

m

m− k

(
m− k

k

)



Proof. Call this f(m, k).

• Color the chosen points red.

• Color one of the other points blue

We can do this in (m− k)f(m, k) = g(m, k) ways. We can also count g(m, k) as follows:

1. Color a point blue in m ways

2. Arrange m− k− 1 clear points in a line and put k red points in the spaces between them(can
use ends). There are

(m−k
k

)
ways to do this.

So g(m, k) = m
(m−k

k

)
. Therefore f(m, k) = m

m−k

(m−k
k

)
(note this sort of trick changes ring

problems to line problems).
So

rk =
2n

2n− k

(
2n− k

k

)
Thus

L(x− 1) =
∑
k

(
2n− k

k

)
(n− k)!(x− 1)k

e0 =
∑
k

(−1)k 2n

2n− k

(
2n− k

k

)
(n− k)!

This is the number of permutations missing C. This is Problem des Menage: The number of ways
to seat n couples around a table such that couples do not sit next to each other.

30.1.1 another example

Let Ω be n sets in a 2n set. Let S ⊆ [2n] have property i ∈ [n] if i /∈ S. So how many subsets have
exactly k properties.

ek =

(
n

n− k

)(
n

k

)
=

(
n

k

)2

(have exactly n− k elements from [n] and the rest come from [n, ..., 2n])
What does IE tell us? Let P ⊆ [n] be a set of properties. Then

N+
P =

(
2n− |P |

n

)

Lk =
∑
|P |=k

N+
P =

(
n

k

)(
2n− k

n

)
So ∑

k

(
n

k

)2

xk = E(x) = L(x− 1) =
∑
k

(
n

k

)(
2n− k

k

)
(x− 1)k

So ∑
k

(
n

k

)2

xk =
∑
k

(
n

k

)(
2n− k

n

)
(x− 1)k



30.2 Increasing Subsequence

Given a sequence
S := 6 3 3 8 7 2 4 1 1 5 2 4 9 3

What is the length of the longest non-decreasing subsequence?
We can answer this with Schensted’s algorithm:

6

(
3
6

) (
33
6

) (
338
6

) (
337
68

)
. . .

(237, 38, 6) (234, 37, 68) (134, 27, 38, 6) (114, 23, 37, 68) (1145, 23, 37, 68) (1125, 234, 37, 68)

(1125, 234, 37, 68) (1125, 234, 37, 68) (1124, 2345, 37, 68) (11245, 2345, 37, 68)

(11239, 2344, 35, 67, 8)

• Largest non decreasing subsequence is the number of columns

• Longest decreasing subsequence is equal to the number of rows.

Corollary 18 (Erdos-Szekeres) A sequence of length n has either a non decreasing subsequence
of length

√
n or a decreasing subsequence of length

√
n.

We get stronger results, for example

Lemma 30 If λ(S) = (λ1, λ2, λ3, ...) then S contains disjoint non decreasing subsequences of length
λ1, λ2, λ3, ...

Exam: 10 : 00− 12 : 00 room 1205


