
E�cient normalization by evaluation

Mathieu Boesp
ug

�Ecole Polytechnique

15 August 2009

1 / 19



The conversion test

� ` A : s � ` B : s � ` t : A A �� B
� ` t : B

A simple algorithm:

1. Reduce A and B to their canonical forms.
2. Compare canonical forms.

2 / 19



The conversion test

� ` A : s � ` B : s � ` t : A A �� B
� ` t : B

A simple algorithm:

1. Reduce A and B to their canonical forms.
2. Compare canonical forms.

2 / 19



fast

cheap general

3 / 19



fast cheap

general

3 / 19



fast cheap general

3 / 19



I Plenty of existing (fast) reduction devices.

I Solution: reuse them!

I Advantage: separation of concerns.

4 / 19



I Plenty of existing (fast) reduction devices.

I Solution: reuse them!

I Advantage: separation of concerns.

4 / 19



I Plenty of existing (fast) reduction devices.

I Solution: reuse them!

I Advantage: separation of concerns.

4 / 19



Eval vm compute in fib 30.

B. Gr�egoire and X. Leroy, \A compiled implementation of strong
reduction," Proceedings ICFP'02, 2002.

5 / 19



Eval vm compute in fib 30.

B. Gr�egoire and X. Leroy, \A compiled implementation of strong
reduction," Proceedings ICFP'02, 2002.

5 / 19



Extended Terms:

b ::= x j �x : b j b1 b2 j [~x v1 : : : vn]

v ::= �x : b j [~x v1 : : : vn]

Symbolic weak reduction:

(�x : b) v ! b[x := v ]

[x v1 : : : vn] v ! [x v1 : : : vn v ]

�v (a)! �v (a
0) if a! a0

with �v ::= []v j b[].

6 / 19



N (b) = R(V(b)) (1)

R(�x : b) = �y : N ((�x : b) [~y ]) (2)

R([~x v1 : : : vn]) = x R(v1) : : : R(vn) (3)

7 / 19



Gr�egoire and Leroy propose a virtual machine to implement
symbolic weak reduction and normalization.

The name of the game: avoid untagging during applications.

Semi-cheap: Requires modi�cation of the runtime environment.

Objective: be cheap, not just semi-cheap.

8 / 19



Gr�egoire and Leroy propose a virtual machine to implement
symbolic weak reduction and normalization.

The name of the game: avoid untagging during applications.

Semi-cheap: Requires modi�cation of the runtime environment.

Objective: be cheap, not just semi-cheap.

8 / 19



Gr�egoire and Leroy propose a virtual machine to implement
symbolic weak reduction and normalization.

The name of the game: avoid untagging during applications.

Semi-cheap: Requires modi�cation of the runtime environment.

Objective: be cheap, not just semi-cheap.

8 / 19



Gr�egoire and Leroy propose a virtual machine to implement
symbolic weak reduction and normalization.

The name of the game: avoid untagging during applications.

Semi-cheap: Requires modi�cation of the runtime environment.

Objective: be cheap, not just semi-cheap.

8 / 19



Normalization by Evaluation

Optimizations
Uncurrying
Embedding pattern matching

Benchmarks

Conclusion

9 / 19



data Code = Con String

j Lam (Code ! Code)
j Neu Code Code

10 / 19



Interpretation

[[x ]] n = x̂ if x < n

[[x ]] n = Con x otherwise

[[�: t]] n = Abs (�n̂ ! [[t]] (n + 1))

[[t1 t2]] n = app ([[t1]] n) ([[t2]] n)

app (Abs t1) t2 = t1 t2
app t1 t2 = Neu t1 t2

11 / 19



Interpretation

[[x ]] n = x̂ if x < n

[[x ]] n = Con x otherwise

[[�: t]] n = Abs (�n̂ ! [[t]] (n + 1))

[[t1 t2]] n = app ([[t1]] n) ([[t2]] n)

app (Abs t1) t2 = t1 t2
app (Con x) t2 = Neu (Con x) t2
app (Neu t1 t

0

1) t2 = Neu (Neu t1 t
0

1) t2

11 / 19



Example

[[(�x : (�y : y x)) z ]]

app (Abs (�x ! Abs (�y ! app y x))) (Con "0")

12 / 19



Example

[[(�x : (�y : y x)) z ]]

app (Abs (�x ! Abs (�y ! app y x))) (Con "0")

12 / 19



Algorithm

norm n (Con c) = c

norm n (Abs t) = �: (norm (n + 1) (t (Con n̂)))
norm n (Neu t1 t2) = (norm n t1) @ (norm n t2)

13 / 19



Eval/Apply

[[x ]] n = x̂ if x < n

[[x ]] n = Con x otherwise

[[�: � � ��: t]] n = Absm (�n̂ : : :\n +m ! [[t]] (n +m))

[[t1 : : : tm]] n = apm ([[t1]] n) ::: ([[tm]] n)

A family of ap operators

1. apn (Absm f ) t1 : : : tn =
Absm�n (f t1 : : : tn)

2. apn (Absm f ) t1 : : : tn = f t1 : : : tn

3. apn (Absm f ) t1 : : : tn =
apn�m (f t1 : : : tm) tm+1 : : : tn

Condition on (1): n < m

Condition on (2): n = m

Condition on (3): n > m.

14 / 19



Eval/Apply: Remarks

I Drastically reduces number of intermediate closures
constructed in the common case.

I No help in pathological cases. But they are rare.

I Only need (small) �nite number of ap operators.

15 / 19



Many runtime environments compile pattern
matching problems to e�cient backtracking
automata or decision trees.

Idea: Extend model with constructors for all constructors
in all datatypes introduced in the object language.

�! Space and time e�cient representation of data.

16 / 19



Many runtime environments compile pattern
matching problems to e�cient backtracking
automata or decision trees.

Idea: Extend model with constructors for all constructors
in all datatypes introduced in the object language.
�! Space and time e�cient representation of data.

16 / 19



append even sort exp38 queens

0

1

2

3

ahn singlearity evalapply constructors ucea whnf

17 / 19



fast

X

cheap

X

general

X

18 / 19



fast X cheap

X

general

X

18 / 19



fast X cheap X general

X

18 / 19



fast X cheap X general X

18 / 19



Final words

Limitations:

I Fixed evaluation order

I Potential impedance mismatch between object-level pattern
matching and meta-level pattern matching.

Future work:

I Coq integration

I Short-circuit evaluation.

19 / 19


	Introduction
	Normalization by Evaluation
	Optimizations
	Uncurrying
	Embedding pattern matching

	Benchmarks
	Conclusion

