Efficient normalization by evaluation

Mathieu Boespflug

Ecole Polytechnique

15 August 2009

X iledeFrance ecoclll = W INRIA

1/19

The conversion test

/19

The conversion test

A simple algorithm:

1. Reduce A and B to their canonical forms.
2. Compare canonical forms.

2/19

fast

3/19

fast cheap

3/19

fast cheap general

3/19

» Plenty of existing (fast) reduction devices.

» Plenty of existing (fast) reduction devices.

» Solution: reuse them!

» Plenty of existing (fast) reduction devices.
» Solution: reuse them!

» Advantage: separation of concerns.

Eval vm_compute in fib 30.

Eval vm_compute in fib 30.

B. Grégoire and X. Leroy, “A compiled implementation of strong
reduction,” Proceedings ICFP’02, 2002.

Extended Terms:

bu=x|Ax.b| b by|[Xxvi ... vp]

vi=Ax.b|[kxvi ... vy
Symbolic weak reduction:

(Ax. b) v — b[x :=v]
[xvi ... vplv = [xvi ... vy V]

ry(a) =Ty (d) ifa—d

with [y == []v | b[].

N(b) = R(V(b))
R(Ax. b) = Ay. N((Ax. b) [¥])
R([xvi... vn]) =xR(v1) ... R(vn)

Grégoire and Leroy propose a virtual machine to implement
symbolic weak reduction and normalization.

Grégoire and Leroy propose a virtual machine to implement
symbolic weak reduction and normalization.

The name of the game: avoid untagging during applications.

Grégoire and Leroy propose a virtual machine to implement
symbolic weak reduction and normalization.

The name of the game: avoid untagging during applications.

Semi-cheap: Requires modification of the runtime environment.

Grégoire and Leroy propose a virtual machine to implement
symbolic weak reduction and normalization.

The name of the game: avoid untagging during applications.

Semi-cheap: Requires modification of the runtime environment.

Objective: be cheap, not just semi-cheap.

Normalization by Evaluation

Optimizations
Uncurrying
Embedding pattern matching

Benchmarks

Conclusion

/19

data Code = Con String
| Lam (Code — Code)
| Neu Code Code

Interpretation

[x] n=% ifx<n
[x] n= Con x otherwise
[A._t] n= Abs (A\d — [t] (n+ 1))
[t t2] n = app ([ta]) ([£2] n)

app (Abs tl) thh=1t b
app t; to = Neu t; t»

Interpretation

[x] n=x% ifx<n
[x] n = Con x otherwise
[A.t] n = Abs (AR — [t] (n+ 1))
[t 2] n = app ([]) ([22])

app (Abs tl) th =1 b
app (Con x) t; = Neu (Con x) t;
app (Neu t; t]) to = Neu (Neu t; t]) t

Example

[(Ax. (Ay. ¥ x)) 7]

12/19

Example

[(Ax. (Ay. ¥ x)) 7]

app (Abs (Ax — Abs (Ay — app y x))) (Con "0")

Algorithm

norm n (Con c) = ¢
norm n (Abs t) = A. (norm (n+ 1) (t (Con 1)))
norm n (Neu t; t2) = (norm n t1) @ (norm n t2)

Eval/Apply

[x] n=% ifx<n

[x] n= Con x otherwise

[A -\ t] n=Absy (Ah ... n+m — [t] (n+ m))

[t

oo tm] n=apm ([t1] n) ... ([tm] n)

A family of ap operators

1. apy (Abspm)ty ... th =
Absm_n (f t1 ... tn)

2. app (Absm f)t1 ... th="Ft ...

3. app (Absy, f) t ... ty =
app-m(ft1 ... tm) tmy1 ... tn
Condition on (1): n < m
Condition on (2): n=m
Condition on (3): n > m.

th

Eval/Apply: Remarks

» Drastically reduces number of intermediate closures
constructed in the common case.

> No help in pathological cases. But they are rare.

» Only need (small) finite number of ap operators.

Idea:

Many runtime environments compile pattern
matching problems to efficient backtracking
automata or decision trees.

Extend model with constructors for all constructors
in all datatypes introduced in the object language.

Idea:

Many runtime environments compile pattern
matching problems to efficient backtracking
automata or decision trees.

Extend model with constructors for all constructors
in all datatypes introduced in the object language.
— Space and time efficient representation of data.

Bo HHH e HHH'DD HUDIDD

I I
append even sort expad (queens

00ahn 0singlearity | Devalapply I8 constructors D0 uceal Dwhut

17/19

fast cheap general

18/19

fast v cheap general

18/19

fast v/ cheap v/ general

18/19

fast v cheap v/ general v/

18/19

Final words

Limitations:
» Fixed evaluation order

» Potential impedance mismatch between object-level pattern
matching and meta-level pattern matching.

Future work:
» CoOQ integration

» Short-circuit evaluation.

	Introduction
	Normalization by Evaluation
	Optimizations
	Uncurrying
	Embedding pattern matching

	Benchmarks
	Conclusion

