
First class reflection for shorter proofs

Mathieu Boespflug
☙

McGill University
☙

20 January 2012



Plan

☙ Part 1: Palindromes

☙ Part 2: higher-order programming

☙ Part 3: contextual programming



Formal systems
Example

☙ The language of formulae words

☙ The set of axioms (or assumptions) a-z,ε

☙ The language of proofs

P is an axiom(ax)
P is a palindrome
P is a palindrome(ext)
xP x is a palindrome

☙ Theorems are formulae that have proofs.



Palindromes: example

d is an axiom
(ax)
t is a palindrome

(ext)
rtr is a palindrome

(ext)
artra is a palindrome

(ext)
tartrat is a palindrome

(ext)
etartrate is a palindrome

(ext)
detartrated is a palindrome



Palindromes: example

t ∈ Γ
(ax)

Γ ` t
(ext)

Γ ` rtr
(ext)

Γ ` artra
(ext)

Γ ` tartrat
(ext)

Γ ` etartrate
(ext)

Γ ` detartrated



Palindromes: another example

t ∈ Γ
(ax)

Γ ` t
(ext)

Γ ` rtr
(ext)

Γ ` artra
(ext)

Γ ` tartrat
(ext)

Γ ` etartrate
(ext)

Γ ` detartrated
(ext)

Γ ` rdetartratedr
(ext)

Γ ` ardetartratedra
(ext)

Γ ` dardetartratedrad
(ext)

Γ ` adardetartratedrada
(ext)

Γ ` radardetartratedradar



A new inference rule

Γ ` P Γ ` Q
(concat)

Γ ` QP Q



Palindromes: another example, revisited

t ∈ Γ
(ax)

Γ ` t
(ext)

Γ ` rtr
(ext)

Γ ` artra
(ext)

Γ ` tartrat
(ext)

Γ ` etartrate
(ext)

Γ ` detartrated

d ∈ Γ
(ax)

Γ ` d
(ext)

Γ ` ada
(ext)

Γ ` radar
(concat) Γ ` radardetartratedradar



Recap...
☙ Identified alternative pattern to show palindromes.

☙ Introduced new inference rule to capture this pattern.

☙ Can prove (some) palindromes with derivation of shorter size.

☙ Have to convince ourselves that new inference rule does not allow new
“palindromes”.

☙ Want to prove:

∀Γ. ∀P . ..
.

..

.
(concat)

Γ ` P
⇒ ..

.
(ext)

Γ ` P



Proof equivalence

Γ ` P
Γ ` Q(ext) Γ ` xQx(concat) Γ ` xQxP xQx

⇔ Γ ` P(ext) Γ ` xP x Γ ` Q(concat) Γ ` QxP xQ(ext) Γ ` xQxP xQx



Proof reduction: example

t ∈ Γ
(ax)

Γ ` t
(ext)

Γ ` rtr
(ext)

Γ ` artra
(ext)

Γ ` tartrat
(ext)

Γ ` etartrate
(ext)

Γ ` detartrated

d ∈ Γ
(ax)

Γ ` d
(ext)

Γ ` ada
(ext)

Γ ` radar
(concat)

Γ ` radardetartratedradar



Proof reduction: example

t ∈ Γ
(ax)

Γ ` t
(ext)

Γ ` rtr
(ext)

Γ ` artra
(ext)

Γ ` tartrat
(ext)

Γ ` etartrate
(ext)

Γ ` detartrated
(ext)

Γ ` rdetartratedr

d ∈ Γ
(ax)

Γ ` d
(ext)

Γ ` ada
(concat)

Γ ` adardetartratedrada
(ext)

Γ ` radardetartratedradar



Proof reduction: example

t ∈ Γ
(ax)

Γ ` t
(ext)

Γ ` rtr
(ext)

Γ ` artra
(ext)

Γ ` tartrat
(ext)

Γ ` etartrate
(ext)

Γ ` detartrated
(ext)

Γ ` rdetartratedr
(ext)

Γ ` ardetartratedra
d ∈ Γ

(ax)
Γ ` d

(concat)
Γ ` dardetartratedrad

(ext)
Γ ` adardetartratedrada

(ext)
Γ ` radardetartratedradar



Proof reduction: example

t ∈ Γ
(ax)

Γ ` t
(ext)

Γ ` rtr
(ext)

Γ ` artra
(ext)

Γ ` tartrat
(ext)

Γ ` etartrate
(ext)

Γ ` detartrated
(ext)

Γ ` rdetartratedr
(ext)

Γ ` ardetartratedra
(ext)

Γ ` dardetartratedrad
(ext)

Γ ` adardetartratedrada
(ext)

Γ ` radardetartratedradar



Proof reduction

Γ ` P
Γ ` Q(ext) Γ ` xQx(concat) Γ ` xQxP xQx

−→ Γ ` P(ext) Γ ` xP x Γ ` Q(concat) Γ ` QxP xQ(ext) Γ ` xQxP xQx

☙ Orient equivalence rule: get reduction rule.

☙ Take reduction rule to define new inference rule.

☙ Inference rule + repeat reduction rule = program?



Another recap...
☙ Introduced new inference rule.

☙ Wanted to prove it doesn't introduce new “palindromes”.

☙ Introduced reduction rule — relates new inference to existing inference
rules.

☙ Repeatedly applying reduction rules can be seen as ameta-level program.

☙ If we prove the meta-level program always works, then never need to re-
duce to old rules!

☙ Consequence: can use new inference rule...

1. ... without having to trust it.

2. ... without having to reconstruct long derivations as evidence.



Part 2: higher-order
programming
(or when functions fly first class)



System.out.printLn(1 + 1);



1 + 1



'a' + 1



Character.getNumericValue('a')

+ 1



int_of_string 'a' + 1



let f = fun (x : char) -> 97

in

f 'a' + 1



let f =

fun (x : char list) -> 97

in f ['a'; 'b'; 'c'] + 1



let sum =

...

in sum ['a'; 'b'; 'c'] + 1



let map = ... in

let sum = ... in

sum (map int_of_char

['a'; 'b';

'c']) + 1



Programming with functions: modularity
☙ map is a higher order function.

☙ Pattern: "apply the same transformation to each element of the input list"

☙ Need only write one map function.

☙ This one map function can be reused to apply any transformation to all
elements of any input list.



Programs are...
... pieces of syntax strung together
... variables, bindings, function calls, ...



Programming with functions:
representing programs

Principles:

☙ Variables represented as... variables.

☙ Binding structures represented as... functions.

Assumptions:

term : type.
tint : int -> term.
tplus : term * term -> term.
tfun : (term -> term) -> term.
tapp : term * term -> term.
tlet : term * (term -> term) -> term

Example:

plus (tint 1) (tint 1)



Programming with functions:
representing programs

Principles:

☙ Variables represented as... variables.

☙ Binding structures represented as... functions.

Assumptions:

term : type.
tint : int -> term.
tplus : term * term -> term.
tfun : (term -> term) -> term.
tapp : term * term -> term.
tlet : term * (term -> term) -> term

Example:

tfun (fun x -> x)



Programming with functions:
representing programs

Principles:

☙ Variables represented as... variables.

☙ Binding structures represented as... functions.

Assumptions:

term : type.
tint : int -> term.
tplus : term * term -> term.
tfun : (term -> term) -> term.
tapp : term * term -> term.
tlet : term * (term -> term) -> term

Example:

tapp (tfun (fun x -> x)) (tint 5)



Programming with functions:
representing programs

Principles:

☙ Variables represented as... variables.

☙ Binding structures represented as... functions.

Assumptions:

term : type.
tint : int -> term.
tplus : term * term -> term.
tfun : (term -> term) -> term.
tapp : term * term -> term.
tlet : term * (term -> term) -> term

Example:

tlet (tfun (fun x -> x)) (fun f -> tapp f (tint 5))



Part 3: contextualprogramming
(or when reflection flies first class)



Meta-level programming language
☙ Want to manipulate programs as data.

☙ Programs represented using functions.

☙ Problem 1: can only apply functions!

☙ Problem 2: values are always closed.

☙ Solution: design a meta-level programming language.

☙ Expressions of base programming language are pieces of data in the
meta-level programming language.



Contextual objects
☙ Introduce notion of context ψ .

☙ As we recurse over data, free variables appear.

☙ At the meta-level, pieces of data only make sense in some context ψ .

☙ Contextual modal type theory (Nanevski, Pfenning, Pientka): make types
tell us in what context a piece of data makes sense.

☙ Type of meta-level functions mapping (open) data to (open) data:

Prop : type.
trans : ∀ψ.Prop[ψ] −> Prop[ψ].



Example: binary decision diagrams

∀x1.∀x2.∀x3. (¬x1 ∧ ¬x2 ∧ x3) ∨ (x1 ∧ x2) ∨ (x2 ∧ x3)



Example: binary decision diagrams

∀x1.∀x2.∀x3. (¬x1 ∧ ¬x2 ∧ x3) ∨ (x1 ∧ x2) ∨ (x2 ∧ x3)

x1

x2

0

x2

1

x3

0

x3

1

1

1

0

0

01 10

☙ Equivalent formula have unique
canonical graph.

☙ To prove A ⇒ B , can compare
graph of A and graph of B .



Reflection and binary decision diagrams
Want to prove that A ⇒ B for some given A and B .

1. toBDD A maps A to BDD.

2. toBDD B maps B to BDD.

3. Map each BDD to canonical graphs.

4. Test whether canonical graph is equal (using test).

5. Prove that
∀ψ.∀P 1:P rop[ψ].∀P 2:P rop[ψ].

test (toBDD P 1) (toBDD P 2) = true ⇒ (P 1 ⇒ P 2)

6. If test returns true then A ⇒ B by property above.



Conclusion
☙ Using functions to encode formulas is very convenient.

☙ Introducing meta-level programming language to reason to encoded for-
mulas gives us the formalism we need to express meta-level programs.

☙ If we prove that meta-level program is sound, then can use meta-level pro-
gram to prove some property.

☙ No need to actually write out proof of property using inference rules.

☙ In effect the meta-level program is a new inference rule!

☙ Future work:

1. Devise more reflective meta-level programs.

2. Work out the details and properties of the meta-level language we need
to achieve this.


