Rewinding the stack
for parsing and pretty printing

Mathieu Boespflug

McGill University

26 July 2011

1/31

A little primer on HASKELL

v

The polymorphic type of lists is written [a].

v

v

0:0

new datatype:

v

data Maybe a = Nothing | Just a

> type synonym:

type Enva = [(Int,a)]

head of type [a] — a is written head :: [a] — a.

The Problem

What is a parser?
type P a = String — Either Error (a, String)

4/31

What is a parser?

type P a = String — Either Error (a, String)

fail :: Error — Either Error (a, String)
success :: (a, String) — Either Error (a, String)
lit::P()
lit x =P (As — case stripPrefix x s of
Nothing — fail "Parse error."
Just s’ — success ((),s’))
true :: P Bool
true = P (As — case stripPrefix "true" s of
Nothing — fail "Parse error.”
Just s’ — success (True,s’))
false :: P Bool
false = P (As — case stripPrefix "false" s of
Nothing — fail "Parse error.”
Just s' — success (False,s’))

Combining parsers

» Parsers are monadic actions.

» Can be built compositionally from existing parser combinators,
which are also monadic actions.

puref =P (As — (f,s))
Pm®Pk=P(As — casem s of
(f,s’) — case k s’ of

(x,5") = (fx,5"))

Example parser

pure::a—Pa
(®)::P(a—b)—Pa—Pb
(®)::Pa—Pa—Pa

E ::=true | false | if E then E else E

data Tm = Boolean Bool | If Tm Tm Tm

tm::PTm
tm = pure Boolean ® true
@® pure Boolean ® false

@pure(A_x_y _z—Ifxyz)®lit"if" ®tm ® "then”
@tm®lit "else” @ tm

Example Pretty Printer

E ::=true | false | if E then E else E

data Tm = Boolean Bool | If Tm Tm Tm

tmt = case t of
Boolean True — "true”
Boolean False — "false"
Ifxyz—"if "+Hx+" then "
Hy+H" else "+Hz=

Objective:
> Write the parser once, get the pretty printer for free.

> Write the pretty printer once, get the parser for free.

Objective:

» Write the parser once, get the pretty printer for free.

> Write the pretty printer once, get the parser for free.

Why?
» Synchrony!

A\

Synchrony means easier to maintain.

v

Synchrony means less code.

v

Less code means fewer bugs.

v

Pollack consistency.

3 /31

Objective:

» Write the parser once, get the pretty printer for free.

> Write the pretty printer once, get the parser for free.

Why?
» Synchrony!

A\

Synchrony means easier to maintain.

v

Synchrony means less code.

v

Less code means fewer bugs.

v

Pollack consistency.

How?

» Write both at the same time.

3/ 31

The Solution

A Cassette

10/31

A Kassette in HASKELL

dataK7 ab =K7 {sideA ::a,sideB::b}

11/31

A Kassette in HASKELL

dataK7 ab =K7 {sideA ::a,sideB::b}

() :K7(b—c)(a—Db)
—K7(a—b)(b—c¢)
—K7(a—¢c)(c—a)

~(K7ff) & ~(K7g8)=K7 (fog) (g of")

11/3

The category of cassettes

Can overload (o) with ():

class Category kK where
idi:kaa
(0)i:kbc—kKkab—kac
instance Category K7 where
id=K7idid
(0)=()

12/31

Sequencing

A tentative parsing and pretty printing cassette

type PP a = K7 (String — Either Error (a, String))
(??)

14/31

A tentative parsing and pretty printing cassette

type PP a = K7 (String — Either Error (a, String))
((a, String) — String)

14 /31

A tentative parsing and pretty printing cassette

type PP a = K7 (String — Either Error (a, String))
(Either Error (a, String) — String)

14 /31

A tentative parsing and pretty printing cassette

type PP a = K7 (String — Either Error (a, String))
((a, String) — String)

14 /31

A tentative parsing and pretty printing cassette

type PP a = K7 (String — Either Error (a, String))
(a — String — String)

14 /31

A tentative parsing and pretty printing cassette

type PP a = K7 (String — Either Error (a, String))
(a — String — String)

pure (Axyz—If xy2) 2P(Tm —>Tm— Tm — Tm)
pure (Axyz—Ifxyz)®tm:: P (Tm — Tm — Tm)

14 /31

A tentative parsing and pretty printing cassette

type PP a = K7 (String — Either Error (a, String))
(a — String — String)

pure (Axyz—If xy 2) ©:P(Tm — Tm — Tm — Tm)
pure (Axyz —Ifxyz)®tm::P(Tm — Tm — Tm)

K7 (pure Axyz—If xy2)) (??)
::K7 (String — (Tm — Tm — Tm — Tm, String))
((Tm - Tm — Tm — Tm) — String — String)

14 /31

A tentative parsing and pretty printing cassette

type PP a = K7 (String — Either Error (a, String))
(a — String — String)

pure (Axyz—If xy 2) ©:P(Tm — Tm — Tm — Tm)
pure (Axyz —Ifxyz)®tm::P(Tm — Tm — Tm)

K7 (pure (A(x,y,2) = If xy 2)) (??)
::K7 (String — ((Tm, Tm, Tm) — Tm, String))
((Tm — (Tm, Tm, Tm)) — String — String)

14 /31

The problem

To summarize:

| 2

Need uncurried functions so that type to parse and type to
pretty print match.

Can inductively construct curried function type

a; = (az = (.. = a,)).

Uncurried function type (a;,a,, ...,a,_1) — a, cannot be
inductively constructed.

Cannot feed arguments to an uncurried function
incrementally.

Tuples as arguments and returning tuples breaks
composability.

Recovering symmetry with continuation passing style

Type of consumer in CPS:
(ay = ...—a,—r)—r
Type of producer in CPS:

r—a; —..—a,—r

16 /31

Recovering symmetry with continuation passing style

Type of parser in CPS:
(String —» ay — ... > a,, —>r) — String > r
Type of pretty printer CPS:

(String —» r) — String - a; = ... > a, =1

16 /31

Recovering symmetry with continuation passing style

Type of parser in CPS:
(String —» ay — ... > a,, —>r) — String > r
Type of pretty printer CPS:

(String —» r) — String - a; = ... > a, =1

» Both producer and consumer can be curried!

» Complete symmetry.

16/31

Recovering symmetry with continuation passing style

Type of parser in CPS:
(String —» ay — ... > a, —»r) — String —>r
Type of pretty printer CPS:
(String — r) — String » a; — ... > a, —>r
Type of parser in CPS:
(String —»ay — ... » a, —r)— (String — r)
Type of pretty printer in CPS:

(String — r) — (String - a; — ... > a, —7r)

> Both producer and consumer can be curried!
» Complete symmetry.

16/31

Composing parsers in CPS

f::(String —» b —ry) — (String — ;)
g::(String — a — ry) — (String — 15)
fog::(String—a—b—ry)— (String —r;)

Unification constraints: ry =b —ry.

17/31

Composing pretty printers in CPS (Danvy, 1998)

f':: (String — ;) — (String > b — ;)
g (String — ry) — (String > a — r5)
g of"::(String —» r;) — (String—a—b —ry)

Unification constraints: ry =b —ry.

18 /31

Putting it all together

K7ff oK7gg ::K7 ((String — a — b —r) — (String — 1))
((String — r) — (String > a — b —r))

19/31

{0, 1}-parsers and {0, 1}-printers

Existentially pack answer type:

type PPPa = Vr. K7 ((String — a — r) — (String — 1))
((String — r) — (String — a — 1))

type PPPO = Vr. K7 ((String — r) — (String — 1))
((String — r) — (String — 1))

> Not closed under composition!
» Compose n-parser with (pure) n-consumer to get 1-parser.
» Compose n-printer with (pure) n-producer to get 1-printer.

» Parser-consumer and printer-producer composition written
using (—) (alias for (<>), but with lower precedence).

Example: parsing and printing pairs

lit :: String — PPPO
lit x = K7 (Ak s — case stripPrefix x s of Just s’ — k s")
(Aks >k (x+Hs))
anyChar :: PPP Char
anyChar = K7 (Ak s — k (tail s) (head s)) (Ak s x — k ([x] H5))

Example: parsing and printing pairs

lit :: String — PPPO
lit x = K7 (Ak s — case stripPrefix x s of Just s’ — k s")
(Aks >k (x+Hs))
anyChar :: PPP Char
anyChar = K7 (Ak s — k (tail s) (head s)) (Ak s x — k ([x] H5))

kpair :: K7 ((String — (a,b) —» r) — (String = b — a —r))
((String —» b — a — r) — (String — (a,b) — 1))
kpair=K7 (Aksyx — ks (x,y)) (Aks (x,y) = ksyx)

Example: parsing and printing pairs

lit :: String — PPPO
lit x = K7 (Ak s — case stripPrefix x s of Just s’ — k s")
(Aks >k (x+Hs))

anyChar :: PPP Char
anyChar = K7 (Ak s — k (tail s) (head s)) (Ak s x — k ([x] H5))

kpair :: K7 ((String — (a,b) —» r) — (String = b — a —r))
((String —» b — a — r) — (String — (a,b) — 1))
kpair=K7 (Aksyx — ks (x,y)) (Aks (x,y) = ksyx)

pair :: PPP (Char, Char)
pair =lit " (" oanyCharolit"," o anyCharolit ")" — kpair

Choice

Choice for parsing/printing algebraic datatypes

> Need to add throwing and catching exceptions side effect:

1. abort on malformed input.
2. backtrack to last choice point if parsing/printing failure.

» Can model exceptions through the exception monad.
> Parsing is a monad.

— can compose monads to compose effects.
» Printing is not a monad.

— cannot compose monads to compose effects.

Choice for parsing/printing algebraic datatypes

> Need to add throwing and catching exceptions side effect:

1. abort on malformed input.
2. backtrack to last choice point if parsing/printing failure.

v

Can model exceptions through the exception monad.

v

Parsing is a monad.
— can compose monads to compose effects.

v

Printing is not a monad.
— cannot compose monads to compose effects.

v

Answer type must be polymorphic — cannot lift to monadic

type:

f::(String — b —mr;) — (String > mr;)
g::(String - a — mr,) — (String » mr,)
fogu??

Unsatisfiable unification constraint: mr, =b — mry.

Solution: CPS transform a second time!

> Obtain 2-CPS 1-parser and 1-printer. Types:

K7 ((String —»a — (r—t) > t) = String —» (r > t) - t)
((String — (r - t) > t) - String > a — (r—t) —t)

» Now have a continuation and a meta-continuation.

» Pass continuation, meta-continuation first and make
meta-continuation constant:

K7 ((t — String — a — t) — t — String — t)
((t — String > t) —» t — String > a — t)

» Cannot be composed! Infinite type during unification:
t=a—t.

Solution: CPS transform a second time!

» Must weaken meta-continuation argument of continuation of
parser.

» Conversely, must strengthen meta-continuation argument of
continuation of printer.

> Obtained type:

K7 (((a —> t) — String — a — t) — (t — String — t))
((t — String — t) — ((a — t) — String —» a — t))

» Composition of cassettes is still pairwise functional
composition of components, as before.

The choice combinator

type PPPa = Vr. K7
(((a = t) - String —» a — t) — (t — String — t))
((t - String » t) — ((a > t) — String —» a — t))

(®)::PPPa— PPPa— PPPa
K7ff®K7gg =
K7 (AkK' s —>fk(gkk's)s)
(AkK sx —f k(g kk's)sx)

» Reset meta-continuation (aka failure continuation) of f, f’.

Example: repeating cassettes

kcons = K7 (Ak k' s xs x — k (const (k" xs x)) s (x : xs))
(Ak k' s xs — case xs of
x:xs—k(A__—k'xs)sxsx
_— k' xs)
knil =K7 (Ak k' s — k (const k') s [1)
(Ak k' s xs — case xs of
[1—= k(K xs)s

_— k' xs)

Example: repeating cassettes

kcons = K7 (Ak k' s xs x — k (const (k" xs x)) s (x : xs))
(Ak k' s xs — case xs of
x:xs—k(A__—k'xs)sxsx
_— k' xs)
knil =K7 (Ak k' s — k (const k') s [1)
(Ak k' s xs — case xs of
[1—= k(K xs)s

_— k' xs)

many :: PPPa — PPP [a]
many ppp = (ppp o many ppp — kcons) @ knil

» many is a derived combinator.
> Need lazy semantics to avoid non-termination.
» Essential use of answer type polymorphism.

Playing cassettes

play::(K7ab—c)—K7ab—c
play f csst = f csst

parse :: PPP a — String — Maybe a
parse csst = play sideA csst (A_ _ x — Just x) Nothing

pretty :: PPP a — a — Maybe String
pretty csst = play sideB csst (A_s — Just s) (const Nothing)

nn

Conclusion

Literature

» “Functional unparsing” (Danvy, 1998)
— CPS, only printf, no ADTs.

> “There and back again” (Alimarine et al., 2005)
— arrows, needs binary encoding of alternatives, arrows must
respect isomorphism laws.

» “Invertible Syntax Descriptions: Unifying Parsing and Pretty
Printing” (Rendel and Ostermann, 2010)
— applicative functor but not quite, packs all arguments in
nested tuples.

Future work

v

Fix order of arguments.

v

Implementation in direct style.

Port all Parsec combinators to cassette framework.

v

v

Study initial vs final.

31/3

	Haskell Primer
	Introduction
	Cassettes

