
Staged computations in types

Mathieu Boespflug

McGill University
mboes@cs.mcgill.ca

Abstract. Two-level formal systems segregate a specialized language
for convenient higher order representations of object logics while still
allowing for computation and powerful reasoning principles to support
formal metatheory. But such a strict segregation between two entirely
distinct levels limits potential for reuse of declarations between levels.
More importantly, it can moreover be useful to reason about compu-
tations, not just representations, and to compute large terms and long
derivations from the representation layer rather than writing them out
in full. We show how to extend a two level system, allowing for com-
putations in propositions, but without compromising the adequacy of
encodings into the representation layer. The enabling ingredient is to
distinguish between values and computations, in the style of [1], and to
only allow embedding values into the representation level. We demon-
strate through several examples how our extended system offers an ex-
cellent framework for proofs by reflection. This style of proof lets a user
define ad hoc, domain specific decision procedures safely, without in-
creasing the size of the trusted base. We show type safety of our system,
and reduce consistency to that of a simpler system without permutation
rules.

1 Introduction

1.1 A shallow embedding is deep one level up

Formal metatheory is the cornerstone of sound programming languages and proof
systems research — a proposal for a new language of proofs, formulas or pro-
grams only takes credence once a reasonable argument can be made that this
new language behaves well and realizes all the right properties. Reasoning about
a new language in a formal system, which we’ll qualify as the logical framework,
presupposes that there exists means to express this language in the logical frame-
work. For any non-trivial language, the typical choices are to formulate a deep
embedding of the object language within the language of the logical framework
(or metalanguage), encoding expressions of the object language as data in the
metalanguage, or a shallow embedding, where expressions and propositions of the
object language are mapped directly to meta level expressions and propositions.
Shallow embeddings, for all their convenience (inherited substitution principles,
small size of encoded terms), are not suitable for all types of metatheoretic rea-
soning: one cannot, for instance, readily compute the size of an expression, and

recovering good induction principles that a deep embedding provides can be
tricky.

In the Beluga system [2], we get the best of both worlds, because this partic-
ular logical framework discriminates between two disinct languages, living in two
different levels: the LF language, which is the language of the data level in which
we formulate shallow embeddings, on top of which we are offered a language of
computations that allows us to express proofs. We call proof level the level at
which these computations live. The latter level is the meta level of the former,
in that terms and propositions of the data level can be manipulated as data
in the proof level. For example, the following signature forms a shallow embed-
ding of higher order logic (HOL) and a fragment of its deductive system in LF1:

o : type. ι : type.

lam : (ι → ι) → ι.
app : ι → ι → ι.

|- : o → type.

eq : ι → ι → o.
eq/beta : |- (eq (app (lam (λx. M x)) N) (M N)).
eq/trans : |- (eq M M’) → |- (eq M’ M’’)

→ |- (eq M M’’).

HOL has only two base types: the type o of propositions and the type ι of HOL
terms. At the proof level, we can write a proof that the open term (λx.x x) (λz.x y)
is equal to y y under HOL’s notion of equality. We do this not in the host
language LF, but in the language of computations (which we will define more
formally in Section 3):

let prop1 : [y : ι. eq (app (λx. x x) (λz. app z y)) (app y y)] =
[. eq/trans eq/beta (eq/trans eq/beta eq/beta)];

The square brackets denote boxes; they serve to lift LF types (resp. terms) to
proof level types (resp expressions). The beginning of a box always lists explicitly
the free variables (and their types) of the object in the box. Notice that at the
proof level, we can safely manipulate any term at the data level, including open
terms, just as we would have been able to do in LF alone had we gone for a deep
embedding. The advantage of the two-level approach is that a shallow embedding
at the data level is a deep embedding at the proof level, so at the proof level
we may do everything that a deep embedding affords us, while also retaining
the free substitution principles that shallow embeddings and other instances of
higher order abstract syntax (HOAS) provide.

1.2 A tale of two function spaces

To wit, the following code demonstrates how we can define in this system a
function that computes the size of an HOL term shallowly embedded in LF:

nat : type = (ι → ι) → ι → ι. % A type synonym.
zero : nat.
succ : nat → nat.

schema ctx = ι;

1 See [3] for a nice and short overview of HOL.

rec size : (g : ctx) [g. ι] → [. nat] =
fn m ⇒case m of
| [g. #p..] ⇒ [. succ zero]
| [g. lam (λx. M..x)] ⇒

let [. N] = size [g,x : ι. M..x] in [. succ N]
| [g. app (M1..) (M2..)] ⇒

let [. N1] = size [g. M1..] in
let [. N2] = size [g. M2..] in
let [. N3] = plus [. N1] [.N2] in [. succ N3];

In HOL, natural numbers are usually represented as Church numerals, that is
to say as higher order (data level) functions. The (proof level) function size2

proceeds by case analysis on an LF object — indeed these objects are data (at
the proof level). They need not be closed, and in general live in a context g, whose
schema ctx says that all free variables of an LF object living in g are of type
ι. The parameter variable #p in the pattern of the first clause matches any LF
variable. Metavariables appearing in patterns are always capitalized and match
any term whose set of free variables fits within the boundaries set forth by the
substitution suffixed to each of them: if it is the identity substitution (denoted
..) any term with free variables in the context g will be matched, likewise for
any extension of the identity substitution (such as ..x) and some extension of g
(such as [g,x : ι]).

But now that we have a function to compute the size of a term, it is natural
to ask whether we can reason formally about the properties of this function. For
example, we would like to be able to prove that the size function commutes with
the lam constructor. But since our object theory HOL already formalizes what it
means to be a number and what it means for two things to be equal, we would
like to reuse these in stating this lemma. More precisely, we would like to prove
the following lemma about size:

size_lam : (g : ctx) let [. N] = size [g. lam (λx. M..x)] in
let [. N’] = size [g,x : ι. M..x] in
[. eq N (succ N’)];

That is, we would like to be able to state properties not just about data level
entities, but also about the results of computations on these data level entities, all
the while without duplicating any theories that might be preexisting in the data
level. Moreover (as we shall see in Section 5), adding this feature to a two-level
system has the pleasant side effect of letting us replace potentially very large
data level objects with computations at the proof level instead. We propose in
Section 3 a general and well behaved mechanism that achieves this goal. The
idea is to allow demoting proof level values down to the data level, but not proof
level computations. We structure our calculus in a monadic style to distinguish
values from computations, much in the same way as Moggi’s computational λ-
calculus [1].

2 One can tell the level of a declaration by its terminator token: a “.” (resp. “;”)
marks the end of a data level (resp. proof level) declaration.

1.3 On the relevance of two-level systems

Before delving much deeper into the technical details, one might wonder what
the fuss over two-level systems is. We are, after all, seeking to blur in a controlled
fashion the strict separation between levels in these systems, so one might ask
why start with two levels rather than just one to begin with? A key issue is the
adequacy of embeddings, meaning that elements of the object language are in
a compositional bijection with terms in the metalanguage of the corresponding
type. If we have but one function space, the function space of proofs, and reuse
this one function space to encode object languages in a higher order fashion,
then it becomes difficult to rule out the existence of so-called exotic terms in the
encoding, since with the help of some syntactic constructs necessary for a proof
language, such as case analyses, it becomes possible to construct terms of the
appropriate type that do not correspond to anything in the object language. One
salient feature of this work is that it does not compromise encodings’ adequacy,
because LF terms are still canonical, as is the case in Canonical LF [4].

1.4 Outline

We start with a brief characterization of the data level in Section 2. The features
we propose in this system are generic in the data level language, so we detail
the requirements that we impose of the data layer, without committing to a
particular language. A type system is given in Section 3, about which we show
a number of properties (Section 4), culminating in type safety. With the core
theory laid out, we discuss some use cases of our two-level system, focusing in
particular on proofs by reflection (Section 5).

2 The data level, abstractly

LF makes for a fine data level language, but in this section we will ask only
of the data level language that it provide us with a suitable notion of terms,
types, contexts and substitutions. We assume that we can meaningfully lift these
entities into the meta level, at which point we call them meta entities (e.g. a meta
type) to distinguish them from the similar concepts of the meta language. We
use C to refer to meta terms, U for meta types, and X to range over all of meta
variables, parameter variables and context variables. In the course of analyzing
a meta term, we may learn something about the types of the meta variables, and
moreover we will want to relate meta types in the form of equality assumptions.
A meta context is a package of such information:

Meta subst. θ ::= · | θ, C/X Meta contexts ∆ ::= · | ∆,X:U | ∆,U1 = U2

Meta variables and parameter variables always occur with an associated sub-
stitution, as we have seen in Section 1. We write id(X) for an occurrence of
X associated to the identity substitution. We write [[θ]]· for the application of
the (simualtaneous) meta susbtitution to any entity. Some of these substitutions
arise as the most general unifier of type meta types, a fact that we will write

as ∆ ` U1
.
= U2/(∆, θ), meaning θ unifies types U1, U2 living in context ∆ and

takes them to context ∆′.
Finally, we write ∆ ` C : U for the judgement expressing that C is of type U ,

and assume the rules that justify it as given. The domains of meta substitutions
is normally determined by a pure meta context of typing assumptions, so we
define the following additional substitution well formation rule to handle equality
assumptions:

∆′ ` θ : ∆
∆′, [[θ]]U1 = [[θ]]U2 ` θ : ∆,U1 = U2

3 A proof language for contextual objects

We define a language of computations, separate from the data level’s language,
whose syntax is defined formally below:

Types T ::= U | T1 → T2 | ΠX:U.T | let X : U = E in T

Expressions E ::= y | C | E1E2 | fn y.E | ΛX.E | rec f.E | case E of ~B
Branches B ::= ∆ . C 7→ E
Contexts Γ ::= · | Γ, y:T | Γ,E C : U

This language is a domain-free dependently typed λ-calculus, with the addition
of a fixpoint construction for writing recursive functions and a case analysis
construct on terms of base type, i.e. data level values. Note that we understand
U → T and ΠX:U.T as two completely different function spaces: the first is the
type of programs, of the form fn y.E, while the latter is the type of abstractions
over a meta type index, written ΛX.E. In other words, we only have data level
dependencies in proof level types.

The language given here is largely identical to previous presentations [5–7],
but for the addition of the “let-in” construct in the sublanguage of types. This
construct is to be understood as the application of a computation E to the Kleisli
extension of a function from values to computations [1], or more colloquially as
the “bind” of a monad. Indeed, the reduction rules for this construct, given in
Figure 1, is directly justified by the equational theory of monads.

The other extension is that we allow storing equality assumptions in the
expression context (just as we have in the meta context). These equality as-
sumptions arise from a case analysis on a scrutinee Es. In each branch, we can
exploit statically, during typing, what we learn about the dynamic behaviour of
E when selecting a branch ~Bi: that the value of E at runtime must necessarily
match Ci. Therefore, on this assumption, we can rewrite any occurrence of Es
in types and replace it with Ci.

3.1 Term and type equivalence

Since with the addition of the “let-in” construct, computational expressions may
now appear in types, type equivalence now needs to be defined modulo expression
equivalence. Two expressions are equivalent if they compute to the same normal

T −→ T ′ Type T reduces to T ′, the contextual closure of the following relation

let X : U = E in T −⇀ let X : U = E′ in T if E −→ E′

let X : U = C in T1 −⇀ [[C/X]]T2

let X1 : U1 = (let X2 : U2 = E1 in E2) in T3 −⇀ let X2 : U2 = E1 in let X1 : U1 = E2 in T3

let X : U = E in T −⇀ T if X /∈ FMV(T)

E −→ E′ Expression E reduces to E′, the contextual closure of the following relation

(fn x.E1) E2 −⇀ [E2/x]E1

(ΛX.E1) C −⇀ [[C/X]]E1

rec f.E −⇀ [rec f.E/f]E

case C of ~B −⇀ [[θ]]Ei where ∆i . Ci 7→ Ei ∈ ~B
and ∆,∆i ` C

.
= Ci/(θ,∆)

let X1 : U1 = (let X2 : U2 = E1 in E2) in E3 −⇀ let X2 : U2 = E1 in let X1 : U1 = E2 in E3

let X : U = E1 in E2 −⇀ E2 if X /∈ FMV(E2)

Fig. 1. Reduction rules. Expressions assumed to live in ambient meta context ∆.

form, so type equivalence is defined modulo computation. In general, types need
not be closed, and in the presence of binding constructs in types, this means
expressions appearing in types need not be closed. Thus case constructs can
get “stuck” during evaluation (when the scrutinee is non-ground). Therefore we
reason about expression equivalence not just modulo β-reduction, but further
strengthen the expression equivalence relation to include the same equational
theory as for types, observing that case analysis constructs are a generalization
of the “let-in” construct, and therefore commute just as “let-in” constructs do.
In meta context ∆ and context Γ ,

let X : U = E1 in E2 is syntactic sugar for case E1 of ∆,X:U . X 7→ E2.

The rules for type and expression reduction are given in Figure 1. They
include the usual β-reduction rules. In addition, we have non computational re-
duction rules, called commuting conversions, or π-reduction, that help us identify
types and terms up to associativity of “let-in” [1].

3.2 The abstract typing relation

Armed with a notion of equivalence between types, we can now formulate a type
system for the computational language. It is described formally in Figure 2. The
typing of atomic expressions is straightforward; we either have a variable or a
meta term, in which case we type check the meta term according to the rules
given in [8, 5]. Applying a function to a meta term requires substituting the
meta-term in the result type. One essential characteristics of this type system
is that, contrary to existing two-level systems, which to our knowledge always
only identify types up to syntactic equality, here a type T1 can be substituted
for a type T2 so long as a rather stronger notion of equivalence holds between
T1 and T2. Type equivalence is defined in Figure 3.

∆ ` Γ ctx Context Γ is well-formed

` ∆ mctx
∆ ` · ctx

∆;Γ ` T ctype ∆ ` Γ ctx

∆ ` Γ, x:T ctx

∆;Γ ` E : U ∆ ` C : U ∆ ` Γ ctx

∆ ` Γ,E C : U ctx

∆ ` T ctype Computational type T is well-formed

∆ ` T1 ctype ∆ ` T2 ctype

∆ ` T1 → T2 ctype

∆,X:U ` T ctype

∆ ` ΠX:U.T

` ∆ mctx ∆ ` U mtype

∆ ` U ctype

∆; · ` E : U ∆,X:U ` T ctype

∆ ` let X : U = E in T

∆;Γ ` E : T Computational expression E has type T

` ∆ mctx ∆ ` Γ ctx Γ (x) = T

∆;Γ ` x : T
` ∆ mctx ` Γ ctx ∆ ` C : U

∆;Γ ` C : U

∆;Γ ` E1 : T1 → T2 ∆;Γ ` E2 : T1

∆;Γ ` E1 E2 : T2

∆;Γ ` E : ΠX:U.T ∆;Γ ` C : U

∆;Γ ` E C : [[C/X]]T

∆;Γ ` E : T1 ∆;Γ ` T2 ctype ∆;Γ ` T1 ≡ T2

∆;Γ ` E : T2

∆;Γ, y:T1 ` E : T2

∆;Γ ` fn y.E : T1 → T2

∆;Γ, f : T ` E : T

∆;Γ ` rec f.E : T

∆,X:U ;Γ ` E : T

∆;Γ ` ΛX.E : ΠX:U.T

∆;Γ ` E : U for all i ∆;Γ ` Bi :EU T

∆;Γ ` case E of ~B : T

∆;Γ ` B :EU T Branch B with scrutinee E of type U has type T

` ∆i mctx ∆i ` C : Ui ∆,∆i, Ui = Us;Γ,Es C : Us ` E : T

∆;Γ ` ∆i . C 7→ E :Es
Us

T

Fig. 2. Abstract typing relation.

The other essential characteristic is that we record any information that we
may learn during case analysis in equality assumptions. Adding new equality
assumptions to the context or meta context makes more terms equivalent. Case
analysis can be done on suitably raised meta terms at base type. But since we
permit meta terms to be dependently typed, assuming that the pattern in some
given branch matches the scrutinee implies that the type of the scrutinee and
the type of the pattern are unifiable. Moreover, we also learn that the pattern
and the scrutinee must be equivalent to some instance of the pattern. The first
equality assumption is a fact about how type indices of data level entities are
related; the latter tells us something about the result of proof level computations.
Both kinds of information, according to the rules of Figure 3, can be exploited
to decide whether two types are convertible.

Given two syntactically distinct types (or expressions), which we generically
denote as Z1, Z2, we might get one step closer to showing their equivalence by
reducing either of them, or rewriting them using the equality assumptions at

∆;Γ ` Z1 ≡ Z2 Type and expression equivalence rules

Z1 −→ Z′
1 ∆;Γ ` Z′

1 ≡ Z2

∆;Γ ` Z1 ≡ Z2 ∆;Γ ` Z1 ≡ Z1

Z2 −→ Z′
2 ∆;Γ ` Z1 ≡ Z′

2

∆;Γ ` Z1 ≡ Z2

U1 = U2 ∈ ∆ ∆ ` U1
.
= U2/(θ,∆

′) ∆′; [[θ]]Γ ` [[θ]]Z1 ≡ [[θ]]Z2

∆;Γ ` Z1 ≡ Z2

E C : U ∈ Γ C ∈ split(Z1, E) ∆;Γ ` [[C/X]]C[id(X)] ≡ Z2

∆;Γ ` Z1 ≡ Z2

E C : U ∈ Γ C ∈ split(Z2, E) ∆;Γ ` Z1 ≡ [[C/X]]C[id(X)]

∆;Γ ` Z1 ≡ Z2

Fig. 3. Type and expression equivalence rules

our disposal. Dynamically, ground instances of the type of a scrutinee of a case
analysis must match the type of the pattern, hence the two must unify. We can
exploit this statically by finding the most general unifier and instantiating the
free meta variables in Z1, Z2 accordingly. The last alternative is to rewrite any
occurrence of the scrutinee E of a case analysis with the pattern C against which
the value of scrutinee is assumed to match. We express this by non determistically
splitting the type or expression Z into a reduction context C, such that plugging
E into C yields the original, i.e. C[E] = Z. Given that a value of E matches
C, we can plug C instead. However, C may need to be renamed appropriately
to avoid captures. Since the base theory already provides us with a notion of
capture avoiding substitution of meta terms, we instead plug a fresh variable X,
for which we finally substitute C.

In dependently typed systems with eliminators, such as the Calculus of In-
ductive Constructions or Martin-Löf Type Theory, just how the information
gained from a case analysis is used is determined by a user supplied function
that explains how the target type of the whole case analysis should be refined
in each branch. As noted in [9], however, storing equality assumptions instead
is more flexible: in each branch, refinements can also occur in the context rather
than just in the target type T of a judgement ∆;Γ ` case E of ~B : T . This ob-
viates the need for the awkward convoy pattern commonly seen in Coq, where
users discharge select assumptions from the context Γ into T just before a case
analysis, in order for refinement to occur in the right places.

We chose to make “let-in” a special case of a case analysis. But in metathe-
oretic arguments, it may be more convenient to use a more specialized typing
rule.

Theorem 1. The following typing rule is admissible:

∆;Γ ` E1 : U ∆,X:U ;Γ,E1 = id(X) ` E2 : T

∆;Γ ` let X : U = E1 in E2 : T

Example 2. The following expression cannot be typed against the given type:

M : [.nat]; · 6` fn x ⇒ x : let [.N] = plus [.M] [.M] in
[.vector N] → [.vector N]

However, doing a case analysis beforehand gets us out of this particular rut:

M : [.nat]; · ` let [.N’] = plus [.M] [.M] in fn x ⇒ x
: let [.N] = plus [.M] [.M] in [.vector N] → [.vector N]

The derivation (left as an exercice to the reader) uses the fact that inside the
branch of the case analysis, we have extra information available that lets us
reduce away the enclosing “let-in” in the type. This example shows that terms
must contain evidence showing how to eliminate irreducible forms in types.

The abstract typing relation is suitable for a metatheoretical study, but one
shortcoming is that this relation does not readily inform us of a type checking
procedure given a meta context, context, term and type as input. The major
issue is that this relation does not commit to particular strategy as to when
and where to use the conversion rule. We study some of the metatheory of this
system in Section 4. In the long version of this paper, we show a bidirectional
type checking algorithm that we prove sound and complete with respect to the
rules given in this section. The construction of such an algorithm follows the
same lines as [10] — as for theirs, completeness relies on standardization of
weak head reduction [11].

4 Metatheoretical properties

The interested reader may find the proofs for the properties in this section in the
long version of this paper. The type system presented in Section 3 enjoys the
usual structural properties, such as weakening and substitution. To these stan-
dard structural properties we add that equality assumptions can be permuted.

Lemma 3 (Permutation).

1. If ∆1, U1 = U2, U
′
1 = U ′2, ∆2;Γ ` J then ∆1, U

′
1 = U ′2, U1 = U2, ∆2;Γ ` J ;

2. if ∆;Γ1, E1 C1 : U1, E2 C2 : U2, Γ2 ` J then ∆;Γ1, E2 C2 :
U2, E1 C1 : U1, Γ2 ` J .

Using typing assumptions can be delicate, in that it must be taken into
account that the type conversion rule can be used at any point. An important
but straightforward result is the use of the conversion rule can always be stripped
out of the root of the derivation.

Lemma 4 (Inversion).

1. If ∆;Γ ` x : T then T ≡ Γ (x);
2. if ∆;Γ ` C : T then T ≡ U for some U ;
3. if ∆;Γ ` E1 E2 : T then ∆;Γ ` E1 : T1 → T2 and ∆;Γ ` E2 : T1 and

T ≡ T2 for some T1, T2;
4. if ∆;Γ ` E1 C : T then ∆;Γ ` E1 : ΠX:U.T2 and ∆;Γ ` C ⇐ U and

T ≡ [[C/X]]T2 for some U, T2;

5. if ∆;Γ ` fn x.E : T then T ≡ T1 → T2 for some T1, T2;
6. if ∆;Γ ` ΛX.E : T then T ≡ ΠX:U.T2 for some U, T2;
7. if ∆;Γ ` case E of ~B : T then ∆;Γ ` E : U and for all i ∆;Γ ` ~Bi :EU T ′

and T ≡ T ′ for some U, T ′.

From then on, we can prove a number of important properties about equal-
ities assumptions. The following two say that the left and right hand sides of
an equality assumption are equivalent, then the assumption is not informative
and so might as well be done without. Moreover, equality assumptions can be
decomposed into simpler ones.

Lemma 5 (Cut).

1. If ∆1, U1 = U2, ∆2;Γ ` J and ∆1;Γ ` U1 ≡ U2, then ∆1, ∆2;Γ ` J ;
2. if ∆;Γ1, E C : U, Γ2 ` J and ∆;Γ1 ` E ≡ C, then ∆;Γ1, Γ2 ` J .

Proof. The first part can be proved by structural induction the first derivation
and inversion on the equivalence assumption. By structural induction on first
derivation. The second part can be proved by double induction on the first
derivation and the equivalence relation. ut

Lemma 6.
If ∆;Γ, (let X : U = E1 in E2) = C ` J
then ∆,X:U ;Γ,E1 = id(X), E2 = C ` J .

We are now in a position to prove the first half of type safety: that types are
invariant under reduction of expressions. The above two lemmas are useful for
the case where case analyses are reduced and for the permutation rules.

Theorem 7 (Preservation). If ∆; · ` E : T and E −→ E′ then ∆; · ` E′ : T .

If we restrict our attention to only closed forms, then we can state the following
preservation lemma. In our case, the only values are functions and meta terms.
Of course, for progress to be true we need to assume that pattern matching never
gets “stuck”, i.e. that all case analyses coverage check [12].

Lemma 8 (Canonical forms).

1. If ∆;Γ ` V : U then V is of the form C;
2. if ∆;Γ ` V : T1 → T2 then V is of the form fn x.E;
3. if ∆;Γ ` V : ΠX:U.T then V is of the form ΛX.E.

Lemma 9. If ·; · ` E : T and E coverage checks, then either E is a value or
E −→ E′ for some E′.

Lemma 10 (Type safety). If ·; · ` E : T then either there exsists a V such
that E −→∗ V , or E diverges.

The computations in the proof level would not be meaningful proofs if these
computations were not total. We do not attempt to address termination and
coverage issues here — there are a number of ways of restricting computations
to only terminating ones, using simple syntactic guard conditions or more se-
mantic methods such as sized types. Rather than committing to any particular
termination scheme, we show that adding permutation rules does not affect nor-
malization, by embedding expressions of our system into a simply typed variant
of the computational language by means of a CPS translation, where type in-
dices are erased (index erasing is denoted (·)−) and permutations are simulated
by β-reduction.

Theorem 11. If ∆−;Γ− ` E− : T− and SNβ(E) then SNβπ(E).

By embedding types into expressions, we can lift this result to types.

5 Proofs by reflection

Given a formula ϕ under hypotheses Γ expressed in a consistent formal deduction
system D, if it is provable in D then one can construct a cut-free derivation
justifying the judgement Γ ` ϕ. But cut-free proofs can be really quite large.
Besides, given a family of similar formulas (ϕk) over a decidable theory T , each
formula ϕi will in general have a completely different cut-free proof. It can be
tedious for the user to have to write out such long proofs, especially if the problem
domain is small and easily automated.

An alternative, especially if the family (ϕk) is well characterized, such as
the set of ring inequalities or tautologies of propositional logic, is to rely on the
answer of decision procedure f for a particular ϕi, rather than manually proving
it. But this solution requires to trust f , hence increasing the trusted base. If one
can instead implement f as a term of discourse, then f can be reasoned about,
with the view towards eliminating f from the trusted base. In particular, if one
can show the following soundness lemma about f ,

soundness : ∀k, f k = true→ ϕk

then for any ϕi, by the above lemma we need only prove that f i computes
to true to prove ϕi. In dependently typed systems, types are usually equated
modulo some fixed notion of computation. Therefore, if we can implement f as
a closed function of the term language, such that f i = true holds definitionally,
then f i = true can be established by reflexivity of equality alone, so that the
following is a proof of say (ϕ1):

soundness 1 (refl (f 1) true)

This proof is emphatically not cut-free. It is typically much shorter than any
cut-free proof of ϕ1 could ever be. We trade away proof size against more com-
putation during proof checking. But even more importantly, for any ϕi that P
can prove, the proof is of exactly the same shape as for every other formula of
this family of formulas. The only varying parameter in each of these proofs is
the number i.

It is, however, often completely impractical to identify a formula by an inte-
ger i, in effect a Gödel number. The efficacy of this proof technique hinges upon
having a way to represent formulas more conveniently than with an integer, say
as inductively constructed data, i.e. to reflect the language of terms within itself.
Mapping from formulas to their representation is called quoting (or metaifica-
tion), which we write p·q. The difficulty is that in general ϕi may involve free
variables, or include binding constructs, which must be represented somehow —
CMTT provides just such convenient, well-behaved, adequate representations.

Proofs by reflection are an important and practically useful proof methodol-
ogy to have in one’s toolbox, and has seen wide adoption in dependently typed
interactive proof assistants such as in Coq [13–18], in Agda under the guise of
universes [19] and even in non-dependently typed proof assistants such as HOL
and Isabelle, where they are called pro-forma theorems [20]. In every case, one
difficulty lies in constructing the appropriate representation for each formula one
seeks to prove by reflection, i.e. how to perform quotation. The core language
of these systems don’t offer any kind of primitive support for quotation, which
must therefore be implemented at the meta-level. In tactic based systems, quo-
tation can be implemented as a tactic. [21] propose to leverage the support in
the elaborator of Coq for unification hints (also available in Matita) to con-
struct representations automatically and declaratively, rather than through an
opaque tactic that can bear no formal reasoning about it within Coq itself. In
systems with neither tactics nor unification hints, representations must be con-
structed by hand, independently for each goal — an implementation technique
which obviously doesn’t scale. Either way, one must also prove that unquoting
each representation yields the original formula.

Our framework, which build on earlier work [6, 5, 8] on CMTT, obviates the
need for a custom quoting and interpretation function, because the language
provides a primitive notion of quotation through pattern matching on (open)
proofs and formulas. We therefore do not need to provide custom interpretation
functions either, or prove that representations map to their respective formulas.
What’s more, we gain powerful reasoning principles that permits encodings of
data as higher order abstract syntax (HOAS), hence making binding, scope and
substitution much easier to deal with.

We demonstrate this through two examples: deciding monoidal equalities,
such as it appears in [13], and a normalizer for HOAS encoded λ-terms.

5.1 Example 1: loop simplification

We demonstrate in this section a simple decision procedure for a class of equal-
ities that frequently occur when reasoning about numbers, lists, and any other
structure that features an identity element and an associative binary operator.

Naturals form a loop (a monoid without associativity) under addition, since
the following laws hold:

1. ∀n. 0 + n = n (left identity);
2. ∀n. n+ 0 = n (right identity);

It is tedious to have to prove equalities involving only 0 and addition, e.g. during
the reversal of a length indexed vector. Given two natural number expressions,
we can however find a canonical representative of the equivalence class of each
under the above equational theory, and compare the canonical representatives
for syntactic equality to determine whether the two are provably equal. In his
seminal paper on reflection [13], Boutin gives the following normalization func-
tion to find canonical representatives (transposed into Beluga syntax):

rec norm : [g. nat] → [g. nat] =
fn m ⇒case m of
| [g. add M1.. M2..] ⇒(case norm [g. M1..], norm [g. M2..] of

| [g. zero], [g. M2’..] ⇒[g. M2’..]
| [g. M1’..], [g. zero] ⇒[g. M1’..]
| [g. M1’..], [g. M2’..] ⇒[g. add (M1’..) (M2’..)])

| [g. _] ⇒m;

We can show soundness of this normalization function, in the sense that any
output is always related to the input under the above equivalence relation,

soundness : {M : [g. nat]} let [g.N..] = norm [g.M..]in [g.eq (M..) (N..)];

by induction on [g. M..]. We can decide whether two number expressions are
equal by normalizing both sides and comparing:

rec decide : [g. nat] → [g. nat] → [. bool] = fn m1 ⇒fn m2 ⇒
if normalize m1 == normalize m2 then [. true] else [. false];

where == is a primitive computation level syntactic equality test. We can show
the fundamental reflection lemma about decide, which says that it is a sound
decision procedure,

reflect : let [. B] = decide [g. M1..] [g. M2..] in
[. eqb B true] → [g. eq (M1..) (M2..)];

which follows from the soundness result above. Now if we have a concrete expres-
sion m1 = [x,y. (mplus x (mplus y mzero)] and m1 = [x,y. (mplus x (mplus

mzero y)], then the following is a proof of their equality:

reflect m1 m2 [. eqb/refl];

The full code for this example is given in Appendix A.

5.2 Example 2: higher order term equality

Similarly, we can, more ambitiously, decide convertibility of terms that contain
binding structures, such as the pure λ-calculus that we defined in Section 1. We
can write a normalization function on terms, norm : (g : ctx)[g. ι] → [g. ι].
This function is obviously partial: not every λ-term has a normal form. But we
may still prove, e.g. by constructing norm using normalization by evaluation [22,
7], that this normalization function is sound with respect to iterated reduction:

soundness : let [g.M’..] = norm [g.M..] in [g. red∗ (M..) (M’..)];

If convertible is the symmetric closure of red∗, given two concrete λ-terms m1

and m2, we can prove the formula

let [g. M1..] = m1 in let [g. M2..] = m2 in [g. convertible (M1..) (M2..)];

using a reflection lemma, as in Section 5.1. Reflection on propositions involving
terms with binders is where our proposal really shines: the soundness theorem
is non trivial to establish. However, because it is defined over HOAS represen-
tations, we can use a number of properties for free, such as substitution lemmas
and static guarantees of well scoping. Proofs by reflection with binders is just as
convenient as in the first order case.

6 Related work

Beyond the support for proofs by reflection in other systems already discussed
in Section 5, this work draws on ideas from a variety of proof environments.
In particular, a variety of systems have emerged in recent years to offer first
class support for rich representations of syntax. Our works builds on contextual
LF [5], from which we inherit a rich computational language supporting case
analysis on data level terms as well as on contexts. In the style of [7], we re-
main generic in the language of the data level. LF is but one instantiation —
other choices could include instantiating the data level language with the com-
putational language itself. In the style of [23, 24], we draw type dependencies
from a language distinct from that of the computational language. Other closely
related systems designed around two levels include Delphin [25], VeriML [26,
27], which all have in common the manipulation of contextual objects. However,
these systems maintain a strict separation of levels. In particular, one cannot in-
clude computations as the domain of discourse. Licata and Harper [28] present a
library within Agda where mixing between computational and data languages is
allowed. However, theirs is a simply typed universe. Also, in their system, mixing
means that certain structural properties such as weakening or substitution do
not hold in general.

Permuting conversions have been considered in a number of works. The idea
of translating away the conversions using a CPS translation can be traced back
to de Groote [29]. Various calculi with sums with or without extensionality ax-
ioms have been developed over the years (see [30, 31]). One particularly inter-
esting point is how to exploit dynamic assumptions about case analyses stati-
cally. One closely related work in this regard is [9], who also choose to capture
information gained during case analysis as equality assumptions added to the
context. Our setting is simpler, because their equivalence relation on expres-
sions is an arbitrary relation, whereas ours is inductively defined, and so only
captures equivalence of terms that can be shown to be such in a finite number
of steps. This removes a number of technical difficulties in the design. Also, our
dependent product abstracts only over meta terms, not computations, so the
properties required to show preservation are weaker. Nonetheless, the design of
our equivalence relation owes much to theirs. Balat et al [32] show a normal-
ization by evaluation based algorithm to decide the equational theory of terms
including strong sums. Generalizing their algorithm to our setting would afford
us a stronger notion of type equivalence.

7 Conclusion

The impetus for this work was the observation that CMTT, through its lifting
of terms to meta terms, i.e. (open) objects with observable structure, already
provides first class support for one of the more delicate parts of a proof by reflec-
tion: quoting. The precise design and capabilities of the computational language
layered on top is immaterial, but for the ability to reflect upon entities of the
computational language. We have shown in this paper that such reflection can be
achieved with a very lightweight extension to the types of the computational lan-
guage. To support convenient metareasoning, we extended the equational theory
of types and expressions with standard extensional axioms, effectively viewing
meta objects as objects of a “quoting” monad. But our extensional principles are
still weak: our language is one of weak sums as opposed to strong (or categorical)
sums. We could envisage commuting not just the computationally uninformative
“let”, but also the destructuring and multi-branch “case”. Such axioms would
correspond to η laws for expressions of base type. Moreover, the use of constraints
during case analysis rather than substitution paves the way for including more
esoteric permutation rules, such as commuting function application with case
analysis, even in in the presence of dependent types such as here.

Acknowledgments: Many thanks to Brigitte Pientka for many fruitful discus-
sions that greatly influenced this work.

References

1. Moggi, E.: Computational lambda-calculus and monads. In: LICS, IEEE Computer
Society (1989) 14–23

2. Pientka, B., Dunfield, J.: Beluga: a framework for programming and reasoning with
deductive systems (System Description). In Giesl, J., Haehnle, R., eds.: 5th Inter-
national Joint Conference on Automated Reasoning (IJCAR’10). Lecture Notes in
Artificial Intelligence (LNAI 6173), Springer-Verlag (2010) 15–21

3. Harrison, J.: Hol light: An overview. In Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M., eds.: TPHOLs. Volume 5674 of Lecture Notes in Computer Science.,
Springer (2009) 60–66

4. Watkins, K., Cervesato, I., Pfenning, F., Walker, D.: A concurrent logical frame-
work I: Judgments and properties. Technical Report CMU-CS-02-101, Department
of Computer Science, Carnegie Mellon University (2002)

5. Pientka, B.: A type-theoretic foundation for programming with higher-order ab-
stract syntax and first-class substitutions. In: 35th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’08), ACM
Press (2008) 371–382

6. Pientka, B., Dunfield, J.: Programming with proofs and explicit contexts. In: ACM
SIGPLAN Symposium on Principles and Practice of Declarative Programming
(PPDP’08), ACM Press (July 2008) 163–173

7. Cave, A., Pientka, B.: Programming with binders and indexed data-types. [33]
413–424

8. Nanevski, A., Pfenning, F., Pientka, B.: Contextual modal type theory. ACM
Transactions on Computational Logic 9(3) (2008) 1–49

9. Jia, L., Zhao, J., Sjöberg, V., Weirich, S.: Dependent types and program equiva-
lence. In Hermenegildo, M.V., Palsberg, J., eds.: POPL, ACM (2010) 275–286

10. Abel, A., Altenkirch, T.: A partial type checking algorithm for type: Type. Electr.
Notes Theor. Comput. Sci. 229(5) (2011) 3–17

11. Plotkin, G.: Call-by-name, call-by-value and the λ-calculus. Theoretical Computer
Science 1(2) (1975) 125–159

12. Pientka, B., Dunfield, J.: Covering all bases: design and implementation of case
analysis for contextual objects. Technical report, McGill University (2010)

13. Boutin, S.: Using reflection to build efficient and certified decision procedures.
In Abadi, M., Ito, T., eds.: TACS. Volume 1281 of Lecture Notes in Computer
Science., Springer (1997) 515–529

14. Gonthier, G.: The four colour theorem: Engineering of a formal proof. In Kapur,
D., ed.: ASCM. Volume 5081 of Lecture Notes in Computer Science., Springer
(2007) 333

15. Grégoire, B., Mahboubi, A.: Proving equalities in a commutative ring done right
in coq. In Hurd, J., Melham, T.F., eds.: TPHOLs. Volume 3603 of Lecture Notes
in Computer Science., Springer (2005) 98–113

16. Verma, K.N., Goubault-Larrecq, J., Prasad, S., Arun-Kumar, S.: Reflecting bdds
in coq. In He, J., Sato, M., eds.: ASIAN. Volume 1961 of LNCS., Springer (2000)
162–181

17. Théry, L.: Proof pearl: Revisiting the mini-rubik in coq. In Mohamed, O.A.,
Muñoz, C., Tahar, S., eds.: TPHOLs. Volume 5170 of Lecture Notes in Computer
Science., Springer (2008) 310–319

18. Gonthier, G., Mahboubi, A., Tassi, E.: A Small Scale Reflection Extension for the
Coq system. Technical report RR-6455, INRIA (2008)

19. Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda—a functional language
with dependent types. In: 22nd International Conference on Theorem Proving in
Higher Order Logics (TPHOLs’09). Volume 5674 of Lecture Notes in Computer
Science., Springer (2009) 73–78

20. Harrison, J.: Metatheory and reflection in theorem proving: A survey and critique.
Technical Report CRC-053, SRI Cambridge, Millers Yard, Cambridge, UK (1995)

21. Gonthier, G., Ziliani, B., Nanevski, A., Dreyer, D.: How to make ad hoc proof
automation less ad hoc. In Chakravarty, M.M.T., Hu, Z., Danvy, O., eds.: ICFP,
ACM (2011) 163–175

22. Berger, U., Schwichtenberg, H.: An inverse of the evaluation functional for typed
lambda-calculus. In: Logic in Computer Science. (1991) 203–211

23. Zenger, C.: Indexed types. Theoretical Computer Science 187(1-2) (1997) 147–165
24. Xi, H., Pfenning, F.: Dependent types in practical programming. In: 26th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’99), ACM Press (1999) 214–227

25. Poswolsky, A.B.: Functional Programming with Logical Frameworks: The Delphin
Project. CreateSpace, Paramount, CA (2008)

26. Stampoulis, A., Shao, Z.: VeriML: typed computation of logical terms inside a
language with effects. In Hudak, P., Weirich, S., eds.: 15th ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP’10), ACM (2010) 333–344

27. Stampoulis, A., Shao, Z.: Static and user-extensible proof checking. [33] 273–284
28. Licata, D.R., Harper, R.: A universe of binding and computation. In Hutton, G.,

Tolmach, A.P., eds.: 14th ACM SIGPLAN International Conference on Functional
Programming, ACM Press (2009) 123–134

29. de Groote, P.: A cps-translation of the lambda-µ-calculus. In Tison, S., ed.: CAAP.
Volume 787 of Lecture Notes in Computer Science., Springer (1994) 85–99

30. Cosmo, R.D., Kesner, D.: A confluent reduction for the extensional typed lambda-
calculus with pairs, sums, recursion and terminal object. In Lingas, A., Karlsson,
R.G., Carlsson, S., eds.: ICALP. Volume 700 of Lecture Notes in Computer Sci-
ence., Springer (1993) 645–656

31. Dougherty, D.J.: Some lambda calculi with categorial sums and products. In Kirch-
ner, C., ed.: RTA. Volume 690 of Lecture Notes in Computer Science., Springer
(1993) 137–151

32. Balat, V., Cosmo, R.D., Fiore, M.P.: Extensional normalisation and type-directed
partial evaluation for typed lambda calculus with sums. In Jones, N.D., Leroy, X.,
eds.: POPL, ACM (2004) 64–76

33. Field, J., Hicks, M., eds.: Proceedings of the 39th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2012, Philadelphia, Penn-
sylvania, USA, January 22-28, 2012. In Field, J., Hicks, M., eds.: POPL, ACM
(2012)

A Full code for Example 1

bool : type.
true : bool.
false : bool.

bottom : type.

monoid : type.
mzero : monoid.
mplus : monoid → monoid → monoid.

eq : monoid → monoid → type.
eq/refl : eq M M.

associative : eq (mplus (mplus M1 M2) M3) (mplus M1 (mplus M2 M3)).
neutral_right : eq (mplus M1 mzero) M1.
neutral_left : eq (mplus mzero M1) M1.

eqb : bool → bool → type.
eqb/refl : eq B B.

schema ctx = monoid;

rec normalize : [g. monoid] → [g. monoid] =
fn m ⇒case m of

| [g. mplus M1.. M2..] ⇒case normalize [g. M1..], normalize [g.
M2..] of
| [g. mzero], [g. M2’..] ⇒[g. M2’..]
| [g. M1’..], [g. mzero] ⇒[g. M1’..]
| [g. M1’..], [g. M2’..] ⇒[g. mplus M1’.. M2’..]

| [g. _] ⇒m
;

% Note : Beluga does not check termination of this function, which
% would need be justified by the fact that normalize does not increase
% the size of a term.
rec correctness : {M : [g. monoid]}

let [g. M’] = normalize [g. M..] in [g. eq M M’] =

λM ⇒case [g. M..] of
| [g. #p] ⇒[g. eq/refl]
| [g. mzero] ⇒[g. eq/refl]
| [g. mplus M1.. M2..] ⇒

let eqH1 = correctness [g. M1..] in
let eqH2 = correctness [g. M2..] in
case normalize [g. M1..], normalize [g. M2..] of

| [g. mzero], [g. M2’..] ⇒(case eqH2 of
[g. eq/refl] ⇒[g. neutral_left M2’..])

| [g. M1’..], [g. mzero] ⇒(case eqH1 of
[g. eq/refl] ⇒[g. neutral_right M1’..])

| [g. M1’..], [g. M2’..] ⇒(case eqH1, eqH2 of
[g. eq/refl], [g. eq/refl] ⇒[g. mplus M1’.. M2’..])

;

rec decide : [g. monoid] → [g. monoid] → [. bool] =
fn m1 ⇒fn m2 ⇒
let v1 = normalize m1 in
let v2 = normalize m2 in
if v1 == v2 then [. true] else [. false]

;

rec reflect : {M1 : [g. monoid]} {M2 : [g. monoid]}
let [. B] = decide [g. M1..] [g. M2..] in [. eqb B true]

→ [g. eq (M1..) (M2..)] =
λM1 ⇒λM2 ⇒
(let [g. M1’..] = normalize [g. M1..] in
let [g. M2’..] = normalize [g. M2..] in
let eqH1 = correctness [g. M1..] in
let eqH2 = correctness [g. M2..] in
case eqH1, eqH2 of
| [g. eq/refl], [g. eq/refl] ⇒case [g. M1’..] == [g. M2’..] of
| True ⇒fn eqbH ⇒[g. eq/refl]
| False ⇒fn eqbH ⇒impossible)

let t1 = let m1 = [x,y. (mplus x (mplus y mzero)] in
let m2 = [x,y. (mplus x (mplus mzero y)] in
reflect m1 m2 [. eqb/refl];

