
banner above paper title

Functional Pearl:
Replaying the stack for parsing and pretty printing

Mathieu Boespflug
McGill University

mboes@cs.mcgill.ca

Abstract
Modulo inessential details, parsers and pretty printers, to and from
algebraic datatypes, offer an uncanny resemblance and yet are all
too often defined separately, in gross violation of the “don’t repeat
yourself” principle. We present a family of reversible parser/printer
combinators that allows one to define both at once in a type-safe
manner, compositionally and without any need for a preprocessor
or program generator, in HASKELL’98 + rank 2 types.

1. Introduction
This story is an exercise in symmetry.

A full-fledged program, if it must be of any use at all, effects
change to the World around it. This change, to the programmer
often amounts to “data goes in, data goes out”. Much as the scientist
cleans and prepares collected data in order to process it, so does the
program: we recover the structure of the in data by parsing it, and
we package the out data by printing it, optionally in a pretty form,
before shipping it off. So much is apparent from the type of one of
the early functions in a program, as well as the type of one of the
later ones:

parse :: String→ D
print ::D → String

where D is the type we choose to confer to data in structured form.
But parsing may not consume all of the input, here represented as
a string, and it might also fail to actually recover any meaningful
structure from the input data. A more appropriate signature for
parse is therefore:

parse :: String→ (Maybe D , String)

which we might as well change to

parse :: String→ Maybe (D , String)

because we’re not interested in what remains of the input string if
the parser fails. But by now we have lost the symmetry with the
type of print.

Structured data will in general be classified by distinct types —
let then the following type macro capture the common pattern in
the types of all the parsing functions we might introduce:

[Copyright notice will appear here once ’preprint’ option is removed.]

type Parser a = String→ Maybe (a, String)

We can compose parse or any other parsing function of the same
type with the >> combinator, yielding a new parser that parses two
consecutive pieces of data and returns the last one:

(>>) :: Parser a → Parser b → Parser b
p1 >> p2 = (p2 ◦ snd) ◦̃ p1

where (◦̃) f g s | Just s ′ ← g s = f s ′

| otherwise = Nothing

The general form of parser composition allows the result of the first
parser to depend on that of the second. That is, the second argument
is a function from the result to a parser:

(>>=) :: Parser a → (a → Parser b)→ Parser b
p1 >>= f = uncurry f ◦̃ p1

Sometimes, a parser can produce an output of the required type
without consuming any part of the input string. Such a parser is
said to be pure because it has no effect on the input string:

pure :: a → Parser a
pure x = λs → Just (x , s)

The Parser type constructor forms a monad, with the (>>=) combi-
nator as the bind of the monad and pure as the unit. In fact, the
Parser monad composes two effects: state and failure. This can
be made explicit by expressing Parser as the application of the
two standard ErrorT and StateT monad transformers on top of the
identity monad (the monad with no effects):

type Parser a = ErrorT (StateT String (Identity a))

Piecing parsers together using combinators is convenient because
it means we can construct bigger parsers compositionally from
existing ones. Just how we construct the bigger parsers is guided
by the grammar of the data we are trying to parse.

But we have now headed even further astray from the simple
type we started with and lost any kind of symmetry with the type
of print along the way. Besides, writing down a parser of the above
type doesn’t magically afford us a printer: we still have to write
that one separately, even though how to compositionally construct a
printer is entirely determined by the same grammar that determines
the construction of the parser.

In essence, the effect of a parser constructed with the above
combinators on a given input string could be described using a tape,
consisting of a sequence of primitive instructions. It would be nice
if, to obtain a printer, we could just play that tape in reverse!

That’s the topic of the next section.

2. How to play a cassette tape
Compact cassettes of old consisted of two miniature spools, be-
tween which was wound a plastic magnetized tape. This tape con-

short description of paper 1 2012/9/11

sisted of two tracks, the A-side and the B-side. Playing the tape in
one direction accessed the first track — flipping the tape to play it
in the reverse direction accessed the second track. Such tapes live
on in the virtual world that useful programs effect change upon —
if we define them.

type a ← b = b → a
data K7 a b c d = K7 {sideA :: a → b, sideB :: c ← d }

Avoiding the margins calls for brevity in our naming, which is
justified by either 1) the German spelling Kassette where 7 letters
follow the K, or 2) the phonetization of the word using French
pronunciation of numerals and letters, according to whichever side
of the Rhine one is most accustomed to. Either way, a compact
cassette consists of two sides, labelled accordingly.

Tapes of any type can be flipped, so that the A-side becomes the
B-side and vice versa:

flip :: K7 a b c d → K7 d c b a
flip (K7 x y) = (K7 y x)

Playing a tape built compositionally from existing tapes is simply
a matter of pressing play:

play :: K7 a b c d → a → b
play k7 x = sideA k7 x

One can of course play the B-side by flipping the cassette first.
Another useful thing to do with cassettes is to make new ones

by splicing the tapes of existing ones:

(⊗) :: K7 b c c′ b′

→ K7 a b b′ a ′

→ K7 a c c′ a ′

∼(K7 f f ′)⊗∼(K7 g g ′) = K7 (f ◦ g) (g ′ ◦ f ′)
For convenience later, we can make also more of the same glue,
that works in reverse and with lower precedence:

k7 1 −→ k7 2 = k7 2 ⊗ k7 1

Splicing is associative, and has a neutral element. Indeed, in the
special case where both tracks are inverses of each other, cassettes
form a category under splicing1:

type Sym a b = K7 a b a b

instance Category Sym where
id = K7 id id
(◦) = (⊗)

3. Rewinding a parser by playing in reverse
Consider the following rudimentary language:

Term t ::= x | λx t | (t1 t2)
This grammar is readily captured in HASKELL with the following
datatype declaration2:

type Id = String
data Term where

Var :: Id→ Term
Lam :: Id→ Term→ Term
App :: Term→ Term→ Term

1 Actually, in standard HASKELL one would need to make Sym a
newtype for this instance declaration to work. We gloss over such de-
tail here to avoid the distraction of the contingent newtype wrappers and
unwrappers.
2 To make the types of the constructors explicit, we use the notation intro-
duced in GHC to support GADTs, even if this datatype is a regular algebraic
datatype.

A parser for abstractions, for instance, can be written as

abstraction =
char ’λ’>>
ident>>= λx →
term>>= λt →
pure (Lam x t)

where, for now, we take as given char, ident and term as parsers
that match the given character, yield an identifier and yield a term,
respectively.

Intuitively, a parser sequentially introduces a number of subre-
sults in scope, before building the final result.

Intuitively, the corresponding printer should destruct the final
result, before sequentially printing each of the component pieces.

We essentially have an embedded domain specific language
(DSL) of parsers. The effects of expressions (or specifications) of
this language are a function of the semantics that we choose to
assign to the primitives of this language (such as that of the (>>=)
and pure combinators, whose semantics we gave definitionally as
HASKELL programs in Section 1). The crux of the problem is: can
the same language be an embedded DSL of printers, under different
semantics? If so, we could simultaneously write the interpretations
of specifications under the two semantics on each track of a cassette
tape.

But it is not obvious how to construct this alternative semantics
for the monadic language we have currently. The two intuitions
above tell us that actions of a parser must occur inverted and in
reverse in the corresponding printer, but the asymmetry of the main
composition combinator (>>=) — it expects a parser on the left
but a function on the right — means that it is impossible to read
a specification in reverse. Fortunately, for context free grammars,
parsers don’t need the full generality of a monad, as first observed
by S.D. and Swierstra [2001], who instead provides the following
two basic combinators to build parsers:

pure :: a → Parser a
(〈∗〉) :: Parser (a → b)→ Parser a → Parser b
p1 〈∗〉 p2 = p1 >>= λf → p2 >>= λx → pure (f x)

p1 〈∗〉 p2 first invokes the p1 parser, followed by p2, where p1
yields a function that is applied to the result of p2 to construct the
result of this sequential composition. This interface corresponds in
fact to that of applicative functors [McBride and Paterson 2008], a
standard generalization of monads.

Applicative style parsers for abstractions and applications read
as:

abstraction =
pure (λ x t → Lam x t) 〈∗〉
char ’λ’ 〈∗〉 ident 〈∗〉 term

application =
pure (λ t1 t2 → App t1 t2) 〈∗〉
char ’(’ 〈∗〉 term 〈∗〉 char ’ ’ 〈∗〉 term 〈∗〉 char ’)’

The important point is that applicative parsers for constructors of
an arbitrary number of fields are built inductively, by applying the
(〈∗〉) combinator the appropriate number of times, much like grow-
ing an onion to the right size, one layer at a time. The second point
is that one can just as easily peel off the layers of the proverbial
onion to make another one of the same shape and size.

The inductive structure of parsers corresponding to one alterna-
tive of one grammar production mirrors the shape of the types of
constructors. These types grow along their spine, which is the trail
of outermost arrows:

A1 → . . .→ An → A

short description of paper 2 2012/9/11

A parser for one alternative of one grammar production, such as
abstraction or application, is built from as many (〈∗〉)’s as there
are arrows in the type of the constructor of the value it returns.

In applicative style, the pure element of such a parser is a
constructor. In applicative style, the pure element of a printer is
a destructor, i.e. a case analysis, such as this one:

λt → case t of Lam x t ′ → (x , t ′)

whose type is
Term→ (Id,Term)

In general the spine of a destructor of this form will look like

A→ (A1, . . . , An)

However, there is no inductive structure to this spine. Tuples are not
types that are built inductively the way the types of curried func-
tions (and indeed constructors) are. Moreover, there is something
unsatisfactory about this style of destructor: the spine of their types
is not symmetrical to that of the corresponding constructors. Surely,
if parsing is the dual of printing, there should be a symmetry to
the components they are built from. To recover this symmetry, we
would have to uncurry the constructors,

constructor types (tupled): (A1, . . . , An)→ A

destructor types (tupled): A→ (A1, . . . , An)

but doing so would make them too lose the inductive structure of
their types!

Destructors are, intuitively, multivalue functions, just as con-
structors are multi-argument functions. In direct style, currying
deals with multiple arguments, but not multiple values. But in con-
tinuation passing style (CPS), a multivalued function can be en-
coded as a function with a curried continuation, just as n-ary func-
tions can be encoded as a curried functions. In CPS, multivalue
functions look no different from single value functions and have no
extra level of indirection through tupling3:

constructor types (CPS): (A→ r)→ (A1 → . . .→ An → r)

destructor types (CPS): (A1 → . . .→ An → r)→ (A→ r)

In CPS, all functions always take a continuation as their first argu-
ment, whose answer type is r. Functions in pure CPS, who do not
perform any control effects, always make a tail-call to their con-
tinuation eventually, so that the return type of all functions is the
answer type of the continuation4. In CPS, our constructors and de-
structors are just as symmetric as in tupled style (sprinkling some
redundant parentheses makes this clearer). But unlike tupled style,
the spines of the types have an inductive structure to them.

Turning all parsers and printers into CPS, and threading state
(the string that a parser consumes, or the string that a printer
produces) through them, begets the following type schemas:

parser types (CPS):
(String→ A1 → . . .→ An → r)→ (String→ r)

printer types (CPS):
(String→ r)→ (String→ A1 → . . .→ An → r)

In general, a parser takes a string as input and produces a string and
zero or more values as output, which it passes to its continuation.
A printer accepts as input a string and zero or more values, which it

3 Observe that composing an n-ary destructor with its corresponding con-
structor gives the Church encoding of an n-ary tuple.
4 Strictly speaking, though we postpone further discussion to Section 6, the
arguments’ types are part of the answer type, so that functions move from
one answer type to another answer type. The type of a destructor is actually
a suffix of the answer type of its continuation, and conversely for the answer
type of constructors.

prints onto the string. We have come back full swing to a symmet-
rical presentation of printers, just like we had in the very beginning
of Section 1, as reverse parsers, whose type is that of parsers but
with an arrow flipped in the other direction. But unlike the parsers,
printers and types we started with, these are composable...

4. Recording cassettes
Cassettes that contain a parser producing values of type a on their
A-side and printers for values of that type on their B-side are called
P/P pairs:

type PP a = ∀r r ′.K7 (String→ a → r) (String→ r)
(String→ r ′) (String→ a → r ′)

The parsers and printers are functions in CPS that are oblivious to
the actual answer type. This invariant is enforced at the level of
types by requiring that functions on each side of the cassette work
for any possible answer type5, not just a specific one6.

Of course, some P/P pairs are only interesting for their side
effects and do not produce or consume any value at all, as their
type informs:

type PP0 = ∀r r ′.K7 (String→ r) (String→ r)
(String→ r ′) (String→ r ′)

An example is a cassette that parses/prints a given string literal:

lit :: String→ PP0
lit x = K7 (λk → k ◦ stripPrefix x) (λk → k ◦ (x++))

where stripPrefix ::String→ String→ String is a partial function
that, provided the first argument is a prefix of the second argument,
chops this prefix off.

Additional primitive and composed cassettes can also be manu-
factured:

char :: Char→ PP0
char x = lit [x]

anyChar :: PP Char
anyChar = K7 (λk (x : s)→ k s x) (λk s x → k (x : s))

digit :: PP Int
digit = K7 (λk (x : s)→ k s (read x))

(λk s x → k (show x ++ s))

More ambitious basic building blocks will be given in Section 5,
where we will also properly define

ident :: PP String

which parses/prints any identifier (i.e. a string of alphanumeric
characters), but as things stand we can already assemble a cassette
from these basic ones to handle variables, abstractions and applica-
tions.

The fundamental glue is the (⊗) combinator of Section 2 that
composes in opposite directions two pairs of functions. In CPS, as
observed by [Danvy 1998] and put to good use a number of times
[Rhiger 2009; Fridlender and Indrika 2000], composing an n-ary
function with an m-ary function with polymorphic answer types
yields an (n+m)-ary function. Provided

f :: (String→ r1)→ (String→ A1 → . . .→ An → r1)

g :: (String→ r2)→ (String→ B1 → . . .→ Bm → r2)

5 In principle, this property lets us establish the absence of certain control
effects, as a consequence of parametricity alone.
6 This is the only definition in this paper that steps outside of HASKELL’98.
It requires support for rank 2 types, implemented as an extension in virtually
every extant HASKELL compiler and in OCAML.

short description of paper 3 2012/9/11

we have that

f ◦ g :: (String→ r2)→ String→ A1 → . . .→ An

→ B1 → . . .→ Bm → r2

since the types of f, g are unifiable only under the constraint

r1 = B1 → . . .→ Bm → r2

Conversely, composing an n-value function with an m-value func-
tion yields an (n+m)-value function. Beware, however, that dually
to multiple argument functions, the values of the resulting multi-
value function are returned in reverse. Provided

h :: (String→ A1 → . . .→ An → r1) → (String→ r1)

l :: (String→ B1 → . . .→ Bm → r2)→ (String→ r2)

we have that

h ◦ l :: (String→ B1 → . . .→ Bn

→ A1 → . . .→ Am → r1)→ String→ r1

since the types of h, l are unifiable only under the constraint

r2 = A1 → . . .→ Am → r1

This glue allows us for instance to make a piece of tape for the
components of an abstraction,

char ’λ’⊗ ident⊗ term

whose inferred type is

K7 (String→ Id→ Term→ r) (String→ r)
(String→ r ′) (String→ Term→ Id→ r ′)

i.e. the type of a function that parses multiple values in sequence,
paired with a function that prints multiple arguments in sequence.

Reading the above specification from left to right tells us the
story of the parser and reading it from right to left tells us of the
printer. All good stories have an beginning and an end, however, so
that the we must splice a special lead segment on one end of the
tape. On the A-side, the lead marks the end of the tape (lead-out)
and on the B-side, since we are reading it in the opposite direction,
it marks the beginning (lead-in). When parsing, the lead finishes the
computation by combining all the parsed values into a single value,
by applying a constructor or performing a fold. When printing, the
lead initiates the computation by eliminating a single value, by case
analysis or performing an unfold.

In Section 3, we introduced constructors and destructors in
CPS. Their types have the same shape as that of printers and
parsers, respectively. In as much as one can view a parser as a
multiplexer (creating many outputs from one input), a constructor
demultiplexes its output. One the B-side, a printer demultiplexes
the outputs of a destructor. With the adjunction of a lead to the
above piece of tape, we obtain a complete parser and printer for
abstractions, simultaneously:

abstraction :: PP Term
abstraction = absL −→ char ’λ’⊗ ident

where absL = K7 leadout leadin
leadout k s t x = k s (Lam x t)
leadin k s (Lam x t) = k s t x

Remember that a parser, being a composition of multivalue func-
tions, produces its values in reverse order. Hence an artifact of our
approach is that the lead-out accepts arguments in reverse order
compared to the order in the specification. Likewise, the lead-in
feeds the components of the destructed value to the printer in re-
verse order, i.e. the order of a right-to-left reading of a specifica-
tion.

5. Choice points
The discussion so far steered clear from managing failure and
backtracking. The absence of these control effects confines our
parser and printers to a single alternative of a single production
in a grammar.

Such effects are easily performed in CPS. Dropping the current
continuation (or aborting it) simulates failure, for instance. How-
ever, control effects alter the answer type, which we require to re-
main polymorphic for cassette splicing to work7. Moreover, terms
performing control effects are not in fact in the image of CPS trans-
form. Taking our cue from [Danvy and Filinski 1990], we simply
iterate the CPS transform one more time, thereby translating away
control effects into terms that are in CPS and therefore parametric
in their answer type.

Starting with the simplest parsers.
After two iterations of the CPS transform, parsers that produce

no output have types of the following form:

((t→ r)→ String→ r)→ (t→ r)→ String→ r

We now have two continuations, the first of which we can use as
a success continuation, and the second as a failure continuation.
In essence, the failure continuation is (additional) state threaded
through parsing, just as the input string is, and can therefore change
at every step. The r type to the failure continuation can be chosen
arbitrarily. We do not require it to be abstract, and we will find it
convenient to make this argument a String:

((String→ r)→ String→ r)→ (String→ r)→ String→ r

Generalizing to multivalue functions, we impose that the number
of arguments to the failure continuation available to the success
continuation remain consistent with the number of arguments to
the success continuation itself. That is, baking failure into parsers
alters their types to ones of the following form:

((String→ ~A→ r)→ String→ ~A→ r)→ (String→ r)→ String→ r

Thus, if the success continuation fails, when calling the failure con-
tinuation it should pass on the arguments that it was given. Main-
taining synchrony between the arity of the success continuation and
that of the failure continuation makes parsers composable just as
before (and as Section 6 will demonstrate, it is no surprise that they
should). Assuming (for brevity, ~A stands for A1 → . . .→ An)

h :: ((String→ ~A→ r1)→ String→ ~A→ r1)

→ ((String→ r1)→ String→ r1)

l :: ((String→ ~B → r2)→ String→ ~B → r2)

→ ((String→ r2)→ String→ r2)

we have that

h ◦ l :: ((String→ ~B → ~A→ r1)→ String→ ~B → ~A→ r1)

→ ((String→ r1)→ String→ r1)

Printers have the same type, with the outermost arrow reversed.
That is, we redefine

type PP a = ∀r r ′.
K7 ((String→ a → r)→ String→ a → r)

((String→ r)→ String→ r)
((String→ r ′)→ String→ r ′)
((String→ a → r)→ String→ a → r ′)

type PP0 a = ∀r r ′.

7 Answer type polymorphism is also the reason why cannot simply lift
functions into the exception monad; we would then have answer types of
the form m r, leading to unsatisfiable unification constraits of the form
m r = String→ . . .→ m r when splicing.

short description of paper 4 2012/9/11

K7 ((String→ r)→ String→ r)
((String→ r)→ String→ r)
((String→ r ′)→ String→ r ′)
((String→ r)→ String→ r ′)

Cassettes can now be combined not just “horizontally”, as with
the (⊗) combinator to form one alternative of a grammar, but also
vertically, to form one full grammar production, using the choice
combinator:

(⊕) :: PP a → PP a → PP a
K7 f f ′ ⊕ K7 g g ′ =

K7 (λks kf s → f ks (λs ′ → g ks kf s) s)
(λks kf s → f ′ ks (λs ′ → g ′ ks kf s) s)

The vertical composition of two cassettes pp1 ⊕ pp2 (of lower
precedence than (⊗)) gives a new cassette where the A-side and
B-side of pp2 are the failure continuation of the A-side and B-side
of pp1, respectively. Notice that the failure continuation restarts
parsing or printing using the same initial input string8.

Furthermore, allowing for failure makes it possible to write total
leads, where the destructors fail gracefully if the input is not of the
expected shape. For instance, a destructor for a list cons cell cannot
destruct the empty list, and vice versa:

consL = K7 leadout leadin where
leadout ks kf s xs ′ x = ks (λs → kf s xs ′ x) s (x : xs ′)
leadin ks kf s xs@(x : xs ′) = ks (λs → kf s xs) s xs ′ x
leadin ks kf s xs = kf xs

nilL = K7 leadout leadin where
leadout ks kf s = ks (λs → kf) s []
leadin ks kf s xs@[] = ks (λs → kf s xs) s
leadin ks kf s xs = kf xs

Because constructors map n inputs to 1 output, the failure contin-
uation must be applied n times and abstracted over once, to make
it unary. Because destructors map 1 input to n outputs, the failure
continuation must be applied once and abstracted over n times, to
make it n-ary.

We now have the final missing ingredient to implement one very
fundamental combinator, repetition (“zero or more” and “one or
more”):

many :: PP a → PP [a]
many pp = many1 pp ⊕ nilL

many1 :: PP a → PP [a]
many1 pp = consL −→ pp ⊗many pp

as well as a generalization of anyChar whose success is predicated
on a boolean function:

satisfy :: (Char→ Bool)→ PP Char
satisfy p = K7 f g where

f ks kf (x : xs) | p x = ks (λs → kf s) xs x
f ks kf = kf s
g ks kf s x | p x = ks (λs → kf s x) (x : s)

| otherwise = kf s x

An identifier is one or more character that are alphanumerical:

ident = many1 (satisfy isAlphaNum)

8 This is the source of a space leak because it means that the (⊕) combinator
holds on to the input string indefinitely in order to allow for backtracking.
In practice, parser combinator libraries limit the lookahead for backtracking
to 1 by default, so that the initial input string may be dropped immediately
upon successfully consuming just one character of the input. This more lim-
ited choice combinator can just as easily be implemented in the framework
presented here, if so desired.

Thus equipped, writing out the full parser for the pure λ-calculus,
for example, gives:

varL = K7 leadout leadin where
leadout ks kf s x = ks (λs → kf s x) s (Var x)
leadin ks kf s t@(Var x) = ks (λs → kf s t) s x
leadin ks kf s t = kf s t

absL = K7 leadout leadin where
leadout ks kf s t ′ x = ks (λs → kf s t ′ x) s (Lam x t ′)
leadin ks kf s t@(Lam x t) = ks (λs → kf s t) s t x
leadin ks kf s t = kf s t

appL = K7 leadout leadin where
leadout ks s t2 t1 = ks (λs → kf s t2 t1) s (App t1 t2)
leadin ks kf s t@(App t1 t2) = ks (λs → kf s t) s t2 t1
leadin ks kf s t = kf s t

term :: PP Term
term = varL −→ ident

⊕ absL −→ char ’λ’⊗ ident⊗ term
⊕ appL −→ parens (term⊗ space⊗ term)

where we defined

parens pp = char ’(’⊗ pp ⊗ char ’)’
space = char ’ ’

The essential difference with the definitions in Section 4 is that
abstraction and application are allowed to fail, triggering back-
tracking at the choice points (⊕) if they do.

Taking a step back, focusing out, it is hard to overlook the rel-
ative verbosity of leads and the syntactic noise that is the book-
keeping of continuations. Moreover, the types of leads can grow
rather unwieldy, so much so that the columns of this page are too
snug a fit to include them. Once the satisfy,⊕ and⊗ primitives are
defined, we only need to deal with continuations explicitly when
writing the leads, which we could unburden from the user with a
modicum of meta-programming. Still, in the next section, we take
the more tasteful approach of implementing aggressive noise atten-
uation measures.

6. Cassettes in direct style
A program in CPS is said to be pure when the continuation that is
passed as an extra argument to every function is used by the latter
with some discipline. In particular, functions may only transfer
control through [Asai 2009]

• a tail-call to another function, or
• a tail-call to another continuation.

By contrast, ordinary functions with no continuations threaded
through them are said to be in direct style. Ordinary functions are
typically easier to write and understand than functions in CPS.
Moreover, pure CPS functions can readily be translated into direct
style by inverting the CPS transform [Danvy 1992]. Therefore, it
is seldom useful to write pure CPS functions. The point of writing
functions in CPS is to profit from selectively bend the rules, locally
stepping outside of the boundaries of purity and into impurity.

Direct style primitives: We can apply the same analysis of the
solution of Danvy [1998] given by Asai [2009] to the parsing
and pretty printing cassettes worked out in the previous sections.
While most of the introduced cassettes and glue are in pure CPS,
a select few are not. For instance, η-expanding (⊗) shows that this
combinator is in fact in pure CPS:

K7 f f ′ ⊗ K7 g g ′ =
K7 (λks kf s → f (λs → g ks kf s) s)

(λks kf s → g ′ (λs → f ′ ks kf s) s)

short description of paper 5 2012/9/11

This alternative definition makes clear that composition of P/P pairs
stacks the right hand function onto the continuation of the left
hand function on the one side, and the left hand function onto the
continuation of the right hand on the other side of the tape. All calls
are tail calls. In the anyChar cassette (in Section 4), in contrast, the
call to the provided continuation isn’t really a tail call, because the
call is guarded by an abstraction. This is most easily observed in
the following equivalent definition (without failure):

anyChar = K7 (λks (x : s)→ (ks s) x)
(λks s → (λx → ks (x : s)))

The anyChar function does not preserve the answer type of the
continuation it is passed, because on the A-side the interceding
application moves us from an answer type of the form a → r to r
and conversely, the interceding abstraction on the B-side moves us
from an answer type of the form r to a type of the form a → r .

Fundamentally, all of the continuations we are manipulating in
Section 4 have but one argument, the String that we are threading
through computations, and all other argument types are actually
part of the answer type.

Conversely, all functions we are manipulating in Section 4 have
but one non-continuation argument, the String that we are thread-
ing through computations, and all other argument types are actually
part of the answer type.

Iterating the CPS transform as we did in Section 5 merely adds
one extra argument to every continuation and one extra argument to
every function: the failure continuation. Again, all other arguments
types are really part of the answer type.

Therefore, the way continuations are used in anyChar, as well
as all other cassettes of type PP a for some type a , is non-standard.
That is, these CPS functions are impure and make use of control
effects. The typed sprintf solution of Danvy [1998] arises as a
special case of the printers presented here. Asai [2009] identifies
these effects as uses of the shift and reset operators introduced by
Danvy and Filinski [1990]. We observe that our pairs of parsers and
printers make use of shift on both tracks of the tape to capture the
context up to a delimiting reset. In addition, the (⊕) combinator
aborts delimited continuations up to the same reset to achieve
backtracking behaviour.

The semantics of shift in direct style can be explained by map-
ping it to a term of the pure λ-calculus in CPS. A term of the form
shift (λk →M [k]) corresponds, in CPS, to the term

M ′[k] (λx → x)

where M ′ is the result of applying the CPS transform on M .
In general, only part of the context is captured as a continuation

and bound to k by shift. The delimiter for the continuation is reset.
A term of the form reset M corresponds, in CPS, to the term

λk → k (M ′ (λx → x))

where M ′ is the result of applying the CPS transform to M .
The abort operator is a special case of shift, where the captured

continuation is never called.
Using shift, it is possible to give an implementation in direct

style of anyChar (still without failure), without having to resort to
continuation passing style:

anyChar = K7 (λ(x : s)→ shift (λk → k s x))
(λs → shift (λk x → k (x : s)))

We can readily translate this direct style definition into CPS using
the above semantics for shift, to verify that this function is indeed
the same function as before.

Assigning a type to this definition is a more involved matter,
because the two occurrences of shift move us between two distinct
answer types. Types of functions in pure CPS are in bijective

correspondence with types in direct style: CPS types, of the form
(A → r) → B → r , correspond to type A → B in direct style,
and vice versa. But if the answer type changes as we move across
the outermost arrow, than one cannot give a corresponding direct
style type in this way.

Danvy and Filinski [1989] enunciate a type and effects system
to for functions in direct style that use control effects. This type
system accounts for the change in answer type that would occur
in the corresponding CPS style terms. Without repeating the full
system here in all its glory, we can provide an intuition as to
how it works. In essence, the source and destination of an arrow
type are annotated to reflect the change in answer type as we
move across the arrow. More concretely, the type of functions has
the form A/R1 → B/R2, where R1, R2 can be two arbitrary
answer types. In the absence of any effects, the types of the CPS
terms corresponding to functions in direct style are of the form
(A → r) → B → r, which polymorphic in the answer type,
meaning that effect-free direct style functions have types of the
form A/r → B/r. In general, a type of the form A/R1 → B/R2

maps to (A → R1) → B → R2 in CPS. Thus, in this system, the
types of the two tracks of direct style anyChar are:

A-side type: String/r → String/(Char→ r)

B-side type: String/(Char→ r)→ String/r

Factoring in failure, which we can illustrate with the more general
satisfy primitive, we have the following definition after inverting
the CPS transform once:

satisfy p =
K7 (λkf s → shift (λk → case s of

x : s ′ | p x → k (λs → kf s) s x
→ kf s)

(λkf s → shift (λk x →
if p x then k (kf s x) (x : s) else kf s x))

As before, the shift moves us from one answer type to another.
Here, shift also alters the answer type in the failure continuation.
Indeed, there is an interceding application and abstraction on the A-
side and the B-side (respectively) before the tail call to the failure
continuation. Looking at the type of above expression we have:

A-side type: String/((String→ Char→ r)→ String→ r)

→ String/(((String→ r)→ String→ Char→ r))

B-side type: String/(((String→ r)→ String→ Char→ r))

→ String/((String→ Char→ r)→ String→ r)

We can notice, from the text itself and also from its type, that this
definition is still in continuation passing style — it must then itself
be the result of CPS transforming some function with effects. Thus,
we can invert the transform one more time, to get:

satisfy p =
K7 (λs → shift1 (λk1 → shift2 (λk2 → case s of

x : s | p x → k2 s x
→ k1)))

(λs → shift1 (λk1 → shift2 (λk2 x →
if p x then k (x : s) else k1 x)))

Just as the first transformation to direct style introduced control
operators to account for the non-standard use of continuations, so
does this second iteration. However, following Danvy and Filinski
[1990], because the effects we are witnessing are in fact happening
at two different levels care must be taken to give distinct names to
the associated control operators of each level.

The final result is now properly in direct style. The function we
obtain is not entirely dissimilar to anyChar, its more rudimentary
non-failing kin, in that it still just a string transformer, mapping a

short description of paper 6 2012/9/11

String to a String, as its type informs. Danvy and Filinski [1989]
only give a type and effects system for the first level of the CPS
hierarchy. But here as we iterated the direct style transform twice,
we might be tempted to write a type that succinctly reflects the
effects occurring at both levels:

A-side type: String//(String/r → String/(Char→ r))

→ String//(String/(Char→ r)→ String/r)

B-side type: String//(String/(Char→ r)→ String/r)

→ String//(String/r → String/(Char→ r))

where, to avoid confusion, we demarcate a type from its effect with
/ and // according to the level of the effect. Interestingly, we can
notice that on both sides, at the inner level answer types are shifted
exactly as they are in the outer level, but in the opposite direction.

Direct style leads: Inherently, our cassettes have string trans-
formers on each side — it’s just that these transformers are side-
effecting ones. Switching to direct style from the CPS style of
the previous sections makes this plain. We have seen how prim-
itive cassettes can be written in this style, which advantageously
makes continuations explicit only at the points where a control ef-
fect will occur, without polluting pure snippets of code. However,
most primitives can be written once and for all and included in
a library to be reused among many parsers and printers for many
grammars in many different projects, so this syntactic advantage is
nice but perhaps not essential. Leads, on the other hand, must be
written for every constructor of every datatype that parsers target
and printers consume. One can therefore expect a very handsome
payoff to making the leads shorter to write and easier to read.

We identified in Section 4 that constructors can be viewed as
pure printers — it does not transform the string in any way — and
that destructors can be view as pure parsers. We can therefore ex-
pect to be able to write leads as pairs of effectful string transform-
ers, just as primitives can.

The answer types in leads differ slightly to primitive parsers
and printers. A primitive parser has no arguments other than its
input string and a primitive printer has no outputs beyond its out-
put string, while a destructor ignores the input string and creates
multiple outputs from a single input, and a constructor also ignores
the input string and a single output from multiple inputs. In other
words, a primitive parser only modifies the answer type on the left
of outermost arrow and a primitive printer only modifies the an-
swer type on the right on arrow, while constructors and destructors
do both.

Again, these effects can succinctly be captured by shifting. In
direct style, a lead-out for a constructor C of a value of type T
given arguments of type A1, . . . , An has the form:

leadout = λs → shift1 (λk1 → shift2
(λk2 x_n . . . x1 → k2 s (C x1 . . . x_n))

A lead-in for C (ie a destructor) has the form:

leadin = λs → shift1 (λk1 . . . → shift2
(λk2 v → case v of

C x1 . . . x_n → k2 s x_n . . . x1
→ k1 s v))

The input string passes through lead-ins and lead-outs untouched.

Direct style in HASKELL: While the work in all previous sections
made do with standard HASKELL’98 with one extension, in a typed
setting the price to pay to write shorter and more readable leads is
to move to a language that supports effect annotations in the types.
This is not an issue in an untyped programming language of course,
but even in a typed language Kiselyov [2007] shows that one could
simulate the control effects used here using a parameterized monad,

which is a generalized notion of a monad. Kiselyov constructs a
specific instance of a parameterized monad that allows a type-safe
embedding in HASKELL’98 of a language with a polymorphic type
and effects system [Asai and Kameyama 2007].

7. Discussion and related work
The most effective way of maintaining synchrony between disjoint
but related components is to share the bulk of their code. The same
changes then do not need to be repeated across multiple compi-
lation units and the consistency between components is ensured
mostly by construction and statically checked. Inadvertently com-
promising the consistency between data consumers and data pro-
ducers can be a particularly tricky problem to spot.

The approach we have taken here9 is to define an embedded
domain specific language for parsing and pretty printing where the
primitives building blocks are kept to the smallest size possible.
In this way, most of the domain specific knowledge is encoded
at the DSL layer, rather than the layer beneath, that of the host
language. The more happens at the DSL layer, the more we get for
free, because whatever logic remains within the primitives is logic
that must necessarily be duplicated, for one direction and the other.

We started with the standard monadic/applicative framework for
parsers. While the control effects of primitives and leads could be
implemented using monads, the final solution does not use the usual
monadic interface for parsers, however, because monads are not
closed under the gluing combinators we provide. We argue that our
framework achieves better “horizontal” composability, however,
because the (⊗) combinator is associative and therefore cassettes
can be build piecemeal and extended horizontally from either end
at any time.

A number of solutions to at least part of the problem have been
proposed. Perhaps the most closely related to our work are the
solutions to the typed sprintf problem put forth by Danvy [1998]
and Asai [2009]. While their work only deals with printing, we
follow the same general idea of inductively constructing higher-
order functions. Danvy shows how to define adhoc formatters for
polymorphic algebraic datatypes, but these formatters are mostly
defined within the host language, rather than in terms of alternation
and sequencing primitives exclusively as we do. In as sense, we
have taken this approach to its logical conclusion by increasing the
granularity of primitives even more.

Kennedy [2004] defines pickling combinators for serializing
data and deserializing it. As in our approach, the primitive pick-
lers are paired with their unpickler. The picklers are less compos-
able, however. In particular, all datatypes need to have their fields
packed into tuples, and distinct combinators handle each tuple ar-
ity. By contrast, we support rows of data of arbitrary length, through
currying. Also, variants in datatypes are either binary coded using
nested Either a b values, or tagged with an integer. Adding a new
constructor to a datatype potentially requires to renumber the tags
everywhere in the code. The solution of Smetsers et al. [2009] using
bidirectional arrows suffers from the same lack of “vertical” com-
posability. Rendel and Ostermann [2010] achieve excellent hori-
zontal and vertical composability by layering a set of combinators
atop a formalism of partial isomorphisms, and define alternation
combinators in a similar way to ours. The main difference lies in
the fact that they achieve horizontal composability through nested
tuples, rather than currying, which can cause extra allocation at run-
time and potentially impacts performance substantially.

9 A prototype is available at: http://www.cs.mcgill.ca/~mboes/src/
cassette/

short description of paper 7 2012/9/11

References
K. Asai. On typing delimited continuations: three new solutions to the

printf problem. Higher-Order and Symbolic Computation, 22(3):275–
291, 2009.

K. Asai and Y. Kameyama. Polymorphic delimited continuations. In
Z. Shao, editor, APLAS, volume 4807 of Lecture Notes in Computer
Science, pages 239–254. Springer, 2007. ISBN 978-3-540-76636-0.

O. Danvy. Back to direct style. In B. Krieg-Brückner, editor, ESOP, volume
582 of Lecture Notes in Computer Science, pages 130–150. Springer,
1992. ISBN 3-540-55253-7.

O. Danvy. Functional unparsing. J. Funct. Program., 8(6):621–625, 1998.
O. Danvy and A. Filinski. A functional abstraction of typed contexts.

Technical report, DIKU, 1989.
O. Danvy and A. Filinski. Abstracting control. In LISP and Functional

Programming, pages 151–160, 1990.
D. Fridlender and M. Indrika. Do we need dependent types? J. Funct.

Program., 10(4):409–415, 2000.
A. Kennedy. Pickler combinators. J. Funct. Program., 14(6):727–739,

2004.
O. Kiselyov, Dec. 2007. URL http://okmij.org/ftp/

continuations/implementations.html#genuine-shift.
C. McBride and R. Paterson. Applicative programming with effects. J.

Funct. Program., 18(1):1–13, 2008.
T. Rendel and K. Ostermann. Invertible syntax descriptions: unifying

parsing and pretty printing. In J. Gibbons, editor, Haskell, pages 1–12.
ACM, 2010. ISBN 978-1-4503-0252-4.

M. Rhiger. Type-safe pattern combinators. J. Funct. Program., 19(2):145–
156, 2009.

S.D. and Swierstra. Combinator parsers: From toys to tools. Electronic
Notes in Theoretical Computer Science, 41(1):38 – 59, 2001. ISSN
1571-0661.

S. Smetsers, A. van Weelden, and R. Plasmeijer. Efficient and type-safe
generic data storage. Electr. Notes Theor. Comput. Sci., 238(2):59–70,
2009.

short description of paper 8 2012/9/11

