
Empirical Foundations
For Software Documentation Design

Deeksha Arya

School of Computer Science
McGill University, Montreal, Canada

July 23, 2025

A thesis submitted to McGill University in partial fulfillment of
the requirements of the degree of Doctor of Philosophy

© Deeksha Arya, 2025

Contents

Contents i

Abstract v

Résumé vii

Contributions ix

Acknowledgements xii

List of Figures xiv

List of Tables xvi

List of Acronyms xviii

1 Introduction 1
1.1 Thesis Organization . 9

2 Background and Related Work 10
2.1 Documentation Seeking . 11

2.1.1 Information Needs . 11
2.1.2 Resource Design Preferences . 12
2.1.3 Online Resource Seeking . 13
2.1.4 Identifying Pertinent Information . 13

2.2 Documentation Contribution . 15
2.2.1 Documentation Motivations . 15
2.2.2 Documentation Creation Practices 16
2.2.3 Mindsets in Software Engineering . 16

2.3 Design of Documentation . 17
2.3.1 Characteristics of Documentation . 18
2.3.2 Formal Concept Analysis . 19
2.3.3 User Controls for Navigating Documentation 19

i

3 How Programmers Find Software Documentation 21
3.1 Study Design . 22

3.1.1 Data Collection . 22
3.1.2 Data Analysis . 24

3.2 Resource-Seeking Model . 27
3.2.1 Need-oriented Components . 27
3.2.2 Resource-oriented Components . 29

3.3 Need-Oriented Components . 30
3.3.1 QUESTIONs . 30
3.3.2 PREFERENCEs . 31
3.3.3 BELIEFs . 32

3.4 Resource-Oriented Components . 32
3.4.1 RESOURCEs . 32
3.4.2 CUEs . 34
3.4.3 IMPRESSION FACTORs . 36

3.5 Relations Between Components . 37
3.5.1 Resource is accessed for Question . 39
3.5.2 Cue is used to select Resource . 41
3.5.3 Resource is evaluated through Impression Factor 42
3.5.4 Infrequent Relations . 42

3.6 Implications . 45

4 Documentation Properties and Styles 48
4.1 Data Collection . 49

4.1.1 Resource Collection . 49
4.1.2 Property Extraction . 50
4.1.3 Limitations . 52

4.2 Resource Properties . 54
4.2.1 Variations in Property Values . 55
4.2.2 Correlations Between Properties . 58
4.2.3 Correspondence of Properties to Website Traffic 59
4.2.4 From Properties to Styles . 59

4.3 Characterizing Resources . 59
4.3.1 Prominent Style . 61
4.3.2 Recurring Style . 62
4.3.3 User-defined Style . 65
4.3.4 Discussion . 66
4.3.5 Limitations . 66

5 Considerations of Documentation Creators 68
5.1 Study Design . 69

5.1.1 Informant Recruitment . 69
5.1.2 Data Collection . 70

ii

5.1.3 Qualitative Analysis . 70
5.1.4 Mindset Elicitation . 71
5.1.5 Validation . 72

5.2 Dimensions of the Software Documentation Contribution Process 73
5.2.1 Motivations . 73
5.2.2 Topic Selection Techniques . 75
5.2.3 Styling Objectives . 77

5.3 Software Documentor Mindsets . 80
5.4 Validation . 85

5.4.1 Study Design Trade-offs . 87
5.5 Implications . 87

5.5.1 Balancing Multiple Mindsets . 87
5.5.2 Challenges with Pursuing Considerations 88
5.5.3 Other Mindsets . 89

6 Interactions with Multimodal Documentation 91
6.1 Study Design . 92

6.1.1 Multimodal Tutorial Prototype . 92
6.1.2 Survey Design . 94
6.1.3 Respondent Recruitment . 96
6.1.4 Analysis . 97
6.1.5 Study Design Trade-offs . 98

6.2 Programmer Interactions with the Multimodal Tutorial 99
6.2.1 Modality Ratings for Conceptual Tasks 99
6.2.2 Modality Ratings for How-to Tasks 102
6.2.3 Modality Ratings for Debugging Tasks 102
6.2.4 Usefulness of Individual Modalities 103
6.2.5 Usefulness of Additional Tutorial Features 104
6.2.6 Recommendations from Respondents 105

7 Discussion 106
7.1 The Software Documentation Environment 106

7.1.1 Software Documentation is Human-centric 107
7.1.2 Management of Multiple Documentation Types 108
7.1.3 Design of Customizable Documentation 109

7.2 Anticipated Challenges to Designing Customizable Documentation 110
7.2.1 Shift of Design Effort from Documentor to Programmer 110
7.2.2 Evolving Design Needs and Preferences 111
7.2.3 Evaluation of Software Documentation Quality 112
7.2.4 Impact of Artifical Intelligence on Documentation Creation and Use . 113

7.3 Future Research Directions . 114
7.3.1 Code Example Customization . 114
7.3.2 Querying Pertinent Documentation 115

iii

7.3.3 Other Software Documentation Design Considerations 117
7.3.4 Communication Between Documentation Creators and Information

Seekers . 118

8 Conclusion 119

Bibliography 123

A Replication Package for How Programmers Find Online Learning Re-
sources 150
A.1 Demographic Questions . 151
A.2 Post-study Questionnaire . 151

B Replication Package for Properties and Styles of Software Tutorials 152
B.1 Resource Collection . 154
B.2 Recurring Resource Styles . 154

C Replication Package for The Documentor Mindset 156
C.1 Interview Guide . 156
C.2 Validation Questionnaire . 157

D Replication Package for How Programmers Interact with Multimodal Doc-
umentation 161
D.1 Tasks per Topic . 161
D.2 Fisher’s Test Results . 164
D.3 Contingency Tables . 165

iv

Abstract

Software documentation provides information about the details of a software technology and
how it can be used. Documentation creators must invest time and effort to make decisions
about the content, organization, and presentation of the information. The outcomes of dif-
ferent decisions lead to a wide variety in the resources available. Although search engines
are helpful to filter relevant resources, programmers are still required to manually browse
through them before they find the information most pertinent to their needs. Prior work has
focused on helping programmers find the location of information within a resource. Recent
research has also begun exploring the ability to summarize information related to a pro-
grammer’s search query. These approaches support the search for information content, and
thus rely on matching the search query. However, the techniques do not necessarily account
for other aspects of a programmer’s search context, such as their preferred documentation
design.

In this thesis, we focus on understanding how software documentation can be designed
to support programmers’ search for pertinent information, while considering documentation
creators’ concerns. This research took place in four phases. In the first phase, we investigated
how programmers find software documentation resources online. We conducted a diary
study in which participants self-reported the steps they took while searching online and
their rationale behind these steps, when learning a new technology. We analysed the entries
and described how programmers used “cues” to locate the resource that would best suit
their need. We contribute a theoretical model that describes the different components of the
resource-seeking process, and provides insight on what programmers consider when searching
for information.

In the second phase, we studied the variations in the current software documentation
landscape. We analysed how software tutorials vary in their properties, such as the amount
of text to code ratio they contain. We reported on how tutorials can be distinguished based
on their properties, and identified as being of a particular style. We contribute an overview
of the design of software tutorials and a systematic method to characterize tutorials. Our
framework provides a formal technique to define a software tutorial based on its design.

The third phase involved understanding why and how people voluntarily contribute doc-
umentation online, via interviews with 26 documentors. We identified sixteen considerations
that the documentors had, which impacted the decisions they made, including how they
selected topics and their objectives when styling their documentation. We contribute a
framework of five mindsets that documentors have during documentation contribution, that

v

are based on related considerations. Our findings provide insight on what the documentation
contribution entails, and how documentors can be supported in tailoring their documentation
to intended audiences.

In the final phase, we leveraged our findings from the previous three phases: we contribute
a prototype multimodal documentation that allows information seekers to select information
from different presentation formats. Multimodality in documentation would allow documen-
tors to create a single all-encompassing document, avoiding the need to manage multiple
documentation types to reach varied audiences. We studied how programmers would inter-
act with the documentation, and reported on the usefulness of the modalities for three types
of programming tasks.

Our results from the four phases of the thesis show promise for versatile, customizable
documentation. Such documentation provides control to users to manipulate it to their
needs, while allowing documentation creators to focus on curating important information.

vi

Résumé

Documentation de logiciel fournit des informations sur les détails de la technologie logicielle.
Les auteurs de documentation doivent investir des efforts pour prendre plusieurs de décisions
concernant le contenu, l’organisation et la présentation de l’information. Les différences en-
tre les décisions prises mènent à une grande variété de ressources documentaires disponibles.
Bien que les moteurs de recherche soient utiles pour filtrer les ressources pertinentes, les
programmeurs doivent néanmoins parcourir différentes ressources manuellement avant de
trouver les informations les plus intéressantes pour leurs besoins et leur contexte de pro-
grammation. La recherche antérieure s’est largement consacrés à aider les programmeurs
à localiser précisément les informations pertinentes au sein d’une ressource. Des travaux
récentes ont également exploré la possibilité de résumer les informations liées à la requête
de recherche d’un programmeur. Cependant, les techniques ne tiennent pas toujours compte
d’autres aspects du contexte de recherche d’un programmeur, comme la conception de doc-
umentation préféré.

Dans cette thèse, nous nous concentrons sur la manière dont la documentation logicielle
peut être conçue pour aider les programmeurs, tout en tenant compte des contraintes des
auteurs de documentation. Cette recherche s’est déroulée en quatre phases. Dans la première
phase, nous avons étudié comment les programmeurs trouvent des ressources en ligne. Nous
avons mené une étude qualitative dans laquelle les participants ont déclaré eux-mêmes les
étapes qu’ils ont suivies lors de leurs recherches et la justification de ces étapes lors de
l’apprentissage d’une nouvelle technologie. Nous avons analysé les entrées de journal et
avons décrit comment les programmeurs utilisaient les “cues” pour localiser la ressource qui
répondrait le mieux à leurs besoins. Nous proposons un modèle qui donne un aperçu de ce
que les programmeurs considèrent lors de la recherche d’informations.

Dans la deuxième phase, nous avons étudié comment les propriétés de documentation
de logiciel varient. Nous avons expliqué comment les tutoriels peuvent être discernés selon
leurs propriétés et identifiés comme étant à un style particulier. Nous fournissons un aperçu
de la conception de tutoriels de logiciels et une méthode systématique pour caractériser les
tutoriels. Notre modèle fournit une technique formelle pour définir un didacticiel logiciel
basé sur sa conception.

La troisième phase consistait à comprendre pourquoi et comment les gens contribuent
volontairement à la documentation, via des entrevues avec 26 documenteurs. Nous avons
identifié cinq états d’esprit des documenteurs, qui ont eu un impact sur leurs décisions, y
compris la manière dont ils ont sélectionné les sujets et leurs objectifs lors de la création

vii

de documentation. Nous décrivons un modèle conceptuel incluant les cinq états d’esprit et
leurs considérations. Nos résultats donnent un aperçu de ce qu’implique la contribution à
la documentation et de la manière dont les documenteurs peuvent être soutenus quand ils
adaptent documentation aux publics visés.

Dans la phase finale, nous avons développé un prototype de documentation multimodale
qui permet aux programmeurs de sélectionner des informations parmi différents formats de
présentation. Une documentation multimodale permettrait aux documenteurs de créer un
seul document global, évitant ainsi d’avoir à gérer plusieurs types de documentation. Nous
avons étudié comment les programmeurs ont interagi avec la documentation et avons rendu
compte de l’utilité des modalités pour trois types de tâches.

Nos résultats des quatre phases de la thèse sont encouragent le développement de doc-
umentation personnalisable. Cette documentation permet aux utilisateurs de contrôler ses
propriétés selon leurs besoins, tout en permettant aux auteurs de documentation de se con-
centrer sur la création et la synthèse d’informations importantes.

viii

Contributions

The research presented in this thesis makes contributions to the domain of information
seeking in the context of documentation for software technologies. The thesis is a culmination
of four research projects, described in Chapters 3, 4, 5, and 6.

Chapter 3 discusses our investigation of how programmers search for online documenta-
tion via a user diary study. We analysed the diary entries of ten participants to identify the
steps they took and their underlying thought process in navigating among multiple search
results. Our contributions from this study are:

• a theoretical model comprising of six components of how programmers seek online
resources when learning a new technology, and the nine relationships between them;

• detailed insights about the resource seeking process based on our observations;

• a publicly available replication package containing the documents to conduct the diary
study as well as a data set of the qualitatively analysed diary entries [17].

This study and its contributions have been published in the article How Programmers
Find Online Learning Resources [16]. The author of this thesis was the principal investigator
of the study. She designed the user study with the guidance of her supervisors. She recruited
the participants and conducted the diary study. She iteratively qualitatively analysed the
diary entries, based on continuous discussions with her supervisors. She wrote the original
drafts of the associated paper, and edited subsequent drafts based on regular reviews from
her supervisors.

Chapter 4 discusses our investigation of how software tutorials vary in their structure-
based properties. This study also involved exploring how software tutorials can be charac-
terized as being of a particular style. We analysed software tutorials from 22 websites across
three programming languages. Our contributions from this study are:

• an overview of property variations across tutorials per programming language;

• a discussion of the associations between the tutorial properties per programming lan-
guage;

• a discussion of associations between the tutorial properties and traffic metrics of the
source website;

ix

• a framework for characterizing resources based on their style, i.e. the combination of
their deviating properties;

• a discussion of three context-relevant resource styles, including their motivation, ap-
plicability, and identification techniques;

• a publicly available replication package containing the data set of the tutorials and
their properties and the programming scripts to run the analysis [18].

This study and its contributions have been published in the article Properties and Styles
of Software Technology Tutorials [19]. The author of this thesis was the principal investigator
of the study. She collected the tutorials through a semi-automated process and implemented
the scripts to extract and present the tutorial properties. She also implemented the code to
perform formal concept analysis to characterize resources based on their styles, with advice
from her supervisor. She also consulted her colleague Jessie Galasso-Carbonnel who provided
valuable advice about the use and interpretation of formal concept analysis. She wrote the
original drafts of the associated paper, and edited subsequent drafts based on regular reviews
from her supervisors.

Chapter 5 discusses our investigation of why and how people voluntarily create and
contribute software documentation online. The study involved interviewing documentation
contributors about their motivations and processes in contributing documentation. Our
contributions from this study are:

• a detailed discussion of 16 considerations of the documentation contribution process
across three dimensions;

• a framework depicting the five documentation contributor mindsets and their associ-
ated considerations across the three dimensions;

• a discussion based on the validation of the mindsets with interviewees, including addi-
tional mindsets described by interviewees;

• a publicly available replication package containing the documents to conduct the in-
terview study as well as the data set of the results of the qualitative analysis [20].

The study of why people voluntarily contribute software documentation online was pub-
lished in the article Why People Contribute Software Documentation [22]. The extended
work including the investigation on what the documentation process entails is available as
an ArXiv preprint titled The Software Documentor Mindset [21]. The author of this thesis
was the principal investigator of the study. She developed the interview guide with guidance
from her supervisors. She recruited the participants and conducted the interviews. She iter-
atively qualitatively analysed the interview transcripts, based on continuous discussions with
her supervisors. She created the documents for validation of the mindset results with advice
from her supervisors. She communicated with participants to receive validation responses,
and analysed these responses. She wrote the original drafts of the associated paper, and
edited subsequent drafts based on regular reviews from her supervisors.

x

Chapter 6 discusses our investigation of how programmers interact with multimodal soft-
ware documentation, based on different contexts such as their own presentation preferences
and the programming tasks they must complete. The study involved building a prototype
multimodal software tutorial, and conducting a survey in which respondents used the tutorial
to complete three types of programming tasks. Our contributions from this study are:

• a prototype design for a multimodal software tutorial, with three implemented exam-
ples;

• quantitative results regarding how useful different modalities are for different types of
programming tasks;

• a discussion about the context in which each modality is useful;

• a discussion of how multimodal documentation can be enriched with features to support
user interaction.

The study of multimodal documentation was published in the article How Programmers
Interact with Multimodal Software Documentation [23]. The author of this thesis was the
principal investigator of the study. She developed the design of the prototype tutorial.
She guided the development of the prototype, which was assisted by undergraduate research
interns who were supervised by her supervisors. She created the survey and its questions with
guidance from her supervisors. She conducted the pilot studies, recruited the respondents,
and performed the analysis of survey responses, based on continuous discussions with her
supervisors. She wrote the original drafts of the associated paper, and edited subsequent
drafts based on regular reviews from her supervisors.

xi

Acknowledgements

It is quite the feat to complete a PhD, and while I have done my share of work, it is a far
more collaborative experience than I first imagined. I have many people to thank for my
journey over the past few years.

First and foremost, I would not be in a position to write these acknowledgements without
my supervisors, Jin and Martin. I am proud to say that I am Jin’s first Master’s student, and
also first PhD student. She has been more than just a supervisor throughout my graduate
studies; she has been an unwavering source of encouragement, through all the ups and
downs of my student and personal life. Her passion is infectious, and her ability to approach
a problem from multiple perspectives is inspiring. Working with Jin in the first year of my
graduate studies is truly what made me appreciate and enjoy research, so much so as to
pursue it as a career. I recognize my good fortune as Martin joined Jin as my co-supervisor.
With his eye for detail, insistence on perfection, and measured caution, his inputs have
greatly improved the quality of my work. I recall that in our first meeting with Martin as
my supervisor, he insisted I call him by first name, saying that we were now colleagues.
Both Jin and Martin have always made me feel that my thoughts are valuable, and that my
words have worth. This perspective not only gave me confidence throughout my PhD but
also made me realize that they are the kind of supportive mentor I would like to be in the
future. I truly won the lottery with having both Jin and Martin as my supervisors, and all
I can hope is that I have done their investment in me justice, and will continue to do so.

The Software Technology Lab has been the best environment that I could ask for. I am
grateful to Mathieu, my soundboard to bounce off ideas, go-to for questions, listener when I
needed to vent, and of course, my ice-cream buddy. I already miss the quick 2-minute breaks
amidst serious work to laugh at a PhD meme together. Thank you to our “lab-regulars”:
Jazlyn, with whom I shared the nervous excitement of deadlines, making it easier to get past
them; Avinash, for the passionate discussions on documentation design and for all his help
both within and outside the lab environment; Divya and Bhagya, who became my unofficial
guardians, always looking out for me on this PhD roller-coaster ride; Linh, who reminded
me that life is to be enjoyed and not taken too seriously; Lanese, who never let me waver
in my belief of myself; Sara, for her ever-caring always-listening nature; and Veronica for all
those lovely baked treats which acted as rewards for internal milestones. To Fuyuan and
Breandan, thank you for the regular reflections on research methods and graduate student
life. Thank you all for being the motivation to take that 15-minute walk to get to lab, even
on the days with the worst heat, heaviest rain, deepest snow, and unforgiving ice.

xii

My thanks to the lab members, both present and past, whom I did not get to meet
on a regular basis, but had the chance to interact with during lab events and meetings.
Thank you to the research assistants with whom I worked: Kristen who supported the initial
brainstorming phase of designing versatile documentation; and to Vivian and Shushi who
contributed to the building of multimodal documentation. I also had immense support from
friends and colleagues outside the lab. Thank you to Max, who has been a constant source
of encouragement: the regular check-ins and uplifting words of “you can do this!”, made
some difficult days much easier. Thank you to Arthur with whom I enjoyed discussions of
research and life after PhD, through email correspondence and video calls. Thank you to
Jessie, who not only provided valuable insights on Formal Concept Analysis, but also some
lovely company over coffee. Thank you to Marco - it was amazing to meet someone outside
our lab equally passionate about the state of learning resources for software.

Thank you to Andrew, Ron, and Corey who patiently solved any desktop, server, and
resource related issues. I am deeply grateful to Ann, Kam, Diti, and Sheryl who were
promptly responsive as I navigated the administrative processes of student life. Thank you
to all the attendees at Bellairs 2020 and 2023, who made me feel welcome and comfortable
in the world of research, and reminded me that what I had to say mattered. A special
thank you to Gail, who took the time to discuss my PhD proposal and mentor me on how
to reach for excellence. I am grateful to my PhD committee, Thesis Examiners, and Defense
Committee who provided me with valuable feedback and guidance. Thank you to NSERC,
who gave me the much-needed funding to conduct rigorous research.

I am supremely grateful to have met friends who became my extended family. To Arushi,
Kshitij, and Anand, with whom I built my best memories, laughed the most, and had the
craziest experiences - spending time with them seemed to make the stress of doing a PhD
disappear. A huge thank you to Alex, with whom I could wind-down weekly over a good
book and conversation at our weekly Buddy Read. Lots of love to Akshuz, who brought calm
to any of my stormy feelings. Thank you to my dance fraternity; they helped me pursue my
passion for the performing arts alongside my research.

And of course, thank you to my family. Thank you to my in-laws, Appa, and Athe who
understood my drive for research and always encouraged me to prioritize my work. Thank
you to Aishwarya who never hesitated to pamper me with gifts and cheer me up. Lots of
love to my grandparents, Dada, Nanaji, and Nani, whose remarks were always along the
lines of “work well, eat well, and stay healthy and happy”, and Dadi who I am sure is looking
down at me with pride. I seek and cherish their blessings every day. My parents, Mumma
and Papa - it is impossible to articulate what they have done for me. Everything I am and
can do is because of them, and I will leave it at that. My unbounded love to Maitri, who, as
always, has been a strong pillar for me to lean on. Experiencing adult student life, away from
home, together, has brought us that much more closer, if it was even possible. I had heard
that doing a PhD is difficult, but supporting a partner doing their PhD is also challenging.
Vignesh has been the perfect partner, he celebrated my every high, no matter how small,
and encouraged me through every low, no matter how shallow or deep. I can not imagine
getting through life, let alone my PhD without him. And to my little Raghav, who showed
me power in myself that I never knew existed, my endless, endless, endless love.

xiii

List of Figures

1.1 The top sources and online resources from which developers learn to code,
based on the annual Stack Overflow Developer Surveys for 2022 to 2024 [183]. 1

1.2 Examples of how software documentation resources can vary, even for the
same technology. 2

1.3 An overview of documentation creation and information seeking for software-
related information. 3

1.4 Overview of the four phases of our research, the corresponding study design,
and the major contribution. 5

3.1 Diary entry template for each search session. 23
3.2 Process followed to obtain the data set for this study. The tables obtained in

the last steps (represented by the last row in the figure), together form our
data set. 25

3.3 The online software technology resource-seeking model of users learning a new
technology. The components shaded in grey, i.e. Questions and Resources, are
posited components, while the rest emerged from our analysis. The numbers
and asterisk annotated on the arrows indicate the cardinality of the relation.
For example, multiple Cues can be used to select one Resource, and multiple
Resources can be accessed for a single Question. 28

3.4 Frequencies of the components and relations of the resource seeking model, in
our data set. 38

3.5 Contingency table of expands relation between Preferences and Questions. . 39
3.6 Adjusted Standardized Residuals and Contingency table for the is accessed for

relation between Resources and Questions. The values in each cell represent
the frequency of connections between the pair of categories. Non-colored cells
indicate that they were not included in the statistical analysis. 40

3.7 Adjusted Standardized Residuals and Contingency table for is used to select
relation between Resources and Cues. The values in each cell represent the
frequency of connections between the pair of categories. Non-colored cells
indicate that they were not included in the statistical analysis. 41

3.8 Contingency table of is evaluated through relation between Resources and
Impression Factors. 43

xiv

4.1 Example of identified blocks for the BeginnersBook resource “Constructors in

Java”. We manually identified that the article tag inside the main tag with
class “content”, contains the main content of the page. We treated each
of these elements, such as the <p> and <pre> elements boxed in red, as an
individual block. 52

4.2 Variation of resource properties by programming language. The red line indi-
cates the median of the distribution. 56

4.3 Correlation between properties for significant relations in each programming
language. Only the significant results (α = 9.5 × 10−5; p < α) are shown.
The colors correspond to Pearson’s correlation coefficient values. 57

4.4 Distribution of the proportion of code blocks (from Table 4.3), against the
average number of minutes per visit for the corresponding website. 58

4.5 Variations of extracted properties in Java Oracle, Java not-Oracle, and Type-
script TutorialKart resources. The red line indicates the median of the distri-
bution. 65

5.1 Framework of documentors’ mindsets and their associated considerations across
the three dimensions of the documentation contribution process, i.e. motiva-
tions, topic selection techniques, and styling objectives, based on interviews
with 26 documentors. 72

5.2 Agreement responses of the 17 respondents to the validation questionnaire. . 86

6.1 Illustration (with excerpts) of a multimodal tutorial for regular expressions
in Java. The tutorial prototypes we created for each of the three topics,
i.e. regular expressions, inheritance, and exception handling, provide more
information through each of the modalities. 93

6.2 The three code example modalities to demonstrate how to implement the
character classes in regular expressions for Java. 94

6.3 The follow-up questions to a task that ask respondents for their ratings for the
different modalities. Note that the question refers to modalities as “features”
(see Section 6.1.2). 96

6.4 Optional open-ended questions in the survey. 97
6.5 Rating of usefulness for the five modalities, per task type and topic, for the

three multimodal tutorials. Note that the legend refers to modalities as “fea-
tures” (see Section 6.1.2). 100

6.6 Adjusted Standardized Residuals and contingency tables between Modality
and Rating for Conceptual and HowTo programming tasks, as well as between
Topic and Rating for Tables. Note that the labels refer to modalities as
“features” (see Section 6.1.2). 101

xv

List of Tables

3.1 Participant demographics for the diary study. 24
3.2 Question categories. 29
3.3 Preference categories. 31
3.4 Resource categories. 33
3.5 Cue categories. 35
3.6 Impression Factor categories. 37
3.7 Bonferroni-adjusted p-values calculated by Fisher’s Exact test using 200000

Monte Carlo simulations of connections between each pair of model components. 39

4.1 Details about the programming language and host website of the resources
studied. 50

4.2 Properties extracted at the block level for each resource. 51
4.3 Computation of resource-level properties. 53
4.4 Mapping of Less or More of a property (from Table 4.3) to an attribute of a

resource. 60
4.5 Distinguishing attributes (d.a.) in the prominent styles (n=3) for all resources. 61
4.6 Recurring Resource Styles in our data set for Java and Python resources. . . 64

5.1 Details of the informants of the interview study, all of whom are documentors. 71
5.2 Documentors’ considerations along the dimension motivation. 74
5.3 Documentors’ considerations along the dimension topic selection technique. . 77
5.4 Documentors’ considerations along the dimension styling objective. 79
5.5 Documentors’ mindsets and the corresponding considerations across the three

dimensions of the documentation contribution process, for each informant. . 81

6.1 Examples of the three programming task types in our survey. 95
6.2 Demographics of survey respondents. 97
6.3 Description of the 16 Fisher’s exact tests we performed. We conducted the

tests between Dimension A and Dimension B, for each Filter. 98

A.1 Contents of the replication package [17]. 150

B.1 Contents of the replication package (executable scripts) [18]. 152
B.2 Contents of the replication package (dataset and results) [18]. 153

xvi

C.1 Contents of the replication package [20]. 156

D.1 Contents of Appendix D. 161

xvii

List of Acronyms

• SE: Software Engineering

• API: Application Programming Interface

• HTML: HyperText Markup Language

• CSS: Cascading Style Sheets

• FCA: Formal Concept Analysis

• URL: Uniform Resource Locator

xviii

Chapter 1

Introduction

About 90% of programmers are partially self-taught in learning to code [182]. Thus, it
is unsuprising that in just three years, there has been an increase from 70% to 82% in
the percentage of programmers who use online resources to learn to code, as shown in
Figure 1.1a [183]. Amongst the available online learning resources, Stack Overflow has
reported that the most common resource that respondents of their annual survey used to
learn to code was “technical documentation” (see Figure 1.1b) [183]. This statistic raises the
question: what is technical software documentation?

0

10

20

30

40

50

60

70

80

90

100

2022 2023 2024

S
u

rv
e

y
 R

e
s

p
o

n
d

e
n

ts
 (

%
)

Online resources

School / College / University

Books / Physical media

E-courses and certification

(a) Top learning sources

0

10

20

30

40

50

60

70

80

90

100

2022 2023 2024

S
u

rv
e

y
 R

e
s

p
o

n
d

e
n

ts
 (

%
)

Technical documentation

Stack Overflow

Blogs

How-To videos

Written tutorials

(b) Top online learning sources

Figure 1.1: The top sources and online resources from which developers learn to code, based
on the annual Stack Overflow Developer Surveys for 2022 to 2024 [183].

1

CHAPTER 1. INTRODUCTION

a result, programmers must still manually browse through many documentation resources
to find the information they need. Thus, the time taken to find relevant information can
range from a few minutes to many hours over multiple search sessions. Often, programmers
may even have to abandon their searches [124], despite having spent a significant amount
of their time on the search, because of the common challenge of poor documentation [181].
Instead, programmers may look for alternative sources of information, such as reaching out
to experts for help [185], or referring to source code directly to understand the underlying
working of a software technology.

To support programmers in finding relevant information, prior work has focused on au-
tomatically recommending information from documents based on user queries [111, 191]. In
the latest advancements, the combination of machine learning models, generative artificial
intelligence, and chatbots have produced tools such as ChatGPT that allow users to retrieve
customized information. However, such technologies may be sources of inaccurate informa-
tion, prompting many users to be hesitant of trusting information gathered and presented
through artificial intelligence (AI) [115]. Furthermore, these techniques have focused on re-
trieving information, and still rely on the quality of programmers’ search queries. However,
the information seeking process relies on the information needs of a programmer, which can
impact other aspects of documentation search, such as the source that they prefer to gather
information from [114]. Thus, it is important for a user to remain an integral part of the
search process, granting them control of how to navigate through results, as they search for
the information based on their context [28].

Effective software documentation is thus documentation that caters to varied needs,
while allowing programmers to control their browsing behaviour. Designing such versatile
documentation is nontrivial, as it involves many considerations from multiple perspectives.
Whereas programmers are the target audience for such documentation, it is also important
to consider the effort and thought processes that go into creating documentation. Despite the
synergy between documentation creation and information seeking, there is ambiguity about
how the creation and information seeking processes interact through the medium of software
documentation. For example, it is unclear how documentation creators consider the various
needs of potential audiences. What are the resulting variations visible in documentation,
and do they sufficiently address programmers’ information needs about a technology?

Although prior research has studied the design of software documentation [56, 106, 239,
244], there is a disconnect between what is learned about the information seeking behaviour,
and work on documentation generation. Whereas, research on the former has focused on
human behaviour, prior work on the latter has focused primarily on automated methods
to gather and present information. Consequently, the critical human aspect of creative in-
put during documentation creation and context-specific needs during information seeking
is discounted during documentation design. For this thesis, we investigated the complex
interactions of documentation creation and information seeking through documentation de-
sign. We focused on the two human perspectives of the design of software documentation:
the point of view of the documentation creator, and the point of view of the programmer
who is the information seeker. We also investigated the variations in design of available
documentation.

4

https://chatgpt.com

CHAPTER 1. INTRODUCTION

Primary contributionStudy Design

Theoretical model of

programmers’ resource

seeking process

Diary and interview study

with ten programmers

learning a new technology

Phase 1:

How Programmers Find

Software Documentation

Framework to characterize

tutorials based on their style

Data mining of 2551 software

tutorials across 22 websites for

five programming languages

Phase 2:

Documentation

Properties and Styles

Framework of mindsets and

considerations of

contributors

Interview study with 26

documentation contributors

Phase 3:

Considerations of

Documentation Creators

Development and evaluation

of a multimodal

documentation prototype

Survey to complete tasks using

multimodal documentation with

55 programmers

Phase 4:

Interactions with

Multimodal Documentation

Figure 1.4: Overview of the four phases of our research, the corresponding study design, and
the major contribution.

Overall, we investigated how documentation can be designed to cater to the var-
ious needs of information seekers, while considering the efforts of documentation
creators. We employed empirical research methods to observe documentation creation and
information seeking practices. The empirical techniques involve the collection of evidence,
for example through user studies with human participants or mining of online data, that can
support the formation of conclusions about human and non-human aspects of software doc-
umentation. Based on our data-driven approaches, we developed frameworks to capture how
people interact with software documentation. Additionally, we presented an overview of the
design of current documentation resources. Our research proceeded in four phases, with each
phase focusing on one perspective of the creation, design, and use of software documentation,
culminating in the creation of a documentation prototype, as shown in Figure 1.4.

Phase One: How Programmers Find Software Documentation

First, we studied how people find relevant software documentation. Prior work has reported
that people primarily use an orienteering information seeking strategy [241]. Orienteering
refers to using small steps to move towards a perceived destination that contains the infor-
mation needed. This strategy may be preferred because of its cognitive ease, allowing people
to be in control of their location and of context during their search. However, it is unclear
how programmers decide their next step and which resources to access, in the orienteering
strategy. Thus, we wanted to understand the thought process behind the decision-making
process of navigating between different documentation resources about the same topic.

We investigated the question of how to represent the behaviour and rationale of
programmers as they search for online resources when learning a new technology.

5

CHAPTER 1. INTRODUCTION

We conducted a diary study with ten programmers to closely examine the kinds of resources
they referred to for different queries and how they navigated to those resources. From our
analysis of the diary entries, we proposed a resource-seeking model to characterize the process
of finding online software documentation learning resources.

Our model is comprised of two groups of components: Need-oriented and Resource-
oriented. Need-oriented components are Questions, Preferences, and Beliefs. These com-
ponents of the model capture information or context about a programmer’s information
need. Resource-oriented components are related to the resources that programmers access
and include Resources, Cues, and Impression Factors. Our model describes nine relations
between the six individual components, for example, that a Cue is used to select a Resource.

The resource-seeking model surfaces the formerly implicit components that guide the
search for technical information. Awareness and understanding of the interplay between
these components is helpful for information seekers to effectively form search queries, and
to documentation designers to facilitate the seeking process by presenting information pur-
posefully.

Phase Two: Documentation Properties and Styles

Whereas the first phase provided insight about what programmers want, need, and prefer
of software documentation resources, we also wanted to determine to what extent existing
online documentation caters to these diverse needs and preferences. In the second phase, we
studied the design of programming tutorials in the current documentation landscape. We
investigated the research question to what extent do software technology tutorials
vary in their structure and content-related properties? Based on observations of our
investigation into these properties, we explored the question how can we systematically
reason about the design of software technology tutorials?

The study followed a data mining research method to extract and analyse design prop-
erties of programming tutorials. We focused on tutorials for Java, C#, Python, Javascript,
and Typescript, and refer to each tutorial page as a separate information resource. We ex-
tracted properties for 2551 popular resources, such as the number of code fragments present
and depth of sectioning of the content. We contribute a detailed analysis of the properties
of software documentation resources organized by programming language. Based on our
observations, we proposed a framework to characterize a resource’s resource style as its com-
bination of distinguishing attributes, i.e. properties that vary from the norm. Our conceptual
framework supports three techniques for identifying resource styles, namely prominent styles,
recurring styles, and user-defined styles.

Our framework for characterizing resources provides insight to documentation creators
about the design of resources for software development technologies to make future design
decisions in a systematic manner. Our observations also provide a means to help information
seekers systematically identify pertinent properties when comparing documentation resources
for the same technology.

6

CHAPTER 1. INTRODUCTION

Phase Three: Considerations of Documentation Creators

To understand why there is so much variation in the design of documentation resources, it
is necessary to gain insight on how documentation is created, and with what purpose. In
the third phase, we investigated the research question: why and how do people volun-
tarily contribute software documentation online? We interviewed 26 documentation
contributors to understand why they volunteered their time and effort to create software doc-
umentation when there may already exist other online sources of information on the same
topic. We asked informants about why they began contributing documentation, as well as
how they went about the creation process. This included, for example, how they determined
what technologies and topics to cover and how they made decisions about the style of the
documentation. We performed qualitative analysis of the interviews, from which we elicited
sixteen considerations documentation contributors have, across three major dimensions of
the documentation contribution process, i.e. motivations, topic selection techniques, and
styling objectives.

We noted that considerations across different dimensions are thematically related. We
grouped related considerations and refer to the groups as mindsets. A mindset describes
a particular combination of motivations, topic selection techniques, and styling objectives
that captures the thought process of the documentation contributor. For example, some
informants were motivated to create documentation because of inadequate documentation.
To select topics, some informants chose ones for which documentation did not exist before,
to fill the documentation gap. Some informants thought about how to differ from existing
documentation, when styling their content. From these three considerations, we elicited the
mindset: novelty and value addition.

The mindsets and their associated considerations provide a framework for characteriz-
ing the documentation contribution process. This framework provides the documentation
creation context, which can surface cues for information seekers to use as they search for
pertinent resources. For example, knowing that a documentation contributor has the novelty
and value addition mindset, indicates that their documentation covers information about the
technology in an alternate, novel manner. An information seeker struggling to learn a tech-
nology can identify that this contributor’s documentation will be relevant to them, rather
than documentation of another contributor who predominantly has the growth and visibility
mindset. Similarly, our insights can inform the design of documentation tools to support
documentation contribution.

Phase Four: Interactions with Multimodal Documentation

From our investigation on how people find learning resources online, we noted that program-
mers have different pre-existing preferences about the content or style of resources [16]. For
example, some developers refer to code in order to duplicate it [124], and thus may prefer
complete code examples that can be executed [24]. Other developers find small code exam-
ples focused on patterns of usage useful [210]. Finding a balance between both factors is
difficult, as being too concise may lead to the issue of incompleteness, and being detailed
may lead to difficulties with readability due to the verbose content [7]. Thus, creating docu-

7

CHAPTER 1. INTRODUCTION

mentation must account for the audience and their varied preferences, a consideration that
we noted documentation creators have, from the previous study phase.

In the fourth phase, we proposed the idea of multimodal documentation. A multimodal
resource contains information through multiple modalities that are inspired by diverse pre-
sentation formats including variations in information conciseness. Thus, mutimodal docu-
mentation allows users to select information according to their presentation preferences. We
designed a prototype tutorial containing five modalities, i.e. text, tables, and code examples
in three different modalities (regular, summarized, and annotated). We investigated the
research question: how do programmers make decisions about their presentation
needs and preferences in a programming tutorial?

To answer our research question, we created three multimodal tutorials about three
basic programming concepts in the Java language, namely regular expressions, inheritance,
and exception handling. We conducted a survey with users that have at least one year
of prior programming experience. In the survey, we asked respondents to use one of the
multimodal tutorials to complete three different programming tasks related to that topic.
Each of the three tasks were of a different task type, i.e. conceptual, how-to, or debugging.
After completing each task, we asked respondents to indicate which modalities they used for
the task and to explain their choices. We analyzed their responses to determine how they
made decisions about information presentation.

We observed how respondents used the different modalities for the different task types.
We support our findings with statistical analysis of the responses and insights from the open
text responses in the survey. We found that, irrespective of the topic, for conceptual tasks,
respondents found textual content “very useful” to complete the tasks, while code examples
provided additional context to support comprehension. Similarly, more respondents found
regular code examples “very useful” for how-to tasks, and used other modalities for in-depth
understanding. Despite these associations, we found that respondents preferred to have
access to more than one modality. Respondents also had contradicting preferences. Our
findings indicate the need for flexible documentation design that allows users to manipulate
the presentation and organization of information content to their needs and preferences,
appropriately for different programming contexts.

Contributions from the Four Phases

Our research across the four phases provides insight on software documentation design possi-
bilities that can cater to programmers’ needs while maintaining creators’ considerations. The
contributions of this thesis include a model for how programmers search for documentation
online, a framework for characterizing documentation based on their varying properties, and
a framework of contributors’ mindsets and their associated considerations when creating and
contributing documentation (see Figure 1.4). In addition to the theoretical models arising
from this work, we contribute an overview of the design variations of software tutorials. We
also contribute a prototype resource for presenting information to cater to differing user
needs, as well as an empirically-backed description of the usefulness of its different presen-
tation formats for different contexts. Our work can be leveraged to assist programmers in

8

CHAPTER 1. INTRODUCTION

seeking pertinent information about a technology in an efficient manner. This work also
generates insights for documentation creators to understand their target population’s search
behaviour and how the documentation they create can satisfy programmers’ preferences and
needs. Our findings take a step towards designing personalized documentation [211], while
retaining users in control of their information seeking process, and minimizing additional
effort for documentation creators.

1.1 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 develops the background and
establishes the related work for the four phases of the research. Chapters 3 to 6 describe
each of the four phases of our research. In each phase-related chapter, we provide a brief
introduction, followed by an overview of the goal, the research question, as well as the
associated publication and replication package for the study.

Chapter 3 describes the first phase of our research, regarding how programmers search for
learning resources online. We provide an overview of the resource seeking model we developed
from our study (Section 3.2), so as to provide context when describing the research design
and goals. We then describe our study design, including how we conducted the diary study,
and analysed the diary entries (Section 3.1). We present the different components of the
resource seeking model (Sections 3.3 and 3.4), and the relations between them (Section 3.5).
Finally, we discuss the implications of our findings (Section 3.6).

Chapter 6 describes the second phase of our research, related to the properties and styles
of available software tutorials. We describe how we collected the tutorials, and extracted
the properties for analysis (Section 4.1), and present the variations in tutorial properties
(Section 4.2). We then describe how the properties can be used to characterize resources as
being of a particular style (Section 4.3).

Chapter 5 describes the third phase of our research, about why and how programmers
contribute software documentation. We begin by introducing our study design including
how we recruited informants and conducted the interviews (Section 5.1). We describe the
considerations informants had across the dimensions of the contribution process (Section 5.2)
and the mindsets that correspond to combinations of the considerations (Section 5.3). We
end the chapter with a discussion about the validation of our results and the implications of
our findings (Section 5.4)

Chapter 6 describes the fourth phase of our research, introducing the design of a multi-
modal documentation, and our evaluation of how progrmamers interact with it. We explain
how we designed the study (Section 6.1) and the results of our user survey regarding the
multimodal documentation prototype (Section 6.2).

Chapter 7 presents a discussion based on our results from each of the four phases. We
describe insights on software documentation design (Section 7.1), anticipated challenges for
designing customizable documentation (Section 7.2), and future work in this regard (Sec-
tion 7.3). Finally, we conclude this thesis with an overview of the research, its contributions,
and the most important takeaways in Section 8.

9

Chapter 2

Background and Related Work

A software technology can only be used effectively if programmers are able to understand
how to leverage its features appropriately. Thus, software technology documentation plays
an important role in connecting software creators to technology users, such as programmers.
Despite this critical need for software documentation, it is often neglected, because creat-
ing documentation is a time and effort intensive process [54]. As a result, current software
documentation has multiple issues, including poor readability or incompleteness [7]. Prior
work has investigated the ability to automatically generate documentation, for example from
source code, to alleviate the burden on technology creators [91, 186, 235]. Furthermore, re-
search has investigated the information that programmers need when performing software
engineering activities [114, 123, 165, 229], and provided guidelines on what documentation
should contain [56]. Still, documentation can vary in its content [15] and presentation [24],
resulting in numerous documentation resources available online. Consequently, program-
mers can be overwhelmed by the amount of online content, which makes finding pertinent
information a time-consuming task.

Priestley suggested the idea of a dynamically assembled document that would allow users
to restructure the information present in the document into multiple views based on their
needs and preferences [196]. Robillard et al. proposed on-demand developer documentation,
an automatically generated document built based on knowledge of task context and users’
needs [211]. In both visions of documentation, a critical aspect is that the presentation
and organization of the documentation must cater to users’ preferences. However, designing
such a document that can cater to a variety of needs and preferences is non-trivial. It is first
integral to understand how these needs and preferences manifest, and how they are currently
catered to.

We contribute to existing research on the design of software documentation. We study
documentation from the perspective of documentation creators and information seekers, as
well as investigate how documentation can be designed based on these perspectives. Thus, we
review prior literature on the documentation seeking process, the documentation contribution
process, and the design of documentation, and relate them to the different phases of our
research.

10

CHAPTER 2. BACKGROUND AND RELATED WORK

2.1 Documentation Seeking

Understanding how technology users search for information that is relevant to their context
can provide insight into what they may look for in documentation to identify it as “pertinent”.
Literature on information seeking finds its roots in food-foraging behaviour of people and
animals [126, 263]. The earliest information foraging model, suggested by Pirolli and Card,
is decomposed into three sequential theoretical models, i.e. the patch model, scent model,
and diet model [194], inspired by food-foraging theories. Pirolli and Card described that the
information that can solve users’ needs may be contained in multiple information “patches”.
To find the information they need, users perform “scent-following” wherein they use cues or
hints to decide how much time to allocate to moving between or within patches. The diet
model describes how users select, make sense of, and consume information related to their
needs.

The first phase of our research focuses on investigating the “scents” that programmers
follow to make decisions about which “patch” of information, i.e. learning resource, could
be pertinent to their information needs. Our work builds on two posited components of
information seeking: the information need, and the documentation resource. We studied the
behaviour of programmers in decision making from posing a Question to accessing a perti-
nent Resource.(a) In the fourth phase of our research, we gained additional insight into the
preferences for information presentation that programmers had for different programming
contexts. We discuss related literature on understanding the information needs that pro-
grammers have, their resource design preferences, their online resource seeking behaviour,
and how they identify pertinent information to resolve their needs.

2.1.1 Information Needs

In the context of software engineering, prior work has mainly focused on the needs of de-
velopers in every-day development and maintenance activities. Based on their experience,
Erdos and Sneed suggested that there are seven questions that a programmer must have the
answer to, to be able to maintain a software program [67]. Sillito et al. found that when
changing software, programmers ask questions that can be grouped into four categories re-
lated to knowledge about the entity graph of code components [229]. These works primarily
focus on code behaviour (e.g. Where is a particular variable declared? [67]), whereas the
Questions we observed in our study cover a broader scope, including any aspect that a pro-
grammer may want to know about when learning the technology, such as underlying concepts
or installation-related questions (see Section 3.3.1).

Ko et al. performed an observational study to determine what kind of information de-
velopers generally look for, and categorized search instances into 21 information needs [123].
Gallardo-Valencia and Sim asked 25 developers from a company to self-report over a period
of 15 days their web searches [77]. They found five main types of problems that induce
searching for information online. Duala-Ekoko and Robillard performed a study in which

(a)We use the term resource, instead of documentation for this phase as programmers accessed some web
pages that can not be clearly classified as being a traditional form of documentation.

11

CHAPTER 2. BACKGROUND AND RELATED WORK

twenty participants were asked to think aloud as they worked on two programming tasks in
a familiar programming language but using unfamiliar Application Programming Interfaces
(API)s [60]. The authors analysed the screen recordings with the verbalized thought process
and observed that the participants had twenty types of questions. Rao et al. studied users’
web search behavior for software engineering tasks by analyzing the logs of millions of search
queries to the search engine Bing, and found six categories of intent for searches [204], includ-
ing searching for conceptual information. We revisit these intents to evaluate the multimodal
documentation in the fourth phase of our research (see Section 6.1).

Some overlap exists between the work on information needs and categories of the Ques-

tion component in our study on how programmers find online resources. For example, In
what situations does this failure occur? [123], the existence of errors in software [77] and
Debug [204] correspond to the Debug category in our work (see Section 3.3.1). Despite this
strong correspondence, we chose not to reuse previous categorization. We focus on the ques-
tions of programmers who are learning a new technology. Although the categories may be
similar, the context while searching for this information differs from everyday information
look-up. Hence, we did not want to assume that prior taxonomies would completely en-
compass questions by programmers who are learning a technology, or alternatively that the
programmers would have questions in all existing categories.

Erdem et al. recognized that questions are composed of multiple factors, and proposed
a model to represent the questions that programmers have while trying to understand soft-
ware [66]. The model identifies a question by three components - its topic (the subject of
the question), its question type (e.g. who, what, where), and its relation type (i.e. the kind
of information that is requested). In addition to the questions programmers learning a new
technology had, we studied the requirements the programmer had about the information they
were seeking (Preferences), and why these requirements existed (Beliefs) (see Section 3.3).

2.1.2 Resource Design Preferences

In addition to having information needs, programmers may have preferences about the re-
sources they refer to. Escobar-Avila et al. surveyed 205 Computer Science (CS) students
and professionals to determine their habits in learning programming and its related con-
cepts [69]. More than 55% in both populations said they preferred visual and auditory
formats for learning, and only about 3% indicated they preferred text-only mediums. Partic-
ularly, when learning a programming-specific or CS-related concept, most respondents used
tutorials and code examples, irrespective of the target programming language. Our study
in the final phase of the research, corroborates the results of Escobar et al.: for conceptual
tasks, respondents favored using text content, and used code examples to strengthen their
understanding of the concepts (see Section 6.2). Our findings also indicate that a preference
for code examples exists for how-to tasks, whereas for debugging tasks, there is no preferred
information modality. Additionally, respondents leveraged modalities that can complement
their own prior knowledge. For example, if they had an understanding of a concept, then
they referred to only code examples to refresh their knowledge of programming syntax.

From a survey of 74 individuals at an IBM enterprise customers event, Earle et al. re-

12

CHAPTER 2. BACKGROUND AND RELATED WORK

ported that 59 of the 64 responses to the survey question “How important to you is the
format of the information? ” indicated 3 and above on a five-point increasing scale of impor-
tance [62]. They found that tech notes and videos were the most preferred formats among
these respondents. Furthermore, respondents’ preferences for formats in software product
documentation differed based on their role and responsibilities. For example, administrators
who maintain multi-user systems refer to a wider range of documentation elements, such
as product help systems, tech notes, and forums, in comparison to architects who focus on
design, and refer primarily to articles. The diversity of tasks [143] that the role of “software
engineer” involves [161], and the variations of modality use based on the programming task
types (see Section 6.2), indicates the need to have documentation that can be organized in
a flexible manner.

2.1.3 Online Resource Seeking

Teevan et al. identified that participants in their user study followed an orienteering strategy,
i.e. using small steps to navigate as they attempt to find the information they need [241].
The researchers proposed that search engines should support the orienteering strategy, for
example by providing meta-information, cues, and context of search results to inform users.
To gain insight into scent-following behaviour, Pirolli and Fu measured information scent of
a web page as the mutual relevance of its contents [195]. They found that it was useful in
foretelling user actions such as from which page a user will leave a website.

Brandt et al. studied why programmers search for information by performing an in-lab
study with 20 programmers [34]. They observed that programmers searched online to clarify
existing knowledge, remind themselves of details, or to learn by trying code snippets. In the
latter case, participants used primarily aesthetic aspects, such as the existence of advertise-
ments on the web page, to quickly judge whether to read through the page. The authors also
analysed a web query data sample containing 101,289 queries from 24,293 programmers, to
gain a deeper insight into the search process. They found an association between the types
of pages visited and the type of queries performed. For example, they found that code-only
queries resulted in more API documentation accesses, and natural language queries to more
tutorial accesses. We also performed statistical tests to determine the association between
types of questions and resources accessed (see Section 3.5). However, our categories of Ques-

tions revolve around the content of the question, as opposed to Brandt et al.’s study which
focuses on the format of the search query.

2.1.4 Identifying Pertinent Information

Prior work has studied the seeking behavior for code within a target resource. Lawrance
et al. proposed the Programmer Flow by Information Scent (PFIS), an algorithm to de-
scribe how programmers navigate through source code during debugging based on a bug
report [134]. This algorithm involves measuring the “proximity” of each possible area of
source code the programmer could go to (e.g. package, class, method, or variable) with the
bug report content, and calculating the probability of a visit based on multiple simulations

13

CHAPTER 2. BACKGROUND AND RELATED WORK

of traversal. Lawrence et al. compared the algorithm’s prediction of which piece of code will
be visited to observed human behaviour and found that PFIS predicted human navigation
close to aggregated human decisions. Ragavan et al. also focused on navigation between
code artifacts by studying how programmers compare similar pieces of code to determine
which one is applicable to a particular task [234].

Piorkowski et al. studied how the intent of a developer, i.e. to fix a bug or to learn
to help someone else fix a bug, affects the type of information sought. They performed a
user study with eleven participants, split into two equal sized groups with tasks of the two
different intents [193]. The authors observed that there was a large overlap between cues
that participants with both intentions used to navigate the package explorer, editor, stack
trace, and search results during debugging. They observed that a majority of cues used
were code output or domain related. Liu et al. performed a formative study with fifteen
programmers to understand how they reuse programming decisions regarding technologies
used in particular scenarios, made by other programmers [146]. Liu et al. elicited three
major facets that help assess whether reuse is appropriate in programming: context of the
prior decision, trustworthiness of the web source and the author, and the thoroughness of
the knowledge for reuse. In contrast, our work in the first phase of research focuses on
programmers’ rationale when navigating available online resources for information about a
technology, irrespective of the particular format.

Nadi and Treude studied the navigational cues in finding relevant answers in a Stack
Overflow post. They reported that essential sentences, i.e. ones which users can use to
determine whether an answer is worth reading or not, highlighted by most participants
mainly contained explanations, or specified a library or a code component [172]. Marques et
al. determined that sentences within an artifact, perceived by their participants as relevant
to a task, contained common semantic meanings that could help determine what information
within the artifact is relevant [158]. They also observed that while participants used different
search strategies, they used implicit clues to find the information they needed. For example,
they would judge the value of text based on visual cues like whether it was in bold, or was
concise.

Sadowski et al. performed a case study at Google, via a survey conducted every time
a participant accessed their internal search website, to gain insight on why and how pro-
grammers at the company performed searches [217]. They augmented this study method
with an analysis of log data to determine quantitative measures of search session, such as
how many terms were in queries or the average number of clicks that lead to a successful
search. They reported micropatterns of observed search sessions. For example, they found
that programmers who are very familiar with code typically follow the micropattern: one or
more searches followed by one or more clicks. Bai et al. performed a follow-up task-oriented
lab study with graduate students [26] and compared their results with the observations of
Sadowski et al. [217]. We complement prior literature on within-artifact information seeking
literature. In the first phase of our research, we focused on the decisions that programmers
make in choosing between different artifacts in the specific context of learning a new tech-
nology. In the final phase, we gained further insight on how programmers made decisions
about accessing information presented through different modalities within a single resource.

14

CHAPTER 2. BACKGROUND AND RELATED WORK

2.2 Documentation Contribution

The context in which documentation was created can provide insight into why it is organized,
structured, and presented a particular way. For example, peoples’ motivations affect their
creativity [72], knowledge sharing [103], and contribution to open source software [80]. These
findings suggest that a documentors’ thought process can have an impact on the documen-
tation they create. Furthermore, understanding why and how a documentor makes many of
the design decisions that arise during documentation creation [24] can provide insight on the
purpose and intended use of the created documentation.

In the third phase of our research, we explored why and how people voluntarily create
and contribute documentation. We discuss related prior research on motivation to create
documentation, documentation creation practices, and mindsets in software engineering.

2.2.1 Documentation Motivations

Ryan and Deci proposed the self-determination theory (SDT), which introduced a taxonomy
of motivation including amotivation, intrinsic, and extrinsic motivation [216]. Personal blogs
have been found to be sources of therapeutic reflection and experience sharing [81, 271]. Li
elicited seven reasons why adults blog, including for self-expression and for socialization,
from a questionnaire filled by 288 bloggers [140]. In the context of software documentation,
Shmerlin et al. conducted interviews with five software developers and a questionnaire with
ten developers to understand the motivations of developers to document their code [228].
Their participants indicated increased code comprehensibility, structure, and quality as what
they enjoyed most about documenting, while acknowledging that it is difficult and time-
intensive. McArthur discussed four common prejudices against documentation, one of which
is that programmers would rather program than write documentation [159].

From a survey with thirty bloggers, Parnin et al. reported four types of technical blogging
motivations [189], including for personal branding and as a personal knowledge repository.
MacLeod et al. studied screencast documentation wherein developers record their screen and
explain how the corresponding technology works [155]. They analyzed 20 Youtube videos
and interviewed ten screencast creators and reported five reasons why developers create the
screencasts, which included to build an online identity, and to promote themselves. Whereas
prior literature has focused on developers’ motivations to create either text or video content,
our informants include both text and video documentation creators who are not necessarily
developers. Additionally, as part of the interview, we encouraged informants to elaborate in
detail about how they began contributing documentation. We found that the motivations
we elicited correspond to the aggregate of those reported by Parnin et al. and Macleod
et al., and additionally introduce the novel motivation consideration related pursuits (see
Section 5.2.1).

15

CHAPTER 2. BACKGROUND AND RELATED WORK

2.2.2 Documentation Creation Practices

Bottomley performed interviews with 24 documentation writers to understand their skills and
practices [33]. They found that documentation creation requires skills such as recognizing
unclear instructions, understanding high-level concepts, and predicting and responding to
user needs. Schmidt proposed an analytical framework for technical blogging that has three
structural dimensions: rules about the appropriateness and medium of content, relations
such as hyperlinks to other resources, and the code in the blog [220].

Dagenais and Robillard interviewed 22 developers and technical writers who either wrote
or read documentation to understand how documentation evolves [54]. Additionally, they
manually inspected the evolution of 19 documents (over 1500 revisions) from 10 open source
projects. They reported different decisions that documentation involves, such as determining
what kind of documentation, i.e. getting started or reference documentation, should be writ-
ten first. The authors also reported that one way to maintain documentation alongside the
evolution of a project is to document the change immediately. Wang et al. reported how the
nine identified categories of documentation in 80 popular computational notebooks mapped
to stages in the data science life cycle [255]. Prior work has elicited how to write articles
such that they motivate the reader to read instructions [118, 148]. For example, Goodwin
provided suggestions for technical writers on how to style manuals such that it “emplots”,
i.e. involves the reader in an action-oriented storyline [85]. Similarly, different information
styles, such as declarative and procedural information, have varying effects on the instruction-
following behaviour of readers [154, 248]. Guidelines exist for designing documentation [198]
and technical writing [32], and techniques exist to support the automatic generation of docu-
mentation [91, 186, 254, 267]. Understanding the thought process of documentors can inform
the design of such tools.

From a mixed-methods study involving surveys with over 150 developers, and eleven
semi-structured interviews, LaToza et al. reported that knowledge about software projects,
for example the architecture and design rationale, is not systematically documented, and
instead, much of this information is only “in peoples’ heads” [133]. However, the majority of
their participants agreed that understanding the rationale behind code, though important,
was challenging, partially because this information was never documented. As a result, there
is a need to better support the capture of mental models and design rationale, in order to
support decision making [92] in programming tasks and future stakeholders’ understanding
of a project.

2.2.3 Mindsets in Software Engineering

There exist theories in psychology and education research domains regarding mindsets, e.g.
growth versus fixed mindsets [29] and mindsets related to phases of action [84]. The study
of mindsets is very useful in providing appropriate recommendations to users, for example,
to points of interest in a city [253]. In software engineering, the term mindset is associated
with engineering practices or tasks. For example, the Agile mindset is a common terminology
used to describe the principles required to practice agile software development, e.g. flexibly

16

CHAPTER 2. BACKGROUND AND RELATED WORK

adapting to change instead of rigorous prior planning [215]. To define what the Agile mind-
set involved, Mordi and Schoop analysed 23 papers published in research venues or privately
by practitioners, and performed interviews with 17 industry practitioners [169]. From these
sources, they derived 27 characteristics to describe the “Agile Mindset”. For example, they
reported that all sources had evidence of trust and responsibility and ownership as char-
acteristics of the mindset. Motogna et al. conducted a study with 47 student teams in a
14-week long course, in which students were encouraged to follow Agile practices [170]. The
authors reported that developing appropriate soft skills associated with such characteristics
is important to help adopt the mindset needed.

Software engineering research has also focused on the privacy mindset, which describes the
thoughts of people as they navigate privacy features and invasions in online websites [89, 107].
Similarly, the exploration of the security mindset describes how people think about security
in source code and software [237]. To understand security and privacy mindsets, Arizon-
Peretz et al. conducted interviews with 27 practitioners and analyzed their responses, in
the context of themes from organizational climate theory, i.e. factors of the working en-
vironment [13]. Despite extensive research on mindsets, there is no common definition for
the term mindset [36], as it depends on the perspective and context of the related research.
In phase three of our research, we identified documentor mindsets, which capture the im-
plicit relations between considerations across the different dimensions of the documentation
creation process, based on interviews with 26 documentation contributors (see Section 5.3).

2.3 Design of Documentation

Given that there are many different contexts for which software documentation may be ac-
cessed, as well as the variety of design choices to create documentation, there is a need for
versatile, customizable documentation. Prior research has concentrated on the information
content of software documents [45, 152] and the style of the information presented [119, 248].
In prior work, we reported that there are multiple decisions related to structure and con-
tent, that impact the design of a software tutorial [24]. Fourney and Terry emphasised
that tutorial content must be formalized, because varying communication techniques pose a
challenge to machine understanding and generation of tutorials [74]. Mehlenbacher elicited
that documentation development involves establishing design goals to ensure usability of
documentation [163]. Prior research has focused on adapting documents to suit informa-
tion needs as described in Section 2.2.2, and to help users locate relevant information effi-
ciently [8, 111, 149, 242]. To support resource creation and resource seeking, we investigated
how to systematically reason about the design of software tutorial resources and proposed
multimodal documentation to cater to varied resource preferences.

In the second phase of our research, we focused on software tutorials, a particular type of
documentation [198]. We studied how software tutorials varied in their design properties, and
how we could identify them as being of a particular style. In the fourth phase of our research,
we explored the ability to present the same information through multiple modalities, or in-
formation presentation formats, within a multimodal documentation resource. Programmers

17

CHAPTER 2. BACKGROUND AND RELATED WORK

seeking information, thus, will have the opportunity to select amongst multiple modalities
based on their preferences and the context of their search, thereby granting them control of
their search process.

Our work is related to prior literature on the characteristics of documentation. We also
discuss previous work that applies Formal Concept Analysis, the technique which we relied
on to identify recurring styles in Section 4.3.2. Finally, we discuss prior prior work related
to user controls of navigating documentation during information search.

2.3.1 Characteristics of Documentation

Angelini studied the API reference documentation of eight web applications and reported
variations in the way information was presented, e.g. in some cases, a separate section was
dedicated to the syntax or description of an API, and in others, the information was not
clearly labeled [12]. Tiarks and Maalej performed an exploratory study of 1274 tutorials
on Android, Apple iOS, and Windows Phone OS to understand the nuances in mobile app
development tutorials [244]. In prior work, we studied the design of three Android tutorials
from different sources [24]. In both studies, the researchers reported how tutorials varied in
structure and content. In our study, we also provided a set of guidelines for thinking about
the consequences of different design decisions [24]. Head et al. analysed the structure of code
snippets in 200 online tutorials to inform the creation of Torii, a tool to generate tutorials
from linked source code [91].

Tang and Nadi developed and evaluated a tool to summarize nine metrics related to
the quality of documentation including readability and ease of use [239]. Despite methods
to evaluate the quality of documentation [8], there is no consensus about how documenta-
tion should be designed. The Diátaxis documentation framework consists of four structural
modes, tutorials, how-to guides, reference, and explanation and provides guidelines for the
overall content and styling of each mode [198]. Other research focuses on specific low-level
aspects such as manually identifying what kind of information about code snippets can be ex-
tracted from software documents [45]. Although prior work elicits design implications based
on difficulties with learning software [210] and guidelines to design documentation [167],
these studies focus on documentation for Application Programming Interfaces (APIs). In
phase two of our research, we used a semi-automated, data-driven approach to characterize
tutorials based on their design.

Dagenais and Robillard defined documentation patterns as coherent sets of code elements
that are documented together [55]. They proposed AdDoc, an automated method to capture
these patterns in the documentation of frameworks. In a previous study, we observed that
between 11% and 56% of sentences that provided API information in a sample of tutorials for
Java and Python could be replaced by their API reference documentation counterparts [15].
We proposed an information reuse pattern to support such systematic reuse of information
between the two documentation types.

Researchers have proposed methods to document frameworks [41, 113]. Butler et al. pro-
posed a reuse case which documents the reuse of a framework [40]. A reuse case categorizes
the type of documentation that is used in a particular category of framework reuse, e.g.

18

CHAPTER 2. BACKGROUND AND RELATED WORK

while selecting a framework, and the aspects of reuse, e.g. the granularity in terms of class
methods. In contrast, from the second phase of our research, we propose the characterization
of resources based on their styles and support the grouping of resources based on recurring
styles (see Section 4.3).

2.3.2 Formal Concept Analysis

Formal Concept Analysis (FCA) is a mathematical technique to identify concepts as a set
of objects and their common attributes (see Section 4.3) [79]. In the context of software,
FCA has been used to model common and uncommon features of different software product
variants [9, 10, 75, 76]. Prior work has investigated the ability to characterize code by the
relations between classes, to support code analysis [83] and to identify design patterns [37].
As a result of literature surveys conducted by Tilley et al. [245] and Ferré et al. [71], and
an investigation into FCA for data mining by Valtchev et al. [249], the authors emphasise
the potential of FCA for knowledge discovery in a variety of domains, including software
engineering. We leveraged FCA to elicit commonly co-occurring combinations of resource
properties as recurring resource styles (see Section 4.3.2).

2.3.3 User Controls for Navigating Documentation

To find relevant information, developers use different strategies, and leverage their knowl-
edge about where to look for information [141]. Software developers may also use cues such
as creation time and update time, when searching among multiple similar source code snip-
pets [200], or judge the potential value of text based on its styling to find the information
they need [158]. Prior work has studied how to support information seeking with explicit
cues for users, such as an indicator of the time cost of reading a resource [112], providing an
overview of all comments in a blog conversation [95] or of all pages in a document [88].

Allowing users to use categories to filter the information that they need through buttons
is known as faceted browsing. This browsing technique has been proposed as a means to
support users in finding the information they need effectively [38, 65, 128, 162, 273]. Käki
and Aula [116], and Käki [117] performed user studies in a laboratory and natural setting to
evaluate their tool Findex, which categorized search results that users could use to filter their
searches. The researchers reported that the categories were especially useful when search
engines were unable to retrieve relevant results due to general, vague search queries.

Liu and Holmes investigated two information representations in integrated development
environments (IDEs): (1) inline views where information is presented anchored to the source
code, and (2) isolated views where information is presented in a separate area, such as
a notification panel [147]. The authors conducted a survey with four tasks to determine
developers’ preferences for either view. They reported that for all four tasks, more than
50% of participants preferred inline views with an optional separate panel. Whereas some
participants appreciated the minimalistic nature of the inline view, others preferred having
access to additional information via a separate panel because they could choose to look at
it when they needed to. In our study from the fourth phase of our research, we also report

19

CHAPTER 2. BACKGROUND AND RELATED WORK

contradictory modality preferences between respondents (see Section 6.2.6), that can prove
challenging for documentation design.

Adenuga et al. proposed a “Living document” system that generates text summaries from
existing online articles based on an input topic prompt, and allows user to manipulate these
summaries, for example by inserting and removing sentences [5]. The authors evaluated the
system via a user study wherein 25 participants were asked to create summaries about a
pre-defined topic related to either science or sports, using the Living Document summarizer,
and share their insights on using the system. Nine participants indicated that the system
responded to their interactions adequately, thus giving them a sense of control. These ob-
servations show promise for user-controlled customizeable software documentation, allowing
technology users to manipulate a resource to their needs and preferences.

To cater to varying needs, documentation creators are forced to manage multiple formats
of software documentation [61] to avoid information inconsistency [7, 15]. With feedback
from users on their needs and preferences, they may even rewrite user manuals and reorga-
nizing the content, which are time and resource-intensive activities [190]. It is no surprise
then, that software documentation creation can be a tiresome process [6]. Instead, our find-
ings from the entirety of our research point towards the need for multimodal tutorials that
contain all relevant information in different presentation formats, allowing users to gather
the information they need, in the way that they prefer, without additional strain on docu-
mentation creators.

20

Chapter 3

How Programmers Find Software
Documentation

The effort required in manually filtering resources during navigation may be attributed
to the fact that there are many aspects that information seekers consider. Information
foraging theory suggests that users typically follow information scents that help identify the
information most suited to their needs [194]. A scent refers to the perception of the value
of information given by cues, such as citations or ratings. Information scents have proved
useful in foretelling user actions such as when a link to a web page is followed or from which
page a user will leave a website [195]. To gain a deeper understanding of this behaviour
for programmers seeking information online, it is necessary to observe their resource seeking
behaviour, and identify the rationale behind their navigation decisions.

We conducted a diary study with ten programmers to closely examine the kinds of re-
sources they refer to for different queries and how they navigate to that resource. Program-
mers search for information for many different reasons [77, 268], but we focused our study
on programmers who were in the process of learning a new technology.

Goal

The goal of this phase of the research was to understand how programmers make decisions
when navigating to a relevant resource.

Research Question

How can we represent the behaviour and rationale of programmers as they search for online
resources when learning a new technology?

Publication

The study on understanding how people search for software documentation online was pub-
lished in the article How Programmers Find Online Learning Resources [16].

21

CHAPTER 3. HOW PROGRAMMERS FIND SOFTWARE
DOCUMENTATION

Replication Package

The coded data set as well as the documents needed to replicate the study are available in
our online replication package: https://doi.org/10.5281/zenodo.7504510 [17].

3.1 Study Design

We conducted a diary and observational study we conducted, in which we closely examined
how programmers find learning resources online. Diary studies provide a balance between
observational studies in natural settings, observational studies in a lab environment, and
surveys [136]. Our data collection approach is modeled after previous self-reporting studies,
such as those conducted by Gallardo-Valencia and Sim [77] and Xie and Joo [270], that are
followed by a reflection interview in which participants may be asked to recreate some of
their searches during the study period.

We focus on programmers learning a new technology. We use the term programmer to
denote people who write code in any capacity. This population includes developers, who
are professionally employed to build and maintain software. We advertised our study on
university email lists, public software technology email groups, as well as social media chan-
nels, and required interested participants to email the author of this thesis. While recruiting
participants for the study, we ensured that they had prior programming experience, and
were just beginning to learn a technology new to them. We ensured that no participants
were learning only from in-person or online courses, pre-defined training material, or re-
search papers, where their searches would be guided by instructors or training material that
contained pre-defined learning objectives. We also enlisted only those participants whose
learning happened on a regular basis, i.e. at least daily for a minimum of three days a week,
so that the searches performed during the study would be part of a regular learning process,
instead of an exceptional occurrence.

3.1.1 Data Collection

Each participant filled a form with demographic questions (see Appendix A.1). We asked
each participant to fill in a diary entry for every search for information made online over
a period of five days, regarding the technology they were learning. We requested that
participants document every step in their search process. Figure 3.1 shows the diary template
we provided. Participants were requested to send their completed diary entry (or entries)
to us at the end of each study day. Thereby, we were able to immediately clarify with the
participants any ambiguity or request for more details in the diary entries, if necessary.

After each participant completed five study days, the author of this thesis conducted
an hour-long open-ended interview with the participant. The interviewer asked the partici-
pant to recreate two selected diary entries from the study week. While repeating the steps
in the entries, the interviewer encouraged the participant to describe their thought process
aloud [108]. We did this for two reasons. First, the interviewer could verify the accuracy of
the diary entries, clarify any ambiguities, and correct any mistakes in reporting during the

22

https://doi.org/10.5281/zenodo.7504510

CHAPTER 3. HOW PROGRAMMERS FIND SOFTWARE
DOCUMENTATION

Name:
Date:

What I am hoping to learn with my search:

I have searched for this information before: Y/N

Steps taken:

1. <Insert Step 1>
Thought that guided this step:

2. <Insert Step 2>
Thought that guided this step:

3. <Insert Step 3>
Thought that guided this step:

[Please add more steps here if necessary]

I found the information I needed: Y/N

Approx. amount of time taken to find information: <X>

Comments and Notes:

Figure 3.1: Diary entry template for each search session.

interview. Second, we could gather rich descriptions of the search sessions from the partic-
ipants, which were not present in the diary entries. Based on the course of the discussion,
the interviewer asked follow-up questions regarding the participant’s information seeking
process. After the interview, we asked the participant to complete a questionnaire about
their experience of looking for learning resource online and participating in the study (see
Appendix A.2). We offered a compensation of up to $100 CAD for completing the study.
The study is approved by the Research Ethics Board Office at McGill University.

Eleven participants took part in the study, providing a total of 131 diary entries. One
participant completed only two of the five study days, and submitted two diary entries. Since
we received less than three diary entries (on average, one per day for the minimum criteria
of learning three days a week) from this participant, we omitted their data in our study.
Table 3.1 describes our participants’ demographics.

Of the remaining 129 diary entries, we filtered out 14 entries from our data set because
they were not searches for technical information about the technology (e.g. one entry was
about industry perspectives of the technology), contained insufficient information about the
steps to reproduce entirely, or accessed only resources beyond the scope of the study (such

23

CHAPTER 3. HOW PROGRAMMERS FIND SOFTWARE
DOCUMENTATION

Table 3.1: Participant demographics for the diary study.

ID Occupation Prog.
Exp.
(Years)

Target Technology Learning
Phase

P2 Software Engineer 14 Elasticsearch-Logstash-Kibana (ELK) Initial
P3 Research Assistant 6 Data visualization in Python Intermediate
P4 Master’s Student 4 Genetic Algorithms for Automatic Soft-

ware Repair
Initial

P5 Research Assistant 6 Object Oriented Programming in C++ Intermediate
P6 Software Engineer 6 Selenium using Python Initial
P7 Undergaduate Student 2 C#/Unity Initial
P8 Master’s Student 9 Torch + Lua Intermediate
P9 Software Engineer & Mas-

ter’s Student
10 DRM and VA-API Initial

P10 Software Developer Trainee 5 SQL Initial
P11 Software Developer 6 Microservice Mesh with Envoy and Istio Initial

Prog. Exp. — Programming Experience
Learning Phase — “Initial” learning phase indicates 0-4 weeks of learning so far, “Intermediate” is any time beyond 4 weeks.

as research papers). Despite filtering these 14 entries, no participant had less than three
valid diary entries. Our final data set comprises of 115 diary entries from ten participants.

Our participant sample size follows that of prior diary and observational studies including
work done by Teevan et al. (15 participants) [241], Meng et al. (11 participants) [166], and
Chattopadhyay et al. (10 participants) [46]. We discuss qualitatively observations based on
the participants’ detailed experiences during this study. The sample size also ensured the
study could be completed in a realistic time period. Each participant’s study period is five
working days during which time we kept in touch with the participants, answering questions
they had about the study, reviewing and requesting for clarifications in diary entries when
necessary, and also performing iterations of coding of the entries. Analysing the transcripts
of the hour-long interviews for relevant insights and useful anecdotes took an entire day each.
Still, the 115 diary entries we collected from ten participants allowed us to make numerous
repeated observations of components and connections between them (see Section 3.5).

3.1.2 Data Analysis

We refined the data collection method as observations emerged in the analysis [135]. This
way, we were able to clarify ambiguities and ensure that the diary entries and interviews of
participants remained within the context of our study.

Figure 3.2 illustrates the process we followed to obtain our data set. The author of this
thesis open coded 25 diary entries from five participants, chosen in a stratified manner such
that the sample consisted of one entry from each day from each participant. The open coding
process included annotating the diary entry’s content for the information that the participant
needed (Question), and their thought process during the search session. We additionally
identified the web links to resources in the diary entries. As a result, we created 132 codes in

24

CHAPTER 3. HOW PROGRAMMERS FIND SOFTWARE
DOCUMENTATION

total. Upon analysing the created codes, we identified four emerging components, namely,
Preferences, Beliefs, Cues, and Impression Factors (see Section 3.2). The author then
revisited the 25 diary entries to verify the open coding, identify missed instances of the
components, and assign created codes to one of the five components Question, Preferences,
Beliefs, Cues, or Impression Factors. As the study progressed with new participants, the
author open coded the new diary entries and associated these codes to the appropriate
component.

To characterize each component, the author of this thesis performed card-sorting of all
the codes within each of Question, Preference, Cue, and Impression Factor. They created a
coding guide for the different categories that they observed. To alleviate the bias of a single
annotator, the authors’ supervisors (also the co-authors of the corresponding publication)
used this coding guide to categorize the codes, and we performed inter-rater reliability tests
on their categorization. The Cohen’s Kappa between the two latter authors for each com-
ponent was 0.91 for Questions, 0.74 for Preferences, 0.71 for Cues, and 0.79 for Impression

Factors indicating at least substantial agreement in all four cases [131]. All three authors
resolved the disagreements via a collective discussion.

For Resources, the three authors together discussed and grouped the instances based on
two dimensions: structure and source. We use the term instance, in the remainder of the
article, to refer to each individual quotation in the diary entries that have been coded. It
is possible that multiple instances have the same code if they are nearly identical in their
semantics. We did not categorize Beliefs further because they are described rarely by our
participants.

We noticed that in the diary entries, there existed meaningful connections between in-
stances of different components. For example, multiple Resources were accessed to answer
a single Question, and different Cues were used to select each of the Resources. Hence, for
each search session, we identified these connections. We named the relation between two
components according to the semantics of their connections.

We used statistical tests to investigate the association between different components in
our data set, for example whether the Authoritative Cue was predominantly used to access
Official documentation. We tested the null hypothesis that there is no association between
any two categories of components [233]. We discuss the details of the statistical analysis in
Section 3.5.

Threats to Validity

As part of our study, we required participants to self-report the steps they take in their
search. This poses a threat to internal validity because the steps may not be reported
exactly as they are performed. To verify the accuracy of reported steps, we performed an
interview at the end of the diary study in which we asked the participants to recreate two
search sessions. This way, we were able to determine that the reported entries are correct.
In only three entries participants made corrections to their diary entries, and in no case did
the corrections significantly impact our findings.

The analysis methodology involves manual annotation which are subjective. To alleviate

26

CHAPTER 3. HOW PROGRAMMERS FIND SOFTWARE
DOCUMENTATION

annotator bias and measure the subjectivity of the task, three annotators were involved
in categorizing our data set. We measured the agreement scores between them and found
that they had substantial agreement (see Section 3.1.2). To validate our coding guides, we
asked two external annotators who had little to no context about our study to annotate our
data set using the coding guides. They achieved agreement scores of 0.73 for Questions,
0.74 for Preferences, 0.73 for Cues, and 0.63 for Impression Factors, indicating substantial
agreement [131] for all four components.

We also face the threat to external validity, i.e. the generalizability of our observations to
other programmers who are learning a new technology. Our sampling of ten participants does
not allow a generalization from sample to population. This is inevitable for diary studies,
and our sample size is consistent with the norm for this research method. The implication
is that our observations may be limited to the behaviour of our participants. However, our
goal is not to make claims about general population behavior, but to theorize the factors
programmers think about as they access resources. Our findings are also supported by
robust statistics of the relations between components in our data set. Thus, we refrain from
making assumptions and comments about general behaviour of programmers. Furthermore,
our proposed model represents the possible aspects of a search session. The current set of
components may not be exhaustive, and can be augmented with additional components that
may be observed in future work.

3.2 Resource-Seeking Model

We propose a model for representing how programmers seek online resources when learning
a new technology. This model consists of six components: three need-oriented components
(Questions, Preferences, and Beliefs), and three resource-oriented components (Resources,
Cues, and Impression Factors). All the components, except for Beliefs, occur within the
scope of a single search session. A search session is a time window in which a programmer
searches for and navigates through one or more resources online to meet their information
needs. We illustrate the components and relations in the resource-seeking model in Figure 3.3
using excerpts from our data set. We provide more details about each of the components in
Sections 3.3 and Section 3.4 and the relations between them in Section 3.5.

3.2.1 Need-oriented Components

Since searching for a resource only arises when a programmer has some information they need
to find, every search session must contain at least one instance of a Question. A Question

refers to the search query that the programmer uses, and acts as the starting point as they
begin their search.

Preferences refer to a programmer’s pre-existing expectations or requirements of the
resource they are looking for. In their search, a programmer may specifically look for an
article on the blogging website Medium. A Preference expands a Question by providing
more context for the search.

27

CHAPTER 3. HOW PROGRAMMERS FIND SOFTWARE
DOCUMENTATION

Table 3.2: Question categories.

Category Description Example #

HowTo Questions that ask how to achieve a particular func-
tionality. This also includes how to navigate the devel-
opment environment, for e.g. to build an application.
This does not include how to fix errors, which should be
categorized as Debug.

How to get the dot
product between two
word tensors using
nn.dotproduct?

55

Conceptual Questions related to the conceptual understanding of
technology and its components. This includes whether
a component exists, what a component is, its syntax,
what the difference between some components are, and
how multiple technologies interact.

What is “shallow
copy”?

53

Document
Type

Questions related to finding a useful resource for learn-
ing or determining what information a particular re-
source or kind of resource provides. The question in-
cludes looking for a particular resource, or a kind of
resource. It also includes questions about what informa-
tion a particular resource provides about the technology.

What is a tutorial I
can use to learn about
plotly?

25

Debug Questions related to why an error occurs or how to fix
it. This includes trying to understand what an error
message means.

Why does the stale
element reference
error occur?

14

Misc. Questions that can not be exclusively grouped into one
of the other categories, or does not contain enough con-
text to identify the appropriate category.

What are some best
practices when coding
in Python in the
Selenium framework?

4

— The number of instances of each category in our data set.

A Belief is a pre-existing opinion about certain resource or type of resource. It explains
a Preference, as it justifies the reason the preference arises. A programmer may explain
that they want to watch a video because “[...] a Youtube video [is] easier to follow than a textual post

that might contain more jargon I don’t follow.”

3.2.2 Resource-oriented Components

Within a search session, programmers access at least one Resource to find the information
they need, making it the other essential component in addition to Questions. A Resource

refers to a learning resource that is accessed by a programmer to find the information they
need. A programmer may visit multiple Resources within a single search session. We define
a typed relation between instances of these two essential components: a Resource is accessed
for a Question. For example, a programmer may search for “What does the valgrind error summary

29

CHAPTER 3. HOW PROGRAMMERS FIND SOFTWARE
DOCUMENTATION

mean?” To answer this question, a programmer may click on a video (the Resource) from a
search results page.

When presented with links and/or previews of resources, programmers use Cues, i.e.
hints or characteristics of the resources, to make decisions about whether to access them.
For example, a programmer may click on a resource because “[...] it would be the best source, since

it is from the original makers of the [target programming] language”. Hence, a particular Cue is used to
select a Resource.

The Impression Factor of a resource is the aspect of the accessed resource that a pro-
grammer uses to evaluate the resource. A Resource is evaluated through the Impression

Factor. For example, a programmer may use the date of the last update of a resource to
assess whether it might be out of date. The Impression Factor also plays an important role
in the feedback loop for the search process. It is used to refine the Question or is used to
specify a new Preference as part of query refinement. For example, a programmer, upon
realizing their query is returning only scientific papers, may choose to add “Medium” to the
search query, and subsequently look only for resources hosted on the Medium website.

An Impression Factor can also be used to inspire a new Cue when searching for more
resources. After finding a Resource that “skipped a lot of basic information”, a programmer may
be inspired to click the next Resource if it from a website that hosts “entry-level tutorials for

technologies”. An Impression Factor may also help develop a Belief that influences subsequent
search sessions, if a programmer forms a strong impression of a Resource.

3.3 Need-Oriented Components

We consider Questions, Preferences, and Beliefs as need-oriented because they involve
aspects related to what the programmer is searching for.

3.3.1 QUESTIONs

We organized Questions into four categories (see Table 3.2). The most frequent (55 of
151) instances we observed are task-oriented HowTos, while the least frequent (4 of 151)
instances are Debug questions. Both these categories have been identified in prior work by
Rao et al. [204] and Gallardo-Valencia and Sim [77] as types of information need.

The Conceptual Question takes four different forms. Participants asked what is ques-
tions when they wanted to understand the fundamental knowledge about a particular com-
ponent, e.g. “What are graph objects (component) in plotly (library)?” [P3]. Some participants also
wanted to understand how a certain concept could be applied in a concrete context. For
example, P4 searched for “How is genetic programming applied to automatic software repair?”. Four of
the participants had questions about the difference between two components or technologies,
such as “What is the difference between softmax and softmin functions?” [P8]. P6 had four syntax related
questions like “What is the syntax for do-while loop in Python?”.

The Document Type category refers to a search intended to find a particular resource.
In some cases, the participants knew exactly the website or resource that they were looking

30

CHAPTER 3. HOW PROGRAMMERS FIND SOFTWARE
DOCUMENTATION

Table 3.3: Preference categories.

Category Description Example #

Resource
Type

Specifying the resource or kind of resource needed. Looking for a Github
resource

27

Information
Style

Specifying that the information should be structured or
presented in a particular manner. This includes organi-
zation, level of granularity, depth, recency of informa-
tion, and if code or data examples are wanted.

Wants a resource that
provides a high-level
overview

25

— The number of instances of each category in our data set.

for: “What information about Genetic programming for automatic software repair can be found on blogging

website Medium?” [P4]. In other cases, the participants only had an idea of the kind of resource
they were looking for. For example, “What is a tutorial I can use to learn about plotly?” [P3]. We
observed that the Document Type searches occurred in two scenarios. Participants began a
search session with a general query for useful resources. When searching for “What are some

tutorials on the Elastic stack?”, P2 mentioned they “wanted to see what’s out there”. In the second case,
participants specified the type of resource they wanted in the middle of a search session,
normally after an unsuccessful search for information. They recounted past experiences
and narrowed their search within familiar resources. For example, when searching “Genetic
programming Automatic Software Repair” in the Youtube search box, P4 mentioned “After

trying my luck with Google search, I wanted to see if there were any resources on Youtube”.

3.3.2 PREFERENCEs

We elicit two categories of Preferences (see Table 3.3). Resource Type indicates the spec-
ification of a particular resource or kind of resource. P2 specified in one search session that
they “wanted in-depth API documentation” [P2], as opposed to resources that market the visualiza-
tions created using the technology. Information Style refers to the specification of the
characteristics of the information. For example, P2 said in another entry: “I found a lot of useful

search results ranging from specific API fields and tactics to more high-level overviews. Since I’m still learning,

I went for the higher level overviews.”. Both categories of Preferences are nearly equally frequent
in our dataset (27 and 25, respectively).

The Preference plays an important role in the searching process because it describes
the bias that the programmer has when looking for information. For example, a participant
looking for a particular resource type may have entirely ignored other resource types, despite
them containing the information they needed: “I found two results that looked promising as they were

both related to torch and looked like documentation rather than Q&A by public. The remaining ones were on

Stack Overflow which I ignored since I want to rely on the doc.” [P8]

Together, Questions and Preferences constitute the complete picture of what a partici-
pant is looking for, thus indicating the information need.

31

CHAPTER 3. HOW PROGRAMMERS FIND SOFTWARE
DOCUMENTATION

3.3.3 BELIEFs

A Belief justifies the existence of a certain Preference, by explaining why the Preference

exists. P4 explained their preference of a video as “I find it easier to follow along; I feel like I can

process information faster and I also have the option sometimes to just speed up the video faster if it’s going

slowly.” In another search session, P4 was specifically looking for blog articles on the website
Medium because “I find it a good place for quick reads that aren’t very deep into the area”. Thus, Beliefs
do not guarantee that preferences will always remain the same, because participants may
change their preferences between or within a search session.

We recorded 14 instances of Beliefs in our data set. In all cases, the Belief is based
on prior experience of the resource, and/or a general notion of what that resource would
provide. For example, P2 searched for ‘roadmap.sh’: “There’s a really good resource I already know

about called roadmap.sh. It’s updated frequently.” [P2].

3.4 Resource-Oriented Components

Resources, Cues, and Impression Factors are resource-oriented components because they are
anchored to the resources that programmers access during their search.

3.4.1 RESOURCEs

Table 3.4 shows the types of resources that we observed in our study. Each instance of a
resource access is characterized across two distinct aspects, i.e. structure (seven categories),
and source (three categories).

With respect to the structural aspect, we observed that 45 resources accessed are tradi-
tional types of software documentation like Reference documentation and Tutorials, yet
the majority of instances are unconventional learning resources. A total of 51 instances of
resource accesses were to Forums, 41 of which are Stack Overflow posts. The popularity
of Stack Overflow can be attributed to two reasons. First, Stack Overflow is often placed
prominently in the first page of the search results page when searching for documentation by
Google [246], biasing users to click on this resource: “Whenever I search for any results in the domain

software development, I tend to see more of [particular] resources, for example, Stackoverflow comes first.” [P10]

Second, Stack Overflow acts as a hub for programmers: “As a practice, I always tend to open the

first search result and most of the time it happens to be from Stack Overflow, and as we know, Stack Overflow

is the go-to place for us [programmers].” [P6].
Thirty-four of the resource accesses were to Indexes, which are directory pages that

contain links to other useful resources. Of these, there are four cases where the participants
found the information that they needed within the search engine results page, usually because
of some keyword present in the result snippet. “Simple problem, didn’t even click on a link. The minute

I saw to_string I knew how to use it because I’ve used it a few times before.” [P5] In eleven cases, participants
used the search results to identify that they were not going to find the information they
needed, and consequently either refined or aborted their search.

Articles are the resources that do not follow the structure of a tutorial, a reference

32

https://medium.com

CHAPTER 3. HOW PROGRAMMERS FIND SOFTWARE
DOCUMENTATION

Table 3.4: Resource categories.

Category Description Example #

Structure-based

Forum A post on Stack Overflow or an-
other discussion forum

stackoverflow.com/questions/9695329/c-
how-to-round-a-double-to-an-int

51

Tutorial An instructive document that
generally provides steps to follow
to achieve a particular task

medium.com/@deependra.ariyadewa/envoy-
in-kubernetes-373d5621e243

37

Indexes A directory, registry or set of
search results

virusu.github.io/3D_kibana_charts_vis/ 35

Article A Wikipedia entry, arbitrary ar-
ticle, or textbook page.

en.wikipedia.org/wiki/Genetic_

improvement_(computer_science)

33

Project Manage-
ment Webpage

A page in a project management
(e.g. Github) repository, includ-
ing an issue discussion thread

github.com/dzharii/awesome-elasticsearch 29

Video A video (typically found via
Youtube search)

youtu.be/6P1ivCvofuk 11

Reference API reference documentation intel.github.io/libva/group__api__core.html 8

Misc. A resource that can not clearly be
differentiated as one of the above
categories

www.cs.swarthmore.edu/~kwebb/cs31/

s14/stackframe.pdf

11

Source-based

Official Resource hosted on a technology’s
official website or by the company
that created or is managing the
technology

logz.io/blog/elk-stack-raspberry-pi/ 82

Third-party Resource is created or hosted by a
single party that is not the creator

www.geeksforgeeks.org/this-pointer-in-c/ 65

Crowd-Sourced Resource contains content that is
crowd-sourced

lua-users.org/wiki/TablesTutorial 52

Misc. The source of the resource is un-
known or multiple (in case of
search results)

Search Results 16

— The number of instances of each category in our data set.

33

https://stackoverflow.com/questions/9695329/c-how-to-round-a-double-to-an-int
https://stackoverflow.com/questions/9695329/c-how-to-round-a-double-to-an-int
https://medium.com/@deependra.ariyadewa/envoy-in-kubernetes-373d5621e243
https://medium.com/@deependra.ariyadewa/envoy-in-kubernetes-373d5621e243
https://virusu.github.io/3D_kibana_charts_vis/
en.wikipedia.org/wiki/Genetic_improvement_(computer_science)
en.wikipedia.org/wiki/Genetic_improvement_(computer_science)
https://github.com/dzharii/awesome-elasticsearch
https://youtu.be/6P1ivCvofuk
https://intel.github.io/libva/group__api__core.html
www.cs.swarthmore.edu/~kwebb/cs31/s14/stackframe.pdf
www.cs.swarthmore.edu/~kwebb/cs31/s14/stackframe.pdf
https://logz.io/blog/elk-stack-raspberry-pi/
https://www.geeksforgeeks.org/this-pointer-in-c/
https://lua-users.org/wiki/TablesTutorial

CHAPTER 3. HOW PROGRAMMERS FIND SOFTWARE
DOCUMENTATION

documentation or a discussion forum, e.g. a Wikipedia or textbook page. We found 33
instances of Article accesses in our study.

P8 made the most accesses to the Project Management Webpage type of Resources

with 15 accesses to Github repository pages. This was because the technology that the
participant was learning, torch, as well as its documentation, are both hosted on the project
management platform. Despite making only five Github accesses, most of P9’s searches were
spent on Github. In this case, the technology’s documentation was mainly accessible via
source code comments. As P9 described, “it was discouraging to see that upstream calls auto-generated

documentation from the source their ‘official documentation’, [...] the actual source comments in the files for

which documentation is not auto-generated seem to have quite a bit of information.” [P9] We leave the study of
source code comments to future work because it is stored in resources that are not primarily
in a human speech language. We also observed participants accessing Videos : “It [watching

videos] is in general in my learning process. Even if it’s learning a new programming language sometimes, I like

watching a brief video.” [P4]

In the source-based categorization, the majority (81) of resources are from Official

sources, i.e. from the developers of the technology themselves or associated companies. Ac-
cesses to Third-party (65) and Crowd-sourced (52) documentation are nearly the same
in our data set.

3.4.2 CUEs

We elicit five types of Cues in our data set (see Table 3.5). The most frequent type with
66 instances is Recommended which indicates some implicit or explicit endorsement by
other users, resources, or the search engine that this resource is useful. P7 explained “I clicked

on this [first link] first because it was recommended by Google, so they had a little box with an excerpt of the

information. This made me think the link would likely have the correct information”. P6 echoes this by
simply stating “I have realized that the first result tends to meet my expectations”. We also observed
that some participants opened multiple resources in different tabs and briefly look for cues
to determine which resource to access. For example, the number of upvotes a resource has
is usually not displayed in the search results, but within the resource page. P4 stated “I find

the high like/dislike ratio a good indicator of the video being good and giving information correctly”.
The category Requirements indicates that the resource seems to fulfil the participant’s

criteria. For example, after entering a query looking specifically for Medium blog articles,
P4 “clicked on the second link that appeared, as I saw it was from medium.com”. Familiarity with a
resource is also a Cue that the participants used. In most cases, the participants recalled
accessing the resource or similar resources and used their prior experience to determine if the
resource could be useful. For example, “I clicked on this because I have watched videos by this creator

before and liked his teaching style.” [P7] In two cases, P8 clicked on the resource simply because they
had clicked on it before, even though they did not remember their previous experience. P8
said “The second result, I opened anyway since I saw that I had visited this page before and I was curious to

know if there was something interesting there.”

Participants clicked on resources because they came from an Authoritative source.
P2 explained: “Since it is recommended by the elastic devs themselves, it is hard to go wrong.” The

34

CHAPTER 3. HOW PROGRAMMERS FIND SOFTWARE
DOCUMENTATION

Table 3.5: Cue categories.

Category Description Example #

Recommended The resource is chosen because it is among one of the top
four search results, is featured by the search engine, has
high number of upvotes, claps, likes, etc., is explicitly
recommended by users, mentioned in another resource,
or is generally popular or well-known.

Google expands the
blurb so must be
relevant

66

Requirements The resource is the exact or similar resource wanted, or
contains the exact characteristics needed. For e.g., if
the resource is up to date, is in the correct or related
domain, is the correct level of granularity, or its infor-
mation is presented, styled, or formatted in a manner
that is needed or preferred. If it is mentioned that this
resource is accessed because it was useful in the past, it
should be categorized as Familiarity instead.

[Resource]
Provides a formal
introduction with
historic
information
(wanted)

53

Familiarity The participant has some familiarity with the resource
or the content that it contains, generally prefers it, or
has used the resource in the past and has had a positive
impression.

Is a Stack Overflow
link (preferred for
technical
questions)

44

Authoritative The source of the resource seems to be a credible or re-
puted authority. This includes cases where the resource
is from the developers of the technology themselves.

Resource is a
reputed training
website

35

Keywords The search result title/snippet or resource contains key-
words that were present in the query, or are relevant to
their question.

Resource title
seems closest to
the error

31

Misc. Cues that can not be exclusively grouped into one of the
other categories, or does not contain enough context to
identify the appropriate category.

Similar to what the
participant
intended to search
for next

17

— The number of instances of each category in our data set.

35

CHAPTER 3. HOW PROGRAMMERS FIND SOFTWARE
DOCUMENTATION

comments from P3 and P8 echo the same point: “Since the url is plotly.com, it’s probably credible and

good information” [P3], “I chose the official doc because I thought this would be more reliable.” [P8] However,
reliability is not the only reason to choose a resource by an authoritative source. P2 explained
“[...] I like to get started on the software page to make sure I see updates to API” indicating such resources
are generally up-to-date.

The Keyword category describes when participants assessed words in the search results
to determine whether it could be a useful resource. When searching for the difference between
the softmax and softmin functions, P8 clicked on the third search result because it “looked more

promising since the title and description contained both words softmax and softmin.” [P8] In one instance of
searching how two technologies interact, P2 used the search term “kibana react visualization”.
Of the search results, they said: “I would have expected an actual kibana-react app to show up higher

in the search results...”. For P6, this expectation is so high that when clicking on the Stack
Overflow post that is the first result, they said: “I do not usually read the question because I trust

Google to give me the exact answer. I think it takes practice for us to get the right result as well from having to

type the keywords.” Participants felt they need not consciously look for matching keywords in
search results.

We noted cases where a participant used multiple cues to determine whether to follow a
link: “I clicked on the second one because I hope that since it is listed second, it might be related [to the query]

and also since it is from official Pytorch doc.” [P7] In this example, the participant considered that
the resource is both Recommended and Authoritative. Sometimes, participants were unsure
which resources may prove useful, because of the lack of clear Cues. P10 explained their
strategy in one such case: “I open many links [from the search results page] in all new tabs. I do it for four

or five links... I usually start from the first link.” [P10]

3.4.3 IMPRESSION FACTORs

We grouped Impression Factors into three categories based on what the participants used
to form their impression about the resource (see Table 3.6).

In the majority (64 of 117) of cases, participants evaluated the Content of the resource,
making comments about its quality such as whether the information was sufficiently detailed,
beginner-friendly, or up-to-date. For example, P2 noted about a resource that “this was from

2017, so specs may have changed with more recent Raspberry Pis.” Participants also mentioned that
resources were jargon-heavy or too advanced. P8 found that the Envoy official documen-
tation “would require [readers to have] intermediate/advance knowledge of DevOps in order to quickly grasp

the information”. The comments on content can be useful for resource creators to improve the
information presented in it and make it more accessible to readers.

Many participants made comments about the Pertinence of the resource to their needs,
including whether they found the answer to their specific question. P9 was looking for in-
formation about how a particular encoder works when they landed on a seemingly relevant
project “ffvademo”. However, they said “I read the README on the repository and saw that ffvademo

is actually a decoder, not an encoder”. Essentially, this type of Impression Factor is about the
alignment with the programmers’ information need. When trying to find out how to deter-
mine whether a word embedding contains a particular word, P8 accessed a Stack Overflow

36

CHAPTER 3. HOW PROGRAMMERS FIND SOFTWARE
DOCUMENTATION

Table 3.6: Impression Factor categories.

Category Description Example #

Content Comments related to the nature or quality of the infor-
mation contained

Information in
resource is not
friendly to
Windows-users

64

Pertinence Comments that are about the specific context, such as
a target domain, use-case or question

Too early in learning
[process] for this
resource to be useful

35

Structure Comments related to the organization of the resource Contains good demo
code

18

— The number of instances of each category in our data set.

resource and commented about it: “The answers talk about how embedding layers work, which I am not

interested in”.
Participants also assessed the Structure of a resource, noting the presentation of content

it contained and the way it was organized: “This website was very helpful- it had different sub topics on

the left and there were many examples that helped me understand the concepts well” [P10]. Structure-related
comments can be useful for resource creators to reflect upon and improve the organization
based design of the resource.

3.5 Relations Between Components

We identified nine unique relations among the six components in the resource-seeking model.
Five of these relations are infrequent: explains, inspires, is used to refine, is used to specify,
and develops. We discuss these relations qualitatively in Section 3.5.4. For the four frequent
relations, i.e. expands, is accessed for, is used to select, and is evaluated through, we noted
that some instances were more commonly occurring than others. For example, participants
often referred to Forums to answer their HowTo Questions. To quantitatively analyze the
coincidence of the relations we adopted the Fisher’s Exact Test.

Fisher’s Exact Test is performed on categorical variables where the frequencies of co-
occurrence between categories may be below five, and was originally proposed for a 2x2
matrix. Because our contingency tables are larger than 2x2, i.e. the number of categories
of some components are more than two, we approximated the p-value using 200000 Monte
Carlo simulations [164].

Since three of the four relations to be statistically tested involve the Resource component,
we performed two tests per relations, i.e. one for each Resource aspect: Structure and Source.
Thus, we performed a total of seven statistical tests to determine if there is a significant
association among the components in our model, one for each of the relations shown via
dark grey arrows in Figure 3.4. To mitigate the Type-I error during multiple comparison

37

CHAPTER 3. HOW PROGRAMMERS FIND SOFTWARE
DOCUMENTATION

Table 3.7: Bonferroni-adjusted p-values calculated by Fisher’s Exact test using 200000 Monte
Carlo simulations of connections between each pair of model components.

Question Cue Impression Factor

Preference 1.0472 - -
Resource Structure 3.5e-5 3.5e-5 0.4064
Resource Source 3.5e-5 3.5e-5 0.0022

The numbers in bold indicate statistically significant relations.

12 5 6 1

7 13 5 2

1

0

25

27

5219 18 11 3 1 52

Conceptual
Document

Type HowTo Debug Misc Total

Total

Style

Type

Question

P
re

fe
re

n
c

e

Figure 3.5: Contingency table of expands relation between Preferences and Questions.

Residuals are the normalized difference between the expected and observed frequencies of the
relations, and reflect the effect size for the relation between two components in our model.
Following common practice [224], if a standardized residual is greater than +2, we consider
the effect to be meaningful and the associated relation to be “favored” by our participants.
For example, we say that participants favored Forums to answer HowTo Questions based on
the residuals, to indicate that the relationship “Forums is accessed for HowTos” occurs more
than expected by chance in our data set. This does not necessarily mean that participants
consciously expressed a favoritism for using Forums to answer HowTos.

When a residual is lesser than -2, we interpret the corresponding association as being
“disfavored”. We examine the favored residuals (stated in bold) and contingency tables of
associated components in more detail below.

3.5.1 Resource is accessed for Question

Figure 3.6 illustrates which Resource is accessed for what kind of Question.
Our analysis reveals that participants favored Articles for Conceptual Questions.

For HowTos, participants favored Forums and Tutorials. Forums provide flexibility
to users to search for information within the exact context needed: “I feel I trust this (Stack

Overflow) website, so I hope to find the answer [here]. If I don’t find the answer, there is an option for me to ask

people for help. That gives me more leverage.” [P10] Dondio and Shaheen showed that Stack Overflow
can be as effective as a traditional textbook and course-based instruction for students to
gain practical knowledge [59].

Participants also favored Forums for Debugging Questions. P8 said of their
general search behavior: “If it’s a bug or an issue that’s not specifically working, I tend to go to Stack

Overflow.”.
That participants favored training resources like Tutorials to answer task-

39

CHAPTER 3. HOW PROGRAMMERS FIND SOFTWARE
DOCUMENTATION

5 2 1 0

3 5 2 1

8 9 7 4

22 2 7 0

18 6 11 0

8 18 6 2

10 28 0 12

0

0

1

2

0

3

1

11 4 5 0 1

8

11

29

33

35

37

51

11

21575 74 39 19 8 215

Conceptual HowTo
Document

Type Debug Misc Total

Total

Misc

Reference

Video

Project
Management

Webpage

Article

Indexes

Tutorial

Forum

Question
R

e
s

o
u

rc
e

 S
tr

u
c

tu
re

11 29 0 11

18 23 15 3

38 17 21 5

1

6

1

08 5 3 0 0

52

65

82

16

21575 74 39 19 8 215

Conceptual HowTo Type Debug Misc Total

Total

Misc

Crowd−
sourced

Third−
party

Official

R
e
s
o

u
rc

e
 S

o
u

rc
e

Residuals

-Inf Inf2-2 0

Figure 3.6: Adjusted Standardized Residuals and Contingency table for the is accessed for
relation between Resources and Questions. The values in each cell represent the frequency
of connections between the pair of categories. Non-colored cells indicate that they were not
included in the statistical analysis.

oriented HowTo questions, seems an intuitive result. Training materials have evolved to
prioritize procedural information [43], i.e. information that directly supports actions, based
on prior work that found software users use prior knowledge and procedures stated in text
to perform tasks [153].

Participants favored Indexes for Document Type Questions. Ten of these eleven
cases were to either home pages of a website (e.g. freedesktop.org) or directory pages of
a particular topic on the website (e.g. www.elastic.co/demos). When participants used
search results as a resource, it was useful to assess the pertinence of search results. For
example, P2 looked at the search results and found that none were dated post-2017, and so
they did not continue searching further. In another such case, P9 determined they would
not easily find the resources containing the information they needed because “All the results

looked auto generated (they had paths for page names)”, and so aborted their search soon after.

40

freedesktop.org
www.elastic.co/demos

CHAPTER 3. HOW PROGRAMMERS FIND SOFTWARE
DOCUMENTATION

2 0 1 5 0

3 9 1 1 0

1 6 2 8 0

3 8 4 5 5

13 9 6 6 6

18 14 6 6 5

21 4 24 0 13

1

0

2

6

1

2

5

05 3 0 4 2 0

9

14

19

31

41

51

67

14

24666 53 44 35 31 17 246

Recommended Requirements Familiarity Authoritative Keywords Misc Total

Total

Misc

Reference

Video

Indexes

Project
Management

Webpage

Article

Tutorial

Forum

Cue

R
e

s
o

u
rc

e
 S

tr
u

c
tu

re

20 8 29 0 14

34 20 8 6 10

12 24 7 29 7

4

4

9

00 1 0 0 0 0

75

82

88

1

24666 53 44 35 31 17 246Total

Misc

Crowd−
sourced

Third−
party

Official

R
e
s
o

u
rc

e
 S

o
u

rc
e

Residuals

-Inf Inf2-2 0

Figure 3.7: Adjusted Standardized Residuals and Contingency table for is used to select
relation between Resources and Cues. The values in each cell represent the frequency of
connections between the pair of categories. Non-colored cells indicate that they were not
included in the statistical analysis.

Across the source dimension, Official Resources were favored by participants for
Conceptual and Document Type Questions. Whereas, participants favored Crowd-

sourced Resources similarly to Forums .

3.5.2 Cue is used to select Resource

The reason why a particular resource is accessed varies for different resources (see Figure 3.7).
Participants favored the Requirements Cue when selecting Videos . This can be as
broad as believing that watching a video would be better than reading text: “I figured I would

find a youtube video on it more easy to follow than a textual post that might contain more jargon I don’t

follow.” [P5], or as specific as that the video is short: “Clicked on this because its short length compared

to others.” [P7].

41

CHAPTER 3. HOW PROGRAMMERS FIND SOFTWARE
DOCUMENTATION

Familiarity was favored when selecting Forums and similar Crowd-sourced

Resources. P10 points out: “It has come over time that I have the bias that these [W3Resource, Stack

Overflow] websites are good, because I find many answers in them.”

Participants favored Keywords when accessing Forums : “I clicked on this first because

it had the same wording as what I was looking for. So it made me think that it would be a good place to find

the answer to my question.” [P7]

The Authoritative Cue was favored for selecting Reference documentation and
Indexes by participants. The former link is intuitive since reference documentation gen-
erally accompanies the technology as official documentation. However the latter link is less
obvious and is likely because when accessing a home page of a technology or documentation,
participants consider the credibility of the source of the web sites they are clicking on.

Participants favored the Recommended Cue for Third-party Resources. A
majority of such connections occur because the Resource was featured by the search engine.
This shows that participants strongly trust a search engine’s ranking algorithm to suggest a
pertinent Resource.

3.5.3 Resource is evaluated through Impression Factor

Figure 3.8 shows the contingency tables for the is evaluated through relation between Re-

sources and Impression Factors. While Resource Source is associated with Impression Fac-

tor, Resource Structure is not.
Participants favored evaluating Official Resources based on their Content .

This may be because a certain level of quality is expected of a resource if it is from an
authoritative source, especially if the original technology is well presented: “MITRE is a pretty

detailed framework so I wasn’t surprised that their info [in the official documentation] was in-depth and dense” [P2].
Evaluating Pertinence to participants’ context was favored for Crowd-sourced

Resources. While in some cases, participants were able to find the information they needed,
in others, they faced various issues while looking through Crowd-sourced resources. This
included not finding posts that ask the same questions they have and not finding any answers
to a post. Additionally, despite a lot of information available online, participants found it
difficult to find the answer to their exact questions. P5 explained after unsuccessfully looking
through three resources: “I felt like I was looking for an answer that was obvious, but I was only seeing

questions that I wasn’t asking”.

3.5.4 Infrequent Relations

We observed an additional five relations that each occurred less than fifteen times. Except
for the relation, Belief explains Preference, the other four relations involve a change in
thought process or action based on the impression of a resource.

Belief
explains
−−−−−→ Preference

In fourteen cases, we observed participants describing the reason for their Preference based
on an existing Belief. The Belief is usually developed from prior search experiences. In a

42

CHAPTER 3. HOW PROGRAMMERS FIND SOFTWARE
DOCUMENTATION

1 1 0

3 1 2

5 11 0

9 5 3

15 6 2

16 4 5

15 5 6

0 2 0

2

6

16

17

23

25

26

2

11711764 35 18

Content Pertinence Structure Total

Total

Misc

Reference

Video

Forum

Project
Management

Webpage

Indexes

Article

Tutorial

Impression Factor

R
e

s
o

u
rc

e
 S

tr
u

c
tu

re

5 13 0

20 8 9

32 8 8

7 6 1

18

37

48

14

11711764 35 18Total

Misc

Crowd−
sourced

Third−
party

Official

R
e
s
o

u
rc

e
 S

o
u

rc
e

Residuals

-Inf Inf2-2 0

Figure 3.8: Contingency table of is evaluated through relation between Resources and Im-

pression Factors.

majority of cases, a Belief was used to explain a Preference on the Resource Type, either
describing the specific website or a format. P4 explained their Preference for articles hosted
on the website ‘Medium’: “I have found some very useful articles in Medium before, when learning about

a certain area, and thought it would be a good resource again to learn something new. It usually has a lot of

visual examples and explains things quite well.” In two cases, the Belief explained a Preference on
the Content Style, once while looking for an “easy explanation” and the other when looking for
“code examples”.

Impression Factor
inspires
−−−−−→ Cue

We observed seven instances in which an Impression Factor explicitly inspired a new Cue.
When a participant initially browses through resources, they may use some Cue to assess
the pertinence of a resource. After clicking on a resource and evaluating it, they may realize
that there is an additional criterion they need, and employ it as a future Cue when searching

43

CHAPTER 3. HOW PROGRAMMERS FIND SOFTWARE
DOCUMENTATION

for more resources. This relation occurs between accesses of multiple resources for the same
question within a single search session.

When searching for how to deploy Envoy in Kubernetes, P11 landed on the first tutorial
in the search results. However, upon reading through it, they discovered that “the author

skipped a lot of basic information ... because he assumes people who read it will have advanced knowledge [of]

and familiarity with Kubernetes”. The participant proceeded to another resource, a blog hosted
on ‘Medium’, stating that “Usually Medium contains a lot of entry-level tutorials for any technology”.
Thus their new Cue of looking for a beginner tutorial was inspired by their impression of
the previous resource. Two other instances of the relation involved finding a resource too
advanced, and thus using a new Cue to find a resource that is better adapted to beginners.

Impression Factor
is used to refine
−−−−−−−−−−→ Question

In eight instances, participants refined their search query as a direct consequence of assessing
a Resource as not suitable to their needs. This relation occurs within a single search session
but between two iterations of searching for similar information.

Most instances of this relation resulted from the unsatisfactory outcome using a first
search query. In two cases, participants made the assessment on the first few search results:
“None of the first links looked like it might provide an answer, so I searched again.” [P5] In these cases, the
original query changed only by one or two terms. In other cases, participants realized the
resources did not have the exact information they needed. After finding a Stack Overflow
link with a question that did not exactly match the P5’s Question about a particular line
in a “valgrind” error summary, the participant realized their query may be too specific. They
reframed their search query to look for general information about the error message, instead.
Query refinement may also involve moving search platforms, as in one instance where the
participant switched from searching on Google to on Youtube directly.

Impression Factor
is used to specify
−−−−−−−−−−−→ Preference

In addition to refining a question, in three instances, participants specified a new Preference

based on their impression of a Resource. In two of these cases, the motivation to refine the
query was an incorrect Resource type of the resources. P4 scrolled through search results
after searching for “Genetic programming Automatic Software Repair” but did not find a
web page that was not a scientific paper. They refined their query, and additionally stated
the specific resource they would be looking for going forward: “As I didn’t want to read a scientific

study as an introduction, I tried my luck on finding it on Medium, as I find it a good place to have quick reads

that aren’t very deep into the area.” [P4]

In the third instance of this relation, a participant introduced a new Content Style Pref-

erence, after reading a Stack Overflow post that did not provide a “precise understanding” [P5] of
“shallow copying”. P5 subsequently stated that they were looking for “a nice and easy explanation

of a concept”.

44

CHAPTER 3. HOW PROGRAMMERS FIND SOFTWARE
DOCUMENTATION

Impression Factor
develops
−−−−−→ Belief

An Impression Factor can also play an integral role in influencing future searches for infor-
mation. For example, a positive impression of a resource can result in a searcher returning
to this resource during future searches. In one search session, P2 came across a guide hosted
on https://logz.io, and found it to be an “exceptional” tutorial. They said, “the high quality of

Logz.io search results, especially for this query, will probably make me look them up first for future learning in

DevOps” [P5]. Although, we did not observe the conversion of the Impression Factor into a
Belief within our limited study days (and thus the connection does not exist in our data
set), P2’s statement suggests the potential for an Impression Factor to form the foundation
for a new Belief.

3.6 Implications

Our resource-seeking model captures the different factors that play a role in the thought
process of programmers as they navigate to a resource that could answer their question. It
supports and complements prior work on finding pertinent information in software documen-
tation (see Section 2.1). Our observations of the types of Preferences, Cues and Impression

Factors and how they relate to the Questions and Resources involved in a search session
provide insight to resource creators on how to improve the appeal of a resource for their
target audience. Our results also have implications for the design of search tools and can
help programmers improve their on-line search techniques: “I noticed some patterns that I usually

follow and I thought about how I can improve them.” [P8] We discuss important observations and their
implications from our study below.

Preferences, potentially backed by pre-existing Beliefs, are used to elabo-
rate criteria for searching for resources to answer Questions. We observed that
participants sometimes had expectations of the resources, prior to their search, and justified
these expectations by their prior experiences. For example, P2 searched for “awesome ELK

stack github”, explaining that “My experience with the awesome lists is that they’re both open source and

up to date”. In our model, we formalize this behavior with the two relations: Belief explains
Preference which expands Question. Equipped with the knowledge that programmers could
have preferences during resource seeking, resource creators can study the behavior of target
audiences to gain insight about their expectations, and thus make conscious decisions about
whether to satisfy identified expectations and how to do so. P2 and P11 mentioned that
resources did not provide sufficient hands-on learning material such as practice questions,
and their content was not well supported by diagrams, respectively. Upon identifying this
preference of Content Style, resource creators can consider the trade-offs of adding these
types of content in the resources to increase appeal [24]. Search tools can be enhanced by al-
lowing programmers to customize their needs based on their criteria. P4 suggested a filtering
mechanism that would allow programmers to specify the types of resources to search among,
so that they would not have to wade through long results pages of non-preferred resource
types. Such a filter would allow programmers to specify their Document Type Preference

while searching.

45

CHAPTER 3. HOW PROGRAMMERS FIND SOFTWARE
DOCUMENTATION

Our participants’ search behavior illustrates that they accessed different Resources
to answer different types of Questions when learning a new technology. All participants
in our study accessed more than one type of resource through the study. Thus, searchers
are forced to access multiple resources to satisfy their information needs, despite prior work
discovering that there is some correspondence in information between different documenta-
tion types [15]. Furthermore, our analysis of the is accessed for behavior reveals that some
resources are favored when answering particular types of questions. Whether this is be-
cause of the participants implicit thinking process, or because of the nature of the resources
themselves, requires further investigation. Resource creators can be informed by this access
behavior to tune particular types of resources to answer particular types of questions, allowing
search tools to efficiently direct searchers to appropriate resources. Meanwhile, a centralized
page indexing all the pertinent resources for learning a new technology would be useful for
programmers to navigate the resource space. Two participants mentioned they would prefer
documentation to be standardized for ease of learning. P3 quoted the neatness of Java API
documentation, explaining that other programming language documentation should follow
suit. In the questionnaire, the other participant went as far as suggesting: “It would be nice if

all software distributed complete man pages and info pages with documentation.” [P9]

There exist visible and non-visible hints, or Cues, related to the quality and
familiarity of a resource, to determine whether it is pertinent to information
needs. Our model reifies the “scents” that information seekers use to find the information
they need, according to information foraging theory [194], as Cues. We observed that these
Cues can be either objective or subjective to programmers’ wants and needs. For example,
while the Recommended, Authoritative, and Keywords Cues are relatively objective, the
Requirements and Familiarity Cue are influenced by the search context and the programmers’
mindset. Prior work has focused largely on the objective Cues (see Section 2.1.3). However
our observation that participants use different Cues to select different Resources suggests
that it is also important to incorporate search customization to support programmers in their
use of subjective Cues.

Different Impression Factors may be used to evaluate different Resources.
We observed that participants use different criteria to evaluate the quality and usefulness
of a resource, especially depending upon the source of the resource. Particularly, some
participants mentioned that learning resources should be easy to understand for beginners.
P5 explained why they avoided a certain C++ Forum: “[...] the people who answer questions there get

into a lot of detail using words that I don’t follow.” They explained that the case is different with Stack
Overflow answers, where predominantly lesser technical jargon is used making answers easier
to understand, thereby motivating their use of the web site. P11 also stated that searching
is especially tougher for beginners as it is expected that they are aware of technical jargon -
an interesting paradox since beginners are still in the learning phase of technical terms and
details. Our model provides the dimensions of a resource that programmers would use to
evaluate it, and thus, the aspects of quality that resource creators must consider.

A feedback loop can be formed using Impression Factors during the search pro-
cess. We observed that participants used Impression Factors to refine their questions and
clarify their criteria of resource type and content style. For example, while looking for gen-

46

CHAPTER 3. HOW PROGRAMMERS FIND SOFTWARE
DOCUMENTATION

eral information about what graph objects are in the plotly library, P3 found a resource that
contained too much text. After accessing this resource, they explained that their Preference

was resources with precise information, such as a list of methods and how to use them. Only
after evaluating a Resource, did they consider the Preference more seriously and use the
criterion as a Cue for the subsequent resource access. Thus, Impression Factors encourage
programmers to reflect on their criteria and context during search. Furthermore, Impression

Factors can be used to inform the creation of tools that assist in query refinement during the
resource seeking process. [149]

47

Chapter 4

Documentation Properties and Styles

We noted that programmers seeking information face a number of choices, and use cues
to make decisions about resources to access (see Chapter 3) [16]. Some search engines
incorporate cues related to information content to alleviate the amount of time and effort
that programmers take in finding pertinent information. To assist programmers in their
manual search process, prior work has explored faceted searching [116, 117], i.e. searching
with content-related categories, and providing estimated time cost of reading search result
web pages [112]. Still, to develop documentation that can cater to the needs and preferences
of users, it is also important to understand how existing resources are designed.

We investigated how current online documentation, specifically programming tutorials,
are designed. Despite many recommendations for how a tutorial should be structured, no uni-
versal standard is followed to design tutorials. Thus, tutorials about the same programming
languages vary in their content and presentation. We complement prior work that focuses on
information content of resources, with a framework to characterize resources based on their
design properties and styles. Together with information retrieval techniques, our framework
can be used to identify appropriately styled pertinent resources for different programming
contexts.

Goal

The goal of this phase of the research was to determine how tutorials vary in their properties
and investigate the ability to define a tutorial as being of a particular style.

Research Question

1. To what extent do software tutorials vary in their structure and content-related prop-
erties?

2. How can we systematically reason about the design of software tutorials?

48

CHAPTER 4. DOCUMENTATION PROPERTIES AND STYLES

Publication

The study on understanding the variations across popular programming tutorials was pub-
lished in the article Properties and Styles of Software Technology Tutorials [19].

Replication Package

The details of our resource collection process, the extracted property data, and the results
of the analysis are available in our online replication package: https://doi.org/10.5281/
zenodo.10048532 [18].

4.1 Data Collection

We focus on tutorials of the top five most popular technologies according to Github for 2021:
Java, C#, Python, Javascript, and Typescript.(c) We extracted the properties of web pages
of tutorials for these technologies.

4.1.1 Resource Collection

We identified popular tutorials for each software technology through a manual online web
search using the search engine DuckDuckGo.(d) For each programming language, we collected
the common non-advertisement search results on the first three pages for the three queries
“<language> tutorial”, “<language> programming tutorial”, and “<language> development
tutorial”. We used the common search results as a proxy for popular tutorials because they
are consistently top-ranked by the search engine.(e) To create a data set of comparable
tutorials, we filtered out tutorials that did not fit the scope of our work, i.e. multi-page
comprehensive tutorials.(f) The websites on which the tutorials are hosted include technol-
ogy websites (e.g. Oracle, Mozilla), those dedicated to tutorials for a single language (e.g.
PythonTutorial, TypescriptTutorial) and those dedicated to tutorials for multiple technolo-
gies (e.g. BeginnersBook, Programiz). We retrieved traffic-related metrics for each website
from similarweb.com to investigate the popularity of each website hosting tutorials.

We analyzed each resource, i.e. an individual web page referenced by a given URL in a
tutorial, because each page is indexed separately by a search engine. Thus, a tutorial contains
multiple resources, and a website can host multiple tutorials. We discarded resources that had

(c)https://octoverse.github.com/#top-languages-over-the-years
(d)Despite video-based learners reported to have higher success rates than text-based learners [251], the

majority of results from a standard search engine are textual documents [96]. Thus, we focused our study
on text tutorials.

(e)Although some websites host tutorials for languages within the scope of this study, e.g. TechBeamers
offers a Java tutorial, we did not include it in our data set as it was not consistently top-ranked among our
queries.

(f)The exact steps of the resource identification and filtering process are available in the replication package
and in Appendix B.1.

49

https://doi.org/10.5281/zenodo.10048532
https://doi.org/10.5281/zenodo.10048532
similarweb.com
https://octoverse.github.com/#top-languages-over-the-years

CHAPTER 4. DOCUMENTATION PROPERTIES AND STYLES

Table 4.1: Details about the programming language and host website of the resources studied.

Monthly Visit
visits duration

Domain Java C# Python Javascript Typescript (millions) Pages/visit (mins)

BeginnersBook beginnersbook.com 100 - 24 - - 0.212 2.33 2.73
DotNetTutorials dotnettutorials.com - 105 - - - 0.847 2.37 3.13
Educba educba.com - 184 - - - 2.697 1.54 1.20
GeeksForGeeks geeksforgeeks.org - 30 - - - 0.028 2.21 0.36
Guru99 guru99.com 71 25 71 - - 6.551 1.56 1.55
Info javascript.info - - - 92 - 1.841 2.52 3.05
JavaTPoint javatpoint.com 79 121 73 196 45 16.840 2.08 3.97
LearnPython learnpython.org - - 27 - - 0.630 2.51 3.37
Mozilla developer.mozilla.org - - - 18 - 25.180 2.07 3.43
NetInformations c-sharp.net-informations.com - 96 - - - 0.057 1.80 1.52
Oracle docs.oracle.com 328 - - - - 9.899 3.31 3.35
Programiz programiz.com 117 - 52 - - 11.730 2.04 3.65
PythonDocs docs.python.org - - 16 - - 7.235 1.95 2.63
PythonTutorial pythontutorial.net - - 180 - - 0.596 1.88 3.80
SPGuides spguides.com - - - - 6 0.248 1.34 1.48
TechBeamers techbeamers.com - - 50 - - 0.098 2.03 1.73
TutorialKart tutorialkart.com - - - - 19 0.528 1.79 1.37
TutorialsPoint tutorialspoint.com 39 - 28 36 21 20.620 1.78 2.68
TutorialsTeacher tutorialsteacher.com - 59 - - - 1.483 2.89 2.37
TypescriptTutorial typescripttutorial.net - - - - 50 0.107 3.61 4.23
W3Schools w3schools.com 54 35 44 - - 57.620 3.71 6.31
W3SchoolsBlog w3schools.blog - - - - 31 0.683 2.45 1.48
WebTrainingRoom webtrainingroom.com - 31 - - - 0.020 1.27 0.62

Total 788 686 563 342 172

The last three columns are estimations of the website traffic from pro.similarweb.com for the period Apr.-Jun. 2023.

obfuscated HTML,(g)12 did not provide technical information about the target programming
language, or followed a recognizable non-tutorial format (e.g. Q&A, exercises). We collected
a total of 2551 resources hosted on 23 websites for five programming languages, as shown in
Table 4.1.

4.1.2 Property Extraction

For each resource, we automatically extracted each top level HTML element within the
manually identified main content element, and refer to these as blocks (see Figure 4.1).(h)

Table 4.2 describes the properties we extracted for each block in every resource, and the
rationale behind identifying these properties. When calculating the length of a table in
number of cells, we did not count cells that contain three or fewer characters, identifying
them as index cells. For example, for the table in JavaTPoint’s “Module vs. Namespace”

resource,3 we disregarded the first column, and identified the total size of the table as 22
cells (including headers).

To identify topics mentioned in resources, we used the JSI Wikifier,(i) which identifies top-
ics covered by Wikipedia articles in target text. Nassif and Robillard proposed a whitelisting
technique for computing topics, with which the JSI Wikifier achieved up to a precision of
0.95 at the expense of lower recall, on a set of 500 Stack Overflow posts [175]. Since we focus

(g)Links to resources are present in the section Resource References.
(h)We used Python v3.9 and the library beautifulsoup4 to parse HTML.
(i)https://jsi-eubusinessgraph.github.io/jsi-wikifier-api/

50

pro.similarweb.com
https://jsi-eubusinessgraph.github.io/jsi-wikifier-api/

CHAPTER 4. DOCUMENTATION PROPERTIES AND STYLES

Table 4.2: Properties extracted at the block level for each resource.

Applicable to
Property Description Block Type Rationale
type Whether the block is pri-

marily a header, text, code,
table, or image.

all Identifying the type of content in a re-
source provides insight on the extent to
which resources cater to the preferred vi-
sual stimuli as opposed to only text, in
information resources [69].

contains_image Boolean of whether the
block contains an image
within it.

text Depending on the structure of the HTML,
a text paragraph may contain an embed-
ded image. We include such images, in
addition to image-only blocks when calcu-
lating resource properties (see Table 4.3).

header_depth Depth of the header. For
example, the depth of an h3
block is three.*

header Documentation writers must consider that
readers interacting with technology may
have a number of branching use cases for
which they may consult particular parts
of documentation [258]. The level of frag-
mentation, given by the depth of sections,
provides insight into the extent of breadth
versus depth of the content in the re-
source.

size Size of the block in terms
of number of sentences, lines
of code, or number of table
cells, as applicable.

text, code, table The length of sentences [122] and length of
code snippets [39] are fundamental aspects
that are used to measure the readability of
text and code respectively.

wiki topics Topics covered that corre-
spond to computing-related
articles on Wikipedia.

text The amount of topics to cover in a tuto-
rial is a deliberate design decision that cre-
ators must consider [24].

task phrases List of instructional-styled
task phrases contained in
the block.

text Task phrases can help determine the infor-
mation style of a resource as either proce-
dural or declarative in nature [119].

links The set of hyperlinks within
a block, including internal
links, i.e. referring to pages
within the same tutorial, or
external links, i.e. referring
to pages outside the tutorial

text Whether to delegate some information in
a resource to other resources by provide
references to other web pages has been dis-
cussed as a consideration for designing re-
sources [24, 258].

* We account for relative header depths when computing the resource-level property Maximum header depth (see Table 4.3)

51

CHAPTER 4. DOCUMENTATION PROPERTIES AND STYLES

Table 4.3: Computation of resource-level properties.

Property Computation

Number of blocks Total # of blocks

Proportion of text blocks
of text blocks

of blocks

Proportion of code blocks
of code blocks

of blocks

Proportion of header blocks
of header blocks

of blocks

Proportion of table blocks
of table blocks

of blocks

Proportion of images
of images
of blocks

Maximum header depth the lowest relative depth of the headers.
E.g. if a resource has h1 and h3 tags,
then the maximum depth is two.

Average text size
total size of text in sentences

of text blocks

Average code size
total size of code in lines

of code blocks

Average table size
of cells in table
of table blocks

Average number of topics
of distinct wiki topics

of text blocks

Average number of task phrases
of task phrases
of text blocks

Average number of links
of links

of text blocks

Proportion of internal links
of links to within the tutorial

total number of links

Proportion of external links
of links to outside the tutorial

total number of links

53

CHAPTER 4. DOCUMENTATION PROPERTIES AND STYLES

with three or fewer characters while computing the size of a table, to avoid double-digit
indices followed by a delimiting character. However, this technique disregards, for example,
cells with regular expression characters.6 An alternative would be to build heuristics to match
indexes in the resource set. Similarly, we chose not to consider tables when extracting task
phrases and wiki topics. This avoids identifying briefly mentioned topics such as Path(j) in
the table in the Java Official resource “Object Ordering”.7 Any relevant topics should also
be presented in the main text, and thus captured in our analysis. However, there exist some
resources which format all information into tables.8 Pursuing perfect property extraction is
time-intensive. In line with our goal to determine how to characterize resources, we focus
our research effort towards investigating how the properties co-occur. Thus, although the
descriptive statistics of the data set may be prone to noise, the property distributions show
that there are variations in resource properties, suggesting the need for a framework based
on properties to identify the design of a resource. We leave the improved and optimized
extraction of properties to future work.

We applied Bonferroni correction when verifying the correlations between resource prop-
erties. However, this technique is conservative and may have resulted in missed significant
correlations [49]. We supplement the analysis with the characterization of resources based
on property co-occurrences. We retrieved traffic-related metrics (see Table 4.1) per website.
Our preliminary investigation to retrieve and use resource mentions on Stack Overflow as a
proxy for popularity of each resource revealed that only 981 resources (out of 2551) were ref-
erenced.(k) Instead, a true representation of a resource’s popularity would involve accounting
for proxy URLs, link redirections, parameters, and fragments of the resource’s URL. Due
to practical limitations of computing this traffic accurately, we leave further investigation of
the relation between design properties and resource popularity to future work.

Our framework for identifying resource styles relies on the deviations of properties. Thus,
although our framework can be applied to any resource data set, it is better suited to ones
that having large differences in property variations. This is because the differences between
the resources will then be meaningful, and the styles can be perceived and verified within the
data set. We leave the investigation of the success of applying our resource style framework
on data sets with low variance to future work.

4.2 Resource Properties

To answer our first research question to what extent do software technology tutorials vary
in their structure and content-related properties?, we investigated the variations in resource
properties and the associations between them, for each programming language. We con-
tribute a detailed view of properties of software documentation resources for five popular
development technologies.

(j)http://en.wikipedia.org/wiki/Path_(computing)
(k)We identified the number of mentions of the resource URLS in Stack Overflow answers present in the

Stack Exchange Data Dump of June 2023.

54

http://en.wikipedia.org/wiki/Path_(computing)

CHAPTER 4. DOCUMENTATION PROPERTIES AND STYLES

4.2.1 Variations in Property Values

Figure 4.2 shows the distribution of resource property values by programming language.
We use violin plots, which represent the frequency of resources (width) at different values
(y-axis), with the median of the distribution indicated by a red line. For a given language,
the leftmost violin plot shows the distribution of the number of blocks per resource. We
see that for all resources except Java, the number of blocks in a resource varies to an upper
limit of 500 blocks. For Java, the majority of resources also exist in this range, however one
abnormally long resource exists with over 1500 blocks.

The next group of five plots represents properties that are proportions of different types
of content per resource. Although programmers may seek code examples in software doc-
umentation, skipping corresponding explanatory text [210], only 7% (172) of the resources
focus on code, i.e., contain more code than text blocks. Such resources demonstrate the
usage of a particular component9 or describe how to write code to achieve a task.10 A total
of 44% (1120) of the resources contain images, the type of element preferred by computer
science students and professionals in information resources [69]. Resources use images to
describe installation information,11 architecture and modelling,12 or to annotate the code
with descriptions.13

The following marker plot in the figure shows the number of resources with a given max-
imum header depth. Each marker shows the proportion of resources with the corresponding
maximum header depth value. We observe, for example, that C# and Python resources
provide an overall more fine-grained organization than Java resources, most of which have
at most two levels of headers.

The next six plots show the distribution of the corresponding properties from Table 4.3,
providing an overview of the resource landscape. The median average code size (3-15 lines)
is higher than the median average text size (1-2 sentences) for all languages. Despite the
risk of large code snippets being difficult to understand [274], the resources have longer, but
fewer code snippets compared to text blocks. Alternatively, although tables provide a large
amount of information in a concise format, only 17% (421) of resources contain tables, with
the largest table having a size of 213 cells.14

For all languages except C#, the distribution of the average number of task phrases is
just slightly above zero. C# has a larger distribution (53 resources) with no task phrases.
Considering task phrases as a proxy of procedural information [119], C# resources might
not have instruction-like content.15

The last group of two violin plots in Figure 4.2 shows the proportion of the internal and
external links in the resources. The distribution of the proportion of links shows greater
density towards the top and/or bottom in the plots for all the languages. This indicates
that, overall for a language, resources tend to contain either internal links to other tutorial
resources or links to external resources, but rarely both.

To investigate whether there is a statistical difference between properties across pro-
gramming languages, we performed Bonferroni-corrected [3] one-way ANOVA tests [82]
(α = 0.05/15 = 0.003 for each test). For the thirteen non-table related properties, we
reject the null hypothesis, indicating that the grouping of resources by programming lan-

55

CHAPTER 4. DOCUMENTATION PROPERTIES AND STYLES

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

P
ro

p
.
o
f
te

x
t
b
lo

c
k
s

P
ro

p
.
o
f
c
o
d
e
 b

lo
c
k
s

P
ro

p
.
o
f
h
e
a
d
e
r

b
lo

c
k
s

P
ro

p
.
o
f
ta

b
le

 b
lo

c
k
s

P
ro

p
.
o
f
im

a
g
e
s

M
a
x
.
H

e
a
d
e
r

d
e
p
th

A
v
g
.
te

x
t
s
iz

e

A
v
g
.
c
o
d
e
 s

iz
e

A
v
g
.
ta

b
le

 s
iz

e

A
v
g
.
#
 t
o
p
ic

s

A
v
g
.
#
 t
a
s
k
 p

h
ra

s
e
s

A
v
g
.
#
 l
in

k
s

P
ro

p
.
in

te
rn

a
l
lin

k
s

P
ro

p
.
e
x
te

rn
a
l
lin

k
s

blocks

Prop. of text blocks

Prop. of code blocks

Prop. of header blocks

Prop. of table blocks

Prop. of images

Max. Header depth

Avg. text size

Avg. code size

Avg. table size

Avg. # topics

Avg. # task phrases

Avg. # links

Prop. internal links

(a) Java

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

P
ro

p
.
o
f
te

x
t
b
lo

c
k
s

P
ro

p
.
o
f
c
o
d
e
 b

lo
c
k
s

P
ro

p
.
o
f
h
e
a
d
e
r

b
lo

c
k
s

P
ro

p
.
o
f
ta

b
le

 b
lo

c
k
s

P
ro

p
.
o
f
im

a
g
e
s

M
a
x
.
H

e
a
d
e
r

d
e
p
th

A
v
g
.
te

x
t
s
iz

e

A
v
g
.
c
o
d
e
 s

iz
e

A
v
g
.
ta

b
le

 s
iz

e

A
v
g
.
#
 t
o
p
ic

s

A
v
g
.
#
 t
a
s
k
 p

h
ra

s
e
s

A
v
g
.
#
 l
in

k
s

P
ro

p
.
in

te
rn

a
l
lin

k
s

P
ro

p
.
e
x
te

rn
a
l
lin

k
s

blocks

Prop. of text blocks

Prop. of code blocks

Prop. of header blocks

Prop. of table blocks

Prop. of images

Max. Header depth

Avg. text size

Avg. code size

Avg. table size

Avg. # topics

Avg. # task phrases

Avg. # links

Prop. internal links

(b) C#

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

P
ro

p
.
o
f
te

x
t
b
lo

c
k
s

P
ro

p
.
o
f
c
o
d
e
 b

lo
c
k
s

P
ro

p
.
o
f
h
e
a
d
e
r

b
lo

c
k
s

P
ro

p
.
o
f
ta

b
le

 b
lo

c
k
s

P
ro

p
.
o
f
im

a
g
e
s

M
a
x
.
H

e
a
d
e
r

d
e
p
th

A
v
g
.
te

x
t
s
iz

e

A
v
g
.
c
o
d
e
 s

iz
e

A
v
g
.
ta

b
le

 s
iz

e

A
v
g
.
#
 t
o
p
ic

s

A
v
g
.
#
 t
a
s
k
 p

h
ra

s
e
s

A
v
g
.
#
 l
in

k
s

P
ro

p
.
in

te
rn

a
l
lin

k
s

P
ro

p
.
e
x
te

rn
a
l
lin

k
s

blocks

Prop. of text blocks

Prop. of code blocks

Prop. of header blocks

Prop. of table blocks

Prop. of images

Max. Header depth

Avg. text size

Avg. code size

Avg. table size

Avg. # topics

Avg. # task phrases

Avg. # links

Prop. internal links

(c) Python

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

P
ro

p
.
o
f
te

x
t
b
lo

c
k
s

P
ro

p
.
o
f
c
o
d
e
 b

lo
c
k
s

P
ro

p
.
o
f
h
e
a
d
e
r

b
lo

c
k
s

P
ro

p
.
o
f
ta

b
le

 b
lo

c
k
s

P
ro

p
.
o
f
im

a
g
e
s

M
a
x
.
H

e
a
d
e
r

d
e
p
th

A
v
g
.
te

x
t
s
iz

e

A
v
g
.
c
o
d
e
 s

iz
e

A
v
g
.
ta

b
le

 s
iz

e

A
v
g
.
#
 t
o
p
ic

s

A
v
g
.
#
 t
a
s
k
 p

h
ra

s
e
s

A
v
g
.
#
 l
in

k
s

P
ro

p
.
in

te
rn

a
l
lin

k
s

P
ro

p
.
e
x
te

rn
a
l
lin

k
s

blocks

Prop. of text blocks

Prop. of code blocks

Prop. of header blocks

Prop. of table blocks

Prop. of images

Max. Header depth

Avg. text size

Avg. code size

Avg. table size

Avg. # topics

Avg. # task phrases

Avg. # links

Prop. internal links

(d) Javascript

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

P
ro

p
.
o
f
te

x
t
b
lo

c
k
s

P
ro

p
.
o
f
c
o
d
e
 b

lo
c
k
s

P
ro

p
.
o
f
h
e
a
d
e
r

b
lo

c
k
s

P
ro

p
.
o
f
ta

b
le

 b
lo

c
k
s

P
ro

p
.
o
f
im

a
g
e
s

M
a
x
.
H

e
a
d
e
r

d
e
p
th

A
v
g
.
te

x
t
s
iz

e

A
v
g
.
c
o
d
e
 s

iz
e

A
v
g
.
ta

b
le

 s
iz

e

A
v
g
.
#
 t
o
p
ic

s

A
v
g
.
#
 t
a
s
k
 p

h
ra

s
e
s

A
v
g
.
#
 l
in

k
s

P
ro

p
.
in

te
rn

a
l
lin

k
s

P
ro

p
.
e
x
te

rn
a
l
lin

k
s

blocks

Prop. of text blocks

Prop. of code blocks

Prop. of header blocks

Prop. of table blocks

Prop. of images

Max. Header depth

Avg. text size

Avg. code size

Avg. table size

Avg. # topics

Avg. # task phrases

Avg. # links

Prop. internal links

(e) Typescript

Figure 4.3: Correlation between properties for significant relations in each programming
language. Only the significant results (α = 9.5 × 10−5; p < α) are shown. The colors
correspond to Pearson’s correlation coefficient values.

guage accounts for a significant amount of the variation. However, we failed to reject the
null hypothesis for the two table-related properties (p = 0.149 for the proportion of table
blocks, and p = 0.015 for the average table size). The low variation of these properties may
be attributed to the rare use of tables in resources (see Figure 4.2).

We also ran ANOVA tests to understand whether there is a statistically significant dif-
ference between properties across websites. We reject the null hypothesis for all properties
(p < (α = 0.003)), an indication that grouping resources by their host website can explain
a significant amount of the variation observed. Prior work has studied the styling of code
comments in Java and Python [203]; our findings suggest that further investigation into
website-specific and language-specific tutorial design is worthwhile.

57

CHAPTER 4. DOCUMENTATION PROPERTIES AND STYLES

4.2.3 Correspondence of Properties to Website Traffic

Software developers rate the inclusion of code examples and explanations as very important
in API documentation [106, 165]. To determine whether the properties of a resource relate
to user traffic, we analyzed the correspondence between each resource property we extracted
and each website traffic metric (last three columns in Table 4.1). Figure 4.4 shows a scatter
plot: each resource (a point on the plot) is mapped to the proportion of code in the resource
(x-axis) and the average visit duration for the corresponding website (y-axis). The remaining
pair-wise plots are available in our replication package.

Analysing the density and range of the distribution of points across the x-axis provides
insight into whether certain property values may correspond to a particular level of traffic.
We observe no clear trend that a certain proportion of code (or any other property) corre-
sponds to a particular amount of time that a user spends on the website’s page (or any other
traffic metric). This may be attributed to the fact that users have different, even contrasting,
preferences about the design of documentation, which may be backed by some beliefs based
on their prior resource seeking experience [16].

4.2.4 From Properties to Styles

We observe the open ended-nature and flexibility of tutorial content and organization. For
example, resources have, on average, more text paragraphs than code fragments, and fewer
tables and images. Furthermore, for the majority of property distributions, the density of
resources is larger around the median. This indicates the existence of implicit normative
values for resources for a particular programming language. Still, no property emerges as
uniform across resources.

Resource creators can use the property distributions and correlations to identify gaps
in existing tutorial offerings, e.g. visual elements that programmers prefer [69]. Resource
seekers can leverage the properties to target resources whose content and layout is familiar or
convenient to them. However, to do so, there is a need to characterize a particular resource
relative to other resources, thus identifying it among the pool of varied designs. Furthermore,
our observations of correlated properties suggest that dimensions for organizing a software
tutorial [24] should not be considered independently. Rather, designing a resource requires
deliberation about how different aspects of the resource complement one another.

4.3 Characterizing Resources

We answered our second research question how can we systematically reason about the design
of software technology tutorials? by developing a framework for characterizing resources
based on how they deviate from the norm for each of their properties. (l) For example,
TutorialKart’s “TypeScript switch - Examples” resource19 is comparatively short, has longer

(l)We explored the use of clustering techniques such as k-means to identify similarly designed resources.
However, these techniques involved knowing, in advance, the number of clusters and were not interpretable
for larger data sets. Instead, we focused on characterizing resources based on their co-occurring properties.

59

CHAPTER 4. DOCUMENTATION PROPERTIES AND STYLES

Table 4.4: Mapping of Less or More of a property (from Table 4.3) to an attribute of a
resource.

Property Inference of Less Inference of More

blocks Short Long
Prop. of text blocks Text-light Text-heavy
Prop. of code blocks Code-light Code-heavy
Prop. of header blocks Contiguous Fragmented
Prop. of table blocks Table-light Table-heavy
Prop. of images Image-light Image-heavy
Max. header depth Flat Hierarchical
Avg. text size With-short-paragraphs With-long-paragraphs
Avg. code size With-short-snippets With-long-snippets
Avg. table size With-short-tables With-long-tables
Avg. # topics Topic-light Topic-heavy
Avg. # task phrases Non-task-oriented Task-oriented
Avg. # of links Link-light Link-heavy
Prop. internal links Not-cross-linked Cross-linked
Prop. external links Without-external-links With-external-links

code snippets, and covers fewer topics than other Typescript tutorials in our data set.
To identify these deviations, we used quartiles of the property distribution across re-

sources for the same programming language. We normalized each property against the
maximum value of that property across resources such that all property values lay in the
unit interval. The normalization allowed us to compare property distributions and better
interpret the variations. We used the middle two quartiles of the property distributions
across resources for the same programming language to define the norm of a property for a
given programming language. For each property of each resource, Pr, we created two binary
attributes: less_Pr and more_Pr. We assigned less_Pr as True if its value lies in the
first quartile of the distribution and more_Pr as True if its value lies in the fourth quartile.
We referred to the properties along with their polarity as attributes and provide a mapping
between the 15 properties and the corresponding 30 possible attributes in Table 4.4.

For every attribute, we determined its deviation, i.e. the absolute distance of the property
value for the resource from the closest quartile. The deviation is given by d(Pr) = |x(Pr)−
qi(P)| where x is the value of the property Pr for the target rth resource, and qi is the value
of either the second or fourth quartile, as applicable, of property P . For each resource, we
define the attributes that have any deviation for that resource, as distinguishing attributes.

Our observations from Section 4.2 suggest that treating each property of a resource in an
isolated manner will result in neglecting the significant associations between them. Instead,
understanding the design of resources requires investigation into how different properties
co-occur in resources. We extend this observation to attributes. We propose the formal-
ization of a resource style as a combination of distinguishing attributes of a resource. For

60

CHAPTER 4. DOCUMENTATION PROPERTIES AND STYLES

Table 4.5: Distinguishing attributes (d.a.) in the prominent styles (n=3) for all resources.

Nth d.a 1 2 3 4 Most freq. prominent style

Java Cross-linked (0.22) Flat (0.21) Code-light (0.18) Code-heavy (0.18) Flat Text-heavy Code-light
(0.036)

C# Cross-linked (0.21) With-external-links (0.20) Code-heavy (0.20) Contiguous (0.18) Contiguous Flat Code-heavy
(0.020)

Python With-external-links (0.20) Code-heavy (0.20) Topic-heavy (0.17) Code-light (0.17) Long Hierarchical With-external-links
(0.024)

Javascript Cross-linked (0.23) Image-heavy (0.21) With-external-links (0.20) Code-heavy (0.19) Long Contiguous With-external-links
(0.029)

Typescript Cross-linked (0.24) Image-heavy (0.20) Table-heavy (0.17) Fragmented (0.17) Contiguous Text-heavy Cross-linked
(0.034)

The number in parentheses refers to the proportion of resources in that language that contains the corresponding attribute(s) in its prominent style.

example, TutorialKart’s “TypeScript switch - Examples” resource mentioned earlier has three
distinguishing attributes, which together form the characterizing resource style: Short With-
long-snippets Topic-light. Since distinguishing attributes represent how a resource is different
from others in its presentation, the style characterizes a resource’s design.

A resource style may be a combination of up to 15 attributes due to the mutual exclu-
siveness of attributes of opposed polarity (e.g., Short vs. Long). However, as the number of
distinguishing attributes increases, the interpretability and practical significance of the style
can decrease. We introduce three techniques to identify context-relevant resource styles.
The prominent style acts as a resource’s identifier, providing resource seekers with a simple
summarized interpretation of the design of the resource. Recurring styles provide insights on
the current landscape of tutorials that can inform resource creators’ design process. User-
defined styles allow both resource creators and seekers to systematically reason about the
design of resources related to their own preferences. We motivate each with their practical
use and discuss observations from applying each technique.

4.3.1 Prominent Style

The prominent style is the set of distinguishing attributes of a resource which most differ-
entiate it from other resources.

Motivation: Although search engines reduce the search space, resource seekers are
still required to make decisions between resources to determine which are more pertinent
to their needs. Searchers use scents [194, 195] or cues [16] from meta information to find
the information they need, however this may be implicit. Instead, a concise and explicit
elicitation of the unique aspects of a resource can support the cue-following process, and
comparison of resources.

Identification: The prominent style is the set of n distinguishing attributes with the
largest deviation values. For example, the Python TutorialsPoint resource on sending emails20

has five distinguishing attributes. However, with n=3, its prominent style is identified as

(m)Based on the scaling of resource properties to binary attributes using quartiles, an attribute can occur
in a maximum of 25% of resources. Thus, attributes can co-occur in a maximum of 25% of resources, since
these resources are the set intersection of resources that contain each of the co-occurring attributes. In
Table 4.5, the frequencies of the attributes are less than 0.25 because the prominent style for each resource
is a subset of its distinguishing attributes.

61

CHAPTER 4. DOCUMENTATION PROPERTIES AND STYLES

Code-light, With-long-snippets, Task-oriented because these attributes have the largest de-
viation for the resource.

Observations: Table 4.5 shows the most frequent distinguishing attributes in the promi-
nent styles for each programming language.(m) For all the languages, the most frequent
attribute is related to the links present in the resource. The deviations in the proportion
of internal and external links is evident in the bulges shown in Figure 4.2 that lie on the
end of the range, further away from the median. As another example, Code-heavy appears
as a frequent distinguishing attribute in all languages except Typescript, because the distri-
bution of the proportion of code blocks in Typescript is symmetric as opposed to the other
languages (see Figure 4.2e).

4.3.2 Recurring Style

A recurring style is the set of distinguishing attributes that occurs among multiple resources
for a programming language.

Motivation: Resource creators are faced with a number of design choices when creating
resources [24]. To make informed choices about the content and organization of a resource,
it is useful to assess existing resources [163]. The recurring styles provide an opportunity for
resource creators to formally evaluate whether existing designs overcome organization-related
issues that users have expressed regarding documentation [7, 207]. Subsequently, creators
can choose to follow existing recurring styles or identify and fill relevant design gaps.

Identification: We use Formal Concept Analysis (FCA) [197] to uncover recurring styles
across resources for a programming language. FCA is a framework for data analysis and
knowledge discovery that is directly interpretable, and thus transparent and reproducible for
a given data set.

FCA leverages an incidence matrix between objects (in our case, resources) and their
attributes (from Table 4.4)(n) known as the formal context,(o) to explore latent relations.
This exploration is supported by a hierarchy of concepts which are groups of objects, each
called the extent, that share some attributes, i.e. the intent. The hierarchy allows for the
subconcept-superconcept relation wherein the subconcept’s intent and extent are the superset
and subset, respectively, of the superconcept’s intent and extent. The concepts are complete,
i.e. all possible combinations of attributes occurring in the objects are identified. Our
technique to identify recurring styles involves attribute selection, formal concept selection,
and identifying relevant concepts.

a) Attribute selection: To mitigate the loss of interpretability as the number of attributes
increases, we use variance thresholding [142] to select attributes(p) with a non-zero variance.
This method is based on the notion that features with the same value for all data provide

(n)The procedure we used to convert the resource properties to binary polarized attributes is an FCA
technique known as conceptual scaling [105].

(o)We used Python’s concepts API to build the formal context.
(p)Prior attribute selection techniques are text-based [50, 51] and thus not applicable to our data. Others

leveraging the distribution of objects [90] or distribution of attributes [44], rely on the size of the data set
which would be biased by our attribute scaling technique. We also explored Correspondence Analysis [178],
but found no clear representative dimensions.

62

CHAPTER 4. DOCUMENTATION PROPERTIES AND STYLES

no additional information to a data modeling algorithm.
b) Formal concept selection: The total number of formal concepts is a function of the

number of objects and the number of attributes in the formal context. We perform context-
specific(q) concept selection [58] to identify important co-occurring attributes for resources.
Our results from the correlation analysis (see Section 4.2.2) indicate that there exist sig-
nificant correlations between properties, which can cause the constant co-occurrence of two
attributes. For example, we observed that Text-heavy frequently co-occurs with Code-light.
The formal context provides an opportunity to investigate more complex co-occurrences of
multiple attributes, and thus we retain concepts with at least four attributes. Additionally,
we retain concepts with at least five resources in the extent because the practical significance
of a concept in our study decreases with fewer resources.

c) Identifying relevant concepts: We use support and stability metrics to investigate
relevant concepts for each language. The support, given by the proportion of all objects
that are in the concept’s extent, is a measure of frequency [110]. Stability is a measure of
cohesion [129]: “A concept is stable if its intent does not depend much on each particular
object of the extent.” [130] To calculate stability of each concept, we use the algorithm
presented by Roth et al. [213] such that a value close to one indicates high stability. We
use a threshold of 20 to identify concepts with the highest support and stability values,(r) as
frequent, stable concepts [110]. Because formal concepts are hierarchical in nature, the set of
concepts obtained may contain subconcepts. Since our focus is on specific design differences
between resources, we retrieve only the maximal concepts, i.e. those concepts which have
no subconcepts within the selected set of concepts.

The intent of a maximal frequent, stable concept is the set of the co-occurring attributes
that cohesively occur for multiple resources. We refer to the intents of the maximal frequent,
stable concepts as recurring resource styles.

Observations: We identified between six and 14 recurring styles for each programming
language. Table 4.6 shows the styles identified for Java and Python.(s) Every row provides
information about one recurring style. The first column of the table indicates the combina-
tions of attributes (from Table 4.4) that form the style, e.g. Short Contiguous Flat Text-heavy
is a recurring style for Java.

The identification of recurring styles provides insight into how the set of available re-
sources are designed in the documentation landscape. For example, of the total 53 recurring
styles, only three occur for more than one language:

• Text-heavy With-long-paragraphs Code-light With-short-snippets (Java and Python) fo-
cuses on textual explanations, as opposed to code snippets, e.g. where code snippets
only serve to demonstrate a topic.21

• Short Fragmented Code-light With-short-snippets (Python and Javascript) creates small

(q)Note: context of our research, not formal context.
(r)Jay et al. [110] used percentage thresholds to filter relevant concepts. We use an absolute threshold value

of 20 concepts to avoid the dependency on the total number of concepts.
(s)Our results of the intermediary steps and the recurring styles for other programming languages are

available in our replication package and in Appendix B.2.

63

CHAPTER 4. DOCUMENTATION PROPERTIES AND STYLES

software documentation landscape. However, creators may want to refer to existing resources
that are designed similarly for inspiration. Resource seekers may already be aware about
their resource design preferences [16, 62] during search. For both cases, the user-defined
style enables the elicitation of attributes that are important to the user, to subsequently find
corresponding, pertinent resources to the user’s needs.

Identification: A user states m attributes that are pertinent to their needs, e.g. a1, a2,
a3. Then, we retrieve all resources for which these m attributes are distinguishing attributes.

Observations: The user-defined style allows users to retrieve resources that are most
pertinent to their needs. For example, a resource seeker looking to solve specific problems
with TypeScript can specify the style: Short Text-light Task-oriented. The resource seeker
is presented with twelve appropriately designed resources, e.g. how to implement classes.25

To explore further, they indicate Code-heavy Topic-heavy. Our technique retrieves eight
resources that correspond to this style, and the resource seeker easily identifies one that
provides more code snippets and covers a wider range of topics related to creating classes.26

Thus, the user-defined style reduces the load on the user to manually identify which of the
172 Typescript resources correspond to their design preferences.

Similarly, a resource creator could intend to create a resource with a hands-on approach
by providing more code snippets and visual elements like images. They specify Code-heavy
Image-heavy to get an idea about existing resources. They find only four resources de-
signed in this manner; this motivates the creator that their new resource can help fill the
documentation gap for visual learning.

4.3.4 Discussion

The application of the proposed framework for characterizing resources on our data set
demonstrates how the framework can be used to reason about resource design in a systematic
manner. As a result, the framework supports the comparison of multiple resources based
on their distinguishing design-related attributes. For example, both the C# GeeksForGeeks
resource on the switch statement27 and the C# TutorialsTeacher resource on the same
topic28 are Contiguous. However, whereas the latter is characteristically Code-heavy, the
former is Text-heavy, With long snippets and Cross-linked.

The low frequency of prominent styles and lack of notable recurring styles indicates that
there is no universal resource style: a challenge for automating tutorial creation. Instead,
selecting what and how to present relevant information in automatically generated docu-
mentation depends on the information needs of a potential user given their task [211]. Our
framework to characterize resources by their context-specific styles can be leveraged to inform
the creation of flexible tutorials.

4.3.5 Limitations

The resource set in this study is a convenience sample based on popularity of technolo-
gies, and ranking by the search engine DuckDuckGo. With the variation of properties for
a website, we concluded that using stratification techniques to balance the data set with a

66

CHAPTER 4. DOCUMENTATION PROPERTIES AND STYLES

proportional number for resources from different websites would result in a misrepresentation
of resources available online. We observe that styles are influenced by similar co-occurring
attributes, irrespective of the website. For example, despite JavaTPoint resources making
up 57% of Javascript resources, not all recurring styles occur in JavaTPoint resources. As a
result, we deliberately disregarded the website during data analysis, and report our obser-
vations treating each resource equally as an independent web page.

Our observations of resource styles in 2551 resources demonstrate that our framework
can provide interpretable and useful insights about resources. We focus on the design of
resources, and thus disregard the technical topics the resources cover when applying our
framework. We propose the framework as a way to characterize resources about similar
technology topics, and assume that topic pertinence is handled separately and parallely to
the identification of the resource’s design. Our design analysis framework may be expanded
to include properties identified in other tutorials, or even other documentation types. Fur-
thermore, the framework may also be applied in other use-cases with new, more appropriate
techniques to identify other combinations of co-occurring attributes as resource styles. We
also provide the necessary data to investigate variations of properties and styles within web-
sites and across programming languages.

67

Chapter 5

Considerations of Documentation
Creators

Documentation creators have a variety of decisions to make about content and presenta-
tion [24]. These different decisions can result in variations in the style of documentation
(see Chapter 4) [19]. To support information seekers in navigating among varying resources,
prior work has focused on improving the efficiency of search [8, 111]. Higgins and Scholer
explained that to understand the value of any outcome, such as the achievement of a task,
it is also important to understand the process of generating that outcome [93]. Thus, un-
derstanding the context in which the documentation was created can provide insight on the
design of documentation. The design context can then guide information seekers towards
resources pertinent to their needs.

We interviewed 26 documentors to understand their motivations and techniques to create
and contribute documentation online. We use the term documentor to refer to someone who
voluntarily creates and contributes online documentation.

Goal

The goal of this phase of the research was to understand documentation creators’ consider-
ations when voluntarily creating and contributing software documentation online, despite a
wide variety of existing resources.

Research Question

Why and how do people voluntarily contribute documentation online?

Publication

The study of why people voluntarily contribute software documentation online was published
in the article Why People Contribute Software Documentation [22]. The extended work
including the investigation on what the documentation process entails is available as an
ArXiv preprint titled The Software Documentor Mindset [21].

68

CHAPTER 5. CONSIDERATIONS OF DOCUMENTATION CREATORS

Replication Package

The coded data set as well as the documents needed to replicate the study are available in
our online replication package: https://doi.org/10.5281/zenodo.14416777 [20].

5.1 Study Design

We conducted semi-structured interviews, which we subsequently analysed using card sort-
ing [102] to gain a better understanding of the software documentation contribution process.

5.1.1 Informant Recruitment

We directly invited documentors, instead of having an open call for participation, to en-
sure that informants had regularly and recently contributed documentation. We focused
on people who released blog articles or YouTube videos about some software technology.
Although we began our search through documentation for Java and Python, we did not dis-
regard documentors of other technologies. Popular blogging websites such as medium.com
and hashnode.dev do not provide a standard method to contact bloggers, and contact in-
formation such as email was rarely provided. Instead, we recruited the first informant via
personal contacts, and used different techniques to subsequently identify documentors:

Github: For each of Java and Python, we used the Github API to retrieve repositories
that were in English, and contained both the name of the technology and the word ‘tutorial’
in either the name, description, or README of the repository. To recruit more informants,
we further expanded our query to C++, Ruby, and SQL.

YouTube: For each of Java and Python, we manually searched for the following queries in
the search engine DuckDuckGo, in the video tab, in incognito Chrome browser:

1. <technology> tutorial

2. <technology> programming tutorial

3. <technology> development tutorial

and retrieved each of the search results from the first three pages of the queries.(u) In total,
we obtained 409 unique video links for Java and 421 unique video links for Python.

For each of the Github and YouTube search results, the author of this thesis manually
determined if the contributor was an individual, i.e. not a community of creators or a com-
pany. The author also confirmed that the contributor had contributed documentation related
to the working and usage of a software technology, irrespective of the technology they were

(u)We used the common term ‘tutorial’ to identify instructional resources, as opposed to other forms of
documentation such as reference documentation.

69

https://doi.org/10.5281/zenodo.14416777
https://medium.com
https://hashnode.dev

CHAPTER 5. CONSIDERATIONS OF DOCUMENTATION CREATORS

documenting, within the past six months, and at least a total of three times.

WriteTheDocs: WriteTheDocs is “a global community of people who care about docu-
mentation” [266]. The community has a Slack workspace in which technical bloggers can
introduce themselves in the Slack channel intros, and share their work in the channel
community-showcase. Between January and April 2023, we monitored both of these chan-
nels and invited bloggers who had created a post in the past two months about the working
and usage of software, and had created at least three blog posts so far.

We obtained the publicly available email IDs of the identified contributors and sent them
an email inviting them for an interview. Table 5.1 shows the details of the 26 informants
we recruited.(v) Informants were not monetarily compensated for participating in the study.
The study protocol was approved by the Ethics Review Board of McGill University.

5.1.2 Data Collection

Since our goal was to understand why and how people contribute software documentation,
we performed semi-structured interviews [137], as opposed to structured interviews based on
a pre-defined set of questions. This approach gave us the opportunity to gain context-specific
insight based on the informant’s experiences. We asked informants about their journey into
documentation and their process of creating documentation, including how they selected
topics, and what their procedure for creation was. We asked informants to expand upon
aspects that they would bring up, allowing them to steer the conversation according to their
documentation experience. We incorporated any new aspects, such as whether and how
they announced their newly released documentation, in interviews with later informants.
Our interview guide is available in our replication package and in Appendix C.1.

5.1.3 Qualitative Analysis

We qualitatively analysed the interviews in a manual, iterative manner. After completing
the interviews with the first five informants, the author of this thesis began open coding the
transcripts. The open coding process resulted in identifying three major dimensions of the
documentation process. Motivations describe the incentives for contributing documentation.
Topic selection techniques capture how to decide on topics to create documentation about.
Styling objectives describe the purpose of and rationale behind content and presentation
design decisions.

The three dimensions occur differently during the documentation process. Motivations
act upon the documentor and encourage them to contribute documentation. In contrast,
topic selection techniques and styling objectives are dimensions that the documentor decides

(v)We interviewed two additional documentation creators, recruited via references of two informants. How-
ever, one creator created documentation for their own software in the form of linux man pages, and the other
created documentation for online courses that were not publicly available. We do not report on these two
interviews, as they are out of scope of our focus of publicly-available online software documentation.

70

CHAPTER 5. CONSIDERATIONS OF DOCUMENTATION CREATORS

Table 5.2: Documentors’ considerations along the dimension motivation.

Consideration Description Example open code

Professional develop-
ment

Informants described that they were contributing
documentation as a portfolio to demonstrate their
knowledge to potential employers and customers.

Good marketing (of self) as
a freelance consultant

Capture learning Informants created documentation about what
they were learning, to understand the technical as-
pects of software better. The documentation also
acted as a repository of information that the infor-
mant could refer to in the future.

To understand the topics,
by explaining to "someone
else" via the documentation

Related pursuits Informants created documentation because they
were curious about what it involved, or because
they had related interests such as teaching.

Connected passion for writ-
ing with technical knowl-
edge as "own art"

Inadequate current
documentation

Informants created documentation to overcome
the issues they faced with documentation when
learning or searching about technical topics.

Existing documentation has
too many details [for a be-
ginner]

Evangelism and re-
wards

Informants created documentation to help others
(altruism) or to gain benefits (e.g. monetary com-
pensation).

Put up [documentation]
content to get minimum
level of income

Other motivations Informants described other motivations, such as
being inspired by authoritative people to con-
tribute documentation, or wanting to receive feed-
back.

Tutor at boot camp men-
tioned technical writing so
decided to try it

and I ended up deciding to make programming tutorials.” [P18] Documentation also provided a way for
informants who had struggled while learning programming to utilize their knowledge and
stay connected to programming (P5, P9). P5 expressed that although they were interested
in learning programming, they did not think they would ever get to the level of a full-time
programmer. Instead, blogging would allow them to still get an idea of how things work.
Similarly, P9 explained: “I just felt like: I’m really struggling with coding. I don’t feel fulfilled when I write

code. What about just trying out technical writing?” [P9]

Inadequate current documentation

When the documentation was lacking (P12, P19), inaccessible to beginners (P4), overwhelm-
ing (P5), or scattered across multiple resources (P23), informants felt the need to fill the
gap with relevant documentation. P12 explained: “That’s really how I ended up writing: I found

that an awful lot of the documentation online was either nonexistent or quite obtuse. It was difficult to read

from a beginner point of view. So I try things and then write an article about it and put it on my blog.” [P12]

Informants described that existing documentation did not cater to their preferences [16],

74

CHAPTER 5. CONSIDERATIONS OF DOCUMENTATION CREATORS

Based on personal interest

The voluntary nature of contributing documentation allowed informants to explore topics
that they were curious or passionate about (15 informants): “Most of the time, these were topics

that I personally liked and wanted to investigate more. I already worked with micro-controllers, but I had never

gone into every single detail of it.” [P25] Contributing documentation also provided the opportunity
to go beyond their professional experience: “I purposefully picked technologies I would not have any

exposure to at my job, but that I’m interested in and I don’t want to wait around to have to learn.” [P6]

To fill documentation gap

Informants selected topics for which they found the existing documentation either too com-
plex for beginners, not extensive, not to their preferences, or completely lacking (seven
informants): “People were explaining how [something] was working, but they weren’t showing how they did

it.” [P22] They focused on difficult topics to document, as there would be fewer resources on
such topics (P6, P17, P19). Traffic analytics, such as failed searches for what topics people
wanted to learn about but did not find (P1), and volume of existing documentation on a
particular topic (P2) were helpful to make informed decisions about what topics to cover.

Based on existing demand

Informants selected topics because there was a clear demand from the audience for particular
topics. They monitored community channels and question forums (six informants): “I see what

people ask because usually I can answer them. Or I can tell them to search my blog or my website and I know

there’s a solution there. Sometimes the questions come up and I cannot answer them right away, or the answer

would be something larger and I have to try it out myself. And that gives me a topic for a blog post.” [P24]

Informants also directly asked their audiences what topics they wanted (P9, P10, P20): “In

one of the newsletters, I asked them if they want me to cover some specific topic. They can just send me a

message about it, and I will do it.” [P23] Additionally, informants also selected topics that, from their
experience, they knew people would want (P1, P7, P12), and would get more views (P8, P10,
P18, P25).

Based on the nature of the topic

Informants considered how suitable a topic is to documenting, e.g. by catering to particular
audiences (P1, P15), such as beginners (P2, P4, P5), or selecting topics that are applied
and hands-on (P2, P14, P17, P26). Informants developed topics towards an actionable
deliverable (P17, P22): “Selecting the actual topics was like building off of what I had already [documented].

I built my first game tutorial after making five introductory Python lessons that cover the basics to build that

game. So, I was building the blocks... Now I can make a game.” [P17] Whether the topic is “documentable”
is important: “One step should be self-explanatory, so you go step by step. And so that’s why I’ve kind of

moved away from those other [topics] that would be complicated.” [P5]

76

CHAPTER 5. CONSIDERATIONS OF DOCUMENTATION CREATORS

on what worked best for themselves: “[In my documentation,] I always like to follow [the structure:] the

situation, the problem, and the solution. Because for me - and I’m definitely biased - this is the way I learn.” [P23]

To work within personal constraints

Informants described how they styled their content based on what was convenient and feasible
to their time and effort (P2, P4, P11, P14, P18, P21). For example, to determine what code
examples to add, P2 described: “It has to be code that’s simple enough that I can write about it in a

relatively short time.” [P2] Informants modified their documentation accordingly: “If it’s taking me

too long, I just try my best to wrap it up, don’t put anything else. Just put a link to the original articles or some

Stack Overflow questions and answers and finish it.” [P21]

To differ from existing documentation

Informants strategically styled their documentation to stand out from existing documenta-
tion (P8, P16, P17): “There’s a thing called [technology name]. It’s basically a wrapper where you can

paste in your code and then it creates permalink. I put the permalink in my video description. Not everybody

does that in their video, so I’m hoping that makes it a nice feature of my channel.” [P8] Similarly, P16 added
interactive components in their textual blog, to dynamically see the impact of code changes:
“Most blogs have some sort of static format like Markdown. [...] So the goal with my blog was to be able to

create these one off components [...] that can be then embedded in the blog post.” [P16]

To increase viewership

When designing their documentation, informants added features that would capture the
attention of their audience (nine informants): “Your [article] title is really really important. Because

at the end of the day, you want to have a title that when someone searches it on Google, it might pop up.” [P9]

Additionally, they optimized for search engines to index the documentation on earlier pages
(P1, P9, P18, P23, P25): “I’m also trying to add the YouTube chapter markers to videos. YouTube is

promoting videos better if there are chapter markers in there.” [P25]

To cater to learner needs

Informants were cognizant of the information and styling needs of users when designing their
content. For example, documentation needs to be very clear and concise for the audience
(nine informants): “In the software world, developers follow some technical jargon. I avoid using them because

I need to explain to an audience and it should be really clear.” [P19] Informants deliberately styled their
content to help the audience understand better (ten informants): “If you are new to this area and

some people are explaining things really, really quickly and you just have a big chunk of a code snippet at the end,

[...] you are just like: OK, so what does this do, why this, why that. That’s why, [in my documentation,] every

single step has a code snippet rather than just one at the end.” [P5] To assist the audience, informants
provided useful indicators about the content (P13, P16, P20, P24, P26), such as a note
about prerequisite information requirements: “[The readers] need some kind of knowledge before, to

better understand the article. So I always make sure I let them know what they need.” [P13]

78

CHAPTER 5. CONSIDERATIONS OF DOCUMENTATION CREATORS

Table 5.4: Documentors’ considerations along the dimension styling objective.

Consideration Description Example open code

To cater to their own
preferences

Informants incorporated aspects that they would
have liked to have as a learner.

Is participant’s personal
preference to have a
structure with situation,
problem, and solution

To work within per-
sonal constraints

Informants styled their content based on how much
time they had, or to keep an achievable routine for
posting documentation.

Code has to be short enough
that it can be written about
in a relatively short time

To differ from existing
documentation

Informants took deliberate measures to ensure
their documentation was different from existing
documentation about the same topic.

Differentiate from existing
static blogs by providing in-
teractive real examples

To increase viewership Informants used techniques to capture a learner’s
attention and optimize for search engines.

Keep reader engaged and
incentivized to read until
the end, by adding humor

To cater to learner
needs

Informants styled content to what they thought a
learner would want or need.

Have three examples so at
least one may be relevant /
valuable to the viewer

To match the nature
of the content

Informants styled content based on what suited it
best, e.g. examples are well suited to explaining
hands-on topics.

GUI software lends it-
self better to screen-
shots/images

Other objectives Other styling objectives that are less notable. Follow mentor’s documen-
tation as a guide

79

CHAPTER 5. CONSIDERATIONS OF DOCUMENTATION CREATORS

5.4.1 Study Design Trade-offs

Our informant pool is a convenience sample of identified documentors whose contact in-
formation was publicly available. The limited number of informants is a consequence of
conducting lengthy interviews. There is a possibility that other considerations and mindsets
exist for documentation contribution. We chose to accept the trade-off [209] of fewer partic-
ipants from interviews, as opposed to potentially more participants from a survey study, in
favor of obtaining deeper insights on the documentation process. Any novel observations of
the documentation process in future work can be integrated into the proposed framework in
Figure 5.1.

The interview methodology relies on reflection and self-reporting, wherein informants
must recall and describe their own experiences. There is a risk of differences between per-
ceived and actual documentation contribution behaviour. An alternative would have been
to conduct an observational study in a natural or lab setting. However, in a natural set-
ting, observing and analysing the documentation process is not feasible, as documentation
contribution does not necessarily have a set time frame. Alternatively, developing a simu-
lated setting for a lab study would remove the important context of volunteered contributed
documentation. Thus, we decided to conduct interviews. We followed a specific-to-general
interview technique [99] in which we asked informants to explain their thoughts and actions
with concrete examples and then followed up with a question on whether this was their
general procedure. This technique helped provide context and evidence for the interview
responses.

5.5 Implications

The responses to the open-ended questions in our validation questionnaire complemented the
interviews to provide further insight about respondents’ creation processes. We reflect upon
how the mindsets are at play during documentation contribution, and use quotes from the
interviews and validation questionnaire for insight. Specifically, we note how documentors
must maintain a balance between multiple mindsets, the challenges they face in pursuing
particular considerations, and mindsets that respondents suggested, and ideas for future
work related to these aspects.

5.5.1 Balancing Multiple Mindsets

The five mindsets we elicited are neither exhaustive nor mutually exclusive, and documentors
may display more than one mindset in the creation process: “As a solo content creator, I had to

experience most of the mindsets at once, since they all played a factor for me.” [R7] In fact, having a single
mindset can even be harmful to the quality of the documentation produced. For example,
while being content-oriented is beneficial to ensure that the style, topics, and information
content go hand-in-hand, it is easy to miss what users may prefer.

Documentors must also think about the visibility of their documentation: “We dedicate a

bunch of pages to [a topic] and [the documentation pages] don’t get used. It’s essentially really thinking about our

87

CHAPTER 5. CONSIDERATIONS OF DOCUMENTATION CREATORS

users in terms of what they might want to do and just having examples for that.” [P1] However, focusing only
features that promote visibility via search engine optimization (SEO) can interfere with the
design of documentation: “Sometimes putting an image [in the documentation] was not really necessary,

but I have to, in order to optimize for SEO.” [P23] Such overhead can also disrupt the learning and
creation workflow: “[...] sometimes it bores me to create a new post [...] doing the alt tags, putting an

image, cropping it, making sure that the key phrase is in there, the SEO stuff. It might take an hour. You know,

in that hour I could have learned that [topic] in five minutes and then in the other 55 minutes I could have gone

off and learned something way more advanced.” [P8]

Thus, maintaining a fine balance between the mindsets is an integral part of the documen-
tation contribution process. Depending on the goals of the documentor, each mindset may
not be weighted equally. For example, R4 and R11 agreed to experiencing the growth and
visibility mindset, specifying the caveat: “but it is not my top priority” [R4]. The mindsets may also
be prioritized differently, based on the documentor’s own environment and experiences. One
respondent disagreed to having experienced the novelty and value addition mindset: “Being

too creative with the documentation design could take extra effort, and there is usually no value in doing so.” [R5]

Another respondent who disagreed to experiencing the mindset explained that originality
occurs naturally: “There might be overlap, but every time someone else is writing about the same thing,

it will come out differently.” [R12] In contrast, respondents who agreed to having experienced the
mindset emphasized how important it was to intentionally be different: “So much programming

content is boring and hard to digest (for me and many of my previous classmates). I knew there was a gap on

YouTube for it, and I could fill it.” [R7] We asked respondents to answer the questions based on their
own experiences, however, documentors may also recognize mindsets in other documentors.
For example, one respondent selected “Unsure” for the mindset prioritizing personal bound-
aries, and explained that “I have not experienced this mindset, but I can see how others might adopt it in

their work.” [R1].
Ultimately, “Embracing a combination of these mindsets can lead to the creation of comprehensive, valuable,

and user-friendly documentation that encourages documentors to stay up-to-date with the latest developments

in their field and incorporate new knowledge into the documentation.” [R16] As a result, further research
can investigate how to support documentation creators in balancing and managing multiple
mindsets to produce high quality and relevant software documentation.

5.5.2 Challenges with Pursuing Considerations

With the freedom to prioritize considerations as they like, documentors must consider the
trade-offs of their decisions. For example, “Documenting a fresh or rarely seen content [...] Brings less

traction but feels more rewarding, especially because that small audience appreciates those kinds of contents most

of the time.” [R11] Furthermore, documentors can become overwhelmed because they must also
handle the many tasks related to curating the documentation content, such as editing and
audience engagement.

For documentors of video tutorials, creating the video takes additional effort: “I also do all

of my own editing and planning. So you can get really lonely. That’s what people don’t really talk about is that, on

YouTube, you’re all of these jobs in one. Which is, you know, it’s a lot of work.” [P18] Documentors must then
prioritize their personal boundaries and use multiple strategies to optimize documentation

88

Chapter 6

Interactions with Multimodal
Documentation

Our insights from Chapters 3 to 5 indicate that current techniques to consider varied user
preferences for software tutorials involves managing and maintaining documentation of dif-
ferent formats across different platforms. Furthermore users have different preferences about
documentation, which can depend on their roles and responsibilities [62]. However, prior
work has reported that documentation can suffer from incompleteness, wherein the docu-
mentation is missing important elements such as step-by-step guides, code examples, and
code comments [7] that can cater to varied needs. In this phase, we investigated how a single
document can cater to the varied presentation needs and preferences of users for different
types of programming tasks, through information presented via multiple modalities. We in-
troduce the term modality to refer to a presentation format, such as text content or a table,
that is used to present information within a documentation resource.

We created three multimodal tutorials prototypes about three basic programming con-
cepts in the Java language, namely regular expressions, inheritance, and exception handling.
Whereas it may seem intuitive that users’ modality preferences can vary based on the spe-
cific types of tasks they perform, we found little evidence in the literature to support this
hypothesis. To test this hypothesis, we conducted a survey with users that have at least
one year of prior programming experience. In the survey, we asked respondents to complete
three different programming tasks related to one of three task types, i.e. conceptual, how-to,
or debugging. After completing each task, we asked respondents to indicate which modalities
they used for the task and to explain their choices. We analyzed their responses to determine
how they made decisions about information presentation.

Goal

The goal of this phase of the research was to understand how programmers interact with
multimodal documentation and how the different modalities could serve different users’ needs
and preferences.

91

CHAPTER 6. INTERACTIONS WITH MULTIMODAL DOCUMENTATION

Table 6.1: Examples of the three programming task types in our survey.

Task type Example task (from survey on regular expressions in Java)

Conceptual You are debating whether to use the matches() method in the Pattern class or the
matches() method in the Matcher class. What is the difference between both these meth-
ods?

How-to The user is asked to input their email address in the expected format:
username@domain.com. Use regular expressions and write the code to verify that
their email address matches the expected format, and then retrieve just the username from
their email address.

Debugging The user is asked to enter their ten-digit phone number which may or may not be separated
by hyphens into three parts of 3, 3, and 4 digits (no spaces are allowed). So, valid number
formats include: 123-456-7890 and 123-4567890 and 1234567890. You develop this simple
regular expression as the pattern in the matches() method:

\d{3}-?\d{3}-?\d{4}

However, when you try to compile your code, the compiler throws an error on this regular
expression. What is the issue and how can you fix this regular expression to fit the given
criteria?

tutorial page, and asked participants to complete three programming tasks. The three pro-
gramming tasks are based on search intent categories proposed by Rao et al [204]. Rao et al.
identified seven search intents, i.e. reasons for searching for technical information, based on a
manual analysis of 400 queries logged by the Bing search engine that are related to Software
Engineering. We selected the three intents that are most relevant to basic programming
concepts, and thus our context: Learn, How-to, and Debug. From these intents, we defined
task types, i.e. three types of programming tasks, namely conceptual (corresponding to the
Learn intent), how-to, and debugging.(x) Table 6.1 provides an an example of each task type.
We created one programming task corresponding to each of these task types, for each of
the three programming topics in our user study. Thus, each respondent completed a total
of three tasks, one of each task type, and all associated with one of the three programming
topics. The complete list of tasks are available in Appendix D.1. After each task, we asked
respondents two follow-up questions: a choice-based question about what modalities of the
tutorial they used to complete each task, and an open-ended question to explain their choices
(see Figure 6.3). In the survey, we referred to the modalities also as “features” to have a
relatable terminology for respondents.

In the fourth and final part of the survey, we asked four open-ended questions about the
usefulness of the table of contents and the collapse/expand functionality, any other modalities
or features respondents would have liked, and any additional comments they had, as shown
in Figure 6.4.

(x)We chose to rename Learn to Conceptual in our study, because all task types may involve some learning.
Instead, conceptual specifically refers to learning about a topic, such as comparing two concepts.

95

CHAPTER 6. INTERACTIONS WITH MULTIMODAL DOCUMENTATION

Figure 6.3: The follow-up questions to a task that ask respondents for their ratings for
the different modalities. Note that the question refers to modalities as “features” (see Sec-
tion 6.1.2).

We conducted six pilot studies, twice for each tutorial. No content-related changes were
made to the programming tasks or the tutorials after these pilots; we only fixed typos
pointed out during the pilots, and refined the demographic questions. The study protocol
was approved by the ethics review board of McGill University.

6.1.3 Respondent Recruitment

We recruited candidates from student mailing lists within universities, relevant public email
groups, software-engineering related Slack channels, and social media channels. We required
that interested candidates send an email from their institutional email ID to the first author,
who would then respond with a survey link corresponding to one of the three prototypes. The
three survey forms were rotated in a round-robin among candidates who contacted us. We
received a total of 108 requests to participate in the survey. A total of 70 of these candidates
completed the survey, of which four had less than one year of programming experience (the
minimum criteria to participate in the survey), seven answered a control question incorrectly,
and another responded to all mandatory open-ended answers with “Test”. Additionally, two

96

CHAPTER 6. INTERACTIONS WITH MULTIMODAL DOCUMENTATION

Q: Did you use the table of contents? If yes, please explain how you used it. If no, please explain

why you did not use it.

Q: Did you collapse and expand sections, tables, or code examples? If yes, please explain how these

additional tutorial features were useful. If no, please explain why you did not use them.

Q: Were there any other tutorial features you wish the tutorial had?

Q: Please share any additional comments that you have about your experience using the tutorial.

Figure 6.4: Optional open-ended questions in the survey.

Table 6.2: Demographics of survey respondents.

Age Gender Region P.Exp. (yrs)

#Res. 18-24 25-34 35-44 45-54 55-64 Man Woman N.S. N.A. Asia Europe 1-5 5-10 >10

Regular Expressions 13 11 1 1 0 0 8 5 0 10 1 2 9 3 1
Inheritance 22 16 4 0 1 1 11 9 2 17 2 3 19 2 1
Exception Handling 21 13 7 1 0 0 14 7 0 20 0 1 12 8 1
Total 56 40 12 2 1 1 33 21 2 47 3 6 40 13 3

#Res. — Total number of respondents for that topic
P.Exp. (yrs) — Programming Experience in years,

N.S. — Prefer not to say
N.A. — North America

respondents did not respond to our follow-up to clarify their survey responses. The remaining
56 respondents were entered into a draw for a gift card worth CAD $100, with at least a
10% chance of winning.

6.1.4 Analysis

Table 6.2 shows the demographics of the valid respondents of our survey. We performed tests
to determine whether there is a statistically significant association between modalities, their
rating, the type of programming task, and the programming topics. We refer to these four as
dimensions when discussing the statistical analysis. We conducted a total of 16 Fisher’s exact
tests. We used 200,000 Monte Carlo simulations [164] to account for the multiple categories of
each dimension. We also applied a Bonferroni correction by multiplying the p-value obtained
from each test by 16, to mitigate Type-I error when making multiple comparisons [3]. We
performed 16 Fisher’s exact tests between modality rating and each of the other dimensions,
using one of the dimensions as a filter, as shown in Table 6.3.

We also calculated the adjusted standardized residuals for each statistically significant
association between two dimensions, to determine which pairs of categories across the two
participating dimensions have an effect on the association [224]. Residual values greater
than +2 indicate a meaningful number of observations more than expected, whereas residual
values lesser than -2 indicate that the observations of the pairs of categories are lesser than
expected.

For additional insight into the use of tutorial modalities, we analyzed the open-ended

97

CHAPTER 6. INTERACTIONS WITH MULTIMODAL DOCUMENTATION

Table 6.3: Description of the 16 Fisher’s exact tests we performed. We conducted the tests
between Dimension A and Dimension B, for each Filter.

Dimension A Dimension B Filter # of tests Description

Modality rating Topic Modality 5 (one for each modality) These tests indicate whether, for a particular
modality, its rating is associated with a program-
ming topic.

Modality rating Task type Modality 5 (one for each modality) These tests indicate whether, for a particular
modality, its rating is associated with the type of
task.

Modality rating Modality Topic 3 (one for each topic) These tests indicate whether, for a particular topic,
there is an association between each modality and
the ratings they receive.

Modality rating Modality Task type 3 (one for each task type) These tests indicate whether, for a particular task
type, there is an association between each modality
and the ratings they receive.

text responses of the survey. We open-coded the responses to identify the rationale for
using particular modalities. Furthermore, we report on the text responses for the optional
questions, including respondents’ use of additional features provided in the tutorials.

We report the significant results from our analysis and use the text responses to provide
explanations for our observations in Section 6.2. Appendix D.2 and Appendix D.3 contain
the statistical analysis results not discussed in Section 6.2.

6.1.5 Study Design Trade-offs

In designing both the multimodal tutorial prototype as well as the survey, we made a number
of deliberate decisions that may have impacted the number of respondents and modality
rating responses. We discuss the trade-offs of these decisions to communicate our design
considerations. [209]. In all three prototypes, we implemented navigation tabs for the code
examples in the order regular, summarized, annotated, with the regular tab in focus every
time the page is loaded. Thus, participants would have to perform additional keystrokes in
order to see the summarized and annotated code examples. As an alternative, we considered
allowing respondents to select which of the code examples they would like to see by default,
prior to loading the HTML. However, this would have required them to be familiar with all
three types of code examples before using the tutorial, which was uncertain. To ensure that
survey respondents were aware of the other tabs with other modalities, we prepared and
provided a three minute tutorial video about all the tutorials modalities in the survey. We
used control questions, e.g. Please select the statement that best describes “annotated code
examples” in the video, to ensure that respondents were aware of all available modalities
before using the tutorial for the survey. We did observe that more respondents found regular
code examples useful than other types of code examples for all programming tasks and
topic. However, respondents acknowledged the usefulness of summarized and annotated
code examples based on their own preferences and in different contexts (see Section 6.2.4).

Once deployed, the survey was potentially subject to invalid and false responses. To
mitigate the possibility of spam, we required all interested candidates to email the first

98

CHAPTER 6. INTERACTIONS WITH MULTIMODAL DOCUMENTATION

author from their institutional email address. Furthermore, the first author provided each
candidate with a unique alphanumeric verification code which the respondent was required to
input when completing the survey. Although this decision may have impacted the quantity
and demographics of respondents, we favored this procedure over adding a link to the survey
in our recruitment advertisements, to ensure to the best of our ability that responses were
genuine.

We asked respondents to complete three programming tasks. Analyzing the task an-
swers would provide insight on whether respondents were able to successfully leverage the
information presented in the tutorial to complete the tasks correctly. However, we chose
not to report on the correctness of task answers, and use only the control questions and
participation criteria to filter invalid responses. We made this decision because our goal was
to understand how useful programmers found the different modalities, based on their needs
and preferences. Thus, in our study, the tasks only acted as an instrument to provide a
common context to all respondents while they navigated the multimodal tutorial.

We created three prototypes for three different programming topics. Although we could
have created a single prototype and reported on its results, we chose to deploy multiple
prototypes to account for potential bias of the programming topic to survey responses. A
consequence of this decision was that there could be slight variations in difficulty between
tasks in the three surveys, that may have been further compounded by respondents’ prior
programming experience. However, the results of the statistical tests between modality rating
and topics, for each modality, indicate that there is no statistically significant association
between these two dimensions except for tables. Still, we found that some respondents
struggled with the inheritance debugging question (described in Section 6.2.3). This may
be because the question required some inference from the tutorial content, which could have
been easy to miss.

6.2 Programmer Interactions with the Multimodal
Tutorial

We describe our observations of the modality ratings for the different task types and topics,
with insights from respondents’ text responses. We refer to respondents as R#, I#, or
E# according to the survey topic: Regular expressions, Inheritance, or Exception handling,
respectively.

6.2.1 Modality Ratings for Conceptual Tasks

For all three topics, more respondents found text content useful compared to other modalities
for the conceptual tasks (see Figure 6.5). This is also visible from the residuals which show
that the text content being very useful is observed more than expected (see Figure 6.6a).
Respondents rationalized that text content was relevant specifically for a conceptual problem:
“Because this was a more theoretical question about the usage of the “final” keyword, I was looking for information

provided as an explanation” [I11].

99

CHAPTER 6. INTERACTIONS WITH MULTIMODAL DOCUMENTATION

5 22 3 11 15

5 24 7 9 11

5 28 6 6 11

4 16 7 16 13

3 4 4 10 35

Because I
already knew
the answer, I
didn't look at
the tutorial

I used the
tutorial,

but not this
feature

I used this
feature, but
it was not

useful

I used this
feature, it

was moderately
useful

I used this
feature,

it was very
useful

Table

Annotated
code

example

Summarized
code

example

Regular
code

example

Text
content

Rating

M
o

d
a

li
ty

(a) Conceptual (adjusted p-value = 2.4e-4)

12 26 3 5 10

12 24 6 4 10

11 19 6 9 11

5 5 2 10 34

10 16 8 10 12

Because I
already knew
the answer, I
didn't look at
the tutorial

I used the
tutorial,

but not this
feature

I used this
feature, but
it was not

useful

I used this
feature, it

was moderately
useful

I used this
feature,

it was very
useful

Table

Annotated
code

example

Summarized
code

example

Regular
code

example

Text
content

Rating

M
o

d
a

li
ty

(b) How-to (adjusted p-value = 8e-5)

12 33 4 5 9

18 29 6 5 8

1 7 1 11 19

Because I
already knew
the answer, I
didn't look at
the tutorial

I used the
tutorial,

but not this
feature

I used this
feature, but
it was not

useful

I used this
feature, it

was moderately
useful

I used this
feature,

it was very
useful

Exceptions

Inheritance

Regex

Rating

T
o

p
ic

(c) Table (adjusted p-value = 8e-5)

Residuals

-Inf Inf2-2 0

Figure 6.6: Adjusted Standardized Residuals and contingency tables between Modality and
Rating for Conceptual and HowTo programming tasks, as well as between Topic and Rating
for Tables. Note that the labels refer to modalities as “features” (see Section 6.1.2).

101

CHAPTER 6. INTERACTIONS WITH MULTIMODAL DOCUMENTATION

6.2.2 Modality Ratings for How-to Tasks

More respondents indicated that regular code examples were useful for how-to tasks than any
other modality (see Figure 6.5). The residual for regular code examples being very useful
for how-to tasks indicate a larger frequency than expected by chance (see Figure 6.6b).
Respondents explained that the how-to tasks involved programming, which made it was
necessary to get an idea of a working example, which the code examples could provide: “For

implementation [...] It was far more useful and relevant to see code in context [...]” [R4]

We note that many respondents indicated that they already knew the answer for the how-
to tasks for inheritance and exception handling. Six respondents for inheritance and eight
for exception handling relied on their prior knowledge in how-to tasks. For comparison,
no respondents indicated relying on their prior knowledge for regular expressions. When
recalling their knowledge, respondents only needed a reminder of the underlying concept or
syntax, which the regular code example could provide: “I went straight to a code example to get a

refresher on the proper syntax to be used when extending a class. The regular code example provided enough

information for me, and so I didn’t check the other more detailed examples.” [I10]

Observation 2: Regular code examples were more useful than other modalities for
how-to tasks.

6.2.3 Modality Ratings for Debugging Tasks

For debugging tasks, there is no particular modality which was most useful across all three
programming topics (see Figure 6.5), nor are there statistically significant associations be-
tween modalities and their ratings. For regular expressions, more respondents found tables
useful: “The table was definitely the most useful for this question since most of the information for the dif-

ference [between] quantifiers and metacharacters were found in the tables.” [R8] However, both Figures 6.5
and 6.6c show that tables were largely ignored by respondents for inheritance and exception
handling.

For inheritance, respondents used a combination of modalities: “It was a complex question,

and initially, it wasn’t clear to me why this [the issue in the task] was happening. I re-read the text to figure

out what I was missing, then reviewed the code to understand how the method was being overridden, and finally,

examined the table to identify the relationships between them” [I15], which explains the more balanced
rating amongst the different modalities. Nine of the 23 respondents for inheritance described
some difficulty with this task, either indicating they could not understand what the issue
was or find the answer in the tutorial. This also explains why more respondents found the
modalities not useful for the inheritance debugging task compared to any of the other tasks.
Still, we do not observe a statistically significant association between programming topic and
modality rating for all modalities except tables.

More respondents found text content useful for the exception handling debugging task,
complemented by code examples. We also observed that, as for how-to tasks, more respon-
dents already knew the answers to debugging questions than for conceptual questions (see
Figure 6.5). Furthemore, some respondents were able to leverage their prior knowledge, and

102

CHAPTER 6. INTERACTIONS WITH MULTIMODAL DOCUMENTATION

the text content provided sufficient information for them to recall and answer the question:
“I was already familiar with the concept of multiple catches. I quickly checked my understanding in the textual

description.” [E4]

Observation 3: No modality dominated as a preference for debugging tasks, across
programming topics.

6.2.4 Usefulness of Individual Modalities

Our results from Sections 6.2.1 to 6.2.3 indicate that some modalities may be favored for
some task types, for some programming topics. However, we observed that at least some
respondents found each modality useful. We describe the contexts in which each modality
can be useful, based on how respondents explained their varying usage of the modalities in
their text responses.

Text content was useful for understanding the underlying working and background of
a technical concept: “The text helped me figure out what was going on behind the scenes of the code and

to learn about the theory behind overriding methods.” [I10] Furthermore, text content complemented
other modalities: “reading the small description in the table seems quicker and easier than reading the whole

text. I thought if I can’t find the info in the table then I’ll read the text.” [I8] However, as the content is
descriptive in nature, it does not provide the implementation know-how needed to code: “The

text content provided a good theoretical background and context for the task and helped in understanding the

concepts but was not as directly applicable as the code examples.” [R7]

Regular code examples provided a departure point for completing coding tasks: “The

code examples were useful to base my answer off of, I was able to know the syntax and number of parameters

of the methods I wanted to use quickly.” [R2] Although the same code is available through annotated
code examples, someone with a background in programming could find that the regular code
examples were sufficient: “Annotated code was not useful for me since I understood the regular code directly

[...]” [I8]

Summarized code examples “provided a concise and clear illustration of the key points and made

it easier to grasp the differences without getting bogged down in too much detail.” [R7] This focus helped
when programmers needed to recall information quickly: “I used the summarized code to refresh my

memory on the try/catch syntax in Java. It was more concise than the regular and annotated code samples, which

made it easier to find the information I was looking for.” [E11] However, others found that: “the summarized

code example was missing essential code found in the regular code section.” [E5]

Annotated code examples “included comments and explanations for each part of the code and

made it easier to understand the logic and purpose behind each step, enhancing the learning experience.” [R7]

Although the combination of text content and regular code examples may provide sufficient
information, the annotated code examples provided example-specific descriptions, which can
be especially useful for beginners: “I used the annotated code example because I think it’s more readable

and well explained. This feature, especially for a beginner or for someone not used to writing code in a certain

language, allows the user to understand better.” [I19]

Tables were useful to have a concise overview of information present in the text content:

103

CHAPTER 6. INTERACTIONS WITH MULTIMODAL DOCUMENTATION

“I first read the text, and it gave me an overview. Then I read the table, and the information was presented in

a clear, concise, and more visually pleasing way.” [I6] Tables also provided a quick reference: “The table

was useful for quickly understanding what each relevant method achieves.” [R4]

Although the modalities were useful for different purposes, respondents used a combi-
nation of the modalities to complete the programming tasks: “[The modalities] were all equally

useful as they all provided an explanation about [the task solution] or an example which made it clear.” [R10] Al-
though containing the same information, the variations in presentation allowed the modalities
to complement one another: “The text content and table allowed me to know where to look for the informa-

tion I needed and the code gave a useful example.” [I13] However the combinations of which modalities
to use varied depending on the respondent: “I relied on text for the main of the information and then

looked for practical applications of what was described in the text in summarized code blocks.” [E18]; “The text

content was giving useful explanations. The annotated code example gave more explanation on the example.” [E16]

Observation 4: Different modalities complement one another to support comprehen-
sion from multiple perspectives, i.e. concept understanding, quick referencing, and code
implementation and rationale.

6.2.5 Usefulness of Additional Tutorial Features

We report on the two optional open-ended questions about how respondents used the table
of contents and the collapse and expand features, for which 55 of the 56 respondents provided
an answer.

Table of contents

A total of 39 respondents found the table of contents useful to get an idea of which sections of
the tutorial were relevant to the programming task, and navigate to them directly. However,
this required some intuition based on where they could expect the content to be. For two
respondents who were not familiar with the topic or with Java, the table of contents was
not as helpful: “I skimmed everything in the tutorial because even the headings were unfamiliar to me so

[the table of contents] didn’t help me search because I didn’t know what [the sections] were yet.” [R13] Four
respondents who did not use the table of contents, described that the tutorial was short and
concise enough to navigate directly: “No [I did not use the table of contents], though I definitely could

have if the tutorial was longer. It was short enough that I could scroll through and just read the topics that I

needed.” [E9] Additionally, if ever needed, respondents could simply use the default webpage
search functionality: “I find it easier to directly search for what I want using ctrl+F, since all info is on one

page.” [I16]

Collapse/expand

The feature to collapse and expand tutorial modalities “made the website slightly less overwhelming

by collapsing things, and the expanding helped when I needed something explained.” [E15] This was especially
the case when relevant information was present across sections that were not placed next to

104

CHAPTER 6. INTERACTIONS WITH MULTIMODAL DOCUMENTATION

each other: “[it] made it easier to navigate and have relevant information on the screen, independent of if it was

the first and last section or the second and third section, for example.” [R6] However, 39 respondents did
not use the functionality because the table of contents provided sufficient navigation to allow
skipping irrelevant sections: “I did not need to collapse and expand sections, tables, or code examples since

the table of contents allowed me to jump directly to the sections I needed.” [R7] Additionally, the tutorial
was concise enough to skim through manually: “I’m sure [the collapse/expand features] are helpful for

longer tutorials. This is pretty short so I did not need to do so.” [E9] Seven respondents preferred not to
collapse sections: “I like having everything displayed so I can be sure I am not missing anything.” [I4] E14
and E18 suggested that everything be collapsed first and then a user could expand as they
went: “I don’t think the collapse were useful, primarily because they are already all expanded. If they started by

being collapsed by default, it might have been useful, but the call to action currently is to collapse information,

which is not very relevant for the user trying to access information.” [E18]

6.2.6 Recommendations from Respondents

Respondents had suggestions for how the tutorial could be improved, such as including other
modalities: “More charts and diagrams/pictures would be useful. I find a combination of different "materials"

helps me absorb information better [...] more images could always help” [I10]; “I like when tutorials suggest a little

project/example for you to try out.” [I17], and an in-page integrated code editor and runner (R10,
R13, I14, I24, E9, E13). These suggestions motivate the need for multiple modalities in
tutorials: “I liked the different ways that the information was conveyed! I like having options to best fit my

specific needs.” [I6]

Contradictions in preferences between participants additionally surface the need for
adaptable tutorials whose design can be customized by users. For example, some respondents
appreciated the annotated code examples (I10, I16, I23, E13, E16), even wondering: “Not

sure why keep Regular [code example] as default when Annotated is superior.” [E13] However, one respon-
dent would do away with them entirely: “I wish [the tutorial] was just headers (to navigate), text (to

understand theoretical concept) and summarized code blocks (to understand practically in code).” [E18] Another
respondent wanted the ability to collapse all the code at once: “I think a button to collapse all the

code at once would make navigation easier since they take up a lot of space.” [R12] Respondents also wanted
variations in other user experience aspects: “I would maybe just change the colours since I don’t like

websites that are beige (maybe like a dark and light mode) but that’s only a personal preference.” [I8]

105

Chapter 7

Discussion

Our four studies on software documentation reveal that designing documentation involves
more than simply providing information about a software technology. Information content is
only one characteristic of documentation resources, and is not the only aspect programmers
use to identify relevant and useful software documentation. Instead, documentation acts as a
communication [201] between documentors and programmers. For this communication to be
successful, documentors must be able to understand not only the information needs, but also
the structure, organization, and presentation preferences of their audience. Furthermore, as
users of software technologies, documentors may incorporate their own preferences to inform
the documentation they create such that it can be relevant to other programmers in similar
positions.

Our findings suggest the need for customizable documentation. We discuss important
insights from the four phases of our research about software documentation. We also discuss
the anticipated challenges of building such versatile documentation given these insights. We
discuss avenues for future work towards the vision of customizable, multimodal software
documentation that can cater to various needs and preferences while retaining documentors’
considerations. Henceforth, we use the term documentors to refer to documentation contrib-
utors, and the term programmers for people who look for and consume information about a
software technology.

7.1 The Software Documentation Environment

Prior work has primarily approached software documentation as a source of technology in-
formation. However, our work provides insights on software documentation that allow us
to understand its value and context through the perspectives of people who interact with
it. Specifically, we note that software documentation is human-centric. We discuss the
management of multiple documentation types and insights on the design of customizable
documentation.

106

CHAPTER 7. DISCUSSION

7.1.1 Software Documentation is Human-centric

Although the primary focus of software documentation may be to provide information about
a technology, the actual documentation process from creation to use is influenced by the
humans who interact with documentation.

Documentors play an important role in creating documentation; they are responsible for
designing documentation to help programmers learn about a software technology. Whereas
developers consider documentation as a product that is a supplementary part of a software
package [205], time and effort goes into designing and creating documentation. Since doc-
umentors can make decisions about the documentation they contribute, they can prioritize
their own needs, interests, and personal development. Whereas existing software to support
the creation of software focuses on the content of documentation [25, 91], documentation
creation tools can better support the creation and contribution process by considering the
needs and preferences of the documentor.

Once produced, the effectiveness of documentation depends on the needs and preferences
of the programmers who access it. Additionally, documentation can only be useful if it can be
successfully located by programmers [7]. Moreover, documentation that is not organized or
presented in a manner that a programmer prefers, also impacts their information consump-
tion. For example, boilerplate documentation that simply restates information that can be
gathered by a method’s definition is not useful, and thus frustrating to programmers [210].
Furthermore, as reported in Chapter 3, if documentation is not styled in a way that the
programmer prefers, it may result in abandonment of the resource, despite it containing
valuable information. Instead, software documentation itself must be designed to meet the
needs of the intended audience [211].

Naturally, documentation creators who are themselves users of software technology doc-
umentation, may have some insight on documentation use. This forms a connection between
documentors and programmers. Thus, as consumers of other documentation, documentors
are well-informed to cater to the needs of similarly positioned information seekers. Prior
work has discussed documentation creators as evangelists [156]. We introduce a new per-
spective: volunteer documentation contributors as documentation consumers. Documentors
leverage their own learning and programming experiences to inform decisions during doc-
umentation creation. As a result, they are informed of the needs of users, an important
feature of software documentation production [144]. Additionally, as the preferred style of
learning influences the documentation a documentor creates [57], the documentation created
can serve audiences who have similar preferences [62]. This indirect interaction is a par-
tial view of Mehlenbacher’s predicted input-output model of documentation creation that
suggests that technology creators, documentation writers, and end users are a “triangle of
interrelated technology users” [163].

With documentors in control of how documentation is designed, and programmers in
control of how they search for information in documentation, there is a need to incorporate
the considerations of both of these stakeholders. However, our findings show that each
group has variations among their needs, preferences, and priorities. Furthermore, a direct
communication between documentors and programmers becomes a practical scalability issue

107

CHAPTER 7. DISCUSSION

with increased documentation visibility. As a result, there is a need for convergence and
communication between documentation creators and user-programmers.

7.1.2 Management of Multiple Documentation Types

There are a number of types of software documentation [96], such as API reference docu-
mentation, software tutorials, textual blogs, YouTube videos, etc. Our findings indicate that
different formats for presenting information serve different purposes for both documentors
and programmers. For example, we noted from our first and fourth studies that program-
mers preferred textual explanations to answer conceptual questions, and used code examples
to refer to a practical demonstration of these concepts. For documentors in our third study
phase (Chapter 5), text-based documentation types such as tutorial blogs acted as a nav-
igation cue for programmers to be redirected to the documentors’ main content, such as
Youtube videos or paid course material.

Despite no enforced standard for how different types of documentation should be de-
signed, frameworks such as Procida-Diataxis [198] help provide guidelines for information
content. Additionally, we found that both documentors and programmers leverage their
prior experiences and familiarity with documentation to identify what kinds of documenta-
tion resources contain what kind of material. Whereas programmers use implicit cues to
navigate, documentors report that some information content naturally lends itself to a par-
ticular format. For example, text or videos cater to lengthy conceptual explanations, but
overviews are best suited to be presented as bullet points or within tables.

Our studies suggest that presenting information through different modalities, and through
different documentation styles can be beneficial. However, it does mean that the same
technical information is duplicated across different resources [61]. Consequently, manually
managing this duplicate information across different resources can lead to inconsistency [15].
There is also an increased effort for documentors who must design each resource such that
it is self-contained, while maintaining the correspondence between resources. Furthermore,
variations of documentation add to the already numerous resources that programers must
wade through to find pertinent information. Thus, there is a need to support the management
of information consistency across multiple documentation types.

Prior work has investigated methods to automatically generate documentation from code
comments [91, 125], present information in an alternate manner for code snippets [176],
and support the decision-making judgement of reusing knowledge [146]. In the domain of
content creation for social media, challenges of managing multiple platforms are similar
to information management across multiple documentation types. There, prior work has
suggested that the “creator ecology” should be configured to provide creators the support
to manage multiple social media platforms, such that they can focus on the actual creation
of content [151]. Our observations indicate the need for a framework to repurpose existing
content to maintain traceable links between the different software documentation resources.
Such a framework can mitigate the risks of information misalignment or inconsistency [202].
Additionally, we propose a movement towards multimodal, customizable documentation that
contains information through multiple modalities within a single resource. Whereas the goal

108

CHAPTER 7. DISCUSSION

of such design is to cater to variations in design preferences, it would also reduce the effort
required to cleanly maintain resources across different formats and platforms.

7.1.3 Design of Customizable Documentation

Designing customizable documentation introduces multiple aspects that must be taken into
account. We discuss the aspects that surface from our research.

Incorporating multiple modalities

Software Engineering practitioners have preferences for different types of genres or informa-
tion presentation formats, including tutorials, code or data examples, and tech notes [62]. A
documentation such as a tutorial can have multiple elements such as overview information,
code snippets, and advanced pages [260] in addition to sections, links, and images [244].
However, programmers find it difficult to navigate documentation and identify the location
of the information they are looking for, i.e. in Concepts, API reference, Samples, or in
another section [165]. Instead, a customizable documentation should allow programmers to
retrieve the same information from any modality of their choosing.

Conciseness of information

Programmers may prefer content to be short and concise or, alternatively, detailed. For
example, some developers refer to code in order to duplicate it [124], and thus may prefer
complete code examples that can be executed [24]. Other developers have described that
small code examples that show patterns of method usage are more useful than an example
of a single call to the method [210]. Finding a common balance between both factors is
difficult, as being too concise may lead to the issue of incompleteness, and being detailed
may lead to difficulties with readability due to the verbose content [7]. Instead, providing
content in both a concise and detailed format will allow users to make a decision about what
amount of information is best suited to their needs. This design can be implemented by
allowing users to select between seeing overview or detailed text, complete or summarized
code examples, and focused or elaborated tables.

Content visibility configuration

Prior work has suggested that programmers can benefit from having information revealed
to them gradually [176]. Following the design guidelines of having multiple formats and
variations in the conciseness of content, the ability to show and hide irrelevant content is
integral. For example, in the case of overview and detailed text, a user should be able to
hide detailed information, should they only want to see an overview. Similarly, sections can
be divided based on core, nonfunctional, and peripheral topics [24], allowing programmers
to customize the resource to view only core topics if their goal is to be introduced to the
software technology. Such control can allow a multimodal documentation to reproduce fa-
miliar documentation types. For example, for quick referencing, a programmer can collapse

109

CHAPTER 7. DISCUSSION

all other modalities except tables to emulate the typical presentation style of API reference
documentation.

Supporting documentation navigation

Organizing a resource into sections and subsections are integral attributes for users [73].
Providing information so as to allow both sequential and modular navigation through a
documentation resource [24] involves creating sections that can be navigated to directly.
Additionally, cues that programmers use to identify and navigate amongst resources can differ
based on information search context. For example, cue-following behaviour can differ based
on whether developers are looking to learn about a software bug or fix it [193]. Consequently,
tools to support cue-following behaviour should be context-specific: cues that point to code
execution and output can be useful for learning, whereas cues to meaningful annotations of
relevant source code can be useful for fixing bugs [193]. Thus, presenting explicit cues that
programmers can follow can support the efficient search for information.

Making customization changes visible

In a customizable documentation, programmers should be able to manipulate the design
of the resource. However, if during customization, changes in the resource are very subtle,
then users may have the impression that their efforts to customize the resource make no
difference [5]. Thus, it is important that programmers are able to see visible differences in
the documentation upon configuring it to their needs. When giving programmers control
to manipulate documentation design, changes can be applied immediately, such as changes
to settings of color shown immediately [139]. Alternatively, configuration options can be
selected and accumulated, and then applied all together allowing a user to directly see a new
documentation build, at once [199].

7.2 Anticipated Challenges to Designing
Customizable Documentation

Our research shows the potential of multimodal, customizable, versatile documentation.
However, based on our findings, we anticipate challenges in designing such documentation.
We discuss the challenges related to the shift of design effort from documentor to programmer,
the evolving design needs and preferences, the evaluation of software documentation quality,
as well as the impact of artificial intelligence on documentation creation and use.

7.2.1 Shift of Design Effort from Documentor to Programmer

Caponi et al. proposed a framework for template documents to support the creation of docu-
mentation [42]. Whereas their framework is useful for the creation of subsequent documents,
our findings suggest that a similar framework that allows users to customize documents
through a WYISWYG (What You See Is What You Get) editor, can be useful. However, the

110

CHAPTER 7. DISCUSSION

vision of customizable documentation that allows users to manipulate a resource to provide
the look-and-feel that would cater to their needs and preferences shifts some considerations
of documentation design from the documentor to the programmer seeking information. In
principle, this shift of effort should allow documentors to focus on the information content,
rather than in developing robust structure and presentation aspects of documentation re-
sources. In a study evaluating a user-controlled text summarization technology, participants
described that changes in the text were subtle, giving the impression that their interactions
with the technology did not make a difference on the text [5]. Thus, documentors will be
faced with an additional challenge in providing user control, i.e. making a resource clearly
and visibly manipulatable. Furthermore, documentors will need to make decisions about the
extent of control provided to programmers to customize the documentation. For example,
whether users should be able to manipulate the smallest units of change possible such as the
font size of the text, or only larger structure-related changes, such as the order of sections.

Additionally, a system in which the programmers are given the responsibility of ma-
nipulating documentation assumes that they are aware about their needs and preferences.
However, prior work has shown that this is not necessarily the case, and often program-
mers struggle to articulate their needs clearly [149]. Additionally, programmers will have to
customize a resource to their needs and preferences before being able to consume the docu-
mentation resource, and will thus be burdened with additional effort. Already, our results
from Chapter 3 show that finding pertinent documentation is an involved process. Pro-
grammers may then find the process of searching for information within a pertinent resource
fatiguing if they have to first customize it to their needs.

An alternate approach to considering this shift of control effort could be to develop a
programmer search profile that could be used to automatically configure documentation to
the programmer’s needs and preferences. However, the development of such a profile could
pose a threat to the programmer’s privacy [211]. Additionally, our findings from the fourth
phase of our research indicate that the use of modalities can also vary between programming
task types. Even with a developed user profile, it would be challenging to identify the task at
hand or the intention of the programmer when accessing the documentation, without further
information on the context of information search.

7.2.2 Evolving Design Needs and Preferences

We find that the needs, motivations, and preferences of documentors and programmers are
subject to variation, based on their personal experiences and the context of their creation
or search environment, respectively. Similar to a software project with changing require-
ments [68], the considerations of documentors and programmers can also evolve with time.
For example, one documentor from our third study described that they began to contribute
documentation many years prior for their professional development. But now, their motiva-
tion was to earn income from the content they produced, and thus their motivation shifted
over time to evanglism and rewards. Programmers’ level of background knowledge can im-
pact their information search techniques and needs. Thus through the learning process, and
familiarity with documentation resources, programmers could change their search tactics.

111

CHAPTER 7. DISCUSSION

For example, we noted in Chapter 3 that programmers used Impression Factors to develop
Beliefs and specify Preferences that impacted future searches. In our fourth study (Chap-
ter 6), respondents referred to particular modalities that could help them recall any prior
knowledge they had, e.g. code examples if they had familiarity with coding and just needed
to refresh their memory on syntax, or text content if they wanted to confirm their prior
understanding of a technical concept.

With evolving software changes, traditional forms of documentation, such as API ref-
erence documentation, are continuously revised to be consistent with the corresponding
technology [227]. This is especially the case for official documentation, i.e. when the doc-
umentation is created by technology creators themselves, as they need to communicate any
new user-accessible features [54] such that the technology can be used effectively. However,
revising documentation based on evolving design needs and preferences is non-trivial. This
is because any changes can result in additional design variations, with human-creativity at
reins. Furthermore, identifying context poses a major challenge, let alone an evolving con-
text. Prior work has studied how people establish context while programming, as well as the
activities that programmers perform in the process [47]. Prior work has also attempted to
support information search by maintaining track of code changes in the local development
environment and identifying web pages which may have relevant information [214]. Still,
determining the thought processes of programmers and documentors and the appropriate
resource styles that could fulfil their needs remains an open challenge.

7.2.3 Evaluation of Software Documentation Quality

Establishing a common definition for “software documentation” has been a challenge in soft-
ware engineering research. Instead, prior research has relied on defining the scope of software
documentation for their particular study. For example, Forward and Lethbridge, who stud-
ied the relevance of software documentation referred to it as “an artifact whose purpose is
to communicate information about the software system to which it belongs, to individuals
involved in the production of that software” [73]. Ellman studied similarities in documents
“within a software documentation” and scoped their data thus: “we are studying software
development documentations that were created and/or maintained by software communities
active in Stack Overflow, in Eclipse Bugzilla and on YouTube” [64]. In our research too, we
found that what constitutes software documentation varies based on peoples’ interpretations.
For example, when recruiting documentors for our study in Chapter 5, multiple potential
informants expressed that they did not believe they were contributing documentation, but
rather were providing technical information about a programming language through videos
or blog posts. However, with the surge of platforms to host information [246], previous clear
boundaries of software documentation, such as installation documents and reference manu-
als [232] have blurred to incorporate “non-traditional” sources of information, such as Stack
Overflow and blogging platforms [201].

In our study reported in Chapter 4, we focused on only one type of software documen-
tation, namely software tutorials. We initiated the study with the goal of defining what
a tutorial was. However, we noted that the variations in tutorial design did not support

112

CHAPTER 7. DISCUSSION

the development of a one-size-fits-all definition of a tutorial that could capture its “typical”
design and information content. Instead, we were able to develop a framework that could
be used to characterize tutorials based on their design-related properties.

Prior work has investigated the quality of software documentation using objective met-
rics that relate to the existence of components [259], measures of readability, and coverage
of information [277]. However, we find that the important aspect of human-involvement
in the contribution and use of documentation introduces subjective qualities. For example,
for documentation contribution, an important consideration is the documentor’s constraints
of time and interest. As a result, common standards of documentation design [106, 198]
and metrics of quality, such as completeness of coverage of information about a technol-
ogy [7, 222, 239], may not apply to voluntarily contributed documentation. Additionally,
previously undiscussed challenges arise with contributed documentation. The pursuit of vis-
ibility introduces the risk of prioritizing the design of documentation for search engines over
human audiences. In the case of documentation use, the context of a programmer’s infor-
mation search, such as the task they need to complete, plays a role. Thus, the quality of
an information-encompassing customizable documentation would have to consider how the
documentation was modified for use. Consequently, although it is necessary to have mea-
sures of quality to mitigate difficulties in adopting software technologies, our results point
towards the need of an adapted framework for evaluating documentation, that focuses on
the considerations of documentors, the design and information preferences of programmers,
as well as the information-seeking context.

7.2.4 Impact of Artifical Intelligence on Documentation Creation
and Use

In the present world, the application of “artificial intelligence” (AI) is ubiquitous. Large lan-
guage models (LLMs) are able to generate cohesive text that may be mistaken for human-
generated text. Such is the case, that there now exists research on how to differentiate
between LLM-generated and human-created text [240]. Additionally, there has been an in-
crease in the number of automated writing assistants powered by AI, such as CodeX [48].
Researchers have explored the potential of using such AI tools in the domain of software
engineering [98], for example to support code understanding [173] and generate software
documentation [236, 243, 256]. The surge of intelligent writing tools especially, has intro-
duced a worry about whether humans would have to be involved in any form of writing
again, including the creation of software documentation.

However, from our third study (Chapter 5), when asked, most documentors did not indi-
cate a concern about their contributions being threatened by AI-powered tools. There still
exist issues with LLMs generating inaccurate information in the context of software engi-
neering [70]. Additionally, current AI tools cannot generate the unique “voice” [212], i.e. the
experience-backed perspective, that the documentor brings to their documentation. Instead,
such tools can take one format that a creator creates and repackage it as required to other
formats, thus saving creators from effort in managing multiple formats. Still, AI-based tools
require design changes to truly support a documentor’s creation process [30]. Documenta-

113

CHAPTER 7. DISCUSSION

tion creation tools should have good support for the communication of knowledge [73], which
can be subject to the ideas and goals of different documentation creators. However, existing
AI-based tools are currently not mature enough to contribute the creativity and uniqueness
that result from the novelty and value addition mindset and the resulting originality that
comes across in the documentation. Thus, in terms of documentation creation, there is still
a critical need for the human-in-the-loop.

In terms of documentation use, algorithm-backed conversational agents, such as Chat-
GPT [180] have made access to information “easier” wherein users can use prompts to retrieve
the information they need. Such tools bypass the need to manually search through multiple
documentation resources, and instead act as a source of information. Recent work has stud-
ied the way in which software engineers interact with ChatGPT and reported that they use it
to learn about a technical topic or solve programming tasks [120]. Xiao et al. contributed a
dataset of interactions between software developers and ChatGPT [269]. Furthermore, they
suggested a number of potential research questions that can be explored, including “How
does the code generated by ChatGPT for a given query compare to code that could be found
for the same query on the internet (e.g., on Stack Overflow)?”.

Prior work has shown that the responses of ChatGPT can be inconsistent and misleading,
which is a concern for learning environments [272]. However, even if AI-backed conversational
agents are able to provide accurate information, they do not currently account for structure
and organization related preferences of information seekers. Although they may increase the
access to information, current AI tools reduce the diversity of information presentation [94],
that our results show are a favorable characteristic of software documentation.

7.3 Future Research Directions

Our work focuses on the styling of documentation. However, much prior work has investi-
gated the extent to which available information in software documentation is sufficient and
useful to programmers [31, 167]. Additionally, prior research has involved the development
of tools that allow programmers to augment existing information with their own annotations
that can be shared with fellow information seekers [97, 235]. For example, a programmer
may share annotations that highlight and clarify important, but complex parts of the re-
source. Future work can involve investigating the combination of information annotations
and presentation customization to support programmers’ increased control to manipulate
documentation resources to their usage context. We discuss ideas for future work related
to code example customization, querying pertinent documentation, other software documen-
tation design considerations, and the communication between documentation creators and
information seekers.

7.3.1 Code Example Customization

Our research focuses primarily on software documentation resources as a whole. Although
we report on the structure and organization properties of software tutorials (Chapter 4),

114

CHAPTER 7. DISCUSSION

we do not investigate the characteristics of each of these elements in depth. Similarly, we
compared the usage of different modalities and studied how programmers manipulated a
multimodal tutorial to access particular modalities. However, each modality itself can be
customized. For example, a for-loop in a code example can be written in a single line or
across multiple lines. Additionally, the color scheme of code examples and font style of text
content can be customized. The study of documentation properties to this level of detail is
an avenue for future work.

In the domain of software engineering, code examples remain an integral learning tool,
and searching specifically for code is an investigated research area [230]. Prior work has
investigated what information about code examples are present in documents [45]. We
gained insight on how useful regular versus summarized versus annotated code examples
were for programmers completing different programming tasks. Future work can involve the
enrichment of code examples present in the multimodal tutorial, such as by providing an
in-resource executable environment, and customizable annotations.

Future work can also explore the variations in the extent of information that code ex-
amples can provide. As an example, in our design of multimodal documentation, we ex-
perimented with the comprehensiveness that a code example could provide. We developed
two types of code examples, which we referred to as focused and contiguous. Focused code
examples were short and associated with the topic of the related subsection of which they
were a part. The intention of focused code examples was to allow a single topic section to be
self-contained with multiple modalities that corresponded to one another. In contrast, con-
tiguous code examples were long, because they amalgamated programming examples from
all related subsections across the tutorial. The goal of contiguous code examples was to
provide programmers who preferred to look only at code, a single location where all code
related to the topic at hand was available. This could also help in comparing and contrast-
ing syntaxes between multiple related programming concepts. However, this would result
in a disconnection between different modalities, as all information would be present in each
modality, sequentially. Thus, for our study of the multiple modalities (Chapter 6), we opted
to remove this functionality and provided only a single way to view code examples in terms
of their comprehensiveness. Future work can investigate whether allowing users to toggle
between focused and contiguous code examples can support the search for pertinent code
examples.

7.3.2 Querying Pertinent Documentation

The search for pertinent information involves the creation of text queries, that search engines
can use to locate potentially relevant documentation resources. In our research, we do not
focus on query formulation. One integral aspect of query formulation is the elicitation of
both the Question and the Preference that the programmer may have. However, this may
not be trivial to elicit. For example, prior work has shown that programmers may even
abandon the search for code examples, if they are unable to elicit their requirements clearly,
and as a consequence, unable to find relevant examples [257]. Huang et al. recognized
that there exists a lexical and knowledge gap between what a developer wants to achieve in

115

CHAPTER 7. DISCUSSION

their programming task and the search query that will retrieve the exact information they
need, despite semantically similar statements [100]. They created BIKER (Bi-Information
source based KnowledgE Recommendation) to recommend appropriate APIs based on the
programming task context.

Prior work has explored the ability to retrieve information based on interaction behaviour
of search results. Lu and Hsiao studied the searching behaviour of novice and advanced pro-
grammers and noted that novice programmers found difficulty in forming and refining search
queries [149]. They developed the Personalized Information Seeking Assistant (PiSA) which
recommended relevant terms to novice programmers to refine their search queries. White et
al. developed an algorithm to identify and predict the top most relevant additional query
terms that could be related to a searcher’s query based on their interaction with search re-
sults [262]. They conducted a study, comparing their “implicit feedback” approach wherein
search results would be automatically reordered based on search behaviour, with a base-
line wherein participants had to manually expand queries themselves, and manually click a
button should they want to reorder results. They reported that there was at least a 67%
overlap between the terms participants manually selected and their algorithm suggested, for
four different search task types. Their participants described that the implicit feedback and
automatic query updating would be more useful when their information need was not clear
and may change, as opposed to when it was well-defined and constant. White et al. also
concluded that the automated system relieved the user of too much control. Instead, pro-
viding recommendations through an automated system, but allowing users to make explicit
choices on whether to incorporate those query recommendations in their search would retain
control in the hands of the user. Macaw, developed by researchers at Microsoft, provides
a way for users to ask questions and obtain answers [276]. Macaw allows the interaction
through multiple modalities, including regular text, audio, PDF documents, and web page
links. Such systems still rely on a user being extremely clear about what they want, need,
and prefer and being able to formulate these specifications into a concise search query.

To support the search for information, current search engines rely largely on keyword-
based approaches, such as the PageRank algorithm [184], which also leverage links between
web pages and how the community accesses different web pages [132]. As a result, if a
programmer searched for “inheritance in Java summarized code example”, such an algorithm
would likely return results that matched the individual terms, rather than identify that
“summarized code example” refers to the modality. Some search engines such as Google,
allow users to refine their searches. For examples, users can specify the type of results, e.g.
web pages, news articles, images, or videos, and the particular sites to search on [86]. Our
findings about programmers’ preferences for information content and resource style indicate
the need to make these preferences explicit when looking for information. Thus, future
research on information seeking should involve the consideration of contextual information.
Tools to support information seeking must be able to account for and identify preferences
in documentation resource modalities, features, and other such design aspects from search
queries.

116

CHAPTER 7. DISCUSSION

7.3.3 Other Software Documentation Design Considerations

We studied the design of software documentation, with a specific focus on structure, orga-
nization, and presentation. However, a number of other aspects provide important context
for documentation creation and use.

When seeking information, users may rely on their familiarity with documentors to iden-
tify pertinent resources, or may rely on how popular the source website is, as cues to search
for information [138]. We noted from our third study phase (Chapter 5) that documentors
are aware that users may rely on such cues, and thus make active efforts to become familiar
with their audiences. For example, documentors may generate identifying content, e.g. a
regular intro and/or outro in their Youtube channel, or pursue growth and visibility to gain
popularity. Future work can investigate how aspects such as familiarity and popularity of
documentation resources impact their use. Such research could provide insight on how the
connection between documentors and programmers could be better supported, in addition
to direct communication (see Section 7.3.4).

Another aspect that we noted was that the level of expertise of documentors and pro-
grammers impacted the creation and use of documentation, respectively. Lieberman argued
that documentation creators should have an understanding of the knowledge documentation
users have, to be able to tailor documentation appropriately [144]. Some documentors in
our third study indicated that they were only able to describe information that was known
to them, and thus selected topics that they were knowledgeable about. As a result, their
documentation could cater to programmers who had less knowledge about the programming
topic than the documentor. In our study of multimodal documentation (Chapter 6), we
focused on creating prototype tutorials on basic concepts in Java. Future work can involve
investigating how different modalities can be useful for learners of different levels of knowl-
edge. Results from such an investigation would provide the necessary insights to determine
whether multimodal, customizable documentation can be a feasible one-size-fits-all solution
for different learning contexts.

The investigation of other layers of documentation customization are avenues for future
work. For example, varying the level of detail across documents has been suggested to
support beginners as they access technical documents [275]. In our construction of the
prototype multimodal tutorials, we explored the ability to provide a configuration for showing
“overview” versus “detailed” content, and thus varying the amount of information present
through text. Future work can involve the evaluation of the usefulness of such additional
customizable features that we had envisioned but could not evaluate, including providing
global controls to show and hide all elements of a particular modality.

The findings from our research show promise for multimodal, customizable documenta-
tion that can cater to varying programmer needs as they search for information. Future work
can investigate the amount of effort and resources it would require documentors to design
and create such versatile documentation. Thus, an important avenue for future work is to
gain insight on the extent to which the vision of multimodal, customizable documentation
is feasible and appealing for both stakeholders, i.e. documentors and information seekers.

117

CHAPTER 7. DISCUSSION

7.3.4 Communication Between Documentation Creators and
Information Seekers

Prior work has show that the communication between developers and end users is integral
to the success of a project, and that a breakdown of such communication can harm software
projects [78]. Similarly, communication between documentation creators and information
seekers can support information seekers in identifying pertinent resources to help them learn
about software technologies.

Across the four phases of our research, we focused on the design of software documentation
that acts as the form of interaction or communication [201] between documentation creators
and information seekers. However, there is a need for a direct communication between both
parties to support effective search and consumption of documentation resources. From our
diary study in phase one, we noted that information seekers were forced to browse through
multiple resources, to ultimately arrive at one that could fulfil their needs (see Section 3.5).
During our interview study in phase three, documentors described the scalability issue with
interacting with information seekers (see Section 5.5.2). As a consequence, documentation
creators must use other proxies to identify what information seekers need, and information
seekers must rely on implicit cues to manually identify resources that best suit their contexts.
Our systematic frameworks from the first three phases of our research provide a foundation
to facilitate a communication wherein information seekers can explicitly describe their needs
and preferences, and documentation creators can explicitly describe their thought processes.

To ask for information about software technologies, currently, information seekers are
able to connect to information providers primarily through asynchronous conversations such
as on Stack Overflow or issue discussion threads. Such platforms host valuable information
about software technologies [14, 27], but do not encourage immediate dialogue. Prior work
has shown that live chat can be useful to discuss topics related to API usage [226]. However,
they can also be a source of irrelevant comments that require further processing to identify
only pertinent information [11]. Documentors in our third study indicated that they did
not have the resources to manage an active communication with information seekers while
prioritizing documentation creation (see Section 3.5), despite the enjoyment and learning that
interacting with their audiences brings [252]. Further work can look into how to support the
direct communication while overcoming challenges such as of coordination and scheduling,
as well as mitigating spam and noise. Then, there may be potential for incorporating such
communication as an optional, interactive modality in software documentation.

To share relevant context, prior work has proposed techniques to communicate devel-
opers’ decisions to end users to provide context for software changes [4, 238]. Similarly for
documentation, future work can study how to present the creation context in terms of mind-
sets and the corresponding considerations. This can support information seekers with related
needs and preferences to being directed to documentation creators with those mindsets. Fur-
thermore, information seekers can then directly request for particular information content or
resource styles, or provide feedback to creators to consider. How to support such knowledge
exchanges through a scalable, direct communication between documentation creators and
information seekers, is an area that can be investigated in future work.

118

Chapter 8

Conclusion

Programmers have access to a large number of software documentation resources that pro-
vide information about software technologies, via different online platforms and media. Such
documentation plays an important role in the development and maintenance of a software
technology [277], without which the inner working of the technology is difficult to com-
prehend, leaving the user dealing with a black-box system [210]. Hence it is integral that
programmers are able to retrieve the information pertinent to their needs to understand the
software they develop, use, or maintain.

Navigating the set of available resources to find pertinent information can be time con-
suming, effort-intensive, and frustrating. Prior work has focused on identifying programmers’
needs and creating efficient techniques to automatically retrieve information related to their
needs. Yet, the use of documentation relies on the context in which a programmer searches
for information, which can vary among programmers. Thus, documentation must be able to
cater to these varying needs. Additionally, documentation creators, or documentors, have
many decisions to make when designing software documentation, because of which creat-
ing and contributing documentation is a time- and effort-intensive process. Although much
prior work has studied the value of software documentation, and how to automatically gen-
erate documentation resources, these studies focus on information content, neglecting the
aspects of structure, organization, and presentation of software documentation. Addition-
ally, there is little work that investigates how aspects of the documentation creation process
and information seeking process correspond.

We studied the synergy between documentation and information seeking with the goal
of supporting the design of a versatile documentation resource that can cater to varying
programmer needs, while considering documentors’ efforts. We approached software doc-
umentation through three lenses: the creation of documentation, the search for pertinent
documentation, and the characteristics of documentation resources. With insights from em-
pirical studies regarding these three perspectives, we proposed and evaluated a versatile
design for software documentation. Our work proceeded in four phases.

First, we conducted a diary and interview study of ten programmers to understand how
programmers find software learning resources online. We proposed a resource seeking model
that captures systematically how programmers make decisions when navigating between on-

119

CHAPTER 8. CONCLUSION

line learning resources for a software technology. Specifically, we found that programmers
can have Preferences of the kind of Resources they are looking for, which may be backed by
Beliefs from previous experiences. These two components provide context for the Questions
that programmers are looking to solve. Furthermore, programmers use various Cues to select
Resources to click on during their search, and evaluate them based on certain Impression

Factors. We elicited nine relations between the six components of our model, and investi-
gated the nature of these relations. We found, for example, that participants depended on
the Cue Familiarity to select Resources that are Forums more than expected.

Next, we examined the extent to which properties of online technology resources vary
in the five programming languages: Java, C#, Python, Javascript, and Typescript. Our
observations of property distributions and correlations revealed that resources cannot be
characterized by their properties in isolation, and in a mutually exclusive manner. We
propose the representation of resources by their properties that deviate from the norm as
distinguishing attributes. We formalized the concept of a resource style as a combination
of co-occurring distinguishing attributes, as part of a framework to characterize resources
based on their design. We leveraged our framework to implement three techniques to identify
relevant resource styles and applied these techniques on our data set of 2551 resources. We
discovered that no resource style in any particular programming language is more notable
than the rest. The variety of styles observed indicate that there is a wide range of design
choices for resource creators and seekers.

Third, we interviewed 26 documentors who voluntarily created text or video tutorials
about software technologies. We asked them about why and how they contributed docu-
mentation. We elicited documentors’ considerations during the documentation contribution
process along three dimensions: five motivations, five topic selection techniques, and six
styling objectives. We grouped related considerations based on their common implicit themes
to elicit five software documentor mindsets. For example, some documentors may focus on
the novelty and value addition of the documentation they contribute, inspired from their
prior experiences with inadequate documentation. Our findings suggest the need to support
documentors in balancing multiple mindsets: incorporating their own needs, preferences, and
learning, contributing original content, reaching the audience, while considering non-human
logistics such as suitability of the format to a topic.

Finally, given our prior findings that programmers may have different information needs
and that there are multiple ways to present information, we studied how programmers make
decisions about their presentation needs and preferences when accessing software documen-
tation. We developed three multimodal tutorials on three programming concepts in Java,
namely regular expressions, inheritance, and exception handling. In each tutorial, we pro-
vided five modalities, i.e. text content, regular code examples, summarized code examples,
annotated code examples, and tables. Through a survey study, we asked programmers to use
one of the multimodal tutorials and complete three programming tasks, one of each type:
conceptual, how-to, and debugging. We observed that respondents preferred text content for
conceptual tasks and regular code examples for how-to tasks, with no clear modality prefer-
ence for debugging tasks across topics. Still, the variations in responses indicate that there
are no universal modality preferences for all software programming contexts. Our results

120

CHAPTER 8. CONCLUSION

corroborate our hypothesis that having multiple modalities within a single documentation
resource can serve diverse information needs for programming tasks.

Our contributions include a model for resource seeking behaviour and a model to capture
thought processes during documentation creation. Furthermore, we contribute a framework
for characterizing documentation resources based on their varying properties, as well as a
prototype tutorial to capture documentation variations as modalities for programmers to
choose from. Our studies augment existing literature on assisting programmers seeking
information about a technology. Our findings are also fundamental to resource creators in
understanding their target population’s search behaviour and how the resources they create
can satisfy programmers’ preferences and needs. Additionally, our observations can also
inform search tools to alleviate time and effort spent in search.

The work in this thesis lies on the intersection between document request and document
generation, both directions that require advancement to build better quality, user-catered
documentation according to Robillard et al. [211]. Our research is an initial step towards the
user interface of multimodal, multifeatured, customizable software documentation. Conse-
quently, documentors will be able to focus on curating the information that corresponds to
their mindsets, and information seekers can systematically identify documentation from doc-
umentors who cater to their specific resource needs and preferences. We plan to continue to
work towards the design and development of versatile software documentation that retains
the creative and experienced human-in-the-loop, to support effective learning of software
technologies.

121

Resource References

1. https://learnpython.org/en/Numpy_Arrays

2. https://learnpython.org/en/Pandas_Basics

3. https://www.javatpoint.com/difference-between-namespaces-and-modules

4. https://www.javatpoint.com/convert-object-to-array-in-javascript

5. https://docs.python.org/3/tutorial/appendix.html

6. https://docs.oracle.com/javase/tutorial/essential/regex/quant.html

7. https://docs.oracle.com/javase/tutorial/collections/interfaces/order.html

8. https://www.tutorialspoint.com/javascript/javascript_operators.htm

9. https://www.w3schools.blog/union-type-typescript

10. https://www.javatpoint.com/instance-initializer-block

11. https://www.javatpoint.com/how-to-enable-javascript-in-my-browser

12. https://www.javatpoint.com/design-patterns-c-sharp

13. https://www.guru99.com/date-time-and-datetime-classes-in-python.html

14. https://www.tutorialspoint.com/javascript/javascript_events.htm

15. http://csharp.net-informations.com/gui/cs-scrollbars.htm

16. https://www.educba.com/logical-operators-in-c-sharp/

17. https://docs.oracle.com/javase/tutorial/collections/interfaces/order.html

18. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures

19. https://www.tutorialkart.com/typescript/typescript-switch-

20. https://www.tutorialspoint.com/python/python_sending_email.htm

21. https://www.guru99.com/java-platform.html

22. https://www.javatpoint.com/how-to-install-python

23. http://csharp.net-informations.com/statements/enum.htm

24. https://www.tutorialspoint.com/java/java_quick_guide.htm

122

https://learnpython.org/en/Numpy_Arrays
https://learnpython.org/en/Pandas_Basics
https://www.javatpoint.com/difference-between-namespaces-and-modules
https://www.javatpoint.com/convert-object-to-array-in-javascript
https://docs.python.org/3/tutorial/appendix.html
https://docs.oracle.com/javase/tutorial/essential/regex/quant.html
https://docs.oracle.com/javase/tutorial/collections/interfaces/order.html
https://www.tutorialspoint.com/javascript/javascript_operators.htm
https://www.w3schools.blog/union-type-typescript
https://www.javatpoint.com/instance-initializer-block
https://www.javatpoint.com/how-to-enable-javascript-in-my-browser
https://www.javatpoint.com/design-patterns-c-sharp
https://www.guru99.com/date-time-and-datetime-classes-in-python.html
https://www.tutorialspoint.com/javascript/javascript_events.htm
http://csharp.net-informations.com/gui/cs-scrollbars.htm
https://www.educba.com/logical-operators-in-c-sharp/
https://docs.oracle.com/javase/tutorial/collections/interfaces/order.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures
https://www.tutorialkart.com/typescript/typescript-switch-
https://www.tutorialspoint.com/python/python_sending_email.htm
https://www.guru99.com/java-platform.html
https://www.javatpoint.com/how-to-install-python
http://csharp.net-informations.com/statements/enum.htm
https://www.tutorialspoint.com/java/java_quick_guide.htm

CHAPTER 8. CONCLUSION

25. https://www.w3schools.blog/class-in-typescript

26. https://www.typescripttutorial.net/typescript-tutorial/typescript-class-

27. https://www.geeksforgeeks.org/switch-statement-in-c-sharp-

28. https://www.tutorialsteacher.com/csharp/csharp-switch

123

https://www.w3schools.blog/class-in-typescript
https://www.typescripttutorial.net/typescript-tutorial/typescript-class-
https://www.geeksforgeeks.org/switch-statement-in-c-sharp-
https://www.tutorialsteacher.com/csharp/csharp-switch

Bibliography

[1] 2009. IEEE Standard for Information Technology–Systems Design–Software Design
Descriptions. IEEE STD 1016-2009 (2009).

[2] 2024. A two-actor model for understanding user engagement with content creators:
Applying social capital theory. Computers in Human Behavior 156 (2024). https:

//doi.org/10.1016/j.chb.2024.108237

[3] Hervé Abdi et al. 2007. Bonferroni and Šidák Corrections for Multiple Comparisons.
Encyclopedia of Measurement and Statistics 3 (2007), 103–107.

[4] Ulrike Abelein and Barbara Paech. 2012. A proposal for enhancing user-developer
communication in large IT projects. In Proceedings of the International Workshop on
Co-operative and Human Aspects of Software Engineering. 1–3. https://doi.org/

10.1109/CHASE.2012.6223014

[5] Iyadunni J. Adenuga, Benjamin V. Hanrahan, Chen Wu, and Prasenjit Mitra. 2022.
Living Documents: Designing for User Agency over Automated Text Summarization.
In Extended Abstracts of the CHI Conference on Human Factors in Computing Sys-
tems. 1–6. https://doi.org/10.1145/3491101.3519810

[6] Emad Aghajani, Csaba Nagy, Mario Linares-Vásquez, Laura Moreno, Gabriele Bavota,
Michele Lanza, and David C. Shepherd. 2020. Software Documentation: The Practi-
tioners’ Perspective. In Proceedings of the International Conference on Software Engi-
neering. https://doi.org/10.1145/3377811.3380405

[7] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez,
Laura Moreno, Gabriele Bavota, and Michele Lanza. 2019. Software Documentation
Issues Unveiled. In Proceedings of International Conference on Software Engineering.
https://doi.org/10.1109/ICSE.2019.00122

[8] George Ajam, Carlos Rodrıguez, and Boualem Benatallah. 2021. Scout-bot: Leveraging
API Community Knowledge for Exploration and Discovery of API Learning Resources.
CLEI Electronic Journal 24, 2 (2021). https://doi.org/10.19153/cleiej.24.2.5

[9] Ra’Fat Al-Msie’Deen, Abdelhak Seriai, Marianne Huchard, Christelle Urtado, Sylvain
Vauttier, and Hamzeh Eyal-Salman. 2013. Mining Features from the Object-Oriented

124

https://doi.org/10.1016/j.chb.2024.108237
https://doi.org/10.1016/j.chb.2024.108237
https://doi.org/10.1109/CHASE.2012.6223014
https://doi.org/10.1109/CHASE.2012.6223014
https://doi.org/10.1145/3491101.3519810
https://doi.org/10.1145/3377811.3380405
https://doi.org/10.1109/ICSE.2019.00122
https://doi.org/10.19153/cleiej.24.2.5

BIBLIOGRAPHY

Source Code of a Collection of Software Variants Using Formal Concept Analysis and
Latent Semantic Indexing. In Proceedings of the International Conference on Software
Engineering and Knowledge Engineering.

[10] Ra’Fat AL-Msie’deen, Abdelhak Seriai, Marianne Huchard, Christelle Urtado, Sylvain
Vauttier, and Hamzeh Eyal Salman. 2013. Feature Location in a Collection of Software
Product Variants Using Formal Concept Analysis. In Safe and Secure Software Reuse.
https://doi.org/10.1007/978-3-642-38977-1_22

[11] Mohammad D Alahmadi, Khalid T Mursi, Mohammed A Alqarni, Ahmad J Tayeb,
and Faisal S Alsubaei. 2024. Analyzing and categorization developer intent on Twitch
live chat. Programming and Computer Software 50, 5 (2024), 392–402. https://doi.

org/10.1134/S0361768824700191

[12] Gianni Angelini. 2018. Current Practices in Web API Documentation. In European
Academic Colloquium on Technical Communication.

[13] Renana Arizon-Peretz, Irit Hadar, Gil Luria, and Sofia Sherman. 2021. Understanding
Developers’ Privacy and Security Mindsets via Climate Theory. Empirical Software
Engineering 26, 123 (2021). https://doi.org/10.1007/s10664-021-09995-z

[14] Deeksha Arya, Wenting Wang, Jin LC Guo, and Jinghui Cheng. 2019. Analysis and
detection of information types of open source software issue discussions. In Proceedings
of the International Conference on Software Engineering. 454–464.

[15] Deeksha M. Arya, Jin L. C. Guo, and Martin P. Robillard. 2020. Information Corre-
spondence Between Types of Documentation for APIs. Empirical Software Engineering
25 (2020), 4069–4096. https://doi.org/10.1007/s10664-020-09857-0

[16] Deeksha M. Arya, Jin L. C. Guo, and Martin P. Robillard. 2022. How Programmers
Find Online Learning Resources. Empirical Software Engineering 28, 3 (2022). https:

//doi.org/10.1007/s10664-022-10246-y

[17] Deeksha M. Arya, Jin L. C. Guo, and Martin P. Robillard. 2022. Replication package
for How Programmers Find Online Learning Resources. https://doi.org/10.5281/

zenodo.7504510

[18] Deeksha M. Arya, Jin L. C. Guo, and Martin P. Robillard. 2023. Replication package
for Properties and Styles of Software Technology Tutorials. https://doi.org/10.

5281/zenodo.10048532

[19] Deeksha M. Arya, Jin L. C. Guo, and Martin P. Robillard. 2024. Properties and Styles
of Software Technology Tutorials. IEEE Transactions on Software Engineering 50, 2
(2024). https://doi.org/10.1109/TSE.2023.3332568

[20] Deeksha M. Arya, Jin L. C. Guo, and Martin P. Robillard. 2024. Replication pack-

125

https://doi.org/10.1007/978-3-642-38977-1_22
https://doi.org/10.1134/S0361768824700191
https://doi.org/10.1134/S0361768824700191
https://doi.org/10.1007/s10664-021-09995-z
https://doi.org/10.1007/s10664-020-09857-0
https://doi.org/10.1007/s10664-022-10246-y
https://doi.org/10.1007/s10664-022-10246-y
https://doi.org/10.5281/zenodo.7504510
https://doi.org/10.5281/zenodo.7504510
https://doi.org/10.5281/zenodo.10048532
https://doi.org/10.5281/zenodo.10048532
https://doi.org/10.1109/TSE.2023.3332568

BIBLIOGRAPHY

age for The Software Documentor Mindset. https://doi.org/10.5281/zenodo.

14368203

[21] Deeksha M. Arya, Jin L. C. Guo, and Martin P. Robillard. 2024. The Software Docu-
mentor Mindset. https://arxiv.org/abs/2412.09422

[22] Deeksha M. Arya, Jin L. C. Guo, and Martin P. Robillard. 2024. Why People Con-
tribute Software Documentation. In Proceedings of the International Conference on
Cooperative and Human Aspects of Software Engineering. https://doi.org/10.

1145/3641822.3641881

[23] Deeksha M. Arya, Jin L. C. Guo, and Martin P. Robillard. 2025. How Programmers
Interact with Multimodal Software Documentation. In Proceedings of the International
Conference on Cooperative and Human Aspects of Software Engineering. https:

//doi.org/10.1109/CHASE66643.2025.00029

[24] Deeksha M. Arya, Mathieu Nassif, and Martin P. Robillard. 2022. A Data-centric
Study of Software Tutorial Design. IEEE Software 39, 3 (2022). https://doi.org/

10.1109/MS.2021.3090978

[25] Shams Azad, Peter C. Rigby, and Latifa Guerrouj. 2017. Generating Api Call Rules
from Version History and Stack Overflow Posts. Transactions on Software Engineering
and Methodology 25, 4 (2017). https://doi.org/10.1145/2990497

[26] Gina R. Bai, Joshua Kayani, and Kathryn T. Stolee. 2020. How Graduate Computing
Students Search When Using an Unfamiliar Programming Language. In Proceedings
of the International Conference on Program Comprehension. 160–171. https://doi.

org/10.1145/3387904.3389274

[27] Ohad Barzilay, Christoph Treude, and Alexey Zagalsky. 2013. Chapter 15: Facilitating
crowd sourced software engineering via Stack Overflow. In Finding source code on the
web for remix and reuse. Springer. https://doi.org/10.1007/978-1-4614-6596-6

[28] Marcia J. Bates. 1990. Where Should The Person Stop And The Information Search
Interface Start? Information Processing and Management 26, 5 (1990), 575–591.

[29] Katharina Bernecker and Veronika Job. 2019. Mindset Theory. In Social Psychology
in Action: Evidence-Based Interventions from Theory to Practice. Springer, 179–191.
https://doi.org/10.1007/978-3-030-13788-5_12

[30] Avinash Bhat, Disha Shrivastava, and Jin L.C. Guo. 2024. Do LLMs Meet the Needs of
Software Tutorial Writers? Opportunities and Design Implications. In Proceedings of
the ACM Conference on Designing Interactive Systems. https://doi.org/10.1145/

3643834.3660692

[31] Jared Bhatti, Sarah Corleissen, Jen Lambourne, David Nunez, and Heidi Waterhouse.

126

https://doi.org/10.5281/zenodo.14368203
https://doi.org/10.5281/zenodo.14368203
https://arxiv.org/abs/2412.09422
https://doi.org/10.1145/3641822.3641881
https://doi.org/10.1145/3641822.3641881
https://doi.org/10.1109/CHASE66643.2025.00029
https://doi.org/10.1109/CHASE66643.2025.00029
https://doi.org/10.1109/MS.2021.3090978
https://doi.org/10.1109/MS.2021.3090978
https://doi.org/10.1145/2990497
https://doi.org/10.1145/3387904.3389274
https://doi.org/10.1145/3387904.3389274
https://doi.org/10.1007/978-1-4614-6596-6
https://doi.org/10.1007/978-3-030-13788-5_12
https://doi.org/10.1145/3643834.3660692
https://doi.org/10.1145/3643834.3660692

BIBLIOGRAPHY

2021. Measuring Documentation Quality. In Docs for Developers: An Engineer’s
Field Guide to Technical Writing. Apress, 179–191. https://doi.org/10.1007/

978-1-4842-7217-6_9

[32] Jared Bhatti, Sarah Corleissen, Jen Lambourne, David Nunez, and Heidi Water-
house. 2021. Understanding Your Audience. In Docs for Developers: An Engi-
neer’s Field Guide to Technical Writing. Apress, 1–21. https://doi.org/10.1007/

978-1-4842-7217-6_1

[33] Christina Bottomley. 2005. What Part Writer? What Part Programmer? A Survey of
Practices And Knowledge Used in Programmer Writing. In Proceedings of the Interna-
tional Professional Communication Conference. https://doi.org/10.1109/IPCC.

2005.1494255

[34] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klem-
mer. 2009. Two Studies of Opportunistic Programming: Interleaving Web Foraging,
Learning, and Writing Code. In Proceedings of the Conference on Human Factors in
Computing Systems. 1589–1598. https://doi.org/10.1145/1518701.1518944

[35] Suzanne Briet. 1951. Qu’est-ce que la documentation? Éditions Documentaires, In-
dustrielles et Techniques.

[36] Ash Buchanan. 2024. What is Mindset? 100 Definitions from the Field. In Handbook
of Mindset Research. https://doi.org/10.31234/osf.io/5xeqv

[37] Frank Buchli. 2003. Detecting Software Patterns using Formal Concept Analysis. Mas-
ter’s thesis.

[38] Sven Buschbeck, Anthony Jameson, Adrian Spirescu, Tanja Schneeberger, Raphaël
Troncy, Houda Khrouf, Osma Suominen, and Eero Hyvönen. 2013. Parallel Faceted
Browsing. In Proceedings of the Extended Abstracts on Human Factors in Computing
Systems. 3023–3026. https://doi.org/10.1145/2468356.2479601

[39] Raymond P.L. Buse and Westley R. Weimer. 2010. Learning a Metric for Code Read-
ability. IEEE Transactions on Software Engineering (2010). https://doi.org/10.

1109/TSE.2009.70

[40] Greg Butler, Peter Grogono, and Ferhat Khendek. 1998. A Reuse Case Perspective
On Documenting Frameworks. In Proceedings of the Asia Pacific Software Engineering
Conference. 94–101. https://doi.org/10.1109/APSEC.1998.733596

[41] Greg Butler, Rudolf K Keller, and Hafedh Mili. 2000. A Framework For Framework
Documentation. Computing Surveys (ACM) (2000). https://doi.org/10.1145/

351936.351951

[42] Alessandro Caponi, Angelo Di Iorio, Fabio Vitali, Paolo Alberti, and Marcello Scatá.

127

https://doi.org/10.1007/978-1-4842-7217-6_9
https://doi.org/10.1007/978-1-4842-7217-6_9
https://doi.org/10.1007/978-1-4842-7217-6_1
https://doi.org/10.1007/978-1-4842-7217-6_1
https://doi.org/10.1109/IPCC.2005.1494255
https://doi.org/10.1109/IPCC.2005.1494255
https://doi.org/10.1145/1518701.1518944
https://doi.org/10.31234/osf.io/5xeqv
https://doi.org/10.1145/2468356.2479601
https://doi.org/10.1109/TSE.2009.70
https://doi.org/10.1109/TSE.2009.70
https://doi.org/10.1109/APSEC.1998.733596
https://doi.org/10.1145/351936.351951
https://doi.org/10.1145/351936.351951

BIBLIOGRAPHY

2018. Exploiting Patterns and Templates for Technical Documentation. In Proceedings
of the ACM Symposium on Document Engineering. Article 30. https://doi.org/

10.1145/3209280.3209537

[43] John M. Carroll. 1990. An Overview of Minimalist Instruction. In Proceedings of
the Annual Hawaii International Conference on System Sciences, Vol. 4. 210–219.
https://doi.org/10.1109/HICSS.1990.205259

[44] A. Castellanos, J. Cigarrán, and A. García-Serrano. 2017. Formal Concept Analysis for
Topic Detection: A Clustering Quality Experimental Analysis. Information Systems
66 (2017), 24–42. https://doi.org/10.1016/j.is.2017.01.008

[45] Preetha Chatterjee, Manziba Akanda Nishi, Kostadin Damevski, Vinay Augustine,
Lori Pollock, and Nicholas A. Kraft. 2017. What Information About Code Snip-
pets is Available in Different Software Related Documents? An Exploratory Study.
In Proceedings of the International Conference on Software Analysis, Evolution and
Reengineering. https://doi.org/10.1109/SANER.2017.7884638

[46] Souti Chattopadhyay, Nicholas Nelson, Audrey Au, Natalia Morales, Christopher
Sanchez, Rahul Pandita, and Anita Sarma. 2020. A Tale from the Trenches: Cognitive
Biases and Software Development. In Proceedings of the International Conference on
Software Engineering. 654–665. https://doi.org/10.1145/3377811.3380330

[47] Souti Chattopadhyay, Nicholas Nelson, Thien Nam, McKenzie Calvert, and Anita
Sarma. 2018. Context in Programming: An Investigation of How Programmers Create
Context. In Proceedings of the International Workshop on Cooperative and Human As-
pects of Software Engineering. 33–36. https://doi.org/10.1145/3195836.3195861

[48] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea
Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Fe-
lipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth
Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Niko-
las Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saun-
ders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra,
Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever,
and Wojciech Zaremba. 2021. Evaluating Large Language Models Trained on Code.
arXiv:2107.03374 (2021).

[49] Shi-Yi Chen, Zhe Feng, and Xiaolian Yi. 2017. A General Introduction to Adjustment
for Multiple Comparisons. Journal of Thoracic Disease 9, 6 (2017). https://doi.

org/10.21037/jtd.2017.05.34

128

https://doi.org/10.1145/3209280.3209537
https://doi.org/10.1145/3209280.3209537
https://doi.org/10.1109/HICSS.1990.205259
https://doi.org/10.1016/j.is.2017.01.008
https://doi.org/10.1109/SANER.2017.7884638
https://doi.org/10.1145/3377811.3380330
https://doi.org/10.1145/3195836.3195861
https://doi.org/10.21037/jtd.2017.05.34
https://doi.org/10.21037/jtd.2017.05.34

BIBLIOGRAPHY

[50] Juan Cigarran, Angel Castellanos, and Ana Garcia-Serrano. 2016. A Step Forward for
Topic Detection in Twitter: An FCA-based Approach. Expert Systems with Applica-
tions 57 (2016), 21–36. https://doi.org/10.1016/j.eswa.2016.03.011

[51] Juan M. Cigarrán, Julio Gonzalo, Anselmo Peñas, and Felisa Verdejo. 2004. Brows-
ing Search Results via Formal Concept Analysis: Automatic Selection of At-
tributes. In Concept Lattices, Vol. 2961. 74–87. https://doi.org/10.1007/

978-3-540-24651-0_8

[52] Claudio G. Cortese. 2005. Learning Through Teaching. Management Learning 36, 1
(2005). https://doi.org/10.1177/1350507605049905

[53] John W. Creswell. 2014. Research Design: Qualitative, Quantitative, and Mixed Meth-
ods Approaches. SAGE Publications.

[54] Barthélémy Dagenais and Martin P. Robillard. 2010. Creating and Evolving Devel-
oper Documentation: Understanding the Decisions of Open Source Contributors. In
Proceedings of Foundations of Software Engineering. https://doi.org/10.1145/

1882291.1882312

[55] Barthélémy Dagenais and Martin P. Robillard. 2014. Using Traceability Links to
Recommend Adaptive Changes for Documentation Evolution. IEEE Transactions on
Software Engineering 40, 11 (2014), 1126–1146. https://doi.org/10.1109/TSE.

2014.2347969

[56] Sergio Cozzetti B. de Souza, Nicolas Anquetil, and Káthia M. de Oliveira. 2005. A
Study of the Documentation Essential to Software Maintenance. In Proceedings of the
23rd Annual International Conference on Design of Communication: Documenting &
Designing for Pervasive Information. 68–75. https://doi.org/10.1145/1085313.

1085331

[57] Steve Delanghe. 2000. Using Learning Styles in Software Documentation. Transactions
on Professional Communication 43, 2 (2000). https://doi.org/10.1109/47.843647

[58] Sérgio M. Dias and Newton J. Vieira. 2015. Concept Lattices Reduction: Definition,
Analysis and Classification. Expert Systems with Applications 42 (2015), 7084–7097.
Issue 20. https://doi.org/10.1016/j.eswa.2015.04.044

[59] Pierpaolo Dondio and Suha Shaheen. 2019. Is Stack Overflow an Effective Comple-
ment to Gaining Practical Knowledge Compared to Traditional Computer Science
Learning?. In Proceedings of the International Conference on Education Technology
and Computers. 132–138. https://doi.org/10.1145/3369255.3369258

[60] Ekwa Duala-Ekoko and Martin P Robillard. 2012. Asking and Answering Questions
about Unfamiliar APIs: An Exploratory Study. In Proceedings of the International
Conference on Software Engineering. 266–276. https://doi.org/10.1109/ICSE.

2012.6227187

129

https://doi.org/10.1016/j.eswa.2016.03.011
https://doi.org/10.1007/978-3-540-24651-0_8
https://doi.org/10.1007/978-3-540-24651-0_8
https://doi.org/10.1177/1350507605049905
https://doi.org/10.1145/1882291.1882312
https://doi.org/10.1145/1882291.1882312
https://doi.org/10.1109/TSE.2014.2347969
https://doi.org/10.1109/TSE.2014.2347969
https://doi.org/10.1145/1085313.1085331
https://doi.org/10.1145/1085313.1085331
https://doi.org/10.1109/47.843647
https://doi.org/10.1016/j.eswa.2015.04.044
https://doi.org/10.1145/3369255.3369258
https://doi.org/10.1109/ICSE.2012.6227187
https://doi.org/10.1109/ICSE.2012.6227187

BIBLIOGRAPHY

[61] Koznov D.V., Luciv D.V., and Chernishev G.A. 2017. Duplicate Management in Soft-
ware Documentation Maintenance. In Proceedings of the International Conference on
Actual Problems of System and Software Engineering.

[62] Ralph H Earle, Mark A Rosso, and Kathryn E Alexander. 2015. User Preferences
of Software Documentation Genres. In Proceedings of the Annual International Con-
ference on the Design of Communication. Article 46. https://doi.org/10.1145/

2775441.2775457

[63] Lisa Ede and Andrea Lunsford. 1984. Audience Addressed / Audience Invoked: The
Role of Audience in Composition Theory And Pedagogy. College Composition and
Communication 35, 2 (1984).

[64] Mathias Ellmann. 2017. On the similarity of software development documentation. In
Proceedings of the 11th Joint Meeting on Foundations of Software Engineering. 1030–
1033. https://doi.org/10.1145/3106237.3119875

[65] Jennifer English, Marti Hearst, Rashmi Sinha, Kirsten Swearingen, and Ka-Ping Yee.
2002. Hierarchical Faceted Metadata in Site Search Interfaces. In Proceedings of the
Extended Abstracts on Human Factors in Computing Systems. 628–639. https://

doi.org/10.1145/506443.506517

[66] Ali Erdem, W Lewis Johnson, and Stacy Marsella. 1998. Task Oriented Software
Understanding. In Proceedings of the International Conference on Automated Software
Engineering. 230–239. https://doi.org/10.1109/ASE.1998.732658

[67] Katalin Erdos and Harry M. Sneed. 1998. Partial Comprehension of Complex Programs
(Enough to Perform Maintenance). In Proceedings of the International Workshop on
Program Comprehension. 98–105. https://doi.org/10.1109/WPC.1998.693322

[68] Neil Ernst, Alexander Borgida, Ivan J. Jureta, and John Mylopoulos. 2014. An
Overview of Requirements Evolution. In Evolving Software Systems. 3–32. https:

//doi.org/10.1007/978-3-642-45398-4_1

[69] Javier Escobar-Avila, Deborah Venuti, Massimiliano Di Penta, and Sonia Haiduc. 2019.
A Survey on Online Learning Preferences for Computer Science and Programming. In
Proceedings of the International Conference on Software Engineering: Software Engi-
neering Education and Training. 170–181. https://doi.org/10.1109/ICSE-SEET.

2019.00026

[70] Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta, Shin
Yoo, and Jie M. Zhang. 2023. Large Language Models for Software Engineering:
Survey and Open Problems. In Proceedings of the International Conference on Software
Engineering: Future of Software Engineering. 31–53. https://doi.org/10.1109/

ICSE-FoSE59343.2023.00008

130

https://doi.org/10.1145/2775441.2775457
https://doi.org/10.1145/2775441.2775457
https://doi.org/10.1145/3106237.3119875
https://doi.org/10.1145/506443.506517
https://doi.org/10.1145/506443.506517
https://doi.org/10.1109/ASE.1998.732658
https://doi.org/10.1109/WPC.1998.693322
https://doi.org/10.1007/978-3-642-45398-4_1
https://doi.org/10.1007/978-3-642-45398-4_1
https://doi.org/10.1109/ICSE-SEET.2019.00026
https://doi.org/10.1109/ICSE-SEET.2019.00026
https://doi.org/10.1109/ICSE-FoSE59343.2023.00008
https://doi.org/10.1109/ICSE-FoSE59343.2023.00008

BIBLIOGRAPHY

[71] Sébastien Ferré, Marianne Huchard, Mehdi Kaytoue, Sergei O. Kuznetsov, and Amedeo
Napoli. 2020. Formal Concept Analysis: From Knowledge Discovery to Knowledge
Processing. In A Guided Tour of Artificial Intelligence Research: Volume II: AI Algo-
rithms. https://doi.org/10.1007/978-3-030-06167-8_13

[72] Carmen Fischer, Charlotte P Malycha, and Ernestine Schafmann. 2019. The Influence
of Intrinsic Motivation and Synergistic Extrinsic Motivators on Creativity and Inno-
vation. Frontiers in psychology 10 (2019). https://doi.org/10.3389/fpsyg.2019.

00137

[73] Andrew Forward and Timothy C Lethbridge. 2002. The relevance of software documen-
tation, tools and technologies. In Proceedings of the ACM Symposium on Document
Engineering. https://doi.org/10.1145/585058.585065

[74] Adam Fourney and Michael Terry. 2014. Mining Online Software Tutorials: Challenges
and Open Problems. In Proceedings of the Conference on Human Factors in Computing
Systems. https://doi.org/10.1145/2559206.2578862

[75] Jessie Galasso-Carbonnel, Marianne Huchard, André Miralles, and Clémentine Nebut.
2017. Feature Model Composition Assisted by Formal Concept Analysis. In Proceed-
ings of the International Conference on Evaluation of Novel Approaches to Software
Engineering. https://doi.org/10.5220/0006276600270037

[76] Jessie Galasso-Carbonnel, Marianne Huchard, and Clémentine Nebut. 2017. Analyzing
Variability in Product Families through Canonical Feature Diagrams. In Proceedings
of the International Conference on Software Engineering and Knowledge Engineering.
https://doi.org/10.18293/SEKE2017-087

[77] Rosalva E Gallardo-Valencia and Susan Elliott Sim. 2011. What Kinds of Development
Problems can be Solved by Searching the Web?: A Field Study. In Proceedings of the
International Conference on Software Engineering. 41–44. https://doi.org/10.

1145/1985429.1985440

[78] Michael J Gallivan and Mark Keil. 2003. The user–developer communication process:
A critical case study. Information Systems Journal 13, 1 (2003), 37–68. https:

//doi.org/10.1046/j.1365-2575.2003.00138.x

[79] Bernhard Ganter, Rudolf Wille, and C. Franzke. 1997. Formal Concept Anal-
ysis: Mathematical Foundations. Springer-Verlag. https://doi.org/10.1007/

978-3-642-59830-2

[80] Marco Gerosa, Igor Wiese, Bianca Trinkenreich, Georg Link, Gregorio Robles,
Christoph Treude, Igor Steinmacher, and Anita Sarma. 2021. The Shifting Sands
of Motivation: Revisiting What Drives Contributors in Open Source. In Interna-
tional Conference on Software Engineering. 1046–1058. https://doi.org/10.1109/

ICSE43902.2021.00098

131

https://doi.org/10.1007/978-3-030-06167-8_13
https://doi.org/10.3389/fpsyg.2019.00137
https://doi.org/10.3389/fpsyg.2019.00137
https://doi.org/10.1145/585058.585065
https://doi.org/10.1145/2559206.2578862
https://doi.org/10.5220/0006276600270037
https://doi.org/10.18293/SEKE2017-087
https://doi.org/10.1145/1985429.1985440
https://doi.org/10.1145/1985429.1985440
https://doi.org/10.1046/j.1365-2575.2003.00138.x
https://doi.org/10.1046/j.1365-2575.2003.00138.x
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1109/ICSE43902.2021.00098
https://doi.org/10.1109/ICSE43902.2021.00098

BIBLIOGRAPHY

[81] Alastair Gill, Scott Nowson, and Jon Oberlander. 2009. What Are They Blogging
About? Personality, Topic and Motivation in Blogs. In Proceedings of the International
AAAI Conference on Web and Social Media. https://doi.org/10.1609/icwsm.

v3i1.13949

[82] Ellen R Girden. 1992. ANOVA: Repeated measures. Sage.

[83] Robert Godin and Hafedh Mili. 1993. Building and Maintaining Analysis-Level Class
Hierarchies Using Galois Lattices. In Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications. https://doi.org/10.1145/

165854.165931

[84] Peter M. Gollwitzer. 2012. Mindset Theory of Action Phases. In Handbook of Theories
of Social Psychology: Volume 1. SAGE Publications Ltd, 526–546. https://doi.

org/10.4135/9781446249215.n26

[85] David P. Goodwin. 1991. Emplotting the Reader: Motivation and Technical Doc-
umentation. Journal of Technical Writing and Communication 21 (1991). Issue 2.
https://doi.org/10.2190/1TLD-2JBL-DD7X-PXK3

[86] Google. Accessed: November 25th, 2024. Refine Google Searches. https://support.

google.com/websearch/answer/2466433

[87] Philip J. Guo. 2017. Older Adults Learning Computer Programming: Motivations,
Frustrations, and Design Opportunities. In Proceedings of the Conference on Human
Factors in Computing Systems. https://doi.org/10.1145/3025453.3025945

[88] Carl Gutwin, Andy Cockburn, and Nickolas Gough. 2017. A Field Experiment of
Spatially-Stable Overviews for Document Navigation. In Proceedings of the Conference
on Human Factors in Computing Systems. 5905–5916. https://doi.org/10.1145/

3025453.3025905

[89] Irit Hadar, Tomer Hasson, Oshrat Ayalon, Michael Birnhack, Sofia Sherman, and Arod
Balissa. 2018. Privacy by Designers: Software Developers’ Privacy Mindset. Empirical
Software Engineering 23 (2018). https://doi.org/10.1007/s10664-017-9517-1

[90] Tom Hanika, Maren Koyda, and Gerd Stumme. 2018. Relevant Attributes in Formal
Contexts. (2018). https://doi.org/10.1007/978-3-030-23182-8_8

[91] Andrew Head, Jason Jiang, James Smith, Marti A Hearst, and Björn Hartmann. 2020.
Composing Flexibly-Organized Step-by-Step Tutorials from Linked Source Code, Snip-
pets, and Outputs. In Proceedings of the Conference on Human Factors in Computing
Systems. 1–12. https://doi.org/10.1145/3313831.3376798

[92] Ava Heinonen, Bettina Lehtelä, Arto Hellas, and Fabian Fagerholm. 2023. Synthesiz-
ing Research on Programmers’ Mental Models of Programs, Tasks and Concepts —
A Systematic Literature Review. Information and Software Technology 164 (2023).
https://doi.org/10.1016/j.infsof.2023.107300

132

https://doi.org/10.1609/icwsm.v3i1.13949
https://doi.org/10.1609/icwsm.v3i1.13949
https://doi.org/10.1145/165854.165931
https://doi.org/10.1145/165854.165931
https://doi.org/10.4135/9781446249215.n26
https://doi.org/10.4135/9781446249215.n26
https://doi.org/10.2190/1TLD-2JBL-DD7X-PXK3
https://support.google.com/websearch/answer/2466433
https://support.google.com/websearch/answer/2466433
https://doi.org/10.1145/3025453.3025945
https://doi.org/10.1145/3025453.3025905
https://doi.org/10.1145/3025453.3025905
https://doi.org/10.1007/s10664-017-9517-1
https://doi.org/10.1007/978-3-030-23182-8_8
https://doi.org/10.1145/3313831.3376798
https://doi.org/10.1016/j.infsof.2023.107300

BIBLIOGRAPHY

[93] E. Tory Higgins and Abigail A. Scholer. 2009. Engaging the Consumer: The Science
and Art of the Value Creation Process. Journal of Consumer Psychology (2009).
https://doi.org/10.1016/j.jcps.2009.02.002

[94] Noora Hirvonen, Ville Jylhä, Yucong Lao, and Stefan Larsson. 2024. Artificial intel-
ligence in the information ecosystem: Affordances for everyday information seeking.
Journal of the Association for Information Science and Technology 75, 10 (2024),
1152–1165.

[95] E. Hoque and G. Carenini. 2014. ConVis: A Visual Text Analytic System for Exploring
Blog Conversations. Computer Graphics Forum 33, 3 (2014), 221–230. https://doi.

org/10.1111/cgf.12378

[96] Andre Hora. 2021. Googling for Software Development: What Developers Search
For and What They Find. In Proceedings of the International Conference on Mining
Software Repositories. 317–328. https://doi.org/10.1109/MSR52588.2021.00044

[97] Amber Horvath, Michael Xieyang Liu, River Hendriksen, Connor Shannon, Emma
Paterson, Kazi Jawad, Andrew Macvean, and Brad A Myers. 2022. Understanding
How Programmers Can Use Annotations on Documentation. In Proceedings of the
Conference on Human Factors in Computing Systems. Article 69. https://doi.org/

10.1145/3491102.3502095

[98] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David
Lo, John Grundy, and Haoyu Wang. 2024. Large Language Models for Software Engi-
neering: A Systematic Literature Review. Transactions on Software Engineering and
Methodology (2024). https://doi.org/10.1145/3695988

[99] Siw Elisabeth Hove and Bente Anda. 2005. Experiences from Conducting Semi-
structured Interviews in Empirical Software Engineering Research. In International
Software Metrics Symposium. https://doi.org/10.1109/METRICS.2005.24

[100] Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang. 2018. API Method
Recommendation Without Worrying About the Task-API Knowledge Gap. In Proceed-
ings of the International Conference on Automated Software Engineering. 293–304.
https://doi.org/10.1145/3238147.3238191

[101] Sheng-Bo Huang, Yu-Lin Jeng, and Chin-Feng Lai. 2021. Note-taking Learning System:
The Use of the Learning Style Theory and the Peer Learning Method on Computer
Programming Course. Journal of Educational Computing Research 59 (2021). Issue 5.
https://doi.org/10.1177/0735633120985235

[102] William Hudson. 2013. Chapter 22 - Card sorting. In The Encyclopedia of Human-
Computer Interaction. Interaction Design Foundation.

[103] Shin-Yuan Hung, Alexandra Durcikova, Hui-Min Lai, and Wan-Mei Lin. 2011. The

133

https://doi.org/10.1016/j.jcps.2009.02.002
https://doi.org/10.1111/cgf.12378
https://doi.org/10.1111/cgf.12378
https://doi.org/10.1109/MSR52588.2021.00044
https://doi.org/10.1145/3491102.3502095
https://doi.org/10.1145/3491102.3502095
https://doi.org/10.1145/3695988
https://doi.org/10.1109/METRICS.2005.24
https://doi.org/10.1145/3238147.3238191
https://doi.org/10.1177/0735633120985235

BIBLIOGRAPHY

Influence of Intrinsic and Extrinsic Motivation on Individuals Knowledge Sharing
Behavior. International Journal of Human-Computer Studies 69 (2011). Issue 6.
https://doi.org/j.ijhcs.2011.02.004

[104] Matthew Hurst. 2006. Towards a Theory of Tables. International Journal of Doc-
ument Analysis and Recognition 8 (2006), 123–131. https://doi.org/10.1007/

s10032-006-0016-y

[105] Dmitry I. Ignatov. 2015. Introduction to Formal Concept Analysis and its Applications
in Information Retrieval and Related Fields. Communications in Computer and Infor-
mation Science, Vol. 505. 42–141. https://doi.org/10.1007/978-3-319-25485-2_

3

[106] Sergio Inzunza, Reyes Juárez-Ramírez, and Samantha Jiménez. 2018. API documen-
tation: A conceptual evaluation model. In Advances in Intelligent Systems and Com-
puting. https://doi.org/10.1007/978-3-319-77712-2_22

[107] Leonardo Horn Iwaya, Muhammad Ali Babar, and Awais Rashid. 2023. Privacy En-
gineering in the Wild: Understanding the Practitioners’ Mindset, Organizational As-
pects, and Current Practices. Transactions on Software Engineering 49, 9 (2023).
https://doi.org/10.1109/TSE.2023.3290237

[108] Riitta Jääskeläinen. 2010. Think-aloud Protocol. Handbook of translation studies 1
(2010), 371–374.

[109] Mohieddin Jafari and Naser Ansari-Pour. 2018. Why, When and How to Adjust Your
P Values? Cell Journal (Yakhteh) 20, 4 (2018). https://doi.org/10.22074/cellj.

2019.5992

[110] Nicolas Jay, François Kohler, and Amedeo Napoli. 2008. Analysis of Social
Communities with Iceberg and Stability-Based Concept Lattices. In Formal Con-
cept Analysis (Lecture Notes in Computer Science). https://doi.org/10.1007/

978-3-540-78137-0_19

[111] He Jiang, Jingxuan Zhang, Zhilei Ren, and Tao Zhang. 2017. An Unsupervised Ap-
proach for Discovering Relevant Tutorial Fragments for APIs. In Proceedings of the
International Conference on Software Engineering. 38–48. https://doi.org/10.

1109/ICSE.2017.12

[112] Xiaoyu Jin, Nan Niu, and Michael Wagner. 2017. Facilitating End-user Developers by
Estimating Time Cost of Foraging a Webpage. In Proceedings of the IEEE Symposium
on Visual Languages and Human-Centric Computing. 31–35. https://doi.org/10.

1109/VLHCC.2017.8103447

[113] Ralph E Johnson. 1992. Documenting Frameworks Using Patterns. In Proceedings
of the Conference on Object-oriented Programming Systems, Languages, and Applica-
tions. https://doi.org/10.1145/141936.141943

134

https://doi.org/j.ijhcs.2011.02.004
https://doi.org/10.1007/s10032-006-0016-y
https://doi.org/10.1007/s10032-006-0016-y
https://doi.org/10.1007/978-3-319-25485-2_3
https://doi.org/10.1007/978-3-319-25485-2_3
https://doi.org/10.1007/978-3-319-77712-2_22
https://doi.org/10.1109/TSE.2023.3290237
https://doi.org/10.22074/cellj.2019.5992
https://doi.org/10.22074/cellj.2019.5992
https://doi.org/10.1007/978-3-540-78137-0_19
https://doi.org/10.1007/978-3-540-78137-0_19
https://doi.org/10.1109/ICSE.2017.12
https://doi.org/10.1109/ICSE.2017.12
https://doi.org/10.1109/VLHCC.2017.8103447
https://doi.org/10.1109/VLHCC.2017.8103447
https://doi.org/10.1145/141936.141943

BIBLIOGRAPHY

[114] Jitendra Josyula, Sarat Panamgipalli, Muhammad Usman, Ricardo Britto, and Nau-
man Bin Ali. 2018. Software Practitioners’ Information Needs and Sources: A Survey
Study. In Proceedings of the International Workshop on Empirical Software Engineer-
ing in Practice. 1–6. https://doi.org/10.1109/IWESEP.2018.00009

[115] Yongnam Jung, Cheng Chen, Eunchae Jang, and S. Shyam Sundar. 2024. Do We
Trust ChatGPT as much as Google Search and Wikipedia?. In Extended Abstracts of
the CHI Conference on Human Factors in Computing Systems. Article 111, 9 pages.
https://doi.org/10.1145/3613905.3650862

[116] Mika Käki. 2005. Findex: Search Result Categories Help Users When Document
Ranking Fails. In Proceedings of the Conference on Human Factors in Computing
Systems. 131–140. https://doi.org/10.1145/1054972.1054991

[117] Mika Käki and Anne Aula. 2005. Findex: Improving Search Result Use Through
Automatic Filtering Categories. Interacting with Computers 17 (2005), 187–206. Issue
2. https://doi.org/10.1016/j.intcom.2005.01.001

[118] Joyce Karreman and Nicole Loorbach. 2013. Use and Effect of Motivational Elements
in User Instructions: What We Do and Don’t Know. In Proceedings of the Interna-
tional Professonal Communication Conference. https://doi.org/10.1109/IPCC.

2013.6623940

[119] J. Karreman, N. Ummelen, and M. Steehouder. 2005. Procedural and Declarative Infor-
mation in User Instructions: What We Do and Don’t Know About These Information
Types. In Proceedings of the International Professional Communication Conference.
https://doi.org/10.1109/IPCC.2005.1494193

[120] Ranim Khojah, Mazen Mohamad, Philipp Leitner, and Francisco Gomes de
Oliveira Neto. 2024. Beyond Code Generation: An Observational Study of Chat-
GPT Usage in Software Engineering Practice. Proceedings of the ACM on Software
Engineering 1, Article 81 (2024), 22 pages. https://doi.org/10.1145/3660788

[121] Jong W Kim, Frank E Ritter, and Richard J Koubek. 2011. An Integrated Theory for
Improved Skill Acquisition and Retention in the Three Stages of Learning. Theoretical
Issues in Ergonomics Science 14, 1 (2011). https://doi.org/10.1080/1464536X.

2011.573008

[122] J. Peter Kincaid, Robert P. Fishburne, Richard L. Rogers, and Brad S. Chissom. 1975.
Derivation of New Readability Formulas (Automated Readability Index, Fog Count
and Flesch Reading Ease Formula) for Navy Enlisted Personnel.

[123] Andrew J. Ko, Robert DeLine, and Gina Venolia. 2007. Information Needs in Collo-
cated Software Development Teams. In Proceedings of the International Conference on
Software Engineering. 344–353. https://doi.org/10.1109/ICSE.2007.45

135

https://doi.org/10.1109/IWESEP.2018.00009
https://doi.org/10.1145/3613905.3650862
https://doi.org/10.1145/1054972.1054991
https://doi.org/10.1016/j.intcom.2005.01.001
https://doi.org/10.1109/IPCC.2013.6623940
https://doi.org/10.1109/IPCC.2013.6623940
https://doi.org/10.1109/IPCC.2005.1494193
https://doi.org/10.1145/3660788
https://doi.org/10.1080/1464536X.2011.573008
https://doi.org/10.1080/1464536X.2011.573008
https://doi.org/10.1109/ICSE.2007.45

BIBLIOGRAPHY

[124] Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006. An
Exploratory Study of How Developers Seek, Relate, and Collect Relevant Information
During Software Maintenance Tasks. IEEE Transactions on Software Engineering 32,
12 (2006), 971–987. https://doi.org/10.1109/TSE.2006.116

[125] Douglas Kramer. 1999. API Documentation from Source Code Comments. In Pro-
ceedings of the International Conference on Computer Documentation. https:

//doi.org/10.1145/318372.318577

[126] John R Krebs, David W Stephens, William J Sutherland, et al. 1983. Perspectives in
Optimal Foraging. Perspectives in Ornithology (1983), 165–216.

[127] Barry M. Kroll. 1984. Writing for Readers: Three Perspectives on Audience. College
Composition and Communication 35 (1984), 172–185. https://doi.org/10.2307/

358094

[128] Bill Kules and Ben Shneiderman. 2008. Users Can Change Their Web Search Tactics:
Design Guidelines for Categorized Overviews. Information Processing and Management
44, 2 (2008), 463–484.

[129] Sergei Kuznetsov. 2007. On Stability of a Formal Concept. Annals of Mathematics
and Artificial Intelligence (2007). https://doi.org/10.1007/s10472-007-9053-6

[130] Sergei Kuznetsov, Sergei Obiedkov, and Camille Roth. 2007. Reducing the Rep-
resentation Complexity of Lattice-Based Taxonomies. In Conceptual Structures:
Knowledge Architectures for Smart Applications. https://doi.org/10.1007/

978-3-540-73681-3_18

[131] J. Richard Landis and Gary G. Koch. 1977. The Measurement of Observer Agreement
for Categorical Data. Biometrics 33 (1977), 159–174. https://doi.org/10.2307/

2529310

[132] Amy N. Langville and Carl D. Meyer. 2006. Google’s PageRank and Beyond: The
Science of Search Engine Rankings. Princeton university press.

[133] Thomas D. LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining Mental Mod-
els: A Study of Developer Work Habits. In Proceedings of the International Conference
on Software Engineering. https://doi.org/10.1145/1134285.1134355

[134] Joseph Lawrance, Rachel Bellamy, Margaret Burnett, and Kyle Rector. 2008. Us-
ing Information Scent to Model the Dynamic Foraging Behavior of Programmers in
Maintenance Tasks. In Proceedings of the Conference on Human Factors in Computing
Systems. 1323–1332. https://doi.org/10.1145/1357054.1357261

[135] Jonathan Lazar, Jinjuan Heidi Feng, and Harry Hochheiser. 2017. Chapter 11 - Ana-
lyzing Qualitative Data. In Research Methods in Human Computer Interaction (Second
Edition) (second edition ed.). Morgan Kaufmann, 299–327.

136

https://doi.org/10.1109/TSE.2006.116
https://doi.org/10.1145/318372.318577
https://doi.org/10.1145/318372.318577
https://doi.org/10.2307/358094
https://doi.org/10.2307/358094
https://doi.org/10.1007/s10472-007-9053-6
https://doi.org/10.1007/978-3-540-73681-3_18
https://doi.org/10.1007/978-3-540-73681-3_18
https://doi.org/10.2307/2529310
https://doi.org/10.2307/2529310
https://doi.org/10.1145/1134285.1134355
https://doi.org/10.1145/1357054.1357261

BIBLIOGRAPHY

[136] Jonathan Lazar, Jinjuan Heidi Feng, and Harry Hochheiser. 2017. Chapter 6 - Diaries.
In Research Methods in Human Computer Interaction (Second Edition) (second edition
ed.). Morgan Kaufmann, 135–152.

[137] Jonathan Lazar, Jinjuan Heidi Feng, and Harry Hochheiser. 2017. Chapter 8 - Inter-
views and focus groups. In Research Methods in Human Computer Interaction (second
edition ed.).

[138] Helena Lee and Natalie Pang. 2018. Understanding the Effects of Task and Topical
Knowledge in the Evaluation of Websites as Information Patch. Journal of Documen-
tation 74, 1 (2018), 162–186. https://doi.org/10.1108/JD-04-2017-0050

[139] Gerhard Leitner, Alexander Felfernig, Paul Blazek, Florian Reinfrank, and Gerald Nin-
aus. 2014. Chapter 8 - User Interfaces for Configuration Environments. In Knowledge-
Based Configuration. Morgan Kaufmann, Boston, 89–106. https://doi.org/10.

1016/B978-0-12-415817-7.00008-6

[140] Dan Li. 2005. Why Do You Blog: A Uses-and-Gratifications Inquiry into Bloggers’
Motivations. Master’s thesis.

[141] Hongwei Li, Zhenchang Xing, Xin Peng, and Wenyun Zhao. 2013. What Help do De-
velopers Seek, When and How?. In Proceedings of the Working Conference on Reverse
Engineering. 142–151. https://doi.org/10.1109/WCRE.2013.6671289

[142] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P. Trevino, Jiliang
Tang, and Huan Liu. 2017. Feature Selection: A Data Perspective. Computing Surveys
(ACM) (2017). https://doi.org/10.1145/3136625

[143] Sherlock A. Licorish and Stephen G. MacDonell. 2017. Exploring Software De-
velopers’ Work Practices: Task Differences, Participation, Engagement, and Speed
of Task Resolution. Information & Management 54, 3 (2017), 364–382. https:

//doi.org/10.1016/j.im.2016.09.005

[144] Jay Lieberman. 1991. Chapter 3 - A Schematic Approach to User Knowledge and
Software Documentation Production. In Perspectives on Software Documentation:
Inquiries and Innovations.

[145] Eden Litt. 2012. Knock, Knock. Who’s There? The Imagined Audience. Jour-
nal of Broadcasting & Electronic Media 56, 3 (2012). https://doi.org/10.1080/

08838151.2012.705195

[146] Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers. 2021. To Reuse or Not To
Reuse? A Framework and System for Evaluating Summarized Knowledge. Proceedings
of the ACM on Human-Computer Interaction, Article 166 (2021), 35 pages. https:

//doi.org/10.1145/3449240

137

https://doi.org/10.1108/JD-04-2017-0050
https://doi.org/10.1016/B978-0-12-415817-7.00008-6
https://doi.org/10.1016/B978-0-12-415817-7.00008-6
https://doi.org/10.1109/WCRE.2013.6671289
https://doi.org/10.1145/3136625
https://doi.org/10.1016/j.im.2016.09.005
https://doi.org/10.1016/j.im.2016.09.005
https://doi.org/10.1080/08838151.2012.705195
https://doi.org/10.1080/08838151.2012.705195
https://doi.org/10.1145/3449240
https://doi.org/10.1145/3449240

BIBLIOGRAPHY

[147] Xinhong Liu and Reid Holmes. 2020. Exploring Developer Preferences for Visu-
alizing External Information Within Source Code Editors. In Proceedings of the
Working Conference on Software Visualization. 27–37. https://doi.org/10.1109/

VISSOFT51673.2020.00008

[148] Nicole Loorbach, Joyce Karreman, and Michael Steehouder. 2007. The Effects of
Adding Motivational Elements to User Instructions. In Proceedings of the International
Professional Communication Conference. https://doi.org/10.1109/IPCC.2007.

4464078

[149] Yihan Lu and I-Han Hsiao. 2017. Personalized Information Seeking Assistant (PiSA):
From Programming Information Seeking to Learning. Information Retrieval 20 (2017),
433–455. https://doi.org/10.1007/s10791-017-9305-y

[150] Niels Windfled Lund. 2007. What is Documentation? English Translation of the
Classic French Text. Journal of Documentation (2007). https://doi.org/10.1353/

lac.2008.0003

[151] Renkai Ma, Xinning Gui, and Yubo Kou. 2023. Multi-Platform Content Creation:
The Configuration of Creator Ecology through Platform Prioritization, Content Syn-
chronization, and Audience Management. In Proceedings of the Conference on Human
Factors in Computing Systems. Article 242. https://doi.org/10.1145/3544548.

3581106

[152] Walid Maalej and Martin P. Robillard. 2013. Patterns of Knowledge in API Reference
Documentation. IEEE Transactions on Software Engineering 39, 9 (2013), 1264–1282.
https://doi.org/10.1109/TSE.2013.12

[153] Robert L. Mack, Clayton H. Lewis, and John M. Carroll. 1983. Learning to Use Word
Processors: Problems and Prospects. ACM Transactions on Information Systems 1, 3
(1983), 254–271. https://doi.org/10.1145/357436.357440

[154] Jo Mackiewicz. 2005. Use and Effect of Declarative Information in User Instructions.
Transactions on Professional Communication 48, 1 (2005). https://doi.org/10.

1109/TPC.2004.843302

[155] Laura MacLeod, Margaret-Anne Storey, and Andreas Bergen. 2015. Code, Camera,
Action: How Software Developers Document and Share Program Knowledge Using
YouTube. In IEEE International Conference on Program Comprehension. https:

//doi.org/10.1109/ICPC.2015.19

[156] Jennifer H. Maher. 2011. The Technical Communicator as Evangelist: Toward Critical
and Rhetorical Literacies of Software Documentation. Journal of Technical Writing
and Communication 41 (2011). Issue 4. https://doi.org/10.2190/TW.41.4.d

[157] Taryn Marks and Avery Le. 2017. Increasing Article Findability Online: The Four Cs
of Search Engine Optimization. Law Library Journal 109, 11 (2017).

138

https://doi.org/10.1109/VISSOFT51673.2020.00008
https://doi.org/10.1109/VISSOFT51673.2020.00008
https://doi.org/10.1109/IPCC.2007.4464078
https://doi.org/10.1109/IPCC.2007.4464078
https://doi.org/10.1007/s10791-017-9305-y
https://doi.org/10.1353/lac.2008.0003
https://doi.org/10.1353/lac.2008.0003
https://doi.org/10.1145/3544548.3581106
https://doi.org/10.1145/3544548.3581106
https://doi.org/10.1109/TSE.2013.12
https://doi.org/10.1145/357436.357440
https://doi.org/10.1109/TPC.2004.843302
https://doi.org/10.1109/TPC.2004.843302
https://doi.org/10.1109/ICPC.2015.19
https://doi.org/10.1109/ICPC.2015.19
https://doi.org/10.2190/TW.41.4.d

BIBLIOGRAPHY

[158] Arthur Marques, Nick C. Bradley, and Gail C. Murphy. 2020. Characterizing Task-
Relevant Information in Natural Language Software Artifacts. Proceedings of the
International Conference on Software Maintenance and Evolution (2020), 476–487.
https://doi.org/10.1109/ICSME46990.2020.00052

[159] Gregory R McArthur. 1986. If Writers Can’t Program and Programmers Can’t Write,
Who’s Writing User Documentation?. In Proceedings of International Conference on
Systems Documentation. https://doi.org/10.1145/10563.10574

[160] Sarah McRoberts, Elizabeth Bonsignore, Tamara Peyton, and Svetlana Yarosh. 2016.
Do It for the Viewers! Audience Engagement Behaviors of Young YouTubers. In
Proceedings of the International Conference on Interaction Design and Children.
https://doi.org/10.1145/2930674.2930676

[161] Edward Meade, Emma O’Keeffe, Niall Lyons, Dean Lynch, Murat Yilmaz, Ulas Gulec,
Rory V. O’Connor, and Paul M. Clarke. 2019. The Changing Role of the Software
Engineer. In Systems, Software and Services Process Improvement. 682–694. https:

//doi.org/10.1007/978-3-030-28005-5_53

[162] Yevgeniy Medynskiy, Mira Dontcheva, and Steven M. Drucker. 2009. Exploring Web-
sites Through Contextual Facets. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 2013–2022. https://doi.org/10.1145/1518701.

1519007

[163] Brad Mehlenbacher. 2002. Documentation: Not Yet Implemented, but Coming Soon!
The Human-Computer Interaction Handbook: Fundamentals, Evolving Technologies
and Emerging Applications (2002), 527–543.

[164] Cyrus R Mehta and Nitin R Patel. 2011. IBM SPSS Exact Tests. Armonk, NY: IBM
Corporation (2011).

[165] Michael Meng, Stephanie Steinhardt, and Andreas Schubert. 2018. Application Pro-
gramming Interface Documentation: What Do Software Developers Want? Jour-
nal of Technical Writing and Communication 48 (2018), 295–330. Issue 3. https:

//doi.org/10.1177/0047281617721853

[166] Michael Meng, Stephanie Steinhardt, and Andreas Schubert. 2019. How Developers
use API Documentation: An Observation Study. In Communication Design Quarterly
Review, Vol. 7. 40–49. https://doi.org/10.1145/3358931.3358937

[167] Michael Meng, Stephanie M. Steinhardt, and Andreas Schubert. 2020. Optimizing API
Documentation: Some Guidelines and Effects. In Proceedings of the International Con-
ference on Design of Communication. https://doi.org/10.1145/3380851.3416759

[168] Aliaksei Miniukovich, Antonella De Angeli, Simone Sulpizio, and Paola Venuti. 2017.
Design Guidelines for Web Readability. In Proceedings of the Conference on Designing
Interactive Systems. 285–296. https://doi.org/10.1145/3064663.3064711

139

https://doi.org/10.1109/ICSME46990.2020.00052
https://doi.org/10.1145/10563.10574
https://doi.org/10.1145/2930674.2930676
https://doi.org/10.1007/978-3-030-28005-5_53
https://doi.org/10.1007/978-3-030-28005-5_53
https://doi.org/10.1145/1518701.1519007
https://doi.org/10.1145/1518701.1519007
https://doi.org/10.1177/0047281617721853
https://doi.org/10.1177/0047281617721853
https://doi.org/10.1145/3358931.3358937
https://doi.org/10.1145/3380851.3416759
https://doi.org/10.1145/3064663.3064711

BIBLIOGRAPHY

[169] Azuka Mordi and Mareike Schoop. 2020. Making It Tangible - Creating a Definition
of Agile Mindset. In Proceedings of the European Conference on Information Systems.

[170] Simona Motogna, Dan Mircea Suciu, and Arthur-Jozsef Molnar. 2021. Agile Mind-
set Adoption in Student Team Projects. In International Conference on Evalua-
tion of Novel Approaches to Software Engineering. https://doi.org/10.1007/

978-3-030-96648-5_13

[171] Donald M. Murray. 1982. Teaching the Other Self: The Writer’s First Reader. College
Composition and Communication 33, 2 (1982). https://doi.org/10.2307/357621

[172] Sarah Nadi and Christoph Treude. 2020. Essential Sentences for Navigating Stack
Overflow Answers. In Proceedings of the International Conference on Software Analy-
sis, Evolution and Reengineering. 229–239. https://doi.org/10.1109/SANER48275.

2020.9054828

[173] Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and Brad My-
ers. 2024. Using an LLM to Help With Code Understanding. In Proceedings of the
International Conference on Software Engineering. Article 97. https://doi.org/10.

1145/3597503.3639187

[174] Mathieu Nassif, Zara Horlacher, and Martin P. Robillard. 2022. Casdoc: Unobtrusive
Explanations in Code Examples. In Proceedings of the International Conference on
Program Comprehension. 631–635. https://doi.org/10.1145/3524610.3527875

[175] Mathieu Nassif and Martin P. Robillard. 2021. Wikifying Software Artifacts. Empirical
Software Engineering 26 (2021). https://doi.org/10.1007/s10664-020-09918-4

[176] Mathieu Nassif and Martin P. Robillard. 2023. A Field Study of Developer Documenta-
tion Format. In Proceedings of the Extended Abstracts of the CHI Conference on Human
Factors in Computing Systems. 1–7. https://doi.org/10.1145/3544549.3585767

[177] Mitchell J Nathan, Kenneth R Koedinger, Martha W Alibali, et al. 2001. Expert
Blind Spot: When Content Knowledge Eclipses Pedagogical Content Knowledge. In
Proceedings of the International Conference on Cognitive Science.

[178] Oleg Nenadic and Michael Greenacre. 2007. Correspondence Analysis in R, with Two-
and Three-dimensional Graphics: The ca Package. (2007). https://doi.org/10.

18637/jss.v020.i03

[179] Octoverse. 2021. The 2021 State of the Octoverse. https://octoverse.github.com/

2021/ Accessed December 2024.

[180] OpenAI. Accessed 2024. ChatGPT (Large Language Model). https://chat.openai.

com/chat

[181] Stack Overflow. 2016. Developer Survey Results. https://survey.stackoverflow.

140

https://doi.org/10.1007/978-3-030-96648-5_13
https://doi.org/10.1007/978-3-030-96648-5_13
https://doi.org/10.2307/357621
https://doi.org/10.1109/SANER48275.2020.9054828
https://doi.org/10.1109/SANER48275.2020.9054828
https://doi.org/10.1145/3597503.3639187
https://doi.org/10.1145/3597503.3639187
https://doi.org/10.1145/3524610.3527875
https://doi.org/10.1007/s10664-020-09918-4
https://doi.org/10.1145/3544549.3585767
https://doi.org/10.18637/jss.v020.i03
https://doi.org/10.18637/jss.v020.i03
https://octoverse.github.com/2021/
https://octoverse.github.com/2021/
https://chat.openai.com/chat
https://chat.openai.com/chat
https://survey.stackoverflow.co/2016#work-challenges-at-work
https://survey.stackoverflow.co/2016#work-challenges-at-work

BIBLIOGRAPHY

co/2016#work-challenges-at-work Accessed December 2024.

[182] Stack Overflow. 2017. Developer Survey Results. https://survey.stackoverflow.

co/2017#developer-profile-_-other-types-of-education Accessed December
2024.

[183] Stack Overflow. Accessed December 2024. Stack Overflow Annual Developer Survey.
https://survey.stackoverflow.co

[184] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank Citation Ranking: Bringing Order to the Web. Technical Report. http:

//ilpubs.stanford.edu:8090/422/

[185] Eduardo G. Q. Palmeira, Abiel Roche-Lima, and André B. de Sales. 2020. Users
Preferences Regarding Types of Help: Different Contexts Comparison. In Information
Technology and Systems. 307–314. https://doi.org/10.1007/978-3-030-40690-5_

30

[186] Cécile Paris, Keith Vander Linden, and Shijian Lu. 2002. Automated Knowledge
Acquisition for Instructional Text Generation. In Proceedings of the Annual Interna-
tional Conference on Computer Documentation. https://doi.org/10.1145/584955.

584977

[187] Chris Parnin and Christoph Treude. 2011. Measuring API Documentation on the Web.
In Proceedings of the International Workshop on Web 2.0 for Software Engineering.
https://doi.org/10.1145/1984701.1984706

[188] Chris Parnin, Christoph Treude, Lars Grammel, and Margaret-Anne Storey. 2012.
Crowd Documentation: Exploring the Coverage and the Dynamics of API Discussions
on Stack Overflow. Georgia Technical Report (2012).

[189] Chris Parnin, Christoph Treude, and Margaret-Anne Storey. 2013. Blogging Developer
Knowledge: Motivations, Challenges, and Future Directions. In Proceedings of Inter-
national Conference on Program Comprehension. https://doi.org/10.1109/ICPC.

2013.6613850

[190] Aleksandra Pawlik, Judith Segal, and Marian Petre. 2012. Documentation Practices
in Scientific Software Development. In Proceedings of the International Workshop on
Co-operative and Human Aspects of Software Engineering. 113–119. https://doi.

org/10.1109/CHASE.2012.6223004

[191] Gayane Petrosyan, Martin P Robillard, and Renato De Mori. 2015. Discovering Infor-
mation Explaining API Types Using Text Classification. In Proceedings of the Inter-
national Conference on Software Engineering. 869–879. https://doi.org/10.1109/

ICSE.2015.97

[192] Vir Phoha. 1997. A Standard for Software Documentation. In Computer.

141

https://survey.stackoverflow.co/2016#work-challenges-at-work
https://survey.stackoverflow.co/2016#work-challenges-at-work
https://survey.stackoverflow.co/2017#developer-profile-_-other-types-of-education
https://survey.stackoverflow.co/2017#developer-profile-_-other-types-of-education
https://survey.stackoverflow.co
http://ilpubs.stanford.edu:8090/422/
http://ilpubs.stanford.edu:8090/422/
https://doi.org/10.1007/978-3-030-40690-5_30
https://doi.org/10.1007/978-3-030-40690-5_30
https://doi.org/10.1145/584955.584977
https://doi.org/10.1145/584955.584977
https://doi.org/10.1145/1984701.1984706
https://doi.org/10.1109/ICPC.2013.6613850
https://doi.org/10.1109/ICPC.2013.6613850
https://doi.org/10.1109/CHASE.2012.6223004
https://doi.org/10.1109/CHASE.2012.6223004
https://doi.org/10.1109/ICSE.2015.97
https://doi.org/10.1109/ICSE.2015.97

BIBLIOGRAPHY

[193] David Piorkowski, Scott D. Fleming, Christopher Scaffidi, Margaret Burnett, Irwin
Kwan, Austin Z. Henley, Jamie Macbeth, Charles Hill, and Amber Horvath. 2015. To
fix or to learn? How production bias affects developers’ information foraging during
debugging. In Proceedings of the International Conference on Software Maintenance
and Evolution. 11–20. https://doi.org/0.1109/ICSM.2015.7332447

[194] Peter Pirolli and Stuart Card. 1999. Information Foraging. In Psychological Review,
Vol. 106. 643–675. https://doi.org/10.1037/0033-295X.106.4.643

[195] Peter Pirolli and Wai-tat Fu. 2003. SNIF-ACT: A Model of Information Foraging on
the World Wide Web. In Proceedings of the International Conference on User Modeling.
https://doi.org/10.1007/3-540-44963-9_8

[196] Michael Priestley. 1999. Dynamically Assembled Documentation. In Proceedings of
the Annual International Conference on Computer Documentation. 53–57. https:

//doi.org/10.1145/318372.318556

[197] Uta Priss. 2006. Formal Concept Analysis in Information Science. Annual Review of
Information Science and Technology (2006).

[198] Daniele Procida. 2023. Diátaxis Documentation Framework. https://diataxis.fr/

[199] Rick Rabiser, Michael Vierhauser, Martin Lehofer, Paul Grünbacher, and Tomi Män-
nistö. 2014. Configuring and Generating Technical Documents. In Knowledge-Based
Configuration. Elsevier, 241–250. https://doi.org/10.1016/B978-0-12-415817-7.

00020-7

[200] Sruti Srinivasa Ragavan, Sandeep Kaur Kuttal, Charles Hill, Anita Sarma, David Pi-
orkowski, and Margaret Burnett. 2016. Foraging Among an Overabundance of Similar
Variants. In Proceedings of the Conference on Human Factors in Computing Systems.
3509–3521. https://doi.org/10.1145/2858036.2858469

[201] Marco Raglianti, Csaba Nagy, Roberto Minelli, Bin Lin, and Michele Lanza. 2023. On
the Rise of Modern Software Documentation (Pearl/Brave New Idea). In European
Conference on Object-Oriented Programming. https://doi.org/10.4230/LIPICS.

ECOOP.2023.43

[202] Othmane Rahmaoui, Kamal Souali, and Mohammed Ouzzif. 2019. Towards an Im-
provement of the Software Documentation using a Traceability Approach. In Pro-
ceedings of the Advanced Intelligent Systems for Sustainable Development. https:

//doi.org/10.1007/978-3-030-11928-7_46

[203] Pooja Rani, Suada Abukar, Nataliia Stulova, Alexandre Bergel, and Oscar Nierstrasz.
2021. Do Comments follow Commenting Conventions? A Case Study in Java and
Python. In Proceedings of the International Working Conference on Source Code Analy-
sis and Manipulation. 165–169. https://doi.org/10.1109/SCAM52516.2021.00028

142

https://doi.org/0.1109/ICSM.2015.7332447
https://doi.org/10.1037/0033-295X.106.4.643
https://doi.org/10.1007/3-540-44963-9_8
https://doi.org/10.1145/318372.318556
https://doi.org/10.1145/318372.318556
https://diataxis.fr/
https://doi.org/10.1016/B978-0-12-415817-7.00020-7
https://doi.org/10.1016/B978-0-12-415817-7.00020-7
https://doi.org/10.1145/2858036.2858469
https://doi.org/10.4230/LIPICS.ECOOP.2023.43
https://doi.org/10.4230/LIPICS.ECOOP.2023.43
https://doi.org/10.1007/978-3-030-11928-7_46
https://doi.org/10.1007/978-3-030-11928-7_46
https://doi.org/10.1109/SCAM52516.2021.00028

BIBLIOGRAPHY

[204] Nikitha Rao, Chetan Bansal, Thomas Zimmermann, Ahmed Hassan Awadallah, and
Nachiappan Nagappan. 2020. Analyzing Web Search Behavior for Software Engineering
Tasks. In Proceedings of the International Conference on Big Data. https://doi.

org/10.1109/BigData50022.2020.9378083

[205] Marc Rettig. 1991. Nobody Reads Documentation. Commun. ACM (1991).

[206] R. Ries. 1990. IEEE Standard for Software User Documentation. In Proceedings of the
International Conference on Professional Communication, Communication Across the
Sea: North American and European Practices.

[207] Martin P Robillard. 2009. What Makes APIs Hard to Learn? The Answers of Devel-
opers. IEEE Software (2009). https://doi.org/10.1109/MS.2009.193

[208] Martin P. Robillard. 2021. Turnover-induced Knowledge Loss in Practice. In Pro-
ceedings of the ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. https://doi.org/10.1145/

3468264.3473923

[209] Martin P. Robillard, Deeksha M. Arya, Neil A. Ernst, Jin L.C. Guo, Maxime Lamothe,
Mathieu Nassif, Nicole Novielli, Alexander Serebrenik, Igor Steinmacher, and Klaas-
Jan Stol. 2024. Communicating Study Design Trade-offs in Software Engineering.
Transactions on Software Engineering and Methodology (2024). https://doi.org/

10.1145/3649598

[210] Martin P Robillard and Robert Deline. 2011. A Field Study of API Learning
Obstacles. Empirical Software Engineering (2011). https://doi.org/10.1007/

s10664-010-9150-8

[211] Martin P. Robillard, Andrian Marcus, Christoph Treude, Gabriele Bavota, Oscar Cha-
parro, Neil Ernst, Marco Aurélio Gerosa, Michael Godfrey, Michele Lanza, Mario
Linares-Vásquez, Gail C. Murphy, Laura Moreno, David Shepherd, and Edmund
Wong. 2017. On-demand Developer Documentation. In Proceedings of the Inter-
national Conference on Software Maintenance and Evolution. 479–483. https:

//doi.org/10.1109/ICSME.2017.17

[212] Bernard R. Robin. 2008. The Effective Uses of Digital Storytelling as a Teaching and
Learning Tool. In Handbook of Research on Teaching Literacy Through the Commu-
nicative and Visual Arts.

[213] Camille Roth, Sergei Obiedkov, and Derrick Kourie. 2008. Towards Concise Repre-
sentation for Taxonomies of Epistemic Communities. In Concept Lattices and Their
Applications. https://doi.org/10.1007/978-3-540-78921-5_17

[214] Riccardo Rubei, Claudio Di Sipio, Phuong T. Nguyen, Juri Di Rocco, and Davide
Di Ruscio. 2020. PostFinder: Mining Stack Overflow Posts to Support Software De-

143

https://doi.org/10.1109/BigData50022.2020.9378083
https://doi.org/10.1109/BigData50022.2020.9378083
https://doi.org/10.1109/MS.2009.193
https://doi.org/10.1145/3468264.3473923
https://doi.org/10.1145/3468264.3473923
https://doi.org/10.1145/3649598
https://doi.org/10.1145/3649598
https://doi.org/10.1007/s10664-010-9150-8
https://doi.org/10.1007/s10664-010-9150-8
https://doi.org/10.1109/ICSME.2017.17
https://doi.org/10.1109/ICSME.2017.17
https://doi.org/10.1007/978-3-540-78921-5_17

BIBLIOGRAPHY

velopers. Information and Software Technology 127 (2020). https://doi.org/10.

1016/j.infsof.2020.106367

[215] Daniel Russo. 2021. The Agile Success Model: A Mixed-methods Study of a Large-
scale Agile Transformation. Transactions on Software Engineering and Methodologies
30, 4 (2021). https://doi.org/10.1145/3464938

[216] Richard M. Ryan and Edward L. Deci. 2020. Intrinsic and Extrinsic Motivation from
a Self-determination Theory Perspective: Definitions, Theory, Practices, and Future
Directions. Contemporary Educational Psychology 61 (2020). https://doi.org/10.

1016/j.cedpsych.2020.101860

[217] Caitlin Sadowski, Kathryn T. Stolee, and Sebastian Elbaum. 2015. How Develop-
ers Search for Code: A Case Study. In Proceedings of the 10th Joint Meeting on
Foundations of Software Engineering. 191–201. https://doi.org/10.1145/2786805.

2786855

[218] Hani Safadi, Steven L. Jonson, and Samer Faraj. 2020. Who Contributes Knowledge?
Core-periphery Tension in Online Innovation Communities. Organization Science 32,
3 (2020). https://doi.org/10.1287/orsc.2020.1364

[219] Carol Sansone and Jessi L. Smith. 2000. The "How" of Goal Pursuit: Interest and
Self-Regulation. Psychological Inquiry 11, 4 (2000).

[220] Jan Schmidt. 2007. Blogging Practices: An Analytical Framework. Journal of
Computer-Mediated Communication 12 (2007). Issue 4. https://doi.org/10.1111/

j.1083-6101.2007.00379.x

[221] Kurt Schneider. 2009. Experience and Knowledge Management in Software Engineer-
ing. Springer. https://doi.org/10.1007/978-3-540-95880-2

[222] Daniel Schreck, Valentin Dallmeier, and Thomas Zimmermann. 2007. How Docu-
mentation Evolves Over Time. In Proceedings of the Ninth International Workshop
on Principles of Software Evolution: In Conjunction with the 6th ESEC/FSE Joint
Meeting. 4–10. https://doi.org/10.1145/1294948.1294952

[223] Carolyn B. Seaman. 1999. Qualitative Methods in Empirical Studies of Software En-
gineering. IEEE Transactions on Software Engineering 25 (1999). Issue 4. https:

//doi.org/10.1109/32.799955

[224] Donald Sharpe. 2015. Chi-square Test is Statistically Significant: Now What? Practical
Assessment, Research, and Evaluation 20, 1 (2015). https://doi.org/10.7275/

tbfa-x148

[225] Miriam Gamoran Sherin. 2002. When Teaching Becomes Learning. Cognition and
Instruction 20, 2 (2002). https://doi.org/10.1207/S1532690XCI2002_1

144

https://doi.org/10.1016/j.infsof.2020.106367
https://doi.org/10.1016/j.infsof.2020.106367
https://doi.org/10.1145/3464938
https://doi.org/10.1016/j.cedpsych.2020.101860
https://doi.org/10.1016/j.cedpsych.2020.101860
https://doi.org/10.1145/2786805.2786855
https://doi.org/10.1145/2786805.2786855
https://doi.org/10.1287/orsc.2020.1364
https://doi.org/10.1111/j.1083-6101.2007.00379.x
https://doi.org/10.1111/j.1083-6101.2007.00379.x
https://doi.org/10.1007/978-3-540-95880-2
https://doi.org/10.1145/1294948.1294952
https://doi.org/10.1109/32.799955
https://doi.org/10.1109/32.799955
https://doi.org/10.7275/tbfa-x148
https://doi.org/10.7275/tbfa-x148
https://doi.org/10.1207/S1532690XCI2002_1

BIBLIOGRAPHY

[226] Lin Shi, Xiao Chen, Ye Yang, Hanzhi Jiang, Ziyou Jiang, Nan Niu, and Qing Wang.
2021. A first look at developers’ live chat on Gitter. In Proceedings of the ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 391–403. https://doi.org/10.1145/3468264.

3468562

[227] Lin Shi, Hao Zhong, Tao Xie, and Mingshu Li. 2011. An Empirical Study on Evolution
of API Documentation. In Proceedings of the Fundamental Approaches to Software
Engineering. https://doi.org/10.1007/978-3-642-19811-3_29

[228] Yulia Shmerlin, Irit Hadar, Doron Kliger, and Hayim Makabee. 2015. To Document
or Not to Document? An Exploratory Study on Developers’ Motivation to Document
Code. In Advanced Information Systems Engineering Workshops. https://doi.org/

10.1007/978-3-319-19243-7_10

[229] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. 2006. Questions Programmers
Ask during Software Evolution Tasks. In Proceedings of the International Symposium
on Foundations of Software Engineering. Association for Computing Machinery, 23–34.
https://doi.org/10.1145/1181775.1181779

[230] Rodrigo F Silva, Mohammad Masudur Rahman, Carlos Eduardo Dantas, Chanchal
Roy, Foutse Khomh, and Marcelo A Maia. 2021. Improved Retrieval of Programming
Solutions with Code Examples Using a Multi-featured Score. The Journal of Systems
& Software 181 (2021). https://doi.org/10.1016/j.jss.2021.111063

[231] Beth Simon, Krista Davis, William G. Griswold, Michael Kelly, and Roshni Malani.
2008. Noteblogging: Taking Note Taking Public. Proceedings of the SIGCSE techni-
cal symposium on Computer Science education (2008). https://doi.org/10.1145/

1352322.1352278

[232] Ian Sommerville. 2001. Software Documentation. Software engineering 2 (2001), 143–
154.

[233] Peter Sprent. 2011. Fisher Exact Test. In International Encyclopedia of Statistical
Science. Springer Berlin Heidelberg, 524–525.

[234] Sruti Srinivasa Ragavan, Sandeep Kaur Kuttal, Charles Hill, Anita Sarma, David Pi-
orkowski, and Margaret Burnett. 2016. Foraging Among an Overabundance of Similar
Variants. In Proceedings of the Conference on Human Factors in Computing Systems.
3509–3521. https://doi.org/10.1145/2858036.2858469

[235] Jeffrey Stylos, Andrew Faulring, Zizhuang Yang, and Brad A. Myers. 2009. Im-
proving API Documentation Using API Usage Information. In Proceedings of the
IEEE Symposium on Visual Languages and Human-Centric Computing. 119–126.
https://doi.org/10.1109/VLHCC.2009.5295283

145

https://doi.org/10.1145/3468264.3468562
https://doi.org/10.1145/3468264.3468562
https://doi.org/10.1007/978-3-642-19811-3_29
https://doi.org/10.1007/978-3-319-19243-7_10
https://doi.org/10.1007/978-3-319-19243-7_10
https://doi.org/10.1145/1181775.1181779
https://doi.org/10.1016/j.jss.2021.111063
https://doi.org/10.1145/1352322.1352278
https://doi.org/10.1145/1352322.1352278
https://doi.org/10.1145/2858036.2858469
https://doi.org/10.1109/VLHCC.2009.5295283

BIBLIOGRAPHY

[236] Yiming Su, Chengcheng Wan, Utsav Sethi, Shan Lu, Madan Musuvathi, and Suman
Nath. 2023. HotGPT: How to Make Software Documentation More Useful with a Large
Language Model?. In Proceedings of the 19th Workshop on Hot Topics in Operating
Systems. 87–93. https://doi.org/10.1145/3593856.3595910

[237] Mohammad Tahaei, Adam Jenkins, Kami Vaniea, and Maria Wolters. 2021. “I don’t
know too much about it”: On the Security Mindsets of Computer Science students. In
Proceedings of the Socio-Technical Aspects in Security and Trust. https://doi.org/

10.1007/978-3-030-55958-8_2

[238] Andy Takats and Nathan Brewer. 2005. Improving communication between customers
and developers. In Proceedings of the Agile Development Conference. 243–252. https:

//doi.org/10.1109/ADC.2005.30

[239] Henry Tang and Sarah Nadi. 2023. Evaluating Software Documentation Quality. In
Proceedings of the International Conference on Mining Software Repositories. 67–78.
https://doi.org/10.1109/MSR59073.2023.00023

[240] Ruixiang Tang, Yu-Neng Chuang, and Xia Hu. 2024. The Science of Detecting LLM-
Generated Text. Commununications of the ACM 67, 4 (2024), 50–59. https://doi.

org/10.1145/3624725

[241] Jaime Teevan, Christine Alvarado, Mark S. Ackerman, and David R. Karger. 2004. The
Perfect Search Engine is Not Enough: A Study of Orienteering Behavior in Directed
Search. In Proceedings of the Conference on Human Factors in Computing Systems.
415–422. https://doi.org/10.1145/985692.985745

[242] Jaime Teevan, Edward Cutrell, Danyel Fisher, Steven M. Drucker, Gonzalo Ramos,
Paul André, and Chang Hu. 2009. Visual Snippets: Summarizing Web Pages for
Search and Revisitation. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. 2023–2032. https://doi.org/10.1145/1518701.1519008

[243] Sunil Raj Thota, Saransh Arora, and Sandeep Gupta. 2024. AI-Driven Automated
Software Documentation Generation for Enhanced Development Productivity. In Pro-
ceedings of the International Conference on Data Science and Network Security. 1–7.
https://doi.org/10.1109/ICDSNS62112.2024.10691221

[244] Rebecca Tiarks and Walid Maalej. 2014. How Does a Typical Tutorial for Mobile De-
velopment Look Like?. In Proceedings of the Working Conference on Mining Software
Repositories. 272–281. https://doi.org/10.1145/2597073.2597106

[245] Thomas Tilley, Richard Cole, Peter Becker, and Peter Eklund. 2005. A Survey of For-
mal Concept Analysis Support for Software Engineering Activities. In Formal Concept
Analysis: Foundations and Applications. https://doi.org/10.1007/11528784_13

[246] Christoph Treude and Maurício Aniche. 2018. Where Does Google Find API Docu-

146

https://doi.org/10.1145/3593856.3595910
https://doi.org/10.1007/978-3-030-55958-8_2
https://doi.org/10.1007/978-3-030-55958-8_2
https://doi.org/10.1109/ADC.2005.30
https://doi.org/10.1109/ADC.2005.30
https://doi.org/10.1109/MSR59073.2023.00023
https://doi.org/10.1145/3624725
https://doi.org/10.1145/3624725
https://doi.org/10.1145/985692.985745
https://doi.org/10.1145/1518701.1519008
https://doi.org/10.1109/ICDSNS62112.2024.10691221
https://doi.org/10.1145/2597073.2597106
https://doi.org/10.1007/11528784_13

BIBLIOGRAPHY

mentation?. In Proceedings of the International Conference on Software Engineering.
23–26. https://doi.org/10.1145/3194793.3194796

[247] Christoph Treude, Martin P. Robillard, and Barthélémy Dagenais. 2015. Extract-
ing Development Tasks to Navigate Software Documentation. IEEE Transactions on
Software Engineering (2015). https://doi.org/10.1109/TSE.2014.2387172

[248] Nicole Ummelen. 1996. The Selection and Use of Procedural and Declarative Infor-
mation in Software Manuals. Journal of Technical Writing and Communication 26
(1996). Issue 4. https://doi.org/10.2190/FQJ1-2W2B-C886-MRY7

[249] Petko Valtchev, Rokia Missaoui, and Robert Godin. 2004. Formal Concept Analysis
for Knowledge Discovery and Data Mining: The New Challenges. In Concept Lattices.
https://doi.org/10.1007/978-3-540-24651-0_30

[250] Hams Van Der Meij and Mark Gellevij. 2004. The Four Components of a Procedure.
IEEE Transactions on Professional Communication 47, 1 (2004), 5–14. https://

doi.org/10.1109/TPC.2004.824292

[251] Hans van der Meij and Jan van der Meij. 2014. A Comparison of Paper-based and
Video Tutorials for Software Learning. Computers & Education 78 (2014), 150–159.
https://doi.org/10.1016/j.compedu.2014.06.003

[252] Isabel Villegas-Simón, Ona Anglada-Pujol, María Castellví Lloveras, and Mercè Oliva.
2023. “I’m Not Just a Content Creator”: Digital Cultural Communicators Dealing with
Celebrity Capital and Online Communities. International Journal of Communication
17 (2023), 19.

[253] Sruthi Viswanathan, Behrooz Omidvar-Tehrani, and Jean-Michel Renders. 2022. What
is your current mindset?. In Proceedings of the Conference on Human Factors in Com-
puting Systems. https://doi.org/10.1145/3491102.3501912

[254] April Yi Wang, Andrew Head, Ashley Ge Zhang, Steve Oney, and Christopher Brooks.
2023. Colaroid: A Literate Programming Approach for Authoring Explorable Multi-
stage Tutorials. In Proceedings of the Conference on Human Factors in Computing
Systems. https://doi.org/10.1145/3544548.3581525

[255] April Yi Wang, Dakuo Wang, Jaimie Drozdal, Xuye Liu, Soya Park, Steve Oney, and
Christopher Brooks. 2021. What Makes a Well-documented Notebook? A Case Study
of Data Scientists’ Documentation Practices in Kaggle. In Extended Abstracts of the
Conference on Human Factors in Computing Systems. https://doi.org/10.1145/

3411763.3451617

[256] April Yi Wang, Dakuo Wang, Jaimie Drozdal, Michael Muller, Soya Park, Justin D.
Weisz, Xuye Liu, Lingfei Wu, and Casey Dugan. 2022. Documentation Matters:
Human-Centered AI System to Assist Data Science Code Documentation in Com-

147

https://doi.org/10.1145/3194793.3194796
https://doi.org/10.1109/TSE.2014.2387172
https://doi.org/10.2190/FQJ1-2W2B-C886-MRY7
https://doi.org/10.1007/978-3-540-24651-0_30
https://doi.org/10.1109/TPC.2004.824292
https://doi.org/10.1109/TPC.2004.824292
https://doi.org/10.1016/j.compedu.2014.06.003
https://doi.org/10.1145/3491102.3501912
https://doi.org/10.1145/3544548.3581525
https://doi.org/10.1145/3411763.3451617
https://doi.org/10.1145/3411763.3451617

BIBLIOGRAPHY

putational Notebooks. Transactions on Computer-Human Interaction 29, 2, Article
17 (2022). https://doi.org/10.1145/3489465

[257] Wengran Wang, Archit Kwatra, James Skripchuk, Neeloy Gomes, Alexandra Milliken,
Chris Martens, Tiffany Barnes, and Thomas Price. 2021. Novices’ Learning Barri-
ers When Using Code Examples in Open-Ended Programming. In Proceedings of the
Conference on Innovation and Technology in Computer Science Education. 394–400.
https://doi.org/10.1145/3430665.3456370

[258] Robert Ward. 1993. The Content and Organisation of User Documentation for In-
formation Systems. In Colloquium on Issues in Computer Support for Documentation
and Manuals.

[259] Robert Watson, Mark Stamnes, Jacob Jeannot-Schroeder, and Jan H. Spyridakis. 2013.
API Documentation and Software Community Values: A Survey of Open-source API
Documentation. In Proceedings of the International Conference on Design of Commu-
nication. 165–174. https://doi.org/10.1145/2507065.2507076

[260] Robert B. Watson. 2012. Development and Application of a Heuristic to Assess Trends
in API Documentation. In Proceedings of the ACM International Conference on Design
of Communication. https://doi.org/10.1145/2379057.2379112

[261] Dustin J. Welbourne and Will J. Grant. 2016. Science Communication on YouTube:
Factors That Affect Channel and Video Popularity. Public Understanding of Science
25, 6 (2016). https://doi.org/10.1177/0963662515572068

[262] Ryen W. White, Joemon M. Jose, and Ian Ruthven. 2006. An Implicit Feedback Ap-
proach for Interactive Information Retrieval. Information Processing and Management
42, 1 (2006), 166–190.

[263] Bruce Winterhalder. 1981. Optimal Foraging Strategies and Hunter-Gatherer Research
in Anthropology: Theory and Models. (1981).

[264] Patricia Wright. 1988. Chapter 28 - Issues of Content and Presentation in Document
Design. In Handbook of Human-Computer Interaction. 629–652. https://doi.org/

10.1016/B978-0-444-70536-5.50033-6

[265] S. Paul Wright. 1992. Adjusted P-Values for Simultaneous Inference. Biometrics 48,
4 (1992), 1005–1013. https://doi.org/10.2307/2532694

[266] Write the Docs 2024. https://www.writethedocs.org Accessed: May 29th, 2024.

[267] Di Wu, Xiao-Yuan Jing, Hongyu Zhang, Yang Feng, Haowen Chen, Yuming Zhou, and
Baowen Xu. 2023. Retrieving API Knowledge from Tutorials and Stack Overflow Based
on Natural Language Queries. Transactions on Software Engineering and Methodology
32, 9 (2023). https://doi.org/10.1145/3565799

148

https://doi.org/10.1145/3489465
https://doi.org/10.1145/3430665.3456370
https://doi.org/10.1145/2507065.2507076
https://doi.org/10.1145/2379057.2379112
https://doi.org/10.1177/0963662515572068
https://doi.org/10.1016/B978-0-444-70536-5.50033-6
https://doi.org/10.1016/B978-0-444-70536-5.50033-6
https://doi.org/10.2307/2532694
https://www.writethedocs.org
https://doi.org/10.1145/3565799

BIBLIOGRAPHY

[268] Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh Kochhar, Ahmed E. Hassan, and
Zhenchang Xing. 2017. What Do Developers Search For on the Web? Empir-
ical Software Engineering 22, 6 (2017), 3149–3185. https://doi.org/10.1007/

s10664-017-9514-4

[269] Tao Xiao, Christoph Treude, Hideaki Hata, and Kenichi Matsumoto. 2024. DevGPT:
Studying Developer-ChatGPT Conversations. In Proceedings of the International Con-
ference on Mining Software Repositories. 227–230.

[270] Iris Xie and Soohyung Joo. 2012. Factors Affecting the Selection of Search Tactics:
Tasks, Knowledge, Process, and Systems. Information Processing and Management
48, 2 (2012), 254–270. https://doi.org/10.1016/j.ipm.2011.08.009

[271] Wenjing Xie. 2016. “I am blogging...”: A Qualitative Study of Bloggers’ Motivations
of Writing Blogs. In Encyclopedia of E-Commerce Development, Implementation, and
Management. https://doi.org/10.4018/978-1-4666-9787-4.ch142

[272] Yuankai Xue, Hanlin Chen, Gina R. Bai, Robert Tairas, and Yu Huang. 2024.
Does ChatGPT Help With Introductory Programming? An Experiment of Students
Using ChatGPT in CS1. In Proceedings of the International Conference on Soft-
ware Engineering: Software Engineering Education and Training. 331–341. https:

//doi.org/10.1145/3639474.3640076

[273] Ka Ping Yee, Kirsten Swearingen, Kevin Li, and Marti Hearst. 2003. Faceted Metadata
for Image Search and Browsing. In Proceedings of the Conference on Human Factors
in Computing Systems. 401–408.

[274] Annie T.T. Ying and Martin P Robillard. 2014. Selection and Presentation Prac-
tices for Code Example Summarization. In Proceedings of the Foundations of Software
Engineering. https://doi.org/10.1145/2635868.2635877

[275] Monica Younger. 1998. Technical Documents Designed to Fit the Beginner: A Recur-
sive Process. In Proceedings of the 16th Annual International Conference on Computer
Documentation. 93–97. https://doi.org/10.1145/296336.296359

[276] Hamed Zamani and Nick Craswell. 2020. Macaw: An Extensible Conversational In-
formation Seeking Platform. In Proceedings of the Conference on Research and Devel-
opment in Information Retrieval. 2193–2196. https://doi.org/10.1145/3397271.

3401415

[277] Junji Zhi, Vahid Garousi-Yusifoğlu, Bo Sun, Golara Garousi, Shawn Shahnewaz, and
Guenther Ruhe. 2015. Cost, Benefits and Quality of Software Development Documen-
tation: A Systematic Mapping. In Journal of Systems and Software, Vol. 99. 175–198.
https://doi.org/10.1016/j.jss.2014.09.042

149

https://doi.org/10.1007/s10664-017-9514-4
https://doi.org/10.1007/s10664-017-9514-4
https://doi.org/10.1016/j.ipm.2011.08.009
https://doi.org/10.4018/978-1-4666-9787-4.ch142
https://doi.org/10.1145/3639474.3640076
https://doi.org/10.1145/3639474.3640076
https://doi.org/10.1145/2635868.2635877
https://doi.org/10.1145/296336.296359
https://doi.org/10.1145/3397271.3401415
https://doi.org/10.1145/3397271.3401415
https://doi.org/10.1016/j.jss.2014.09.042

Appendix A

Replication Package for How
Programmers Find Online Learning
Resources

The replication package associated with our paper “How Programmers Find Online Learning
Resources” [16] is available at https://doi.org/10.5281/zenodo.7504510 [17]. Table A.1 shows
the contents of the online replication package and which documents are reproduced in this
appendix.

Table A.1: Contents of the replication package [17].

Artifact Description Appendix Section

README.md Details of the contents of the replication package.
Coding Guide/

Coding Guide.pdf Instructions followed by internal and external annota-
tors to categorize the open codes.

Dataset/
Belief.csv

List of codes and their annotated categories for each
respective component in our data set.

Questions.csv
Preferences.csv
Resources.csv
Cues.csv
ImpressionFactors.csv

RelationConnections.csv Connections between instances of components in our
data set, identified by the relation, source instance’s
code, and target instance’s code.

Documents For Study/
Demographic Questions.txt Text file of demographic questions for participants to

complete before the study.
A.1

Diary Entry.txt Text file of diary entry template for participants to fill
in during the study.

Questionnaire.txt Text file of questions for participants to fill in after the
study.

A.2

150

APPENDIX A. REPLICATION PACKAGE FOR HOW PROGRAMMERS FIND

ONLINE LEARNING RESOURCES

A.1 Demographic Questions

Below are the demographic questions that we asked participants to complete before the study
began.

1. Please describe your current occupation?

2. Please describe your formal training in computing (degree, certification, etc.). Please
include details such as specialization, co-op programs, date of completion, etc.

3. Please describe your programming experience. Include and briefly describe your main
experiences and their duration (job, internship, personal project, major course project,
etc.).

4. What is the technology that you are currently trying to learn?

5. How long have you been learning this technology?

6. Why are you learning this technology?

A.2 Post-study Questionnaire

Below are the questions that we asked participants to complete after the diary and interview
study was completed.

1. What was the toughest or most frustrating part about searching for information?

2. What aspects of the tools you use for searching for information made the search easier
for you?

3. Was it useful to document the steps you took to find information for subsequent
searches of the same documentation? If so, in what way were they helpful? If not,
what do you think would be more helpful?

4. What feature(s) would you like to assist your search for information?

5. Any other comments or feedback on the study?

151

Appendix B

Replication Package for Properties
and Styles of Software Tutorials

The replication package associated with our paper “Properties and Styles of Software Technol-
ogy Tutorials” [19] is available at https://doi.org/10.5281/zenodo.10048532 [18]. Tables B.1
and B.2 shows the contents of the online replication package and which documents are re-
produced in this appendix.

Table B.1: Contents of the replication package (executable scripts) [18].

Artifact Description Appendix Section

analysis_scripts/

requirements.txt Required python libraries to run
scripts in this folder.

map_property_names.py Helper script to map full property
names to abbreviated forms for read-
ability of plots.

plot_property_variations.py Script to create the plots of resource
property variations per programming
language.

statistical_analysis.R Script to perform the ANOVA test to
investigate the associations between
properties across programming lan-
guages and compute and plot the cor-
relations between properties per pro-
gramming language.

plot_properties_vs_metrics.py Script to create the plots between
each resource property and website
traffic metric.

152

APPENDIX B. REPLICATION PACKAGE FOR PROPERTIES AND STYLES OF

SOFTWARE TUTORIALS

Table B.2: Contents of the replication package (dataset and results) [18].

Artifact Description Appendix Section

README.md Details of the contents of the replication
package

ResourceCollection.md Details of the manual resource collection
and filtering process.

B.1

resource_properties/

property_name_mappings.csv Mapping between property name and
shortform for use on diagrams

resource_properties.csv List of all property values of resources in
our study.

similarwebstats.csv Traffic metrics for April to June 2023 re-
trieved from pro.similarweb.com.

variations_in_property_values/
resource_properties_[programming lan-

guage].pdf
Plot of resource property distributions
per programming language

anova_test_results.csv Results of performing the anova test on
resource properties across languages and
across websites.

correlations_between_properties/
significant_correlations_[programming

language].pdf
Heatmap of correlation between proper-
ties of resources per programming lan-
guage.

correspondence of properties to website traf-
fic/[traffic metric]/

[resource property]_vs_[traffic met-
ric].pdf

Plot of design property versus website
traffic metric where each point on the
scatter plot maps to a resource.

characterizing_resources/

deviation_matrix_per_resource.csv Table of resources and their property
deviations, identified distinguishing at-
tributes, and prominent style

fca/
FCA Intermediary Results.pdf Details of the results of the intermediary

steps used to identify Recurring Resource
Styles for resources per programming lan-
guage.

B.2

Recurring Resource Styles (Table VI).pdf Details of Recurring Resource Styles for
resources per programming language.

B.2

formal_context_[programming lan-
guage].csv

Formal context for resources and at-
tributes per programming language.

Recurring Resource Styles (Table VI).pdf — Table VI refers to the table in the published article [19], not to a Table VI in this
manuscript.

153

APPENDIX B. REPLICATION PACKAGE FOR PROPERTIES AND STYLES OF

SOFTWARE TUTORIALS

B.1 Resource Collection

We followed a manual web search to identify and retrieve popular tutorial resources for each
programming language (PL) for the study:

1. Manually collect the non-advertisement results on the first three pages of the searches
of ‘<PL> tutorial’, ‘<PL> programming tutorial’, and ‘<PL> development tutorial’
in the search engine DuckDuckGo (in Google Chrome browser in incognito mode) using
default search configurations.

2. Identify the common search results from these three sets of search results. Include only
results in text format.

3. Filter out search results that are not a part of a multi-page comprehensive learning
tutorial for the programming language. For example, we discarded the search result
“Learn Java” on the Stackify website because it was an index of Java tutorials, rather
than a page in a comprehensive tutorial for Java.

4. Identify the table of contents of the tutorial in which the search result corresponds to
a single page. Retrieve every web page, i.e. resource, of the tutorial.

Resource filtering

Discard resources that:

• do not provide information about the corresponding programming language,

• or follow a recognizable non-tutorial format, e.g. reference documentation, Q&A, etc.

B.2 Recurring Resource Styles

Details of the data preprocessing and running of FCA to identify resource styles for each
programming language.

Java C# Python Javascript Typescript

Number of attributes 30 30 30 30 30

Number of attributes selected after:
Zero-variance thresholding 24 24 24 24 24

Total Number of formal concepts 4493 3822 4178 1944 1033
Number of formal concepts after concept selection 1245 730 916 280 61
Number of frequent, stable concepts 8 14 13 10 15
Number of maximal frequent, stable concepts 6 14 13 9 11

154

Appendix C

Replication Package for The
Documentor Mindset

The replication package associated with our paper “The Software Documentor Mindset” [21]
is available at https://doi.org/10.5281/zenodo.14416777 [20]. Table C.1 shows the con-
tents of the online replication package and which documents are reproduced in this appendix.

Table C.1: Contents of the replication package [20].

Artifact Description Appendix Section

README.md Details of the contents of the replication package.
Interview Guide.md The complete set of questions used as a guide to conduct

semi-structured interviews with documentation contrib-
utors.

C.1

DimensionsAndConsiderations.xlsx The set of considerations across the three dimensions
(separated into three sheets), and their corresponding
open codes from analysing the interviews.

Mindsets (Table 5).xlsx The complete mapping of mindsets and their corre-
sponding considerations across dimensions, for each in-
formant. This is the complete version of Table 5 in the
accompanying article.

Validation questionnaire.md The validation questionnaire provided to informants for
member checking.

C.2

C.1 Interview Guide

Guide of questions used to conduct semi-structured interviews with documentation contrib-
utors.

1. What is your programming experience?

2. What was your journey to begin contributing documentation?

<Select two examples of documentation created by the interviewee>

156

https://doi.org/10.5281/zenodo.14416777

APPENDIX C. REPLICATION PACKAGE FOR THE DOCUMENTOR MINDSET

3. How did you decide to cover this topic?

4. How did you go about creating the documentation?

• What preparation was involved?
• How did you go about designing the resources?
• What was your procedure to create documentation?
• What tools did you use to create documentation?

5. How long did it take you to create this documentation? Would you say this is typical?

6. How do you weigh the cost versus the benefit of contributing documentation for you?

7. Do you promote your documentation, and if so, how?

8. Has your documentation been unethically reused? If so, how did you handle the situ-
ation?

9. What do you think about the impact of ChatGPT and similar artifical intelligence
(AI) on your documentation and your workflow?

10. Do you have any insights that I didn’t ask about that you think would be worth
sharing?

C.2 Validation Questionnaire

Based on interviews with 26 documentation contributors (referred to as documentors), such
as yourself, we identified five mindsets that documentors have when creating and contributing
documentation. Each mindset describes an important factor that a documentor thinks about
during the documentation contribution process. Documentors may have multiple mindsets
during the documentation contribution process, and may even have more than one mindset
at the same time.

We would like your input on how well these mindsets resonate with your experience.
Below is the description of each documentor mindset, followed by a few questions related to
your experience of that mindset, as applicable. We really appreciate your input.

Documentation Contributor Information

We ask only for your name and email so we can ensure that the responses are only from in-
terviewees of the original study. Your response to this form will be anonymized for the study.

1. Please fill in your name that you used for correspondence with Deeksha for the doc-
umentation contribution interview:

2. Please fill in the email that you used for correspondence with Deeksha for the docu-
mentation contribution interview:

157

APPENDIX C. REPLICATION PACKAGE FOR THE DOCUMENTOR MINDSET

Personal Development Mindset

This mindset focuses on how the documentation contributed by the documentor can be used
to improve the documentor’s own knowledge and skills, and obtain professional opportunities.

3. To what extent do you agree with the following statement?
I have experienced this mindset while contributing documentation.

• Strongly Disagree

• Disagree

• Agree

• Strongly Agree

• Unsure

4. If you have experienced this mindset, please describe how you experienced this mindset.
If you have not, please type “N/A”.

Prioritizing Personal Boundaries Mindset

This mindset focuses on how the documentation can be created considering the documentor’s
own needs and interests, and within the documentor’s time and resource constraints.

5. To what extent do you agree with the following statement?
I have experienced this mindset while contributing documentation.

• Strongly Disagree

• Disagree

• Agree

• Strongly Agree

• Unsure

6. If you have experienced this mindset, please describe how you experienced this mindset.
If you have not, please type “N/A”.

Novelty and Value Addition Mindset

This mindset focuses on creating documentation that is different from existing online docu-
mentation.

158

APPENDIX C. REPLICATION PACKAGE FOR THE DOCUMENTOR MINDSET

7. To what extent do you agree with the following statement?
I have experienced this mindset while contributing documentation.

• Strongly Disagree

• Disagree

• Agree

• Strongly Agree

• Unsure

8. If you have experienced this mindset, please describe how you experienced this mindset.
If you have not, please type “N/A”.

Growth and Visibility Mindset

This mindset focuses on pursuing greater visibility of the documentation from audiences and
search engines.

9. To what extent do you agree with the following statement?
I have experienced this mindset while contributing documentation.

• Strongly Disagree

• Disagree

• Agree

• Strongly Agree

• Unsure

10. If you have experienced this mindset, please describe how you experienced this mindset.
If you have not, please type “N/A”.

Content-oriented Mindset

This mindset focuses on allowing the environment and circumstances, as well as the technical
information itself, to guide the creation of the documentation.
11. To what extent do you agree with the following statement?

I have experienced this mindset while contributing documentation.

• Strongly Disagree

• Disagree

159

APPENDIX C. REPLICATION PACKAGE FOR THE DOCUMENTOR MINDSET

• Agree

• Strongly Agree

• Unsure

12. If you have experienced this mindset, please describe how you experienced this
mindset. If you have not, please type “N/A”.

Additional Comments

13. Were there any other mindsets that you experienced that we did not ask about?

14. Do you have any additional comments about the five mindsets?

160

Appendix D

Replication Package for How
Programmers Interact with
Multimodal Documentation

This appendix contains supplementary material associated with our paper “How Program-
mers Interact With Multimodal Documentation” [23]. Table D.1 shows the contents of this
appendix.

Table D.1: Contents of Appendix D.

Artifact Description Appendix Section

Fisher’s test results Results of running the 16 Fisher’s exact test on survey responses
between Dimension A and Dimension B per Filter.

D.2

Contingency tables The contingency tables for the statistically significant results not
present in the main paper.

Tasks per topic List of programming tasks for each topic.

D.1 Tasks per Topic

Regular Expressions

Assume that you are building a registration page for a web application in Java. You need to
validate the user’s input, and retrieve and update their profile with the accepted information.
To do this, you need to use regular expressions [...]

Conceptual

You are debating whether to use the matches() method in the Pattern class or the matches()
method in the Matcher class. What is the difference between both these methods?

161

APPENDIX D. REPLICATION PACKAGE FOR HOW PROGRAMMERS INTERACT

WITH MULTIMODAL DOCUMENTATION

How-to

The user is asked to input their email address in the expected format: username@domain.com.
Use regular expressions and write the code to verify that their email address matches the
expected format, and then retrieve just the username from their email address.

Debugging

The user is asked to enter their ten-digit phone number which may or may not be separated
by hyphens into three parts of 3, 3, and 4 digits (no spaces are allowed). So, valid number
formats include: 123-456-7890 and 123-4567890 and 1234567890. You develop this simple
regular expression as the pattern in the matches() method:

\d{3}-?\d{3}-?\d{4}

However, when you try to compile your code, the compiler throws an error on this regular
expression. What is the issue and how can you fix this regular expression to fit the given
criteria?

Inheritance

Assume that you are building the account page for different users on an online store in Java.
You need to handle account details for different types of users, i.e. the store owners and
shoppers. To do this, you need to use inheritance [...]

Conceptual

You need to create a new class. What is the difference between instantiating a class as final,
versus instantiating all its fields and methods as final?

How-to

To access the online store, storeowners and shoppers must create an account, by providing
a standard set of information including their name. You create a common Account class,
and two subclasses: OwnerAccount and ShopperAccount. A ShopperAccount contains a
ShoppingCart which manages the actual shopping experience.

Write the basic class declaration for ShopperAccount, such that it fulfils the above require-
ments, assuming the classes Account, OwnerAccount, and ShoppingCart exist.

Debugging

For April Fools Day, you are asked to display all shoppers’ names as “AprilFool”. The Account
class has the following method to return the name in an account:

162

APPENDIX D. REPLICATION PACKAGE FOR HOW PROGRAMMERS INTERACT

WITH MULTIMODAL DOCUMENTATION

public String getName() {

return this.aName;

}

You write the following code in the class ShopperAccount:

public String getName(Boolean isAprilFools) {

if(isAprilFools) {

return "AprilFool";

}

}

However, when you call this getName method, you still get the actual username instead of
“AprilFool”. Why is this happening, and how can you fix this problem?

Exception Handling

Assume that you are building an online store in Java. You need to handle invalid behaviour
in the software. To do this, you need to use exception handling [...]

Conceptual

You are debating whether to use a regular try/catch block, but also learn about the try-
with-resource block. What is the difference between both these types of blocks?

How-to

A shopper’s account can be identified using their email ID. When a user tries to log in to
the shop, your code must call the existing method

Account getAccount(String pEmail)

that retrieves the account for the entered email ID. If the method does not find an email,
it throws a NoSuchEmailException. Write the code to call getAccount, and print out the
message “Email Not Found” to the user, if their email is not found. Note: Please assume
that Account and NoSuchEmailException exist.

Debugging

For the store’s 10 year celebrations, shoppers can upload their social media website to enter
a raffle. You develop this simple code to parse the website:

try {

// Tries to open the URL

}

catch (IOException e) {

163

APPENDIX D. REPLICATION PACKAGE FOR HOW PROGRAMMERS INTERACT

WITH MULTIMODAL DOCUMENTATION

// Do nothing

}

catch (MalformedURLException e) {

// Do nothing

}

What is the issue with this code and how can it be fixed?

D.2 Fisher’s Test Results

Results of the Fisher’s Exact Test between Modality Rating and Dimension, for each of the
Filter criteria. Rows highlighted in green indicate statistically significant tests.

Dimension A Dimension B Filter Pvalue Adjusted p-value Result

Rating Task type Text content 1.00E-05 1.60E-04 Statistically significant
Rating Task type Regular code example 1.50E-05 2.40E-04 Statistically significant
Rating Task type Summarized code example 1.93E-01 3.08E+00 Not statistically significant
Rating Task type Annotated code example 3.77E-01 6.03E+00 Not statistically significant
Rating Task type Table 1.81E-01 2.89E+00 Not statistically significant
Rating Topic Text content 4.66E-01 7.45E+00 Not statistically significant
Rating Topic Regular code example 3.59E-02 5.74E-01 Not statistically significant
Rating Topic Summarized code example 2.98E-02 4.76E-01 Not statistically significant
Rating Topic Annotated code example 2.71E-01 4.34E+00 Not statistically significant
Rating Topic Table 5.00E-06 8.00E-05 Statistically significant
Rating Modality Conceptual 1.50E-05 2.40E-04 Statistically significant
Rating Modality HowTo 5.00E-06 8.00E-05 Statistically significant
Rating Modality Debug 2.04E-02 3.27E-01 Not statistically significant
Rating Modality Regular expressions 2.45E-02 3.92E-01 Not statistically significant
Rating Modality Inheritance 4.97E-03 7.96E-02 Not statistically significant
Rating Modality Exception handling 3.00E-05 4.80E-04 Statistically significant

164

APPENDIX D. REPLICATION PACKAGE FOR HOW PROGRAMMERS INTERACT

WITH MULTIMODAL DOCUMENTATION

D.3 Contingency Tables

15 5 6 16 14

10 16 8 10 12

3 4 4 10 35

Because I
already knew
the answer, I
didn't look at
the tutorial

I used the
tutorial,

but not this
feature

I used this
feature, but
it was not

useful

I used this
feature, it

was moderately
useful

I used this
feature,

it was very
useful

Debug

HowTo

Conceptual

Rating

T
a

s
k

 T
y

p
e

(a) Text content (adjusted p-value = 1.6e-4)

14 11 9 14 8

5 5 2 10 34

4 16 7 16 13

Because I
already knew
the answer, I
didn't look at
the tutorial

I used the
tutorial,

but not this
feature

I used this
feature, but
it was not

useful

I used this
feature, it

was moderately
useful

I used this
feature,

it was very
useful

Debug

HowTo

Conceptual

Rating

T
a

s
k

 T
y

p
e

(b) Regular code example (adjusted p-value = 2.4e-4)

12 33 4 5 9

11 28 5 5 14

11 28 7 5 12

6 13 8 17 19

10 10 3 15 25

Because I
already knew
the answer, I
didn't look at
the tutorial

I used the
tutorial,

but not this
feature

I used this
feature, but
it was not

useful

I used this
feature, it

was moderately
useful

I used this
feature,

it was very
useful

Table

Annotated
code

example

Summarized
code

example

Regular
code

example

Text
content

Rating

M
o

d
a
li

ty

(c) Exception handling (adjusted p-value = 4.8e-4)

Residuals

-Inf Inf2-2 0

Adjusted Standardized Residuals and contingency tables between Task Type and Rating
for Text content and Regular code examples, as well as between Modality and Rating for
Exception handling. Note that the labels refer to modalities as “features” (see Section 6.1.2).

165

	Contents
	Abstract
	Résumé
	Contributions
	Acknowledgements
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Thesis Organization

	Background and Related Work
	Documentation Seeking
	Information Needs
	Resource Design Preferences
	Online Resource Seeking
	Identifying Pertinent Information

	Documentation Contribution
	Documentation Motivations
	Documentation Creation Practices
	Mindsets in Software Engineering

	Design of Documentation
	Characteristics of Documentation
	Formal Concept Analysis
	User Controls for Navigating Documentation

	How Programmers Find Software Documentation
	Study Design
	Data Collection
	Data Analysis

	Resource-Seeking Model
	Need-oriented Components
	Resource-oriented Components

	Need-Oriented Components
	QUESTIONs
	PREFERENCEs
	BELIEFs

	Resource-Oriented Components
	RESOURCEs
	CUEs
	IMPRESSION FACTORs

	Relations Between Components
	Resource is accessed for Question
	Cue is used to select Resource
	Resource is evaluated through Impression Factor
	Infrequent Relations

	Implications

	Documentation Properties and Styles
	Data Collection
	Resource Collection
	Property Extraction
	Limitations

	Resource Properties
	Variations in Property Values
	Correlations Between Properties
	Correspondence of Properties to Website Traffic
	From Properties to Styles

	Characterizing Resources
	Prominent Style
	Recurring Style
	User-defined Style
	Discussion
	Limitations

	Considerations of Documentation Creators
	Study Design
	Informant Recruitment
	Data Collection
	Qualitative Analysis
	Mindset Elicitation
	Validation

	Dimensions of the Software Documentation Contribution Process
	Motivations
	Topic Selection Techniques
	Styling Objectives

	Software Documentor Mindsets
	Validation
	Study Design Trade-offs

	Implications
	Balancing Multiple Mindsets
	Challenges with Pursuing Considerations
	Other Mindsets

	Interactions with Multimodal Documentation
	Study Design
	Multimodal Tutorial Prototype
	Survey Design
	Respondent Recruitment
	Analysis
	Study Design Trade-offs

	Programmer Interactions with the Multimodal Tutorial
	Modality Ratings for Conceptual Tasks
	Modality Ratings for How-to Tasks
	Modality Ratings for Debugging Tasks
	Usefulness of Individual Modalities
	Usefulness of Additional Tutorial Features
	Recommendations from Respondents

	Discussion
	The Software Documentation Environment
	Software Documentation is Human-centric
	Management of Multiple Documentation Types
	Design of Customizable Documentation

	Anticipated Challenges to Designing Customizable Documentation
	Shift of Design Effort from Documentor to Programmer
	Evolving Design Needs and Preferences
	Evaluation of Software Documentation Quality
	Impact of Artifical Intelligence on Documentation Creation and Use

	Future Research Directions
	Code Example Customization
	Querying Pertinent Documentation
	Other Software Documentation Design Considerations
	Communication Between Documentation Creators and Information Seekers

	Conclusion
	Bibliography
	Replication Package for How Programmers Find Online Learning Resources
	Demographic Questions
	Post-study Questionnaire

	Replication Package for Properties and Styles of Software Tutorials
	Resource Collection
	Recurring Resource Styles

	Replication Package for The Documentor Mindset
	Interview Guide
	Validation Questionnaire

	Replication Package for How Programmers Interact with Multimodal Documentation
	Tasks per Topic
	Fisher's Test Results
	Contingency Tables

