Multi-dimensional Unit Test Classification

Ziming Wang, School of Computer Science
McGill University, Montreal
June, 2024

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of

Master of Computer Science

OZIMING WANG, 2024-06-06

Abstract

In software development projects, unit test names contribute to the overall quality of
the tests. Developers often encode rich contextual information in the test names to
enhance the test readability and maintainability. However, this information lacks a formal
structure, and thus cannot be systematically used to support software development
practices such as documentation and test refactoring. Additionally, large test suites
can still be hard to read and maintain, even with descriptive names. To address these
limitations, we propose to identify common types of information encoded in test names
and prevalent test naming conventions, and introduce a novel rule-based approach,
called Sift4], to automatically extract latent semantic information encoded in the name of
a unit test. Information fragments we extract from test names can include the name of the
method under test, a description of the state of the object under test, or the expected result
of executing the unit under test. We then demonstrate how to perform multi-dimensional
classification of unit tests using this information. Finally, we evaluate the performance
of Sift4] on two samples of unit tests: our development set and a previously-unseen
evaluation benchmark. The results show that we can extract sufficient information from

test names to assist in meaningfully reorganizing the tests in test classes.

Abrégé

Dans les projets de développement de logiciels, les noms des tests unitaires contribuent
a la qualité globale des tests. Les développeurs encodent souvent des informations
contextuelles riches dans les noms des tests pour améliorer la lisibilité et la maintenabilité
des tests. Cependant, ces informations manquent de structure formelle et ne peuvent
donc pas étre systématiquement utilisées pour soutenir les pratiques de développement
logiciel telles que la documentation et le refactoring des tests. De plus, les grandes
suites de tests peuvent toujours étre difficiles a lire et a maintenir, méme avec des
noms descriptifs. Pour répondre a ces limitations, nous proposons d’identifier les
types communs d’informations encodées dans les noms des tests et les conventions
de nommage des tests répandues, et d’introduire une nouvelle approche basée sur
des regles, appelée Sift4], pour extraire automatiquement les informations sémantiques
latentes encodées dans le nom d’un test unitaire. Les fragments d’information que nous
extrayons des noms de tests peuvent inclure le nom de la méthode testée, une description
de l'état de l'objet testé, ou le résultat attendu de l'exécution de 1'unité testée. Nous
démontrons ensuite comment effectuer une classification multidimensionnelle des tests
unitaires en utilisant ces informations. Enfin, nous évaluons les performances de Sift4] sur
deux échantillons de tests unitaires : notre ensemble de développement et un référentiel
d’évaluation précédemment non vu. Les résultats montrent que nous pouvons extraire
suffisamment d’informations des noms des tests pour aider a réorganiser de maniére

significative les tests dans les classes de tests.

il

Acknowledgements

First and foremost, I express my heartfelt gratitude to my supervisor, Prof. Martin P.
Robillard. His invaluable guidance carried me through all stages of this project, from
the initial proposal to the final thesis. It is a great honour and privilege to have had
the opportunity to work under his supervision. His conscientious academic spirit, high
ethical personality and great sense of humour inspires me both in research work and daily
life. I believe that I will continue to benefit from this experience throughout my entire life.

I am also deeply thankful to Prof. Robillard for providing me with funding through
the Natural Sciences and Engineering Research Council of Canada (NSERC). With this
financial support, I am able to fully dedicate myself to my research.

Next, I want to extend thanks to the members of the Software Technology Lab. I am
grateful for all the professional knowledge and insightful advice you have shared during
our weekly meetings. In addition, you have been my closest friends in Montreal, making
my graduate experience memorable.

Finally, and most importantly, I want to thank my parents. Without your endless
support and love, it would never have been possible to make this achievement happen. I
am especially grateful to my fiancée, Jiayu. You've been there for me when I needed you

most, and I could not have done it without you.

1ii

Table of Contents

Acknowledgements L oL L
Listof Figures e
Listof Tables

1 Introduction
1.1 Contributions

1.2 ThesisOrganization.

2 Information Fragments in Test Names
21 Related Work

2.2 Problem Formulation

3 Types of Semantic Information Fragments

31 Methodology
3.2 Results
3.3 Limitations e e e e e e

4 Extracting Semantic Information From Tests

4.1 Opverall Architecture
42 Extraction Techniques
421 RuleImplementation.

iv

422 Limitationsoftherules

Multi-dimensional Test Classification

5.1 Overview of Multi-dimensional Test Classification
52 Sift4]Plug-in.
5.3 Example of Using Sift4] Plug-in

Evaluation

6.1 Evaluation Benchmark

6.2 Evaluation Metrics

Results and Discussions

71 DevelopmentSet

7.2 EvaluationSet

Conclusions

81 Future Work

Evaluation Results on Development Set

Evaluation Results on Evaluation Set

CollectionUtilsTest Test Class

CollectionUtilsTest Test Class Classified by Default Strategy
CollectionUtilsTest Test Class Classified by Result Fragment
CollectionUtilsTest Test Class Classified by Method Fragment

CollectionUtilsTest Test Class Classified by State Fragment

26
26
26
27

29
29
30

32
32
35

38
39

46

53

60

62

64

66

68

List of Figures

4.1
4.2
4.3

51

7.1

C1

D.1

E.1

F1

G.1

A Sample Unit Test with Annotated Semantic Information Fragments 16
Sift4] Overall Design (Simplified) 16
Example of reuse term in information semantic fragment. 22
The console view of the plug-in running on the sample test suite. Buttons

on the left side from top to bottom are: Classify by Default, Classify by

Method Fragment, Classify by Class Fragment, Classify by State Fragment,

Classify by Result Fragment, Classify by Scenario Fragment. 28
Sensitivity of threshold to small variations 34
CollectionUtilsTest Test Class 61
CollectionUtilsTest Test Class Classified by Default Strategy. 63
CollectionUtilsTest Test Class Classified by Result Fragment. 65
CollectionUtilsTest Test Class Classified by Method Fragment. 67
CollectionUtilsTest Test Class Classified by State Fragment. 69

vi

List of Tables

3.1
3.2

4.1
4.2
4.3

7.1
7.2

7.3
74

Al

B.1

Naming Convention Families Observed in a Sample of 1245 Java Unit Tests
Types of Semantic Information Fragments Observed in a Sample of Java

UnitTests e e e e e

Static Analysis Strategies for Extracting Semantic Fragments
Grammatical Relations between Semantic Information Fragments

Extraction Techniques Applied in Predefined RuleSet

Causes of classification errors in the developmentset
Cohen’s Kappa per Convention on the development set. The columns

indicate the number of true positives (TP), the number of false positives

(FP), the number of true negatives (TN), the number of false negatives (FN).

Causes of classification errors in the evaluationset
Cohen’s Kappa per Convention on the evaluation set. The columns

indicate the number of true positives (ITP), the number of false positives

(FP), the number of true negatives (TN), the number of false negatives (FN).

Accuracy per Test Class on Development Set

Accuracy per Test Class on EvaluationSet

vii

12

Chapter 1

Introduction

Readability and maintainability are the key quality attributes for unit tests [7]. Test
method names often have an impact on test suite readability and maintainability [4],
as they are one immediate source of information for understanding the intent of test
suites. Developers can benefit in multiple ways from descriptive names. For example,
descriptive names can help developers understand the intent of the unit test without
reading the test body, elicit the missing tests, etc. Thus, developers often encode rich
semantic information in the test names, (e.g., the name of the unit under test, the
tfeature under the test, and the expected outcome of the test). However, the encoding of
information along these different dimensions is unstructured and unsystematic, and thus
prone to inconsistencies and difficult to use by tools. In addition, long test suites with
descriptive names can still be hard to read and maintain. To overcome these problems,
we investigate three research questions:

RQ 1: What important information do developers commonly include in a test method
name?

RQ 2: How can this information be automatically identified?

RQ 3: How can this information help organize a test suite?

In this thesis, we first identify common types of information encoded in test names

and prevalent test naming conventions. Based on these findings, we propose a novel

rule-based approach, called Sift4], for extracting information fragments from Java unit
tests. Sift4] comprises a collection of semantic fragment extraction rules, each of which is
associated with a naming convention. Sift4] uses an ensemble of information extraction
techniques that include textual analysis using regular expression, static analysis of the
test code, and natural language processing of the test names to convert the information
in test names to Java annotation. Furthermore, we developed an Intelli] plug-in to allow
users to browse and organize the tests in a test class according to various dimensions
determined by the various information fragments detected.

Finally, we evaluated Sift4] by measuring its accuracy on two samples of unit tests:
a development set and a previously-unseen evaluation benchmark of Java unit tests that
use JUnit framework. The results show that we can extract sufficient information from

test names to assist in meaningfully reorganizing the tests in test classes.

1.1 Contributions

Overall, this work makes the following contributions:

1. A general and language-independent formulation of the problem of semantic

information fragment detection in a unit test name;

2. A catalogue of semantic information fragments identified from a sample of Java unit

tests;
3. A benchmark of unit test names and their applied naming conventions;

4. A prototype tool called Sift4] that automatically extracts the semantic information
fragments from Java unit tests that use the JUnit framework, and an Intelli] plug-in

that performs multi-dimensional classification on the Java tests annotated by Sift4];

5. Empirical data evaluating the performance of Sift4] tool for extracting information

from tests.

1.2 Thesis Organization

The remainder of this thesis is structured as follows. Chapter 2 discusses relevant
past research and presents a precise formulation of the semantic information fragment
detection problem. Chapter 3 details a formative study of test name conventions,
including its methodology and presents the resulting types of semantic information
fragments and prevalent naming conventions. Chapter 4 describes the design of the
Sift4] tool for extracting information fragments from test names, including a number of
information extraction techniques and a discussion of its limitations. Chapter 5 presents
how multi-dimensional test classification is achieved. Chapters 6 and 7 present the
design of the evaluation study and the results, respectively. Finally, Chapter 8 presents

the conclusions and directions for future work.

Chapter 2

Information Fragments in Test Names

This research is predicated on the observation that the names of unit tests commonly
encode information about different properties of the test, and this information may be
systematically organized through a naming convention. For example, a test named
testisHorizontal_False for a class representing a geometric line could encode two pieces of
information about the test: the name of the method being tested (isHorizontal), and the
expected outcome of the evaluation of this unit under test (in this case, a return value of
false). In this example, the information fragments are made prominent with the help of
two syntactic features: a test prefix marker (test), and a separator (_), and the applied naming
convention can be expressed as test[FocalMethod]_[ExpectedResult].

We henceforth refer to a cohesive piece of information about a unit test as a semantic
information fragment (or simply, fragment). We hypothesize that fragments can be extracted
from the names of unit tests with the help of naming conventions. As this work is scoped
in the context of the Java language, we consider that a unit test corresponds to a test
method as identified by the JUnit framework, and that the name of the test is simply the
test method’s simple name. A test name can be tokenized into a sequence of tokens based
on lexical or syntactic features, such as case or the use of separators. The example above

would be tokenized as test,Is, Horizontal, _, False.

2.1 Related Work

There is ample evidence that developers informally encode semantic information as
fragments in unit test names. This evidence can be found both in the grey and the
scientific literature, and is easily confirmed by inspection of test suites (see Section 3). In
terms of grey literature, numerous blogs mention conventions for naming unit tests that
involve different kinds of semantic encoding (e.g., [10,11,14,19,28]). A common advice
is to encode the name of the unit under test (or focal method [6]) in the test name. Another
common recommendation is to include a description of the expected behavior of the unit
under test (same references). There is currently no common standard for structuring this
information in tests, and practices vary widely. Some conventions require prefix markers
(typically test), while some omit this marker. Likewise, token separation can be done
using different lexical features (e.g., CamelCase or snake_case), or explicit tokens such as
should and when, or any combinations of the various possible alternatives.

Previous research also provides, directly or indirectly, useful insights about the kinds
of information that is or should be part of a test name. Test-to-code traceability techniques
aim to discover the link between test code and the code being tested (e.g., [6,21,23-25,27]).
The motivation for this research is that this link, useful for various test suite maintenance
activities, can be lost if it is not documented. Explicitly providing the name of the focal
method in the test name thereby helps avoid the cost of recovering this link. Ghafari et
al.’s work in particular focused on recovering focal methods using data-flow analysis [6].

Past work has also addressed the challenges of automatically generating names for unit
tests, or test templates from test names. From these efforts, we can learn about properties
of the information that is recommended to be present in test names by the designers of
the various approaches. Zhang et al. proposed to leverage information in test names
to generate an implementation template for the test [34]. Their proposal relies on the
assumption that the test name would follow a “well-defined grammatical structure”

that consists of a “action phrase” followed by a “predicate phrase”, both expressed

as verb phrases. In later work, the same research group proposed a technique to go
the other way, and automatically generate a test’s name that “summarizes the test’s
scenario and the expected outcome” [35]. Similarly, Daka et al. proposed a technique
to generate names that follow a three-part naming convention to generate descriptive test
method names, including the method under test, the state under test, and the expected
behavior [5]. Wu and Clause [31] devised a pattern-based approach to compare test
names and their corresponding bodies. In doing so, they also considered three types of
information from both the test method name and body: action, predicate, and scenario.
Wu and Clause [32, 33] further leveraged this information and proposed a uniqueness-
based approach to generate test names. Another interesting approach was introduced by
Allamanis et al. to predict the test name from the test body using a neural probabilistic
language model [1].

In addition, Peruma et al. used grammatical patterns to interpret test names for
the purpose of supporting their evolution [22]. As part of this work, they observed an
impressive variety of ways to express test information in test names. The previous work
has shown that descriptive test method names are an asset for improving the quality of
unit tests, and that it is reasonable to expect that tests can follow some naming convention.
However, we found that there is no agreement on what information should be included
in test method names and, more importantly, there is no uniform way to express this
information.

Finally, previous research has also provided indirect insights on how to manage large
test suites. Greiler et al. showed that the low cohesive test methods grouped in the same
class may result in test smells [8]. Kochhar et al. [13] conducted open-ended interviews to
identify 29 hypotheses that describe characteristics of good test cases, and surveyed 261
practitioners to validate these hypotheses. Key findings revealed that most respondents
agree that large test cases are hard to understand and maintain, and the use of tags or
categories is helpful to manage test suites in real practice, for example, running a specific

set of tests easily at a time. Several common testing frameworks like JUnit provided

a set of annotations to tag test cases. E.g., in JUnit 5, @Nested, and @Tag annotations
were used to help with organizing test suites. @Nested is designed to signal that the
annotated class is a nested test class. It can be used to group multiple test methods inside
multiple nested classes. Next, @Tag is designed to declare a tag for the annotated test
classes or test methods, which can be used to filter which tests are executed for a given
test plan. However, these techniques require much human effort and comprehensive
understanding on the test class from developers. Another related research is from Li et
al. [16], who predefined a catalogue of 21 stereotypes, which are mostly JUnit API-based.
And then they developed a prototype tool to automatically generate the stereotypes
from the test methods and tag the tests with the generated stereotypes, which can assist

navigation/classification of a group of tests.

2.2 Problem Formulation

If we accept that a test name is likely to follow a naming convention containing
information about the test, we wish to extract this information from the name by utilizing
the naming convention. We define the problem of extracting semantic information fragments
from test names (fragment extraction for short) as a function that takes as input a test
name and its context, and produces a convention C. C' is a class that describes the
naming convention applied to the test, encoding a sequence of tagged fragment tuples
{(F,Th),...(F,,T,)}. In a tuple (F,T), F is a substring of the test name and 7 is a
configurable tag that describes the nature of the fragment. The concatenation of 7" in
the tuples represents an occurrence of the convention class C. In practice, the context for a
test name is the code base that contains the test together with its necessary dependencies.

Returning to our example above, one solution to the fragment extraction of

testlsHorizontal_False could be, in a given context:

Method—Result: {(isHorizontal, FocaL METHOD), (False, EXPECTED RESULT) }.

Designing a technique to solve the fragment extraction problem requires a precise
understanding of the types of fragments that it is possible to encounter in practice. We

conducted a formative study to elicit these types.

Chapter 3

Types of Semantic Information

Fragments

In this chapter, we conducted a formative study to answer the questions what types
of semantic fragments can we find in unit tests written in Java? How do they manifest?
The answers to these questions provide a framework for tagging semantic information
fragments in unit tests based on existing practice. The study consisted in assembling a
diverse sample of unit tests, then inspecting each test in context and manually classifying
the information fragments in its name using a qualitative coding process. The context for
a unit test name includes the source code of the test suite, including the test itself, which

we leveraged for the classification.

3.1 Methodology

We used GitHub Search and the GitHub Search API' to collect 100 public repositories
with Java test code. We considered a repository eligible if it was tagged by GitHub as
containing Java code, and if it contained at least 50 test files. We define a test file as any

file that 1) has the .java extension and 2) contains the string test in its path, and 3) uses the

lgithub.com/search and docs.github.com/rest, resp.

JUnit framework.? We conducted the query on 27 November 2022 and selected the 100
most-starred repositories that met these inclusion criteria.?

Next, we sampled unit tests from the 100 repositories with the goal of recording as
many different test name structures as possible for a reasonable manual inspection effort.
For this purpose, we randomly sampled one test class per repository, and inspected all its
test methods as identified with the @Test annotation. For each test, we assigned a label to
describe the naming convention used for the test. We then repeated the entire process until
we reached saturation, which we defined as inspecting 20 consecutive test classes without
encountering a new naming convention. We reached saturation after three iterations,
thereby collecting data 1263 test methods from 300 classes.* Of these methods, 18 had
names that clearly captures no information about the test (e.g., methods named simply
test, or test1). We discarded these methods from further analysis, leaving us with a data set

of 1245 unit tests. We then collapsed the set of naming conventions into a set of convention

families, each capturing a different sequence of information fragments about a test.

Eliciting Naming Convention We labeled each test using a combination of keywords,
separators and placeholders to represent a naming convention. For example, we would
assign the label test[Focal Method]_[Expected Result] to the method testlsHorizontal_False. We
derived the labels describing each naming convention using a manual inspection process
informed by the grey literature on naming conventions for unit tests (see Section 2.1). In
a test name, keywords and separators can be readily identified by recognizing substrings
such as test or when. Identifying instances of placeholders is a more important task as its
outcome determines the types of information fragments we can detect from test names.

For this purpose we considered different groups of tokens in the test name and attempted

2We used the GitHub API to check if test files contained the string junit.

3In practice, we retrieved the 300 most-starred Java repositories and analyzed each in decreasing order
of stars until we collected 100 with testing code.

“When repeating the process, we ensured that any test class selected from a previously-sampled
repository was located in a different package from any of the test classes previously sampled from this
repository.

10

to match them with common testing concepts discussed in the grey literature, creating

new types of placeholders as necessary. A single investigator conducted this analysis.

Defining Convention Families Our focus is on the type of information we can extract
from tests. To pave over accidental differences in encoding style, we analyze our findings
in terms of naming convention families. We group naming conventions together in a family
if they differ only in terms of delimitation style (e.g., camelCamel case vs. snake case)
and/or choice of explicit token (e.g., test, return, with). For example, we grouped the
conventions [Method]Test and test_[Method] together in the Method Only family. Finally, given
a convention family, we can trivially extract all the fragment types used as placeholders.
For example, from the convention family Method—Result we extract the information

fragments Focal Method and Expected Result.

3.2 Results

Table 3.1 lists the convention families we observed, with their frequency. Eighteen types
of convention with at least ten instances cover 96% of our sample test (1195/1245).
Additionally, the Method Only family is the most prevalent, constituting 16% of the
observations. These observations show that the vast majority of test names encode at
least one semantic information fragment. We thus seek a potential to leverage the most
common convention families to extract information fragments encoded in the test names.

Table 3.2 lists the fragment types we cataloged, together with statistics of their
observation frequency in our data set of 1245 test methods. The third column
(Obs.) provides the number of tests whose name included a semantic fragment of the
corresponding type. The fourth column (Prop.) divides this number by 1245 to provide a
ratio. The sum of ratios exceeds 100% because test names can include multiple fragments.

As expected, the main practices we detected involve specifying the name of the focal

method (37%). This practice also has the advantage of being unambiguous. Except when

11

Table 3.1: Naming Convention Families Observed in a Sample of 1245 Java Unit Tests

Convention Family Frequency
Method Only 204
Method-State 136
Result Only 134
State Only 123
Scenario Only 123
Result-State 113
Method-State-Result 49
Abbreviated Method Only 47
Class Only 46
Abbreviated Method-State 44
Scenario-State 40
State—-Result 35
Class-State 24
Method-Result 21
Scenario—Result 18
State-Scenario—Result 14
Scenario—State—Result 12
Result-Method-State 12
Method—-Result-State, Method-Method 7
Result-Scenario 6
Method—Class 4
State-Scenario, Scenario—Class 3
Class—Method-Method, Abbreviated Method—State—Result, 2

Method-State-Method, State—Abbreviated Method—Result,

Method-Method-State, Method-State—State

Method-State—Result-State, Class—Method, Scenario—State-State, 1
Scenario—Abbreviated Method, Method-State-Scenario—Result,

Class—Scenario, Scenario—Class—Result, Scenario—Result-State

testing overloaded or overridden methods accessed polymorphically, it can be possible
to refer to precisely the method under test. To a certain extent, precise references are also
possible for values of variables and arguments. Unfortunately, the same cannot be said
of vaguer concepts such as STATE or SCENARIO. Our research thus explores how to resolve

ambiguous references to this kind of semantic information.

12

Table 3.2: Types of Semantic Information Fragments Observed in a Sample of Java Unit
Tests

Fragment Description Obs. Prop.
Type
METHOD Refer to the method under test [12]. The method 464 37%
should be called within the test.
ABBREVIATED Refer to a subset of the tokens that form the name of 96 8%
METHOD the focal method. Indicates a test that may be broader
in scope that the focal method itself.
CLASS Refer to the class under test. [30] 82 7%
STATE Refers to input state related to FocAL METHOD 630 51%
RESULT Refers to the expected outcome of the test case, other 428 34%
than exceptioN [12].
SCENARIO A general description of the focus of the test whenno 225 18%

category applies that would be more specific. [12]

3.3 Limitations

A main limitation of the study is that the sample is not uniformly random and therefore
cannot support the inference of fragment type proportions to a broader population of
unit tests. However, such inference was not the goal of study. The differences in
proportions we observe are sufficiently distinct to help us prioritize the development of
basic classification rules. For example, having observed 464 instances of unit tests that
name the focal method in the test name in some of the most popular Java projects on
GitHub, we have confidence that we are not attempting to support an exotic practice.
The second limitation concerns the accuracy of the manual classification. Classifying
fragment types according to the protocol described above amounts to a program
understanding task, which can leave some room for personal interpretation. We deemed
it unnecessary to employ a dual-coding approach with inter-rater reliability calculations
for this task for two reasons. First, it is a low-subjectivity task as many placeholders
map directly to program constructs (e.g., focal method, parameter name). Second, minor

mischaracterizations have limited practical impact as we are primarily interested in the

13

diversity of information types as opposed to the precise frequency of their occurrence in

our data set. Our data set is also available for independent verification.

14

Chapter 4

Extracting Semantic Information From

Tests

In this chapter, we contribute the design and implementation of a technique for extracting
information fragments from unit tests as formulated in Section 2.2. We implemented
a prototype for Java we call Sift4] (for Semantic Information From Tests for Java). Sift4]
serves as a proof of concept of the feasibility of extracting information fragments from
Java unit tests. The prototype is structured as a rule engine with a collection of semantic
fragment extraction rules applied sequentially to a unit test. Each rule is associated with
a naming convention family as identified in Table 3.1. The input to Sift4] is a test file
and associated code base. The output is an updated version of the input test file with
annotations indicating any detected information fragment. The listing of Figure 4.1 shows

an example of unit test annotated with Sift4].

4.1 Overall Architecture

The Sift4] rule engine is implemented in Java and operates by parsing an input Java
source file containing unit tests, and then providing these tests to a number of extraction

rules. Figure 4.2 provides a simplified view of the essential elements of the Sift4] design.

15

@Test

@FocalMethod(“IsEmpty”)

@State(“CollectionlsEmpty”)

@ExpectedResult(“ReturnTrue”)

public void testiIsEmpty_whenCollectionlsEmpty_thenReturnTrue() {
Collection<Object> testCollection = new ArrayList<>();
assertTrue(“‘Should return true because collection is empty”,

CollectionUtils.isEmpty(testCollection));

}

O ® N G e W N =

Figure 4.1: A Sample Unit Test with Annotated Semantic Information Fragments

CodeFactExtractor .
----2x JavaParser

getUnitTests():.List<MethodDeclaration>

RuleEngine [
N «interface»

Rule

apply(MethodDeclaration):Optional <Convention>

i

ConcreteRule

Figure 4.2: Sift4] Overall Design (Simplified)

The RuleEngine relies on a CodeFactExtractor to obtain the list of unit tests for a Java source
file. These unit tests are returned in the form of a MethodDeclaration Abstract Syntax Tree
(AST) node. The CodeFactExtractor relies on the JavaParser library to parse source files and
resolve as many of the symbols therein as possible.! The RuleEngine class can be configured
with any number of instances of type Rule. An instance of Rule provides the computation
necessary to detect a naming convention from a test’s names according to a given heuristic
(e.g., by linking text in the method name to a production focal method). An instance

of type Rule is employed by calling an apply method with a method declaration node

'We used JavaParser version 3.25.1 configured with a symbol solver that combines the JavaParserTypeSolver
and the ReflectionTypeSolver.

16

representing a unit test as input. Applying a rule returns an optional convention® encoding
five potentially-empty string instances representing the types of semantic fragments we
identified in our formative study (see Section 2.2). In our design, an interface Rule is
extended by two categories:> OneFragmentConventionRule and MultipleFragmentsConventionRule.
A rule is defined by extending the correspond class, instantiating it, and adding the
instance to the rule engine’s list of rules.

We designed and implemented a number of predefined extraction rules to demonstrate
the approach and support experimentation. As targets for our predefined rules, we
chose to implement support for all convention families for which we had observed over
ten instances in our formative study (see Table 3.1). However, in the list of 18 target
conventions, three were not amenable to automatic detection via heuristics: Scenario Only,
Scenario—Result, and Result—Method—State. Because of a lack of structure and constraints
for expressing such conventions (and in particular scenarios), there is no explicit feature
we can rely on to design extraction rules for these families. We implemented support
for extracting information fragments for all 15 remaining convention families. These
predefined rules are not intended to cover all conventions potentially in use, but they
enable our further empirical investigation. To support the pragmatic eventuality that
some projects may use idiosyncratic conventions to name their unit tests, we engineered
our solution as a flexible framework that allows users to define an open-ended collection

of arbitrary custom rules.

4.2 Extraction Techniques

We designed Sift4]’s predefined rules using a combination of four extraction techniques.

2Specifically an instance of a class Convention wrapped in an Optional type that remains empty if the rule is
not applicable.
Simplemented as two different abstract classes in practice

17

Common Convention Pattern A number of test naming conventions use a well-
defined and unambiguous pattern than can be readily detected, e.g., the convention
given[State] then[Result]. We refer to such practices as common convention patterns. We
simply use a regular expression to detect instances of the convention and extract the
corresponding fragments. In our example, the instance of the convention can be
detected with the regular expression given(\w+)_then(\w+) as part of executing the State-
Result rule. The resulting sequence of semantic fragments is extracted as {(EmptySets: State),

(ExpectNoChanges: Result)}.

Static Analysis We use static analysis to link the text in the test method name to the
program entities in the test. The static analysis strategy depend on the type of semantic
fragments to be extracted. For example, a test named testGetResources can be linked to a
focal method getResources if a call to such a method can be detected in the body of the test.

Table 4.1 provides additional details.

Grammatical Relations We observed in the formative study that certain grammatical
structures can be indicative of the presence of a specific type of semantic information. For
example, a prepositional phrase (e.g. withNull), appearing after a Method is likely to describe
the input State of the focal method (e.g., test.isHorizontal_withNull). Table 4.2 documents the
grammatical relations we observed and leverage. We use the part-of-speech (POS) tagger

of the Stanford Core NLP library [17] to perform the grammatical structure analysis.

Keywords We also leverage the simple heuristic that certain terms in a method name
can indicate the presence of specific types of information fragments [22]. E.g., the terms
empty, single, double are likely to describe the quantity of the input passed to the method
under test, implying that the fragment is State. A second example might be the term
is a proper noun, e.g., a test named testDetermineSampleSize_PNG, “PNG” refers to a type of
image, when it appears after the method under test, then it is likely to suggest that “PNG”

is the input state of the focal method.

18

Table 4.3 reports the subset of techniques we employ for each rule.

4.2.1 Rule Implementation

Our implementation strategy for predefined rules follows an opportunistic approach with
tallbacks. In other words, we try to detect if a test name matches an extraction rule by
checking the least ambiguous cases first (i.e., common convention patterns), and then
falling back to other alternatives as necessary. In the case of extraction rules for multiple
fragments, we may need to take into account the partial matching of the test’s name by
one technique when applying other technique. For this reason, the rule metaheuristic
differs slightly for rules to extract a single fragment (Algorithm 1) from rules to extract

more than one fragment (Algorithm 2).

Algorithm 1 One-Fragment Convention Rule Extraction Algorithm

Input: U: Unit Test Declaration
Output: C: a Convention Instance

n < Unit Test Name

if n follows a Common Convention Pattern then
f < APPLYREGULAREXPRESSION(n)
return BUILDCONVENTION(f)

end if

1 <— PREPROCESS(n) > Remove underscores and “test” related filler words

f < APPLYTESTTOCODETRACEBILITY(U)

if f matches n then
return BUILDCONVENTION(f)

else if n starts with Special Term then
return BUILDCONVENTION(Y)

: end if

: return Empty

g

4.2.2 Limitations of the rules

We opted for a rule-base approach to provide a direct traceability between information
fragments and source code. In addition to providing a clear rationale for the detection of

a fragment (though the rule family employed to detect it), the use of a rule-base approach

19

Algorithm 2 Two-Fragments Convention Rule Extraction Algorithm

Input: U: Unit Test Declaration
Output: C: a Convention Instance

n <— Unit Test Name
if n follows a Common Convention Pattern then
f1, f2 + APPLYREGULAREXPRESSION(n)
return BUILDCONVENTION(f1, f2)
end if
n < PREPROCESS(n) > Remove underscores and “test” related filler words
f1, f2 <~ APPLYTESTTOCODETRACEABILITY(U)
if n starts with f1 A ends with f2 then
return BUILDCONVENTION(f1, f2)
end if
. if n starts with 1 V ends with f2 then
[< the matched fragment
remain < remove f from n
if remain follows Grammatical Relation \/ starts with Special Term then
return BUILDCONVENTION(f, remain)
end if
: end if
: return Empty

e
S A v ral =

provides clear guidance for developers wishing to encode semantic fragments in their test
name. The limitations of Sift4] are thus a manifestation of the fundamental limitations of
rule-base systems applied to our context. First, not all information can be encoded by
following simple conventions. Second, a heuristic approach to match natural language
is ambiguous and incomplete by nature. Third, the performance of the approach is
impacted by technical aspects of the extraction techniques.

The first limitation is a reflection that test names are often in free-form natural
language that does not follow any detectable convention. In our framework, this situation
is explicitly captured by convention families with potentially unspecified fragments, such
as STATE, RESULT, and SCENARIO (see Table 3.1). In cases where developers use free-form text
to describe a scenario that involves an arbitrary collection of code elements, there is no
clear traceability principle that can be used to identify semantic fragments. For example,
if a test is named sanity to indicates that the test case is validating the basic functionality

for a method, Sift4] will be unable to establish a connection between the test name an

20

any fragment. This limitation is compounded by the reality that, even when a project
uses a well-defined convention, it is possible that not all test names consistently follow
the naming convention. Consistency is in particular impacted by the challenges of co-
evolving test and code [29]. For example, if a production method named getParams is
renamed params, but the corresponding test testGetParams is not updated accordingly, Sift4]
will not detect an instance of the METHODONLY convention.

A second limitation is that, because test names do not have to follow a formal structure
checked by the compiler, ambiguities can occur, or the heuristic rules can be insufficiently
precise to detect the encoded information. An example of ambiguity is a test named
maxDelaylsNotMissedTooMuch making a call to a production method named is. In this case,
Sift4] will falsely identify is as the focal method. Another example is of a test named
testFloorDoubleNumber, whose focal class and focal method are both named Floor (see 4.3).

The third limitation is that the implementation of all four of our extraction techniques
(Section 4.2) impacts the performance of the approach. For Textual Patterns, the
implementation needs to include patterns used in a project for the approach to perform
well. Similarly, the Keywords approach will be sensitive to the glossary used as hints that
certain tokens represent certain types of fragments. The static analysis technique relies on
the correct parsing and type resolution of incomplete Java source code, which is itself an
approximate process. For example, we rely on the JavaParser built-in JavaSymbolSolver,
to resolve overloaded method calls. However, the developers of JavaParser have
observed potential bugs* in the library, possibly caused by lambda functions or variadic
parameters. As for matching the names of detected methods to the test name, we rely
on a threshold value. However, we conducted a sensitivity analysis to ensure we were
working with a optimal value (see Section 7.1 for details). Finally, a word may have
a different part-of-speech (POS) tag than usual in a software-specific context [3,9, 18],
which could negatively impact the result of Grammatical Relations technique. However,

the performance of the Stanford Part-of-Speech Tagger has previously been considered

4https://github.com/javaparser/javaparser/issues/1643#issuecomment—-396492324

21

https://github.com/javaparser/javaparser/issues/1643#issuecomment-396492324

Figure 4.3: Example of reuse term in information semantic fragment.

@Test

public void testFloorDoubleNumber()

{
assertEquals(0, Floor.floor(0.1));
assertEquals(1, Floor.floor(1.9));
assertEquals(-2, Floor.floor(-1.1));
assertEquals(—43, Floor.floor(—42.7));

}

® N G e W N =

satisfactory on analysing the grammar pattern of software identifiers [2,22, 31]. Our
primary means for mitigating the technical limitations of extraction techniques is our
reliance on a fallback approach, wherein we systematically apply the most precise

approaches first and only rely on less precise alternatives when no other option succeeds.

22

Table 4.1: Static Analysis Strategies for Extracting Semantic Fragments

Fragment Extraction Strategy

Type

Tagged Text

METHOD

CLASS

STATE

RESULT

Combine a set of independent heuristics to produce
a score following the strategy of White et al. [30].
Obtain the name of all methods called directly within
the body of the test, compute four case-insensitive
similarity measures between the name of the method
called and the name of the unit test, and add
the results. The similarity measures are: exact
name match, exact name containment, Levenshtein
distance, and longest common subsequence.

Use the same approach above. Instead of collecting
method calls, we collect classes of the objects created
as well as the classes passed to the focal method as
method arguments within the test body.

Generate a state description based on the API-
Coverage goal following the strategy of Daka [5].
Obtain the names and values of all arguments
declared in the test method and, if the name is longer
than one character, check if they are contained in
the unit test name. If not, generate a description to
describe the collected arguments based on their type
and quantity, and identify if the description is similar
as part of the test name.

Generate a result description based on the assert
statement type following the strategy of Zhang. [35].
Obtain the last assert statement in the test body,
generate a description based on the assertion type
and the arguments passed to the assert statement, and
identify if the description is similar as part of the test
name. In addition, Exception is a special type of Result
of unit test, we used three common JUnit framework
error handling mechanisms to extract the exception
thrown. Specifically, 1. Use the expected attribute of
JUnit’s @Test annotation 2. Use try-catch idiom with
a call to JUnit’s fail method in the catch block 3. Use
JUnit’s assertThrows method

The name of the
called method
identified as
similar to the test
name.

The name of the
class identified as
similar to the test
name.

The name of
the argument or
the generated
state description
identified as
similar to the test
name.

The generated
result description
or the name of
the exception
identified as
similar to the test
name

23

Table 4.2: Grammatical Relations between Semantic Information Fragments

Rule Pattern Example
METHOD-STATE Method + NP edgesConnecting_disconnectedNodes
Method + PP decrementByNegativeDelta
Method + ADJP testGetInReplyTo_empty
ABBREVIATED METHOD-STATE ~ Abbreviated Method As above
+ NP
Abbreviated Method
+ PP
Abbreviated Method
+ ADJP
RESULT-STATE Result + NP As above
Result + PP
Result + ADJP
METHOD-RESULT Method + VP isValid_shouldValidateConfigRepo
STATE-RESULT State + VP aUUIDStringReturns AUUIDODbject
SCENARIO-STATE NP + State cycleOfMixedWithImmutableRoot
RESULT-STATE VP + State testReturnsFalselfFinishingFails

24

Table 4.3: Extraction Techniques Applied in Predefined Rule Set

Convention Type Common Test-to-Code Grammatical Special Term
Convention Traceability = Relation
Pattern
METHOD ONLY No Yes No No
STATE ONLY No Yes No Yes
METHOD-STATE Yes Yes Yes Yes
RESULT ONLY Yes Yes No Yes
RESULT-STATE Yes Yes Yes Yes
SCENARIO-STATE Yes No No No
ABBREVIATED METHOD No Yes No No
ONLY
METHOD-STATE-RESULT Yes No No No
CLASS ONLY No Yes No No
ABBREVIATED METHOD- Yes Yes Yes Yes
STATE
STATE-RESULT Yes Yes No Yes
METHOD-RESULT No Yes Yes Yes
BAD CONVENTION No No No Yes
SCENARIO-STATE— Yes No No Yes
RESULT
RESULT-METHOD-STATE Yes No No No
STATE-SCENARIO— Yes No No No
RESULT

25

Chapter 5

Multi-dimensional Test Classification

This chapter presents how multi-dimensional classification is achieved leveraging the
semantic fragments. It describes the implementation of the plug-in built upon Sift4] and

presents a demonstration on a real test file.

5.1 Overview of Multi-dimensional Test Classification

Once unit tests are annotated with semantic information fragments (as illustrated in
Figure 4.1), it becomes straightforward to use an annotation processor to reorganize a test
tile to group tests according to the different dimensions that correspond to the different
information types. For example, a test class could be organized by focal test method, by
common input states (e.g., an empty structure), or by expected result (e.g., all tests for

conditions throwing exceptions).

5.2 Sift4] Plug-in

As a proof of concept, we implemented a sample test organization tool as an IntelliJ
plug-in we refer to as the Sift4] plug-in. The Sift4] plug-in allows a user to semi-

automatically restructure a test file by leveraging the information fragments therein. By

26

default, the plug-in groups the unit tests based on the most frequent semantic fragment
value observed in the test file (e.g., focal method). The plug-in also supports grouping
tests in terms of multiple dimensions (for example, first by focal method, then input
state). Although grouping tests by multiple levels is likely excessive for small test classes,
the feature allows exploring latent test suite design strategies for large test classes.

In addition to allowing developers to browse the tests in a class by different semantic
groups, the plug-in also supports the option to encode a desired grouping in the test file.
For this purpose we use the @Nested annotation provided by the JUnit5 framework. The
@Nested annotation was originally designed to help organize tests into classes that can
share the scaffolding available via an instance of their enclosing class. We additionally
leverage this feature to signal that a group of unit tests shares the same semantic

fragments, and thereby encode the relationship among several groups of tests.

5.3 Example of Using Sift4] Plug-in

We illustrate the workflow supported by the Sift4] plug-in with a walk-through of a
relatively simple test file called CollectionUtilsTest.java' (see Figure 4.1). This class contains
tests of the miscellaneous collection utility methods used in the corresponding project.
The test class contains six test cases. Conveniently, the test names consistently adhere
to the METHOD-STATE-RESULT convention family. To automatically annotate tests with
semantic fragment information, one would right-click on the target test class file in
the Intelli] project view and select the “Run Sift4]” command. The identified semantic
fragments are presented in the bottom console organized in a method-by-fragment table
(see Figure 5.1). After running Sift4] on this test class, each test case is correctly tagged
with annotations that encode semantic fragments. However, use of the Sift4] plug-in is
independent from the performance of the automated fragment extraction process. For

imperfect fragment extraction outcomes, developers can adjust the fragment annotations

https://github.com/perwendel/spark/blob/54079b0£95£0076dd3c440e1255a7d449d9489f1/
src/test/java/spark/utils/CollectionUtilsTest. java/

27

https://github.com/perwendel/spark/blob/54079b0f95f0076dd3c440e1255a7d449d9489f1/src/test/java/spark/utils/CollectionUtilsTest.java/
https://github.com/perwendel/spark/blob/54079b0f95f0076dd3c440e1255a7d449d9489f1/src/test/java/spark/utils/CollectionUtilsTest.java/

TableExecutor: < name [T -

e El Test Suite Info ='

[m] Test Method Focal Method State Result Focal Class Scenario 4

el testlsEmpty_whenCollectionlsEmpty_thenReturnTrue IsEmpty CollectionlsEmpty ReturnTrue
testisEmpty_whenCollectionlsNotEmpty_thenReturnFalse IsEmpty CollectionlsNotEmpty ReturnFalse

[2] ' testlsEmpty_whenCollectionlsNull_thenReturnTrue IsEmpty CollectionlsNull ReturnTrue

E] testisNotEmpty_whenCollectionlsNotEmpty_thenReturnTrue IsNotEmpty CollectionlsNotEmpty ReturnTrue

=7 testlsNotEmpty_whenCollectionlsEmpty_thenReturnFalse IsNotEmpty CollectionlsEmpty ReturnFalse

[0] testisNotEmpty_whenCollectionlsNull_thenReturnFalse IsNotEmpty CollectionlsNull ReturnFalse

Figure 5.1: The console view of the plug-in running on the sample test suite. Buttons on
the left side from top to bottom are: Classify by Default, Classify by Method Fragment,
Classify by Class Fragment, Classify by State Fragment, Classify by Result Fragment,

Classify by Scenario Fragment.

in the test file as desired. It is also possible to envision adoption scenarios where
fragments are manually created at test creation time, or the possibility of automatically
injecting annotations using in-house tools (e.g., relying on traceability to test plans).

In any case, once tests are annotated with semantic information fragments, developers
can use the plug-in to explore and/or refactor the test suite structure. Developers
can select one of the classification strategies by clicking a correspond button. Each
classification strategy prioritizes grouping unit tests based on a different type of semantic
fragment. In the case of CollectionUtilsTest, the test cases are organized into two nested
classes based on the Method information fragment type, as two focal methods are
detected: isEmpty and isNotEmpty. Within each class, we further group the test cases based
on the most frequent fragment value, excluding those already used. For the isEmpty class,
two test cases shared the same Result fragment, ReturnFalse, we thus generate a new nested
class to group the test cases accordingly. A similar process is followed in the isNotEmpty
class. This grouping process continues until no test cases within the enclosing class share
the same fragment value. The complete code of the CollectionUtilsTest.java file as well as

different versions produced by the Sift4] plug-in are available in Appendix C, D, E, F, G.

28

Chapter 6

Evaluation

In this chapter, our goal was to evaluate Sift4] as an initial assessment of the feasibility
of recovering semantic information fragments about unit tests in existing code. Once
recovered, information fragments can be explicitly encoded via annotations, and thus
provide long-term added value to the code base. However, multi-dimensional unit
test classification is not a current practice and unit test naming conventions are neither
standardized nor systematically followed in practice [26]. Hence, an estimate of the effort
involved in recovering information fragments from code can guide adoption efforts. We

designed a benchmark study to answer two research questions:

RQ1: How effective is Sift4] at correctly identifying conventions associated with
predefined rules?
RQ1: For a correctly identified convention, how effective is Sift4] at extracting semantic

information fragments encoded in test names?

6.1 Evaluation Benchmark

In developing the approach we leveraged a development set consisting of all the tests in 100
Java test classes. For each test class included in the development set, we had recorded the

name of the selected repository and its version number, the name of the selected test class,

29

and the names of all the test methods within the selected test class. For each test method,
the first author manually determined the applicable convention family. The development
set is documented in Table A.1 in Appendix A.

To evaluate the approach on unseen data, we created an evaluation set of 100 Java
test classes by randomly selecting 100 additional (unseen) test classes from the data
collected in our formative study. We followed the same sampling procedure as described
in Section 3.1, with an additional constraint that each test class should have at least ten
test methods. We added this additional constraint for two reasons. First, we wanted
to support an analysis of the performance on a per-class basis, which is only insightful
if there is a minimum number of tests in the class. Second, our multi-dimensional test
classification approach is only valuable for classes with many tests, as there is no point in
spending effort organizing a class with only a handful of tests. Hence, selecting classes
with a high number of tests better aligns our sample with the natural target for our
approach. Table B.1 in Appendix B lists the test classes in our evaluation set.

Our benchmark thus consists of a total of 200 test classes combined from the
development and evaluation sets. The development set contains 442 unit tests and the
evaluation set contains 1398 unit tests. The larger number of tests in our evaluation set is

the consequence of our constraint to only select classes with at least ten test methods.

6.2 Evaluation Metrics

A data point in our evaluation is the application of Sift4] to a given unit test. The
expected convention (family) for a unit test is the convention (family) used for the unit
test as annotated by the first author (see Table 3.1). In this section, we henceforth refer
to convention families simply as conventions for short. The detected convention is the
convention output by Sift4].

As we are applying Sift4] to unseen, randomly-selected test code, we anticipate that

some unit tests will not follow any of the conventions we can detect. To capture this

30

important factor of the evaluation, we define applicable tests as the set of benchmark tests
whose expected convention is implemented by the predefined rules. The development set
contains 391 applicable tests out of the 442 tests (88.5%), and the evaluation set contains
1268 applicable tests out of the 1398 tests (90.7%).

We answer the research questions in terms of two metrics: accuracy and Cohen’s
kappa (k). Accuracy provides a simple overview of the performance of the approach
through the ratio of tests for which Sift4] can detect the expected convention. We use two
formulations of accuracy. Accuracy, (global) is the ratio of tests for which the detected
convention is the expected convention over all tests. In contrast, Accuracy, is the ratio of
tests for which the detected convention is the expected convention over applicable tests.
The two metrics allow us to evaluate two different aspects of the approach: Accuracy,
provides sense of the performance of the current implementation of Sif4]’s predefined
rules, while Accuracy, gives an overview of the performance of the approach we could
expect if we deployed it in practice. We compute the accuracy metrics both globally
(i.e., over applicable/all tests across all test classes), and on a per-class basis (i.e., over
applicable/all tests in a given test class).

In addition to overall performance, we also study the performance for each predefined
convention. For this purpose we use Cohen’s « (kappa) statistic [15]. For each convention,
we construct a 2 x 2 confusion matrix that distinguishes expected vs. not-expected in
one dimension and detected vs. not-detected in the other. We use the « statistics for this
evaluation to mitigate the effect of class imbalance.!

Our second research question only considers cases where Sift4] detected the correct
convention for a unit test. For such cases, we compute the fragment-level accuracy
Accuracys as the number of correctly identified fragments over the total number of

expected fragments for all tests for which the correct convention was detected in a class.

!For each convention except the most popular ones, most tests will naturally be classified as not expected,
leading to a class imbalance. In such cases, a large proportion of matches is not informative as they could
occur by chance. The & statistics accounts for this factor so that higher « values robustly represent higher
agreement beyond what can be expected by chance.

31

Chapter 7

Results and Discussions

In this chapter, We separately present the evaluation results for the development set and

evaluation set.

7.1 Development Set

The accuracy over applicable tests (accuracy,) is 97%, while the accuracy over all tests
(accuracy,) is 86% (see Appendix A). Table 7.1 documents the causes of classification
errors for the development set. The table organizes the causes of classification errors in six
categories, also discussed in Section 4.2.2. For each category, we report the total number
of occurrences (Tot.), which we further break down in terms of the number of occurrences
that are false negatives (FN), false positives (FP), or misclassifications (Mis.). For a given
test, a false negative corresponds to Sift4] not triggering any rule when one is expected;
a false positive corresponds to Sift4] triggering a rule when none is applicable, and a
misclassification corresponds to selecting the incorrect rule (in effect a matching false
positive—false negative pair). Over 391 applicable tests, we observed 5 false negatives
and 8 misclassifications.

In these cases, we observed that in three cases a common term used in a method’s

name as well as in the name of its declaring class caused a misclassification. Second,

32

Table 7.1: Causes of classification errors in the development set

Cause Tot. FN Mis.
Reuse of a term 3 0 3
High level of abstraction 3 2 1
Idiosyncratic naming style 3 1 2
Limitation of the POS Tagger 2 0 2
Thresholding problem 2 2 0
Total 13 5 8

in three cases use of high-level language led to ambiguities and corresponding
misclassifications. For example, a test named testDiscoveryBlockingDisabled describes the
state of the test where a parameter ...discovery.blocking.enabled is set to false. However, this
caused in a false negative of the StateOnly rule, as the State fragment is described using
natural language that inverses the polarity of the state. Third, the use of idiosyncratic
names, including uncommon separation tokens in tests and poor production method
name, contributed to errors. Next, we noted two cases of errors caused by limitations
of the POS tagger. For example, a test named isTypeOf_declaredType. In Java programming,
declaredType usually refers to the type of variable used in the declaration, which is expected
to be tagged as noun phrase, but the Stanford POS Tagger identified it as a verb phrase.
Finally, two errors could be traced to the threshold used for evaluating the similarity
between the identified text from the test and the test name impacted the results. To
determine this value, we conducted a sensitivity analysis by running Sift4] on the
development set with different values of threshold and computed the overall accuracy.
For example, a test named testFitForSamelnputDifferentQuery was associated with the focal
method named fitProcess. In this case, the calculated similarity score between two texts
was below the selected threshold, resulting in a false negative. Figure 7.1 shows the
sensitivity of the threshold to small variation (0.1) on our development set. While we
consider the current threshold (0.5) to be a reasonable choice for our data set, the ideal

threshold value may vary between projects [30].

33

90%

85% |- :

80% | 8

75% :

Accuracy(Overall)

70%

65% ‘ ‘ ‘
Threshold

Figure 7.1: Sensitivity of threshold to small variations

In summary, the majority of the classification errors are consistent with the limitations
discussed in Section 4.2.2, and thus confirm opportunities to improve the performance of
the tool. For instance, using a POS Tagger designed for software engineering contexts,
implementing more convention rules, etc.

Table 7.2 shows the evaluation results for each convention. Notably, the x value
for each convention rule is greater than 0.8, indicating that each convention rule works
almost perfectly to detect the expected convention [15].

In addition, 604 out of 614 expected information fragments within the development
set were correctly identified. = The accuracy over fragment-level (Accuracyy) is
thus near perfect (0.98). The few classifications errors we observed were
caused by the order of common convention patterns. E.g., a test named
shouldDoDefaultFormatForNestedCaseEndConditionWithFunctionsKeywords, which matches two
predefined convention patterns: testShould(\w+)For(\w+) and testShould(\w+)With(\w+). The
extraction result is affected by execution order of these patterns. Overall, the results
of the evaluation on the development set show the predefined rules can effectively
detect the correspond naming convention and extract the correct sequence of information

fragments.

34

Table 7.2: Cohen’s Kappa per Convention on the development set. The columns indicate
the number of true positives (ITP), the number of false positives (FP), the number of true

negatives (TN), the number of false negatives (FN).

Convention Rule TP FP TN FN K
Method Only 93 0 347 2 0.99
Result-State 58 2 381 1 0.97
Method-State 49 4 388 1 095
Result Only 27 0 413 2 0.96
Abbreviated Method-State 27 0 414 1 0.98
State Only 24 2 415 1 094
Class Only 20 0 422 0 1.00
Abbreviated Method Only 12 1 428 1 0.92
Result-Method-State 12 0 430 0 1.00
Class-State 9 0 430 3 0.85
State—Result 9 0 432 1 095
State-Scenario—Result 9 0 433 0 1.00
Method-State—Result 9 0 433 0 1.00
Method-Result 8 2 432 0 0.89
Scenario—State 8 2 432 0 0.89
Scenario-State-Result 4 0 438 0 1.00

7.2 Evaluation Set

The accuracy over applicable tests (accuracy,) is 94% (compared to 97% for the
development set), while the overall accuracy for all tests (accuracy,) is 85.4% (compared
with 85.5% for the development set, see Appendix B). Notably, we observed relatively
low applicable accuracy for two specific test classes: NetUtilsTest (36%) and ResourcesTest
(29%). The NetUtilsTest class has seven classification failures due to typographical errors.
For example, a test named tetGetlPV6HostAndPort_ReturnHostPort contained a misspelling of
test as tet. In the ResourcesTest class, all 12 errors are caused by idiosyncratic names. For
example, tests are prefixed with should and followed by the focal method’s name.

Table 7.3 shows the reasons for all failure cases and their occurrences in the evaluation
set, comprising 35 false negatives and 39 misclassifications among applicable tests. In

general, the causes for classification errors align with those observed in the development

35

set. The predominant cause of errors is idiosyncratic names, characterized by four specific
issues: improper use of filler words, poor production method names, typographical
errors, and variations in word forms. For example, a focal method named click is
manually traceable through the terms clicks and clicking in the test name, resulting in
a misclassification. The reason high level of abstraction in information fragments notably
impacted the accuracy of the State Only and Result Only convention families. Additionally,
the reason selection of threshold values predominantly affected the Abbreviated Method Only
and Abbreviated Method-State convention families. Despite the larger number of tests in
the evaluation set, the alignment of failure reasons with those in the development set
underscores that our evaluation effectively highlights the limitations of Sift4].

Table 7.4 shows the evaluation results for each convention rule on the evaluation set.
Compared to the performance of each rule in the development set, the majority of the
convention rules maintain a high Cohen’s kappa value (>0.8), except for the Abbreviated
Method-State rule. The primary reason for the lower agreement in the Abbreviated Method—
State rule is attributed to the typographical errors and the thresholding effect.

For the second evaluation question, 1999 out of 2005 expected information fragments
within the evaluation set were correctly identified. The accuracy over fragment-level
(Accuracyr) remains nearly perfect. All classification errors are due to the use of different
word forms. For example, a test named resolvesRelativeUrls associated with a production
method name resolve, however, the use of the third person singular form of the verb leads
to a false classification. Overall, the results of applying Sift4] on the evaluation set is
comparable to those obtained on the development set, showing that Sift4] can effectively
detect the correspond naming convention and extract the correct sequence of information

fragments.

36

Table 7.3: Causes of classification errors in the evaluation set

Cause Tot. FN Mis.
Reuse of a term 6 1 5
High level of abstraction 17 13 4
Idiosyncratic naming style 33 8 25
Limitation in POS Tagger 4 2 2
Selection of threshold value 14 12 2
Total 74 35 39

Table 7.4: Cohen’s Kappa per Convention on the evaluation set. The columns indicate
the number of true positives (TP), the number of false positives (FP), the number of true

negatives (TN), the number of false negatives (FN).

Convention Rule TP FP TN FN K
Method Only 354 0 1031 13 0098
Method-State 236 4 1143 15 095
Result-State 183 18 1193 4 0.93
Method-State-Result 83 0 1311 4 097
Result Only 67 7 1318 6 091
Abbreviated Method Only 52 1 1335 10 0.90
Method-Result 42 2 1349 5 092
Class-State 44 9 1343 2 0.88
State-Scenario—Result 46 0 1352 0 1.00
State Only 35 2 1352 9 0.86
Abbreviated Method-State 22 8 1363 5 0.77
Scenario—State 14 6 1378 0 0.82
Class Only 8 0 1390 0 1.00
State—Result 4 0 1393 1 0.89
Scenario—State—Result 4 0 1394 0 1.00
Result-Method-State 0 0 1398 0 1.00

37

Chapter 8

Conclusions

Motivated by the observation that test names often encode latent semantic information
and the difficulty of maintaining large test suites, we designed Sift4], a novel rule-based
approach to automatically extract the semantic information fragments encoded in the
name of a unit test. Our formative study identified five common types of information
and prevalent test naming conventions. We identified six common types of information
fragments, including METHOD, ABBREVIATED METHOD, CLASS, STATE, RESULT, and SCENARIO.
We also observed eighteen types of prevalent naming conventions in our sample tests,
which cover 96% of them. The Method Only family had the most observations. With Sift4],
we further contributed a solution to manage large test suites through multi-dimensional
classification. Our observation of an accuracy of 94% in naming convention detection
and near-optimum accuracy when extracting fragments on an unseen sample of Java
tests demonstrates the practical applicability of the approach to legacy code, in addition
to being usable in forward-engineering scenarios. Although the current version of the
tool focuses on Java tests using JUnit framework, the tool’s architecture is language-

independent.

38

8.1 Future Work

Our comprehensive evaluation revealed that Sift4] can extract sufficient information from
test names to assist in meaningfully reorganizing the tests in test classes. Two promising
directions for future work in this area are test convention consistency and test refactoring.
Currently, our approach can detect naming conventions applied to test names, if they
are implemented in the predefined rule set. It will be interesting to implement more
convention rules and explore how to our approach can be integrated with the current
static analysis tools to measure the test naming convention consistency. As for test
refactoring, we provided a new refactoring strategy to help developers manage large
test suites, which can naturally increase the cohesion between tests by listing them in
a meaningful order within a test class, among others. However, future work is needed
to evaluate how much this classification strategy can improve the test quality in terms of

readability and maintainability, potentially using a set of software metrics [8,20].

39

Bibliography

[1]

2]

[3]

[4]

[5]

ALLAMANIS, M., BARR, E. T., BIRD, C., AND SUTTON, C. Suggesting accurate
method and class names. In Proceedings of the 10th Joint Meeting on Foundations of

Software Engineering (2015), p. 38—49. https://doi.org/10.1145/2786805.2786849.

ARNAOUDOVA, V., ESHKEVARI, L. M., PENTA, M. D., OLIVETO, R., ANTONIOL,
G., AND GUEHENEUC, Y.-G. Repent: Analyzing the nature of identifier
renamings. IEEE Transactions on Software Engineering 40, 5 (2014), 502-532.
https:/ /doi.org/10.1109/TSE.2014.2312942.

BINKLEY, D., HEARN, M., AND LAWRIE, D. Improving identifier
informativeness using part of speech information. In Proceedings of the
8th Working Conference on Mining Software Repositories (2011), p. 203-206.
https:/ /doi.org/10.1145/1985441.1985471.

BUTLER, S., WERMELINGER, M., YU, Y., AND SHARP, H. Exploring the influence
of identifier names on code quality: An empirical study. In Proceedings of the 14th
European Conference on Software Maintenance and Reengineering (2010), pp. 156-165.
https://doi.org/10.1109/CSMR.2010.27.

DAKA, E., ROJAS, J. M., AND FRASER, G. Generating unit tests with descriptive
names or: would you name your children thingl and thing2? In Proceedings of the
26th ACM SIGSOFT International Symposium on Software Testing and Analysis (2017),
pp. 57-67. https:/ /doi.org/10.1145/3092703.3092727.

40

https://doi.org/10.1145/2786805.2786849
https://doi.org/10.1109/TSE.2014.2312942
https://doi.org/10.1145/1985441.1985471
https://doi.org/10.1109/CSMR.2010.27
https://doi.org/10.1145/3092703.3092727

[6] GHAFARI, M., GHEzzI, C., AND RUBINOV, K. Automatically identifying focal
methods under test in unit test cases. In Proceedings of the IEEE 15th International
Working Conference on Source Code Analysis and Manipulation (2015), pp. 61-70.
https://doi.org/10.1109/SCAM.2015.7335402.

[7] GRANO, G., DE Iaco, C., PALOMBA, F., AND GALL, H. C. Pizza versus pinsa:
On the perception and measurability of unit test code quality. In Proceedings of the
IEEE International Conference on Software Maintenance and Evolution (2020), pp. 336—
347. https:/ /doi.org/10.1109 /ICSME46990.2020.00040.

[8] GREILER, M., VAN DEURSEN, A., AND STOREY, M.-A. Automated detection of
test fixture strategies and smells. In Proceedings of the IEEE Sixth International
Conference on Software Testing, Verification and Validation (2013), pp. 322-331.
https:/ /doi.org/10.1109/ICST.2013.45.

[9] GurTa, S., MALIK, S., POLLOCK, L., AND VIJAY-SHANKER, K. Part-of-speech
tagging of program identifiers for improved text-based software engineering tools.

In Proceedings of the 21st International Conference on Program Comprehension (2013),

pp- 3-12. https://doi.org/10.1109/1CPC.2013.6613828.

[10] JON, R. Unit test naming: The 3 most important parts. Personal blog, Apr 2020.

Verified 2024-05-20. https:/ /qualitycoding.org /unit-test-naming /.

[11] KAINULAINEN, P. Writing clean tests: Naming
matters. Personal blog, Jan 2018. Verified 2023-04-24.
https:/ /www.petrikainulainen.net/programming/testing / writing-clean-tests-

naming-matters/.
[12] KHORIKOV, V. Unit Testing Principles, Practices, and Patterns. January 2020.

[13] KOCHHAR, P. S., Xia, X., AND Lo, D. Practitioners” views on good

software testing practices. In Proceedings of the IEEE/ACM 41st International

41

https://doi.org/10.1109/SCAM.2015.7335402
https://doi.org/10.1109/ICSME46990.2020.00040
https://doi.org/10.1109/ICST.2013.45
https://doi.org/10.1109/ICPC.2013.6613828
https://qualitycoding.org/unit-test-naming/
https://www.petrikainulainen.net/programming/testing/writing-clean-tests-naming-matters/
https://www.petrikainulainen.net/programming/testing/writing-clean-tests-naming-matters/

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Conference on Software Engineering: Software Engineering in Practice (2019), pp. 61-70.
https:/ /doi.org/10.1109/ICSE-SEIP.2019.00015.

KUMAR, A. 7 popular strategies: Unit test naming conventions. DZone article, Jun

2021. Verified 2023-04-24. https:/ /dzone.com/articles /7-popular-unit-test-naming.

LANDIS, J. R., AND KOCH, G. G. The measurement of observer agreement for

categorical data. Biometrics 33,1 (1977), 159-174.

L1, B.,, VENDOME, C., LINARES-VASQUEZ, M., AND POSHYVANYK, D. Aiding
comprehension of unit test cases and test suites with stereotype-based tagging. In
Proceedings of the IEEE/ACM 26th International Conference on Program Comprehension
(2018), pp. 52-5211. https://doi.org/10.1145/3196321.3196339.

MANNING, C., SURDEANU, M., BAUER, J., FINKEL, J., BETHARD, S., AND
McCLosKY, D. The Stanford CoreNLP natural language processing toolkit.
In Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics: System Demonstrations (2014), K. Bontcheva and J. Zhu, Eds., pp. 55-60.
https:/ /doi.org/10.3115/v1/P14-5010.

OLNEY, W., HiLL, E., THURBER, C., AND LEMMA, B. Part of speech
tagging java method names. In Proceedings of the IEEE International
Conference on Software Maintenance and Evolution (2016), pp. 483-487.
https:/ /doi.org/10.1109/ICSME.2016.80.

OSHEROVE, R. Naming standards for unit tests. Personal blog, Apr 2005.
Verified 2023-08-04. https://osherove.com/blog/2005/4/3/naming-standards-for-

unit-tests.html.

PALOMBA, F., PANICHELLA, A., ZAIDMAN, A., OLIVETO, R., AND DE LUCIA, A.
Automatic test case generation: what if test code quality matters? In Proceedings of
the 25th International Symposium on Software Testing and Analysis (2016), p. 130-141.
https:/ /doi.org/10.1145/2931037.2931057.

42

https://doi.org/10.1109/ICSE-SEIP.2019.00015
https://dzone.com/articles/7-popular-unit-test-naming
https://doi.org/10.1145/3196321.3196339
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.1109/ICSME.2016.80
https://osherove.com/blog/2005/4/3/naming-standards-for-unit-tests.html
https://osherove.com/blog/2005/4/3/naming-standards-for-unit-tests.html
https://doi.org/10.1145/2931037.2931057

[21] PARizI, R. M. On the gamification of human-centric traceability tasks in software
testing and coding. In Proceedings of the IEEE 14th International Conference on
Software Engineering Research, Management and Applications (2016), pp. 193-200.
https:/ /doi.org/10.1109/SERA.2016.7516146.

[22] PERUMA, A., Hu, E., CHEN, J., ALOMAR, E. A.,, MKAOUER, M. W., AND
NEWMAN, C. D. Using grammar patterns to interpret test method name evolution.
In Proceedings of the IEEE/ACM 29th International Conference on Program Comprehension
(2021), p. 335-346. https:/ /doi.org/10.1109/ICPC52881.2021.00039.

[23] QUSEF, A., BAvOTA, G., OLIVETO, R., DE LUCIA, A., AND BINKLEY, D. SCOTCH:
Test-to-code traceability using slicing and conceptual coupling. In Proceedings
of the IEEE 27th International Conference on Software Maintenance (2011), p. 63-72.
https:/ /doi.org/10.1109/ICSM.2011.6080773.

[24] QUSEF, A., BAVOTA, G., OLIVETO, R., DE LUCIA, A., AND BINKLEY, D. Recovering

test-to-code traceability using slicing and textual analysis. Journal of Systems and

Software 88 (2014), 147-168. https://doi.org/10.1016/j.jss.2013.10.019.

[25] QUSEF, A., OLIVETO, R., AND DE LuciA, A. Recovering traceability links
between unit tests and classes under test: An improved method. In Proceedings
of the IEEE International Conference on Software Maintenance (2010), pp. 1-10.
https:/ /doi.org/10.1109/ICSM.2010.5609581.

[26] ROBILLARD, M. P., NASSIF, M., AND SOHAIL, M. Understanding test convention

consistency as a dimension of test quality. ACM Transactions on Software Engineering

and Methodology (2024), Accepted 2024-05-22.

[27] ROMPAEY, B. V., AND DEMEYER, S. Establishing traceability links between
unit test cases and units under test. In Proceedings of the 13th European
Conference on Software Maintenance and Reengineering (2009), pp. 209-218.
https:/ /doi.org/10.1109/CSMR.2009.39.

43

https://doi.org/10.1109/SERA.2016.7516146
https://doi.org/10.1109/ICPC52881.2021.00039
https://doi.org/10.1109/ICSM.2011.6080773
https://doi.org/10.1016/j.jss.2013.10.019
https://doi.org/10.1109/ICSM.2010.5609581
https://doi.org/10.1109/CSMR.2009.39

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

TRENK, A. Testing on the toilet: Writing descriptive test names. Google Testing Blog,
Oct 2014. Verified 2024-05-10. https:/ /testing.googleblog.com /2014 /10/testing-on-

toilet-writing-descriptive.html.

WANG, S., WEN, M., Liu, Y., WANG, Y., AND WU, R. Understanding and
facilitating the co-evolution of production and test code. In Proceedings of the
IEEE International Conference on Software Analysis, Evolution and Reengineering (2021),
pp- 272-283. https:/ /doi.org/10.1109/SANER50967.2021.00033.

WHITE, R., KRINKE, J.,, AND TAN, R. Establishing multilevel test-to-code
traceability links. In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering (2020), pp. 861-872. https:/ /doi.org/10.1145/3377811.3380921.

WU, J., AND CLAUSE, J. A pattern-based approach to detect and improve
non-descriptive test names. Journal of Systems and Software 168 (2020), 110639.
https:/ /doi.org/10.1016/j.jss.2020.110639.

WU, J., AND CLAUSE, J. Automated identification of uniqueness in JUnit
tests. ACM Transactions on Software Engineering and Methodology 32, 1 (2023).
https:/ /doi.org/10.1145/3533313.

WU, J., AND CLAUSE, J. A uniqueness-based approach to provide descriptive
junit test names. Journal of Systems and Software 205 (2023), 111821.
https:/ /doi.org/10.1016/j.jss.2023.111821.

ZHANG, B., HiLL, E., AND CLAUSE,]J. Automatically generating test
templates from test names (n). In Proceedings of the 30th IEEE/ACM
International Conference on Automated Software Engineering (2015), pp. 506-511.
https://doi.org/10.1109/ ASE.2015.68.

ZHANG, B., HiLL, E., AND CLAUSE,]J. Towards automatically generating

descriptive names for unit tests. In Proceedings of the 31st IEEE/ACM

44

https://testing.googleblog.com/2014/10/testing-on-toilet-writing-descriptive.html
https://testing.googleblog.com/2014/10/testing-on-toilet-writing-descriptive.html
https://doi.org/10.1109/SANER50967.2021.00033
https://doi.org/10.1145/3377811.3380921
https://doi.org/10.1016/j.jss.2020.110639
https://doi.org/10.1145/3533313
https://doi.org/10.1016/j.jss.2023.111821
https://doi.org/10.1109/ASE.2015.68

International Conference on Automated Software Engineering (2016), pp. 625-636.
https:/ /doi.org/10.1145/2970276.2970342.

45

https://doi.org/10.1145/2970276.2970342

Appendix A

Evaluation Results on Development Set

46

00T 00T 00T 1SLIDA[OSYR[LIR[PUNG TN 9665979 X'}I9A / X}I9A-95d1[Dd
00'T 001 00T ysop1urejuo3uridg 19P9990 oqqnp/aypede
00T 001 00T 1S9 Id P pueUIIo) 9®9JT/E oqqnp/aypede
00T 000 VN 1SLIAJURDPURLILO)) qeyeese [PunUag /eqeqrye
00'T 00'T 00T }S9[SIBYISSL[DSO PP6RCT) Ayeu/ Apou
3s9131uNadAT,
00'T 00T 00T PO ORI POSEAISO 0PSo918 Axoi1dez / Axoidez
00T 00T 00T [£9€oNSS[SIL 9660989 uosfisej /eqeqre
00T €80 00T 1S9 SyuoH0NSI 96PT6C8 sooeu /eqedqre
00T 001 00'T IogeziferdjejNuIo[£oyudroro a[qel M3[qeL) €150109 exjjey] /aydede
00°1L G0 00T 3sar 90 3sonbay 2¢eqIqy 19daasooz /aypede
001 001 001 1S9LAXOIJUSIDSUTIENIORLSAY Ggoagap sooeu/eqeqre
00T 0S50 001 19 deunyigajqeasor) GE60RT6 00sa1J /00qade]
00’1 08°0 080 1s21302d A1 spsed A 210 J6L0J9T oyne /313003
00T 050 00'T }S9LUOTRULIOJSURIT JIU) eZ16920 ap13/yosydung
001 000 000 1S9LI00T] G£3996° eAR[/SWILIOS VY],
00T 001 001 1S9[JRWLIOI0] 639PSPT [9oxa4ses /eqeqie
/ £ovmooe b {oemooe YKoeinooe sse[D 3S3], Huwrwo) A1031s0dayy

139G JuawrdoraAd(] U0 sse[D) 1S9, 1od AdeInddy :1'y d[qeL

47

001
001
00T
00T
001
001
001
00T
00T
001

001
001
001
001
00T
00T
001
001
001

00T
001
001
Gz 0
£90
001
00T
00T
001
001

001
000
00°0
09°0
000
00T
00T
001
00T

00°T
001
001
00°T
£9°0
001
00°T
00°T
001
001

001
VN
VN
001
VN
00°T
00°T
001
00°T

1S9, 9139 (1IoUDISITPA[NPAYISISWIL],
3891 A1030R JoWreN3OR(qOI e
}sapuonejouuy 3uridg

9Se)}SAL I0JOANY

}S9[SUOISU)XH[SES

yroddngreynsar,

ISOLOPIN

3S9] QUAGXTUD0Y J

3so1I0IpM dr7

A ROGREIIEN|

}S9LUOISISA Py
3oL OFuIS[TeId(YSe] pareda133y

391 9[3ueY

asegjsar 10yeraduonounajqer uoyiA J
3sa1suonnrejdor
3sapuoneindyuoayesadAT,
1opedyere(qIa3aidiajusa,

3S9L[OO PUNY D) AIOUWSAWSWS Y

391 [duTuresan gy pamopuIN UOTSSIS

2q6¥ISP
€P0cee
920909
9¢9¢207
adociep
0295719
99/4¢EL
OPLOYE9
9PJoI8¢
G080®6°

¢01P89Y
9p<le6v6
J¥89qes
ey0P208
Jeqocsy
qriepse
0065719
2184424
cpoqeqe

HIALOY /BIARDY
sorowr / prezimdorp
rpddejn /¢egleqe
3urxz /3urxz

eyyey /ayoede

FauR /Ipue

yed /3urduerp

[eued /eqeqie
[oomy /erewoIp
¢-sreqAwr / speqAwr
urwpe

-j00g-3urids /o1ryus0apod
yurpy /ayoede
uosfjsej /eqeqipe
yurp/ayoede
erpuessed /ayoede
dUISJJeD /SauUrW-Uaq
TI[jue /Ipjue

00531J /00qa0¢e]

eyyey /ayoede

48

00T
00T
001

00T

001

001
001
001
00T
00T
001
001
001
00T
00T

001

00T

00T
001
001

001

001

00°0
£9°0
080
040
001
001
00T
001
880
00T

00T

00T

00T
001
001

00T

001

VN
001
080
00°T
001
001
00T
001
001
00°T

00°T

00°T

1S9 AT UOTIOJY
391 d01ATOGdURIgIdRdSaUe N

3s91310ddNng19319AU0)28 eSSINOINIOOY

1S9 urweNJaIJpaIeys

IS IDPULISSeI DY

1S9L2PID
¥SALSHNOIN

S Ioperosse[D3uneos]
1S9LIDSO

1891 10A19GIadaay 00Z AU Peay
1S UIS
ysararepdisrpauedonrede)
3s91mnRe[duresumo(y

3891 9ouanbagorPAHyusrnoOu0)

3so1.3urleJ
3s919[qedurnglerry

1591 3ryuo)epuaddy pajuswumniisuy

1£9€991
Sp3LLPo
£®IP06C

oprerLl

re18ey

12e89pC
8pPaceye
J6°0€®6
oqp8SH
98G°/9pP
€pLETTS
66943
JIEVG0°
9909979
€CeL0LS

€eTLEY?

yeoagiq

snd-speqAuw /nopruwoeq
orfode /3guodorjode
eqeqire-pnop-3urids /eqeqre
suonjejouueploIpue /
-SuoTjeJOUURPIOIpUR
suonejoUUEpIOIpUE /
-suoTjeJOUURpIOIpUE

pm.Ip /eqeqre

19130 /eqeqIye

X"}19A /X312A-9sd1da
QUIdJJed /Sauewi-Uag
12daayo0z /aypede

resind /ayoede
prorpuy-reudis /ddereudrs
02S31J /3 00gade]

X"}19A /X312A-9sd1da
erpuessed /ayoede

eIpIy3/

-Aoualdy AyumdagreuoneN

sorawr / prezimdoap

49

001

001

001
001
00T
00T
001
001
001
00T
00T
001
001
001
00T
00T
001
001
€80

00T

00°0

00T
001
001
£90
£90
001
00T
00°0
L1°0
001
00T
001
001
00T
00°0
000
00T

00T

VN

00T
001
001
00°T
00°T
001
00T
00°0
001
001
00T
001
001
00°T
VN
000
00°T

1831309eI(]

1S9 S93eSSIA PR
-[enpIATpUIOSIN)padeuey
2071SaL3ULnS

3sarayoeDa3e g

391 puewrwo)oday3gyuoyares)
}SaIUWNDO(]

391 A1030R 13FUODIMEII(]
3sapuondaroDIuednnIeJ

}S9[9DTATIIGIILIGIDIAI(TI NI
1sapayDarepdnrem

LESARILE

ISILOLITeIN

1S9] A1030BJUOTIOUNID AIE(]O],
1S9, UOTDUN JUIAIID JUING

1S9 S[I}NUOUWWO))

}Sar s uos(

}SOL. MOPUIAISIUNOD)

3Sa[I9peOPNg3UIdSaTeo))

1S9 3[NSAYSIE JoUT T pURIIWODITUN [

PY.aeac

8EV0I0¥

Gp9oaye
| S 74%15°r4
292429
048e8T19
aqepgId
66943
LEVCLIC
9gaLdT
€2979°90
§9989p73
8786°8P
Pa63°89
[Aaosid!
q/o9ee/
qqeecse
0909626
{A%VAY

snd-speqAuw /nopruoeq
resnd /ayoede

uosfjsej /eqeqipe
snid-speqAw /noprwoeq
P03 /po03

stpal/stpar

orfode /3guooorjode
proxpuy-reudig /ddereudts
preoqs3ury} / preogs3urny;
pmip /eqeqre

[99Xa4sed /eqeqiye

6-3 /1SduIapunty

qpisenb /qpisenb
SunjremAys /ayoede
1ampayosurydiop /ayoede
[eued /eqeqire

SunyremAys /oyoede
dUI_JJed /SAURW-Ua(

fIun(/ uresy-jrun|

50

00T
00T
001
001
001

00T

00T
00T
001
001
001
00T
00T
00T

00T
001

00T

00°0
001
000
00T
001

001

0v°0
001
001
00T
050
001
00T
040

00T
060

080

VN
001
VN
00T
001

001

00°T
001
001
00T
001
001
00T
040

00°T
00°T

00°T

1S9 peoTa[yoI]

}s9oJureAe(

1591 [NP14g

1S9 I IIIOPIAOLJOqqN(J[QUIIUDG
1S3LS[HUONDI[[0D

3s91 10suagsioddrug
-OpPODPAUITFHHMUOTEONPH

1S9 ISZIOWIA

}sowerdue J

3SaLow™(]

1S9 SUOT)OUN,{}03TeI([9131S0]

]S IayewrIoJuos|

1S9T MOTJ[OIFUOD)SSIOIY UTE[J

1S9 10}LI0I3(TIOND0[JUOT)II[JIYIDA[OSNY TH

1S9 A1030€ J[OUURY D} SUTEI] XM

1S9139SJ1O

191 19 3rUR A UOISSIGIsEg RIe(]

JS9]IAIG[TRIN

3€492SY
0J9Te10
cP8I6EY
qT9ecd
LqBIS6

qeeqas

qop9sse6
262999
6911CY8
0429993
££99806
ARLEINS
€e6L199
P189P6Y

980EV LS
¢sa3qpe

FPLAESE

erpuessed /aypede
[ozeq/prmqezeq
SunjremAys /oyoede
[Punuag/eqeqre
yreds /fopuamiad

agnbieuos /adinogreuog

[0zeq/pimqezeq
eAe(/SWyILIo3[yay L
yreJuos(/yyed-uos(
IDABIAP / IDALIQP
prezimdoip / prezimdorp
bunospor /aypede
NIALDY /HIADY
wmpayosurydjop /aydede
1adppye8eg

-sipeqAN /1odjoyaded
©leas /eyeas

sordurexa

-300g-3urids / mouwynoLy

51

00T
001
001

00T

001

00T

00T

6,0

001

001

001
001

0s°0
080
001

001

001

001

00T

001

000

£90

001
001

040
080
001

001

001

001

00T

001

VN

£9°0

001
00°T

1S9 uoneIN3FUODIUSI DAIIAOISI(JSOIBN]
ISALILIPEN

3sa1 Surwruorssagdsyy

}S9[I0SSID0IJIMNALIPIY

-UOT}RJOUUY PIZISAYUAGa[qeayde))

1S9 pIngSuLmitpy

1S9LPI

§3891.21035393[qOSO

1S9 PIZIU O IPLULIOI TS
}saue[Juos(ayedai3dy
-mopuipdnornuoyiA g

3sa1 3urpeoAze]

1S9 193eURIAII9ONPOIJISLSSIAINEII(]

1S9 J[SsuIN3urqqnig

q0646P8
§9¢8200
080PAs8

299¢/8P

€a97v619
9204909
pPv86d1e
£9°39C}

869139

69P3G/6
J8P°1d6
6£99¢CI14

eqeqrre-pnop-3urxds /eqeqre

eAR([/SWILIOZ Vo],
19Ke[JOXH /913003

[00INY / eIeWwoIp

[ozeq/prmqezeq
rddejy /¢egleqe
eAe(-wyear/ wyesr

I2ABaqp /I2ARIqP

yury /ayoede

prezimdoap / prezimdorp
orfode /3yuodorjode

00w / 0JIPOW

52

Appendix B

Evaluation Results on Evaluation Set

53

00'T 00T 00'T 1sa19nbaquossipay FOp9ead UOSSIPaI / UOSSIPalI
00T 790 280 3s9LuOnRIZNUUSID ALY TeFI80¢ ugey /udrguadQ
00T 00T 00T 191 Anay[1aRA 1L9PL6T [Feouarsal/ feouaiTIsar
00T 60 60 391 3x23u0 Ay 9978108 ejeas-1ojeqnout /aydede
60 280 260 1AL deFF420 WNIUB[3s / OHWNIUS[OS
00T 00T 00T 1s9L.9qd qpvoPP [oomy /ereworp
00T 780 z80 1sa11qp(6399613 prezimdoip /prezimdorp
00'T €6°0 €60 1S9 SWEN[HOL] 341890 proipuy-edurg/ddereudis
00T 640 80 1sarsmNuondaoxy 62L6699 Suryy /ayoede
00T 69°0 00'T 1SaLUN234g L1JES/9 [Foau / [oau
proipue

00T 00T 00T 1SALANINPWIA SqIITF6 -pIIqISpUN / PIIGIIPUI
SIoMawrey

00T 960 96°0 S)S9I [OIFU0)SSIIDY P9cqzas -3urads /syosloxd-3urrds
00T 280 00T 1S9 PUASY 9675% SuIejed /SOURWI-UD]
00T 00T 00T 1S9T Y JUOS[YIM |SSARAA ypequos(/yyed-uos|
00T 00T 00T sysop1opr0dwordurypy LEP69IO sugayuad(/eurayuadQ
/ £ovmooe b {oemooe YKoeinooe sse[D 3S3], Huwrwo) A1031s0dayy

319G uoryeneAq uo ssey)) 3s9], 19d Ademdoy :1'g d[qeL

54

001
001
00T
00T
001
001
001
00T
00T
001
001
001
00T

00T

00T
00T

60
aro
001
060
060
G560
€0
980
960
001
00T
070
€60

avo

001
€e0

60
001
001
00°T
060
60
980
00°T
001
001
00T
£5°0
€60

9¢°0

001
080

1sara[qemer(rodeygreriaje
1S9 WLAIGPIXIIA
}S99O1AIOGIdS
3s9rswrere AN AR
L1oednoin
3s91.3guo) AnSI3ay

1S90 [SNOUOIYDUASY

1S3 2[qRUOTDY

asegisal spuewrro)sanyep 3urng
1SOLS[IIN IV
}SALSHNXIIEIN
1SILSHNIOMIDN

1S9I QWENI[JOI]

3S91aNJeAIUO]

1S9LOVd

}S9auUI[oWI],

©3J0vPI
Paq°v0
pacsesd
qJaseel
6CPLL6L
©G690¢cL
¢q6P769
JeGocaq

€a9v¢c
G8200%°
ey 19¢40
o199y
321890

cPeLELY

Q97297 P
94971°%9

proxpue-syusuoduwod
-Terrajew / syusuoduwod
-[erIReW

uos3 /913003

preoqs3ury} / preoqs3ury;
[MNZ /XIJ9N

agnbireuos /adinogreuog
oqqnp /aydede

X"}19A /X312A-9sd1da
supjua(/sunyus(
stpal/stpar

orey / A9p-orey

19Ke[JOoXH /913003
wnIua[es / OHWNIUS[3G
proxpuy-Teudis /ddereusdrs
eIprys/

-Aouady AjumdagreuoneN
mpayosurydjop /ayoede

1a11dwod-a1nsopd /913003

55

001
001
00T
00T
880
001
001
80
00T
001
001
001
00T
00T

001

00T

001

00T

680
070
6C0
001
¥4°0
VA
00T
00T
80
qao
€80
001
€80
020

60

880

00T

00T

680
001
6C0
00°T
840
VAN
00°T
00°T
L8°0
6L 0
880
001
001
00T

00'T

880

00°T

00°T

9seDISAL [13NIPUU0D)
1S9 A119¥9gARIN

}S9] S9DINOSIY
}S9LSIX2IU0D)
ISoLIOYPRAINdNH

3591 [du maTp XopurAIan()
1sormnuonerdxy
1sors[nNSuMS
1S9LaWeNpagIenQ

}S9[[OUSIUSG

}s9L AUy

3S91 9014196 dNOINIINIOM
1S9, 1030919(]93LIG[[0I0G

119perddnuoneoriddy

1S3 221 MoeIg PR

3s91sod AT,
}sas[mNAeIry

3saAnsi3ayqo|

qqeecse
W65E2T
£319¢Y3
09¥37°8
8428969
¥9993.L4
7329997
0€>qecs
GoPLLA?
J8V.La8Y
8G¥L999
6ee0L0®
cPe608)
986¢P6”

91I8P6L

6CIPLE9
09¢PIo¢

yractyp

SunyremAys /oyoede

AR XY/ XRATIOEIY
¢-sreqAwr / sipeqAwa
eael-0di3 /odi3

op13 /ypaydung

orey / A9p-orey
prorpuy-reudis /ddereudis
jurodurd /wde-yurodurd
1911dwod-amsord /913003
J1N?10D / djupiojues
orfode /3guooorjode
wmpayodsurydjop /ayoede
O3 />[00qga0ey

NIALPDY /QIATOY

eIpIys/

-Aoualdy AyumdagreuoneN
yong /j0oqadey

I2ABaqp /I2ARIQP
qobnsera

-a1ayds3urpreys /oyoede

56

001
001

001
001
00T
00T
001
001
001
00T
00T
001
001
001
00T
00T

001
00T

0€0
001

160
001
09°0
290
00T
001
980
020
280
001
L0
001
¥6°0
00T

001
¥9°0

G620
001

00T
001
090
00°T
00°T
001
00T
00°T
60
001
00T
001
001
00°T

001
00°T

3s91 A1031s0dayuosia g

S[m3saL

}SALIUSIDSIL,
1S SYUSWIS[IO
3S919[qeAIasqOIseq

1S9 90UBWLIOJIS JIDNPOI]
1SALSHNSIA

ISALIUNASD

3saadespreauf

1S9 INWEDIPIM
}saowreNdedsawreN
1sardoygidey
3sapwreangdurynga1AgpaooJ
S}S9 UONII[[OD WLy

IS XYIOSUOSSIPY

s sanyep Aydug

3sar[dwrvereradpqol
1S913SIT[00g

6vpP2qst
Jqoespy

J¥2ego¢
£98¢6PL
e09PIL9
09pP9¢dc
1998489
99esy 19
I8}j9eo
PoEcqEs
€pPLETS
9¢€/39L6
2J824L9
pv86d1e
6/8V1ve
(417

0T1SCY6
8786°8P

owap-j00qg-3utids / 3urpooyx
I[jue /Ipjue

Iauueds
-Ajumdas-twreunsy /313003
ome /313003

X1sAH /XIJI9N

eyyey /ayoede

sodeu /eqeqiye

srerzoin} /dus8na

03B[o0UW / 030w

ap13 /yosydung

resnd /ayoede

Sonq /00qadey

00S31j /00qadey
eAe(-wyear/ wyear
UOSSTPAI / UOSSIPaI
erpuessed /ayoede
qobmnsera
-arayds3urpireys /ayoede
qpisenb /gpisenb

57

001
001
00T
00T
001
001
001
00T
00T
001
001
001
00T
00T
00T
001

001
00T

Gz0
¢80
60
001
80
£9°0
060
00T
001
001
00T
€0
80
00T
001
0¥°0

€60
00T

00T
60
960
00°T
00°T
680
060
00°T
001
001
00T
9¢0
001
00T
001
001

001
00°T

1SN UL
3s91103307J1I8G
ANG3UINSSI LN

1S9 PIOdY

1SALSIHNPY

3SaL I UNYD)
1saLs[nN3IsAIY[

1S9L.ZeAX(]

1SALIUN Y

3sar sonradoigparmbayiaprmg
3sarsenradorqydern
1S9LS[HNION

1S9 S[IUOTIR[FNY

18911 NIRIA0

191 suonUNAugey2Inyg

}So I ATGUINION)

3S9[.S9re(191N

}S9IIIUNSONSHILIS

p89Lesy
DOJTESE
1290520
00%4990°
QPETCc0°
| A2
2¥844L9
¢a9qso8
0¥69€2°
864ELEL
8¢C0°1¥
Gvecose
JPSeE90
¥96PFC
LEV8CI6
P9°231°9

9430P7}
0¥69€2°

dnos(/ Ayl

ATAISOIYD /9[AISHOYPD
I9ATIG-}edAIN /oyoed VIV DAN
qpisenb /gpisenb
bunjexoo1 /ayoede
[ozeq/prmqezeq

00s31J /00qade]

eul /ssadoe-aAnjeu-eae(
Axoiadez / Axoidez

ome /913003

eaengd /eaend-a13003
12daayo00z /aypede
3100-1933ems /1de-1933ems
Appu/Apau

eYoIna /XI[JIdN

12daaxo0z /ayoede
prorpue-syusuoduod
-Terroyewr / syusuodwod
-[erIayewr

Axoxdez / Axoidez

58

00T
001

00T
001
001
001
00T

001
00T
00T
001
001
001
00T
00T

001
g6°0

¥4°0
00T
001
060
680

001
¥6°0
001
760
680
640
060
680

00°T
00°T

00°T
00°T
001
00T
680

001
00T
001
¥6°0
680
00°T
001
00°T

}S9] IOU)STTAIDAODSI(JIIURISU]

1S9 SpUBWIWO IS

ST IXAUO N Se],
1S9 IS CURIADDIY DI
1S9 9gARIN

1S91orIg

331310 JPUVISOH

SISOLS[HNPISSEIDPV
3s9193e15

1S9 I9peO]
9[P130TISA.

}S91 108 URASAY
}S99DIAIG
3s913953¢e[
1SSLIBNWIH

CP=7¢P
81oP1IPY

94499990
LepLqed
6P°59P/
LG690¢L
§o9g89<¢eq

209€6°¢
€IPAYLI
L13€SL9
920909
LIC8YPL
6824769
§2q¢ee0q
ceovqoe

urwpe
-j00q-3urids /o1uadspod
stpal /stpox

qobnsera
-a1ayds3urpreys /oyoede
prezimdoap /prezimdorp
jgo11a1 /arenbs

oqqnp /aydede

X'JDA /X}319A-9sd1Dd
A3umodas

-3unads /syoslord-3urids
P03 /po0o3

[Foau /[poou
rddey/¢egleqe
19A13G-Teud1g / ddereulis
yreds /fopuamiad
12Ke[JOoXH /913003

[00INY /eIewoIp

59

Appendix C

CollectionUtilsTest Test Class

60

Figure C.1: CollectionUtilsTest Test Class

public class CollectionUtilsTest {
@Test
@FocalMethod("IsEmpty”)
@State("CollectionlsEmpty”)
@ExpectedResult(’ReturnTrue”)
public void testlsEmpty_whenCollectionlsEmpty_thenReturnTrue() {
Collection<Object> testCollection = new ArrayList<>();
assertTrue("Should return true because collection is empty”, CollectionUtils.isEmpty(testCollection));

O ® N Ul e W

}
10 @Test
11 @FocalMethod("IsEmpty”)
12 @State("CollectionlsNotEmpty”)
13 @ExpectedResult("ReturnFalse”)
14 public void testlsEmpty_whenCollectionlsNotEmpty_thenReturnFalse() {

15 Collection<Integer> testCollection = new ArrayList<>();

16 testCollection.add(1);

17 testCollection.add(2);

18 assertFalse("Should return false because collection is not empty”, CollectionUtils.isEmpty(testCollection));
19 }

20 @Test

21 @FocalMethod(’IsEmpty”)
22 @State("CollectionlsNull”)
23 @ExpectedResult(’ReturnTrue”)

24 public void testlsEmpty_whenCollectionlsNull_thenReturnTrue() {

25 Collection<Integer> testCollection = null;

26 assertTrue("Should return true because collection is null”, CollectionUtils.isEmpty(testCollection));
27 }

28 @Test

29 @FocalMethod("IsNotEmpty”)
30 @State("CollectionlsEmpty”)
31 @ExpectedResult("ReturnFalse”)

32 public void testlsNotEmpty_whenCollectionlsEmpty_thenReturnFalse() {

33 Collection<Object> testCollection = new ArrayList<>();

34 assertFalse("Should return false because collection is empty”, CollectionUtils.isNotEmpty(testCollection));
35 }

36 @Test

37 @FocalMethod(’IsNotEmpty”)

38 @State("CollectionlsNotEmpty”)

39 @ExpectedResult(’ReturnTrue”)

40 public void testlsNotEmpty_whenCollectionlsNotEmpty_thenReturnTrue() {

41 Collection<Integer> testCollection = new ArrayList<>();

4 testCollection.add(1);

43 testCollection.add(2);

44 assertTrue("Should return true because collection is not empty”, CollectionUtils.isNotEmpty(testCollection));
45 }

46 @Test

47 @FocalMethod(”"IsNotEmpty”)
48 @State("CollectionlsNull”)
49 @ExpectedResult(’"ReturnFalse”)

50 public void testlsNotEmpty_whenCollectionlsNull_thenReturnFalse() {

51 Collection<Object> testCollection = null;

52 assertFalse("Should return false because collection is null”, CollectionUtils.isNotEmpty(testCollection));
53 }

54 }

61

Appendix D

CollectionUtilsTest Test Class Classified

by Default Strategy

62

Figure D.1: CollectionUtilsTest Test Class Classified by Default Strategy.

public class CollectionUtilsTest {
@Nested
class IsNotEmpty {

O ® N oUW

NN NN NN 2 o s e s s s e
G WO RN R O 0 N Uk W= o

@Nested
class ReturnFalse {
@Test
@FocalMethod("IsNotEmpty”)
@State("CollectionlsEmpty”)
@ExpectedResult(’ReturnFalse”)
public void testlsNotEmpty_whenCollectionlsEmpty_thenReturnFalse() {

}...
@Test

@FocalMethod(”’IsNotEmpty”)

@State("CollectionlsNull”)

@ExpectedResult(’ReturnFalse”)

public void testlsNotEmpty_whenCollectionlsNull_thenReturnFalse() {

,
@Test

@FocalMethod(”"IsNotEmpty”)

@State("CollectionlsNotEmpty”)

@ExpectedResult(’"ReturnTrue”)

public void testisNotEmpty_whenCollectionlsNotEmpty_thenReturnTrue() {

;

}
@Nested
class IsEmpty {

@Nested
class ReturnTrue {
@Test
@FocalMethod("IsEmpty”)
@State("CollectionlsNull”)
@ExpectedResult(’ReturnTrue”)
public void testlsEmpty_whenCollectionlsNull_thenReturnTrue() {

}

@Test

@FocalMethod("IsEmpty”)

@State("CollectionlsEmpty”)

@ExpectedResult(’"ReturnTrue”)

public void testlsEmpty_whenCollectionlsEmpty_thenReturnTrue() {

5

}
@Test

@FocalMethod(”’IsEmpty”)

@State("CollectionlsNotEmpty”)

@ExpectedResult(’ReturnFalse”)

public void testlsEmpty_whenCollectionlsNotEmpty_thenReturnFalse() {

-

}

63

Appendix E

CollectionUtilsTest Test Class Classified

by Result Fragment

64

O ® N O U WN =

NN N NN 2 2o s s s s
G = W N = © 0 0 N O U W= O

Figure E.1: CollectionUtilsTest Test Class Classified by Result Fragment.

public class CollectionUtilsTest {
@Nested
class ReturnFalse {

@Nested
class IsNotEmpty {
@Test
@FocalMethod(’IsNotEmpty”)
@State("CollectionlsEmpty”)
@ExpectedResult("ReturnFalse”)
public void testlsNotEmpty_whenCollectionlsEmpty_thenReturnFalse() {

}

@Test

@FocalMethod(’IsNotEmpty”)

@State("CollectionlsNull”)

@ExpectedResult("ReturnFalse”)

public void testlsNotEmpty_whenCollectionlsNull_thenReturnFalse() {

5

}

@Test

@FocalMethod(’IsEmpty”)

@State("CollectionlsNotEmpty”)

@ExpectedResult(’ReturnFalse”)

public void testlsEmpty_whenCollectionlsNotEmpty_thenReturnFalse(){

;-

}
@Nested
class ReturnTrue {

}

@Nested
class IsEmpty {
@Test
@FocalMethod(”"IsEmpty”)
@State("CollectionlsNull”)
@ExpectedResult(’"ReturnTrue”)
public void testlsEmpty_whenCollectionlsNull_thenReturnTrue() {

}

@Test

@FocalMethod(’IsEmpty”)

@State("CollectionlsEmpty”)

@ExpectedResult(’ReturnTrue”)

public void testlsEmpty_whenCollectionlsEmpty_thenReturnTrue() {

;

}

@Test

@FocalMethod(”"IsNotEmpty”)

@State("CollectionlsNotEmpty”)

@ExpectedResult(’ReturnTrue”)

public void testlsNotEmpty_whenCollectionlsNotEmpty_thenReturnTrue() {

}..

65

Appendix F

CollectionUtilsTest Test Class Classified

by Method Fragment

66

O ® N O U WN =

NN N NN 2 2o s s s s
G = W N = © 0 0 N O U W= O

Figure F.1: CollectionUtilsTest Test Class Classified by Method Fragment.

public class CollectionUtilsTest {

@Nested
class IsNotEmpty {
@Nested
class ReturnFalse {
@Test
@FocalMethod(’IsNotEmpty”)
@State("CollectionlsEmpty”)
@ExpectedResult("ReturnFalse”)
public void testlsNotEmpty_whenCollectionlsEmpty_thenReturnFalse() {

}

@Test

@FocalMethod(’IsNotEmpty”)

@State("CollectionlsNull”)

@ExpectedResult("ReturnFalse”)

public void testlsNotEmpty_whenCollectionlsNull_thenReturnFalse() {

5

}

@Test

@FocalMethod(’IsNotEmpty”)

@State("CollectionlsNotEmpty”)

@ExpectedResult(’ReturnTrue”)

public void testlsNotEmpty_whenCollectionlsNotEmpty_thenReturnTrue() {

;-

}
@Nested
class IsEmpty {
@Nested
class ReturnTrue {
@Test
@FocalMethod(”"IsEmpty”)
@State("CollectionlsNull”)
@ExpectedResult(’"ReturnTrue”)
public void testlsEmpty_whenCollectionlsNull_thenReturnTrue() {

}

@Test

@FocalMethod(’IsEmpty”)

@State("CollectionlsEmpty”)

@ExpectedResult(’ReturnTrue”)

public void testlsEmpty_whenCollectionlsEmpty_thenReturnTrue() {

;

}

@Test

@FocalMethod("IsEmpty”)

@State("CollectionlsNotEmpty”)

@ExpectedResult(’ReturnFalse”)

public void testlsEmpty_whenCollectionlsNotEmpty_thenReturnFalse() {

.
}

67

Appendix G

CollectionUtilsTest Test Class Classified

by State Fragment

68

Figure G.1: CollectionUtilsTest Test Class Classified by State Fragment.

1 public class CollectionUtilsTest {
2 @Nested
3 class CollectionlsEmpty {
4 @Test
5 @FocalMethod(”"IsNotEmpty”)
6 @State("CollectionlsEmpty”)
7 @ExpectedResult(’ReturnFalse”)
8 public void testlsNotEmpty_whenCollectionlsEmpty_thenReturnFalse() {
9
10 }
11 @Test
12 @FocalMethod("IsEmpty”)
13 @State(s"CollectionlsEmpty”)
14 @ExpectedResult(’"ReturnTrue”)
15 public void testlsEmpty_whenCollectionlsEmpty_thenReturnTrue() {
16
17 }
18 }
19 @Nested
20 class CollectionlsNotEmpty {
21 @Test
2 @FocalMethod(’IsEmpty”)
23 @State("CollectionlsNotEmpty”)
24 @ExpectedResult(’ReturnFalse”)
25 public void testlsEmpty_whenCollectionlsNotEmpty_thenReturnFalse() {
26
27 }
28 @Test
29 @FocalMethod(”"IsNotEmpty”)
30 @State("CollectionlsNotEmpty”)
31 @ExpectedResult(’"ReturnTrue”)
32 public void testlsNotEmpty_whenCollectionlsNotEmpty_thenReturnTrue() {
33
34 }
35 }
36 @Nested
37 class CollectionlsNull {
38 @Test
39 @FocalMethod(’IsNotEmpty”)
40 @State("CollectionlsNull”)
41 @ExpectedResult("ReturnFalse”)
42 public void testlsNotEmpty_whenCollectionlsNull_thenReturnFalse() {
43
44 }
45 @Test
46 @FocalMethod(’IsEmpty”)
47 @State("CollectionlIsNull”)
48 @ExpectedResult(’ReturnTrue”)
49 public void testlsEmpty_whenCollectionlsNull_thenReturnTrue() {
50
51 }
52 }
53 }

69

	Abstract
	Abrégé
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Contributions
	Thesis Organization

	Information Fragments in Test Names
	Related Work
	Problem Formulation

	Types of Semantic Information Fragments
	Methodology
	Results
	Limitations

	Extracting Semantic Information From Tests
	Overall Architecture
	Extraction Techniques
	Rule Implementation
	Limitations of the rules

	Multi-dimensional Test Classification
	Overview of Multi-dimensional Test Classification
	Sift4J Plug-in
	Example of Using Sift4J Plug-in

	Evaluation
	Evaluation Benchmark
	Evaluation Metrics

	Results and Discussions
	Development Set
	Evaluation Set

	Conclusions
	Future Work

	Evaluation Results on Development Set
	Evaluation Results on Evaluation Set
	CollectionUtilsTest Test Class
	CollectionUtilsTest Test Class Classified by Default Strategy
	CollectionUtilsTest Test Class Classified by Result Fragment
	CollectionUtilsTest Test Class Classified by Method Fragment
	CollectionUtilsTest Test Class Classified by State Fragment

