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ABSTRACT

The development lifecycle of a software system demands incessant improvements in the source

code of a system to maintain its high quality with improved performance and code readability.

Refactoring is a common software development practice that reshapes the internal structure and

non-functional properties of a system without modifying its core functionality. Many simple refac-

torings like renaming code elements, extracting a snippet from large method to form new method

etc. can be performed with the help of automatic tools. Renaming code elements like classes,

interfaces or methods is a widely used refactoring activity. With tool support, rename refactorings

can rely on the program structure to ensure correctness of the code transformation. Unfortunately,

the textual references to the renamed identifier present in unstructured comment text cannot be

formally detected through the syntax of the programming language. These textual references to

the previous version of a renamed identifier pose threats to the consistency between code and com-

ments, which leads to poor program comprehensibility. The comments containing such textual

references become fragile with respect to the renamed program element and are referred to as frag-

ile comments.

This thesis proposes a new rule-based approach to detect and fix the fragile comments that

result from renaming the identifiers. We implemented this approach for the Java programming

language in the form of an Eclipse plug-in called Fraco. Fraco takes into account the type of an

identifier, its morphology i.e. the part-of-speech tag and its inflectional form, its scope that defines

its visibility in the source code and the location of comments in the source code with respect to the

identifier.
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We evaluated the performance of our technique, as implemented for Java in Fraco, by com-

paring its precision and recall against hand-annotated benchmarks created for both development

and test sets each containing six target Java systems, and also compared the results against the

performance of Eclipse’s automated in-comment identifier replacement feature. Fraco performed

with an average of 99% precision and recall on most components of both development and test

data sets, and generally outperformed the baseline Eclipse feature. An average percentage of 25%

of the total identifiers of category type and method in the data sets had fragile comments after

renaming, which further motivates the need for research on automatic comment refactoring.
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RÉSUMÉ

Le cycle de développement d’un système logiciel exige des améliorations incessantes dans le

code source d’un système afin de maintenir élevée sa qualité en termes de performance et de lisi-

bilité du code. Le réusinage de code est une pratique courante dans le développement logiciel qui

remodèle la structure interne et les propriétés non fonctionnelles d’un système sans modifier ses

fonctionnalités principales. Plusieurs transformations simples peuvent être effectuées à l’aide d’ou-

tils automatiques. Renommer des éléments du code comme une classe, une interface, une méthode,

etc. est une tâche qui revient souvent lors d’un réusinage. Avec le support d’outils, le renommage

peut se baser sur la structure d’un programme pour s’assurer de l’exactitude de la transformation

du code. Malheureusement, les références textuelles aux identifiants renommés présentes dans les

commentaires non-structurés ne peuvent être détectées formellement à travers la syntaxe du lan-

gage. Ces références textuelles aux identifiants renommés sont des obstacles à la synchronisation

entre le code et les commentaires, ce qui détériore la compréhensibilité du programme. Les com-

mentaires incohérents peuvent donc devenir une source d’introduction de bogue ou induire en

erreur les développeurs.

Cette thèse propose une idée nouvelle combinant le renommage à la détection des commen-

taires fragiles en introduisant une nouvelle approche basée sur un ensemble de règles pour détecter

et corriger les commentaires fragiles produits par un renommage d’identifiant, implémentée sous

forme d’une extension de la plateforme Eclipse. L’outil, nommé Fraco, considère le type d’iden-

tifiant, sa morphologie, c’est-à-dire l’étiquette partielle et sa forme inflexionnelle, sa portée qui

définit sa visibilité dans le code source et le lieu des commentaires par rapport à l’identifiant.

La précision et le rappel de l’outil proposé sont évalués à l’aide de systèmes de référence
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annotés manuellement pour les ensembles de développement et d’évaluation, chaque ensemble

contenant six systèmes en Java. Les résultats sont comparés à la performance de la fonctionnalité

de remplacement d’identifiants à l’intérieur de commentaires intégrée à Eclipse. Fraco a performé

une précision moyenne de 99% et un rappel presque optimaux sur la plupart des composantes des

ensembles de développement et d’évaluation et performe en général mieux que la fonctionnalité

de base d’Eclipse. Un pourcentage moyen de 25 % des identifiants totaux de catégorie type et

méthode dans les ensembles de données présentait des commentaires fragiles après le changement

de nom, ce qui motive davantage la recherche sur le refactoring automatique des commentaires.
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CHAPTER 1

INTRODUCTION

With the evolution and growth of a software system, there often is a need for improvements

to its internal structure and organization, known as refactoring [15]. Refactoring a system helps

to maintain the quality of the code and increases its comprehensibility. The changes performed

during the refactoring process are known as functionality-preserving changes i.e., the changes that

affect the internal structure or non-functional attributes of a system without affecting its external

functionality. Individual refactorings can take many forms, including renaming code elements,

extracting statements into a method, changing a method’s signature etc. [15]. Renaming code el-

ements is, in particular, a very common type of refactoring performed to maintain a set of names

that reveal the purpose of code elements to facilitate code comprehension [27]. Also, the identifiers

composed of full words prove to be more descriptive than the identifiers made up of abbreviations

or single words. The full-word identifiers result in better comprehension and precisely capture the

computational intent of their related code elements [28].

Many refactoring activities can be fully or partly automated by tools [36]. Examples include

JetBrains Resharper [2] for C# and Eclipse’s built-in refactoring tool [1] for Java. Such tools sup-

port code transformations by automatically changing a system’s source code based on a selection

from a catalog of refactorings and, when applicable, the parameterization of the refactoring. Stud-

ies show that, despite the prevailing criticism about automatic refactoring tools’ adoptability and

minimalistic use by developers in practical scenarios, renaming code elements is one of the most
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popular refactoring activities performed using automated refactoring tools [35, 37, 54].

Automating laborious refactoring tasks, such as renaming identifiers, relies heavily on encoded

knowledge of the rules of a programming language to perform the correct code transformations.

Unfortunately, references to a renamed identifier in unstructured comment text cannot be formally

detected through the syntax of the programming language, and are thus fragile with respect to iden-

tifier renaming. We introduce the term fragile comments to refer to comments which, upon a given

type of modification to the source code, become inconsistent leading to confusion and bug intro-

duction [50]. For example, in the context of identifier renaming, a comment is considered fragile

if it is likely to become inconsistent when the identifier is renamed. In one study of three different

projects, the authors observed that 97% of the source code changes made while refactoring also

needed to change the comments for maintaining coherence between comments and identifiers [14].

Inconsistencies between code and comments are a problem because programmers rely on com-

ments to understand the code and relationships between the different parts of code, its usage and

to communicate amongst each other [39,48,60]. Comments present in the source code of a system

aid the developer in program comprehension and succinctly showcase a coder’s intentions behind

writing a piece of code. To avoid introducing inconsistencies between comments and code during

refactoring, automatic refactoring tools need additional support to analyze and detect the fragile

comments followed by their potential modification to resolve the detected fragility.

Existing techniques for comment synchronization fall into two camps. The first camp consists

of simple approaches based on exact lexical search and replacement. For example, the refactoring

support in Eclipse’s Java development tools component [12] provides an option to search-and-

replace the occurrences of a renamed identifier in text strings including comments. Pure lexical

approaches can be helpful in some cases, but their precision is too low to be useful in the general

case. In the case of semi-structured comments (e.g., when combined with the use of in-comment
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1.1. Motivation

tags such as @param in Javadocs), text-replacement based approaches typically work well, but these

constitute a small subset of all possible comments that forms the easiest subset of identifier refer-

ences to detect. This subset comprises of only the exact matches of an identifier that can be easily

detected with simple string comparison. The second camp consists of specialized but domain-

specific approaches that can detect inconsistencies between comments and code for a subset of

programming concepts like synchronization, locking and memory allocation [44, 50, 51]. Though,

domain-specific techniques can achieve impressive precision, they are limited to a specialized sub-

set of all possible types of comments.

This thesis advances the state-of-the-art refactoring techniques by introducing Fraco, a general-

purpose tool-supported approach for detecting and fixing fragile comments when renaming identi-

fiers in Java source code [42]. Fraco relies on a new rule-based algorithm that takes into account the

type of an identifier, its morphology i.e. the part-of-speech tag and inflectional form, the scope of

the identifier defining its visibility in the source code, and the location of comments while detect-

ing fragility with respect to a single identifier. The proposed approach leverages Natural Language

Processing (NLP) techniques to apply morphological analysis on the code comments in combina-

tion with the information extracted from language conventions to apply fragility detection rules.

The approach successfully avoids the limitation of naive text-replacement approaches that generate

large amounts of false positives, while not relying on any domain-specific rules that would limit

the approach to a subset of comment types.

1.1 Motivation

This section illustrates the challenge of detecting fragile comments when renaming identifiers with

three cases taken from the source code of the Checkstyle project version 7.2 [6]. The discussion is

further enhanced with descriptions of the behavior of Eclipse’s in-comment identifier replacement

feature, hereafter, referred to as Eccore (Eclipse Comment Refactoring).
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1.1. Motivation

Checkstyle defines a class Check, which is the base class for various checking rules. Here the

issue is that “check” is also a very commonly used word when documenting methods, such as the

one illustrated in Figure 1.1. If one wishes to rename class Check to Rule for example, a naı̈ve text

replacement feature, such as Eccore, will erroneously replace all comments that simply mention

“check” as an action verb indicating that a method “checks” something, thus generating a large

number of false positives.

/**

* Check whether a class may be considered as

* a checkstyle module. Checkstyle ’s modules are

* non -abstract classes [...]

*/

private static boolean isCheckstyleModule(Class <?> loadedClass) {

Figure 1.1 – Example of false positive when renaming the class named Check.

Another challenge is to determine where to be permissive or strict with case and word mor-

phology. For example, Checkstyle defines a public inner class Listener. If one wishes to rename

Listener to Observer, a general case-insensitive matching strategy would generate many false

positives, while a case-sensitive matching strategy (such as Eccore) would miss important com-

ments such as the use of the keyword listener in Figure 1.2. Therefore, the fragile comment

detection technique needs to be sensitive to the scope of the comments while allowing for case-

insensitive matches.

As a final example, it is worth noting that some comments can come very close to referring to

an identifier without mentioning the exact identifier. Figure 1.3 shows a typical case of identifier

re-statement in plain language. In this situation, flipping the polarity of the boolean field “ignore”

to “use” would require renaming the identifier to something like setUseInlineTags, which would

silently render the comment inconsistent with the code. This case is also not detected by Eccore.
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1.2. Contributions

/** Represents a custom listener. */

public static class Listener {

private String className; /* Name of the listener class */

/** @return the class name of listener. */

public String getClassname () {return className; }

}

Figure 1.2 – Example of false negatives when using case-sensitive matching.

/**

* Sets whether inline tags must be ignored.

* @param ignoreInlineTags whether inline tags

* must be ignored.

*/

public void setIgnoreInlineTags(boolean ignoreInlineTags){

Figure 1.3 – Example of indirect mentions of identifiers.

These examples only illustrate a small subset of the situations where it is non-trivial to ac-

curately detect fragile comments. In general, the richness and variety of commenting practices

means that simple text-replacement algorithms cannot adequately cope with the problem of detect-

ing fragile comments.

1.2 Contributions

The contributions of this thesis include: a) A general and language-independent formulation of the

problem of fragile comment detection; b) A tool-supported algorithm for the automatic detection

of renaming-induced fragile comments in Java source code; c) A publicly-available benchmark of

fragile comments that can be used for independent research1; d) Empirical data evaluating both

the proposed algorithm and a publicly-accessible tool available as part of the Eclipse IDE; and e)

1http://cs.mcgill.ca/~swevo/inderjotmsc/
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1.3. Thesis Organization

The specification and implementation of a technique to resolve detected fragile phrases in code

comments.

1.3 Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2 provides the required background details and review of the related work. The back-

ground details section provides basic information about different types of inconsistencies between

comment and code, the set of Natural Language tools and the elements of a project that are the

core structural elements in our solution designed for the problem of fragile comments, e.g., types

of comments, identifiers. Also, it discusses various challenges involved in analyzing code and

comments to detect fragile comments.

Chapter 3 presents a precise formulation of the fragile comment detection problem that can be

instantiated for different programming languages.

Chapter 4 presents the rules used to detect and link the appropriate comments with code ele-

ments.

Chapter 5 introduces the algorithm used for detection of fragile comments and its implemen-

tation as an Eclipse plug-in for the Java language. It also illustrates the different types of fragility

resolution methods offered by the tool.

Chapters 6 and 7 present the design of the evaluation study and the obtained results. Finally,

the conclusion is presented in Chapter 8.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter presents basic information about the concepts and elements required for designing

a solution to the problem of fragile comments. Also, it presents review of the past research work

in the field of inconsistency detection, comment analysis and identifier renaming.

2.1 Background

This section provides an introduction to the different types of inconsistencies between code and

comments, and the Natural Language Processing techniques used to design a solution to the prob-

lem of fragile comment detection. Further, in this section, we list the elements of the source code

of a software system that are important for the detection of fragile comments like the different

types of comments and identifier types present in a system. Additionally, we discuss the various

challenges faced during comment analysis as it involves the understanding of natural language in

the context of software engineering.

Types of Inconsistencies: In the context of programming languages, inconsistencies be-

tween code and comments can be described as the discrepancies between the code element and the

description of its functionality written in the form of comments. Inconsistencies are bilateral i.e.

changes in the code can render a comment inconsistent and vice-versa. Due to these inconsisten-

cies, two types of problems arise [49]:
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2.1. Background

1. Invalid comment - When the code is changed correctly but the comment remains outdated

with respect to the code. This often leads to confusion and bug introduction in the subsequent

versions of the software [50].

2. Invalid code - When the comment is up-to-date but the developer does not follow the in-

structions written in a comment and introduces bugs by writing incoherent code [50].

The designed solution for fragile comments detection deals with only first type of inconsistencies,

i.e. invalid comments. Because the tool works by analyzing the code when it is being changed,

instead of analyzing the history of changes made in a system, the latter type of inconsistencies

become irrelevant and are out of scope.

Natural Language Processing: Natural Language Processing refers to a field of research

that studies how a computer can understand and generate language automatically [30]. A plethora

of research exists on understanding natural language, beginning with the lowest-level analysis

technique called morphotactics (analyzing and understanding the smallest unit of language called

morphemes) to higher-level techniques used for sentiment analysis of sentences or documents. Our

solution to the fragile comments problem uses two basic NLP techniques called POS tagging and

lemmatization to analyze the code comments.

POS tagging

In the context of natural language, part-of-speech (POS) tagging can be described as the syntactic

parsing of the words to label them with their syntactic roles [7]. Examples of POS tags include

noun (NN), plural noun (NNS), verb (VBZ) etc. The labels like “NN” are standard labels used by

the common POS taggers available for parsing natural language text [3, 40]. Figure 2.1 shows an

example of a sentence with POS tags labeled by StanfordCoreNLP [31].
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2.1. Background

Figure 2.1 – Example of POS tagging for a complete sentence.

These tags demonstrate how the words in a sentence are related to each other. In our solution

to the problem of fragile comment detection, we use the StanfordCoreNLP library [31] to tag the

words with their parts-of-speech labels. There are many ways of tagging the words with POS labels

i.e. feeding the words to a POS tagger as a single unit, a phrase or a full sentence. The details of

how POS tagging is used are provided in Chapter 4.

Inflectional Morphology (Lemmatization)

Inflectional morphology can be defined as the study of different forms of a word that can change

its grammatical function e.g., the words walk or walked have the same root walk but differ in their

grammatical function due to different suffixes.

Lemmatization is the process of removing the inflectional forms of a word to retrieve the com-

plete root i.e., the dictionary form of a word [41]. Our solution to the problem of fragile comment

detection uses StanfordCoreNLP lemmatizer to perform lemmatization of words appearing in both

comments and identifiers, details of which are given in Chapter 4.

Source Code Elements: This section defines the important source code elements involved

in the detection of fragile comments.

Types of Comments

This thesis divides the comments into three different categories based on their structure and writ-

ing specifications. The three categories are block comments, single-line comments, and Javadoc
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2.1. Background

Table 2.1 – Types of comments

Type of comments Format Description

Javadoc Comment /** text...

@tag ...

@tag ...*/

These are multi-line comments with special-

purpose tags known as Javadoc tags [22] like

@deprecated, @params, @return, @author,

@see, @link etc.

Block Comment /* text...*/ Block comments are multi-line free text com-

ments i.e., these comments do not contain any

tags like Javadoc.

Single-line Comment // Single-line comments are written on the same

line or a line above any variable or decision

statement.

comments. The format used for writing each type of comment is shown in Table 2.1.

A clear distinction between these three types of comments helps in understanding their different

roles in the source code e.g. single-line comments are mostly used inside a method declaration’s

body in contrast to the Javadoc comments that almost never appear inside a method declaration’s

body. This distinction also helps in designing separate analysis techniques based on the comment

categories. The analysis of block and line comments is straightforward because of their simple

writing format that does not involve any specific-purpose tags, whereas Javadoc documentation

comments need to be analyzed with a special focus on the tags contained in these comments.

Javadoc documentation comments encompass numerous types of special-purpose tags, such as

- @param,@return, @link,@see, @value. Each tag performs a special function which helps in

creating easily manageable and presentable documentation. This thesis discusses the details about
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2.1. Background

Table 2.2 – Identifier Categories

Identifier Category Description

Types includes the identifiers of classes, interfaces, annotated types and

enums.

Methods includes the identifiers of methods and constructors.

Fields includes the identifiers of field variables and enum variable dec-

larations.

Local Variables includes the identifiers of locally defined variables inside methods

and formal parameters.

different uses of these tags in the following Sections - Preprocessing §4.3 and Fragility detection

§5.1.

Identifiers and their categories

An identifier is the name given to any code element present in the source code and acts as a ref-

erence to the code element in a program. The most commonly adopted convention for writing

identifiers in Java is camelCase [5]. In spite of the wide popularity of this convention, the camel-

Case format introduces challenges in terms of identifier spitting and its analysis. The challenges

of splitting the identifiers written in camelCase and the corresponding solutions designed are de-

scribed in the later Section §4.3.

To solve the problem of fragile comments, we divide the identifiers into four broad categories

based on the type of code elements i.e. Types, Methods, Fields and Local Variables. Table 2.2

illustrates the different types of code elements covered under these four categories. This categorical

division of identifiers is the underlying basis of our proposed approach as these categories play an

important role in designing the fragility detection rules specific to a single category.
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2.1. Background

Challenges in Comment Analysis

Comments are comprised of text written in natural language, but the analysis of these code com-

ments is not as straightforward as analyzing plain English text [60] because English text follows

certain grammatical rules, whereas comments are generally written in an unstructured manner [25].

Developers do not always prioritize the grammar and completeness of comments, since their main

goal is to explain the intent of a code element by writing non-verbose and concise comments.

Language models used in various NLP components are trained using English language text

i.e., grammatically correct and complete sentences. This does not guarantee good performance on

source code comments because comments are usually composed of incomplete sentences i.e. short

phrases and, at many times, are often grammatically incorrect [25]. For example, a POS tagger

trained on natural language text expects the presence of a “noun”, i.e. “subject” in the sentence,

followed by a “verb” as shown in Figure 2.1. A comparative review of various POS taggers’

performance, with respect to code comments, ascertains that these POS taggers do not generalize

well on the code comment’s text [38]. Figure 2.2 illustrates the how the POS tagger trained on

natural language text incorrectly labels “sets” as a plural noun (NNS) in the absence of the word

“method” i.e. subject of the sentence.

./figures/Pos.PNG

Figure 2.2 – Example of POS tagging a comment.

Additionally, the meanings of English words in the domain of programming languages can

differ from those used in natural language. For example, words like “node”, “link” and “buffer”

have different meanings in the context of programming languages, which makes it difficult to use

the existing NLP lexical database called WordNet [32]. WordNet offers numerous functionalities
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for text analysis by providing lists of word synonyms, antonymns, hyponyms etc. These function-

alities are essential to capture the semantics of words used in the comments for analysis tasks and,

unfortunately, are not suitable for identifying semantically similar words in the domain of software

engineering [46]. A few software-specific lexical databases exist, however, they are not accessible

in the public domain, which limits the scope of text analysis approaches considerably [21, 53, 59].

2.2 Related Work

The work done on mitigating the problem of inconsistencies between comments and code can be

split into three categories. One category discusses the preliminary attempts made at comment-

aware refactoring. Another category presents the research work that has specifically targeted the

detection of inconsistencies between code and comments. The last category includes approaches

to obviate the need for consistency maintenance by generating comments automatically.

2.2.1 Comment-Aware Refactoring

A number of early proposals to deal with comments during refactoring have focused on the prob-

lem of retaining the comments at their proper location in a declaration element’s abstract syntax

tree (AST), and to preserve their indentation [16, 43]. In particular, Sommerlad et al. [43] built

a comment mapper to keep the comments linked with code elements in ASTs because the ASTs

generated by a language’s parser do not contain specific nodes to represent comments. Existing

refactoring tools, like Eclipse’s, use similar technique to keep the comments linked to the appro-

priate code elements. However, these approaches neglect the possible inconsistencies introduced

between the modified source code and existing comments. Instead, the main objective of these

approaches is to preserve indentation and location of existing comments.

Eclipse [11] also comes with an in-comment text replacement feature, which we call Eccore
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and describe in the later chapters of this thesis. Eccore supports comment refactoring to a certain

extent, however, Eccore only detects and replaces exact matches of identifiers for only two cate-

gories of code-elements, i.e. types and fields, and therefore, does not support name replacement

for the methods and local variables. Our solution to the problem of fragile comments is designed

to detect fragile comments for all types of code elements. In addition to the exact matches detected

by Eccore, our solution is designed to detect phrases that involve multiple non-contiguous tokens

in comments.

2.2.2 Inconsistency Detection

Tan et al. proposed a technique to automatically extract program rules and apply them to de-

tect inconsistencies related to locking mechanisms in the source code [50]. They also devised an

approach to extract information from comments to detect inconsistencies in source code related

to the specific sets of programming concepts like memory allocation and synchronization [51].

Apart from detecting inconsistencies related to specifically targeted programming concepts, vari-

ous approaches have been devised to keep the source code of methods consistent with comments.

@TComment is a technique that detects inconsistencies between a method’s parameters’ tolerance

of null values and its related Javadoc comments [52]. This approach is however constrained to

Javadoc comments containing information about a method’s parameters. Zhou et al. devised an

approach, similar to @TComment in terms of its application to method’s parameter constraints and

exception throwing declarations, that detects inconsistencies between API documentation and its

source code by extracting documentation from Javadoc comments, analyzing documentation di-

rectives and performing a static analysis of the code of methods [61].

Corazza et al. investigated several projects and devised an approach to detect the coherence

between comments and a method’s implementation using the Vector Space Model with tf-idf term

weighting [8]. There are also proposals that focus on specific types of comments for detecting

14



2.2. Related Work

inconsistencies. For example, Sridhara has developed a tool to detect the fragility of “TODO”

comments [44]. All of these techniques focus on a subset of either comment types or programming

concepts. In contrast, our solution focuses on detecting the possible inconsistencies produced for

all possible types of comments upon renaming an identifier of any type of program element.

2.2.3 Automatic Comment Generation

Automatic comment generation tools offer a different solution to the problem of code-comment

consistency maintenance by relieving some of the manual work involved in the creation (and thus

maintenance) of comments. JSummarizer generates comments for Java classes by using the stereo-

types of classes and methods present in the class [33, 34]. Sridhara et al. developed a tool for

automatically generating comments for methods based on the rules extracted by code analysis of

the method statements [45]. They also proposed a tool to generate parameter comments automati-

cally by using the tool SWUM i.e., Software Word Usage Model built by Emily Hill, to extract the

structure and linguistic information about parameters and integrating the information with their

previous work on method comments by determining the computational intent of the parameters

and its context [20, 47].

Autocomment automatically generates comments for methods by retrieving the information

mined from QA websites for code fragments similar to those in the method [57]. Guo et al. propose

an approach to automatically generate comments for design patterns by analyzing and predicting

the expected usage of design patterns in the source code. [19]. Their work focuses on changes

related to design patterns and detects inconsistencies produced due to such changes. Although

they share our goal of providing high-quality comments to developers, these approaches apply a

different strategy in that they do not take into consideration the pre-existing relation between code

and comments. Instead, they automatically generate new comments based on existing artifacts and

can presumably replace old comments when applicable. The developer needs to make a conscious
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effort in using these tools by devoting extra time, whereas our solution is designed to integrate

seamlessly with Eclipse’s rename refactoring and produces a list of fragile comments when an

identifier is renamed.
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CHAPTER 3

PROBLEM FORMULATION

The problem of fragile comment detection is cast in the context of a software project which

comprises a number of program elements and a number of comment units. This chapter describes

the concepts involved in problem formulation, provides a systematic and organized formulation of

the problem, and sets the scope of the fragile comment detection approach.

3.1 Concept Description

The problem definition is comprised of five main components - program element, declaration,

comment unit, phrase and fragile comment.

Program Element: A program element is any element that can be defined in a software pro-

gram. In this thesis, the approach only takes into account the program elements that can be ex-

plicitly named. Consequently, in the problem formulation a program element has a corresponding

declaration and identifier.

Declaration: The declaration is the program text that defines the program element, whereas

the identifier is the part of the declaration that names the element. For example, the declaration

shown below is of type method and its identifier is getListeners.

public Iterable <FileAlterationListener > getListeners ();
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3.1. Concept Description

Declarations fall into different categories based on the type of element being defined (e.g., class,

method, local variable). These categories are same as the categories of identifiers presented in

Table 2.2.

Comment Unit: A comment unit is any bounded unit of text considered to be comments

according to the syntax of a programming language. Javadoc, block and line comments are the

most common types of comment units. A comment unit needs to be contiguous if it is a block

comment. For example, as shown in Table 2.1, a Javadoc comment starts with the symbol– /∗∗

and ends with the symbol– ∗/. All the sentences in one comment unit needs to be contiguous and

should be contained inside the start and end symbols. In the remainder of this thesis, the comment

units are simply referred to as comments.

Phrase: Given a comment unit, a phrase is a subset of the comment unit comprising any

coherent set of characters. A phrase can consist of a single word or multiple words taken as a

subset of the comment. Note that, when necessary, a distinction will be made between a phrase

and a phrase’s text. This distinction is necessary when comments have multiple occurrences of

some text of interest.

Fragile Comment: If a phrase refers to an element, it is considered that the phrase is at risk of

being invalidated if the identifier is renamed, and it is deemed fragile with respect to this identifier.

By extension, a comment is considered fragile with respect to an identifier if it contains at least one

fragile phrase. Figure 3.1 showing a comment unit containing the phrase “Gets listeners” which

will become fragile on renaming the declaration getListeners.

It is important to note that, in practice, the decision of whether a phrase refers to an element

can require human interpretation. For example, in a system that comprises the declaration of

class UniqueBuffer, a comment such as “the UniqueBuffer class” can be directly linked to the

UniqueBuffer program class if there is only one such declaration. However, a comment such
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3.2. Problem Formulation

/**

* Gets the listeners registered in file system.

* @return The file system listeners

*/

public Iterable <FileAlterationListener > getListeners () {

Figure 3.1 – Example of a fragile comment.

as “the buffer is unique...” may refer to a buffer identifier of type field or class UniqueBuffer

depending on the context.

3.2 Problem Formulation

The problem of fragile comment detection is formulated with the help of two main relations that

are described below.

refersTo(element) Relation: A phrase in a comment refers to a program element if an in-

formed developer can determine that the phrase purposefully and specifically refers to the element.

This concept is formalized as the refersTo relation.

private Buffer buffer;

/** Reloads the existing buffer. */

public void reload () {

if(buffer != null) { buffer.load(); }}

Figure 3.2 – Examples of the refersTo relation

For example, in Figure 3.2, the phrase “buffer” in the comment block refers to the field buffer

of the same class. In this case, the phrase “buffer” in the comment can be said to refer to the field

buffer where buffer is the program element in context.
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Conceptually, tuples ⟨phrase,element⟩ that are members of the refersTo relation, fall into the

following three categories - lexical, fuzzy and semantic match. In this section, these categories

are introduced in terms of the match between a phrase, a phrase’s text and an element. A detailed

explanation of these categories is provided later in the Section §5.2.

a) Lexical match

A match is considered to be lexical when the phrase is the same as the text of a declaration’s

identifier, with some tolerance for minor variations (e.g., case sensitivity and plurality). In the

case of lexical matches, the phrase is generally a compound unit (without spaces) appearing in the

comments written in the camelCase format. The only exception is the cases with phrases composed

of single term (word), explained in the later section §5.2. It is important to note that lexical matches

do not necessarily imply a refersTo relation because of synonymy; it is possible that a comment

mentions an identifier that is shared by multiple program elements, or simply refers to a general

concept after which an identifier is named (e.g., “file”).

Fuzzy lexical match

A match is fuzzy if the phrase is the same as the declaration’s identifier, but with a tolerance factor

for small differences owing to misspelled words and typographical errors. It is important to note

that fuzzy lexical matches do not necessarily imply a refersTo relation because of both synonymy

and approximation (the case where a phrase and an identifier are erroneously determined to be

“similar enough”).

b) Semantic match

The phrase, consisting of two or more words, semantically matches a program element if the most

likely interpretation of the phrase by an expert is that it refers to the element. For pragmatic

reasons, the semantic matches are defined as the class of matches that are semantic without being
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also lexical or fuzzy.

matches(element) Relation: The refersTo relation requires human judgment to select a set

of true fragile phrases from the pool of possibly fragile phrases. The task is accomplished by using

an automatic approach that approximates the output closer to true fragile comments. To distinguish

between phrases that truly refer to an element and phrases estimated to refer to an element, a new

relation called matches is defined which contains a tuple ⟨phrase,element⟩ if the corresponding

algorithm estimates that the phrase refers to the element.

3.3 Problem Definition

The proposed approach is therefore an implementation of the matches relation, and its perfor-

mance can be measured on a per element basis. Given an element e, let refersTo(e) be the set of

all phrases that refer to this element, and let matches(e) be the set of all phrases estimated to refer

to this element. The true set of fragile phrases for e is thus refersTo(e) and a solution instance

given by an algorithm is matches(e). With these definitions, the standard performance measures of

precision P(e) and recall R(e) for an implementation of matches can be easily derived as below:

P(e)≡ |matches(e)∩ refersTo(e)|
|matches(e)|

R(e)≡ |matches(e)∩ refersTo(e)|
|refersTo(e)|

Although precision can be measured accurately, a major obstacle to computing recall is that in the

general case the extent of refersTo(e) is not known and can only be approximated.
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3.4 Scope

The scope of our solution to the fragile comments problem includes the source code changes made

by using an automatic refactoring tool only. Furthermore, the scope is limited to rename refactoring

activity because automatic refactoring tools are seldom used by developers except for Rename and

Extract method refactorings which constitute the maximum proportion of the usage of automatic

refactoring tools [35, 36, 55]. Currently, we implemented the approach for the Java programming

language, but in light of the fundamental similarities between all object-oriented programming

languages, we suspect that adaptation to other similar programming languages would be straight-

forward.

To facilitate future adaptations, the approach is described in a language-independent manner to

the extent possible, and the Java-specific implementation details are furnished whenever applica-

ble. However, this thesis does not make any formal claim about the potential ease with which the

approach can be adapted to other programming languages. We have built a tool to support fragile

comment detection in Java in the form of an Eclipse plug-in named Fraco. Note that, this thesis is

an extension of our work that was accepted at the 32nd IEEE/ACM International Conference on

Automated Software Engineering (ASE).
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CHAPTER 4

LINKING AND PREPROCESSING

The proposed approach is defined in terms of a given program element declaration i.e., all the

rules and pre-processing methods are explained by taking a single program element into consider-

ation.

The process of detecting fragile comments is divided into four conceptual phases. The first

is to detect all the comments and link them to the input declaration (§4.1). We then filter out the

inapplicable comments based on the program’s scoping rules (§4.2). The remaining comments

and the identifier of the input program element are then preprocessed for textual analysis (§4.3).

In the final phase, various matching rules are applied to the resulting data obtained at the end of

pre-processing phase (§5.1–§5.3). This chapter presents the first three phases of the approach and

the matching rules phase is explained in the following chapter.

4.1 Linking Code with Comments

Intuitively, comments that are located meaningfully “close” to a declaration should be treated

differently from general comments in the program. This intuition is captured with the concept

of comment locality. For a given declaration, the comments in a system’s source code can thus be

divided into two categories: local and global.
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Local Comments: A comment is local if it is found in the proximity of the declaration of

a program element. The local comments are further divided into two categories based on their

specific location in the code - header and inner comment. To qualify as a local comment for a

declaration, a comment must either be a header for the declaration, or be lexically located within

the declaration (which is referred to as an inner comment).

Header Comment

A comment is considered a declaration’s header if it is located immediately above the declaration

(without any consideration of white space in between). A declaration can have zero or one header

comment. Note that this definition of header comment is different from the pre-existing definition

of header comments used in the past research by Steidl et al. [48]. They associate the header

comment to only class level program elements whereas in this thesis we describe it as a header

comment for all types of program elements.

Inner Comment

Inner comments are the comments found inside the body of a program element. Only declarations

that have a lexical body can have inner comments which includes classes and methods, but ex-

cludes fields and local variables. The relation between an inner comment and its corresponding

declaration is transitive i.e., the inner comments for a method or inner class are also considered

inner comments for the declaring class.

Global Comments: For a given declaration, all comments that do not qualify as local com-

ments automatically fall into the global category. For example, given a class declaration, all the

comments that appear within or above other classes are considered global with respect to the input

declaration.
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4.2 Scope Based Filtering of Comments

In practice, the problem-space of searching for fragile comments can be narrowed down if one

observes that the scoping rules of the programming language greatly affect the likelihood that a

given comment may or may not contain a phrase that refers to a given declaration.

For example, in a realistic Java code base, it would be surprising to see an in-line comment

inside a method refer to a local variable defined in a different method. So technically, a local

variable inside a method is out of scope for all the other program elements declared outside of the

method body. This source-code level concept of scope, supported by all the existing compilers, is

captured by defining the function applies which takes as input a declaration and all the comments

for a program, and returns the subset of the comments where the declaration can be expected to be

visible according to the rules of the language.

The implementation of the applies function can be reduced to a lookup in Table 4.1. For an

element declaration, the applies function can be computed by inspecting the access modifier of the

declared element and its parent type (when applicable), looking up the corresponding scope, and

then returning all comments linked to a declaration within the same scope. For example, a private

type with no parent type maps to the class scope, so applies would return all the comments in the

same class. The scope for all local variables (including formal parameters) is the method scope,

which includes only comments linked to the variable’s declaring method.

The precise definition of the applies function is language-dependent and must take into account

both the scoping rules of the language and practical knowledge of common commenting practices

for this language. The function is implemented for Java based on the Java Language Specifications,

Java SE 8 Edition [18].
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Table 4.1 – Scoping rules for the applies function

Element Parent Type Scope

Types

public public global

public default or protected package

public private parent class

private any type parent class

protected private parent class

protected public or default or protected package

public None global

private None class

protected None package

default None package

Methods

public public global

public private parent class

public default or protected package

protected public or default or protected package

protected private parent class

default public or default or protected package

default private class

private any type class

Fields

public private parent class
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4.3. Preprocessing

Element Parent Type Scope

public default or protected package

public public global

private any type class

protected private parent class

protected default or protected or public package

4.3 Preprocessing

To analyze the natural language text, basic preprocessing is required to apply any matching rules

for fragility detection. Therefore, both identifiers and comments must be preprocessed before

applying the matching rules. The preprocessing steps are explained in text as well as presented in

the form of an algorithm (Algorithm 1). The preprocessing of identifiers and comments is similar

with minor differences and for clarity purpose, this section details them separately.

Preprocessing of Identifiers This section describes the step-by-step preprocessing of an

identifier. Conceptually, an identifier consists either of a single term, or of multiple terms that can

be distinguished through typographical conventions.

Splitting the identifier

The first step in preprocessing identifiers is to split them into terms. In our Java implementation,

an identifier is split using camel casing rules, with an additional rule to preserve acronyms. For

example, identifier “ASTParser” will be split into two terms, i.e. “AST” and “Parser”. The splitting

is achieved with the help of custom designed regular expressions shown below:

(?<=[a-z|$|\_])(?=[A-Z|0-9|$|\_])|(? <=[A-Z])((?=[A-Z][a-z]) |(?=[/_])|(?=[0 -9]))|(? <=[0 -9|$|\

_])(?=[A-Z|a-z|$|\_])
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POS tagging and Lemmatization

After an identifier is split into two or more terms, each term is tagged with its part-of-speech (POS)

tag and its lemma (word root left after removing inflectional suffixes) is identified. POS tagging

and lemmatization are two common Natural Language Processing techniques used for text analysis

and can assist with text searching tasks.

A POS tag is a label that is associated with a word to indicate its syntactic function (generally

in a sentence, but also in a sentence fragment, such as an identifier). For example, in the identifier

addListener, tagging a single word at a time, the term add would be tagged as a verb and the term

listener as a noun. Fraco uses the POS tagger of Stanford Core NLP library [31] to perform

POS-tagging.

Comparing lemmas (inflectional forms) instead of original words can help pave over non-

essential differences such as use of the singular or plural form of a word, or different conjuga-

tions of a verb. For lemmatization, Fraco uses Stanford Core NLP library’s Lemmatizer. The

preprocessing phase generates two dictionaries as output containing ⟨term,POS-tag⟩ tuples and

⟨term,lemma⟩ tuples respectively for each term found in the identifier. The whole procedure of

preprocessing identifiers is shown in Algorithm 1.

Preprocessing Comments In the preprocessing phase, first, a comment is split into sen-

tences and then into individual units called tokens. We then remove the stopwords i.e. the words

carrying no relevant information for text analysis task from the set of tokens obtained after tok-

enization. The stopwords-filtered tokens are then lemmatized to obtain their inflectional forms.
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Table 4.2 – Regular Expressions used in preprocessing of comments and identifiers

Purpose Regular Expression

Split a comment to sentences ([;|!|?|[<>]|[/*]])|(?<=[a-z])(?:[.][ ])

Split sentences to tokens
((?<=%1$s)|(?=%1$s)) and the delimiters are

[â-zA-Z 0-9$]+

Detect compound term identifiers
(([ $a-z])([A-Za-z0-9 $]+)|

([A-Za-z]+))([A-Z][a-z0-9 $]+)|([A-Z]+)

Splitting the comments

The first step in preprocessing comments is splitting them into sentences using rules based on the

regular-expressions designed as a part of the approach shown in Table 4.2. Standard punctuation-

based algorithms do not work well for comments because of the common presence of source-code

elements that include the punctuation. For the purpose of sentence-splitting, block and in-line

comments are treated differently. We split the Javadoc block comments into sentences based on

the list of custom devised delimiters that includes period, comma, semi-colon and angle brackets,

as shown in row 1 of Table 4.2. Our sentence splitting algorithm avoids using characters that are

legal to use for Java identifiers (e.g., underscore) to preserve any identifiers present in the com-

ments and split in-line comments based on periods and commas.

Further, we split the sentences into tokens using the regular expression shown in Table 4.2. Fi-

nally, tokens that are detected (through the regular expression shown in Table 4.2) to be compound

code terms, i.e. the tokens following camelCase conventions (such as addFigure), and are further

split by applying the same preprocessing rules used for identifiers. However, both the split and un-

split version of the token is kept because some matching rules work with the original compound

term (see section §5.1).
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a) Stopword removal and Lemmatization

After tokenization, we remove the stop words (e.g., “the”, “an”) from the list of tokens obtained.

The default stopwords list used by NLP tools contains a lot of words like “before”,“after” etc.

that are relevant in the context of software engineering. Therefore, we devised a customized list

of stopwords by working backwards on the conventional stopwords list using by natural language

processing tools and is used while preprocessing the comments. Below are the words treated as

irrelevant for the comment analysis task:

is, a, this , that , on , in, the , of, are , and , or

In the final step, lemmatization and POS-tagging is applied to the tokens in the list. Contrary

to the identifier POS-tagging, the comments are tagged with the part-of-speech label on a sentence

basis, i.e. a whole sentence is assigned the part-of-speech tags at once.
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Algorithm 1 Preprocessing comment and identifier
Input: Comment (C)

Output: Lmap←{} // a list of ⟨token, lemma⟩ values

Output: Pmap←{} // a list of ⟨token,POStag⟩ values

1: procedure PREPROCESSCOMMENT(C)

2: Split C into sentences

3: for each sentence S do

4: Split S into tokens

5: Remove stop words from S.

6: for each token T in S do

7: if T == (non−al phabetical) then

8: continue

9: else

10: Lemmatize T and add to Lmap

11: Tag T with POS and add to Pmap

12: end if

13: end for

14: end for

15: end procedure

Input: Identifier(I)

Output: Lmap←{} // a list of ⟨token, lemma⟩ values

Output: Pmap←{} // a list of ⟨token,POStag⟩ values

1: procedure PREPROCESSIDENTIFIER(I)

2: Split I into terms

3: for each term T in I do

4: Lemmatize T and add to Lmap

5: Tag T with POS and add to Pmap

6: end for

7: end procedure 31



CHAPTER 5

DETECTING AND RESOLVING FRAGILITY

This chapter outlines the various fragility detection rules designed to match fragile phrases

in comments. It describes the implementation details of all the rules and finally, presents the

techniques designed for the automatic resolution of fragile phrases.

5.1 Overview of Matching Rules

The matches(e) function is implemented through a number of matching rules. The matching rules

can be roughly organized into two categories: (mostly) lexical rules that target the text of phrases

and identifiers, (more) semantic rules that seek to match comments and identifiers that refer to the

same thing despite having different spelling or writing format. The rules are organized in these

categories to facilitate the presentation, but it should be noted that most matching rules are neither

purely lexical nor semantic, but constitute a combination of features. Given an element e, the

approach returns the union of the results obtained by applying the different matching rules.

5.2 Lexical Matching Rules

The assumption behind lexical matching is that if a phrase has the same text as an element’s iden-

tifier, the phrase may refer to identifier. In practice, however, returning all the instances of phrases

whose text matches an identifier under consideration produces a deluge of false positives due to
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synonymy. Additionally, limiting the search to exact lexical matches misses cases where the name

of some identifiers is transformed morphologically (e.g., used in the plural form, such as “receives

the Events” which refers to the class Event). Therefore, we devised a new algorithm for lexical

matching of program identifiers that takes into account the type of the identifier, its morphology,

and the location of the comment containing the phrase under consideration.

Table 5.1 and 5.2 provide a case-based specification of the algorithm. Each cell in these tables

presents the matching variant for one of 14 possible cases determined by the type of identifier,

whether the identifier is a single or compound term, and whether the phrase to match is in a local

or global comment. The matching rules are expressed as predicates using the binary operators and

functions described in Table 5.3.

Table 5.1 – Lexical Matching Rules for Types and Methods.

p refers to the input and i to the identifier of the element under processing. Each non-header cell in the last

two rows is referred as Cellr,c where r is the row number with value either 1 or 2 and c is the column number

ranging from 1 to 4. The operators are defined in Table 5.3.

Comment Type Types Methods

One term Multiple terms One term Multiple terms

Global Comment

(p =̃ i)∧

(noun(p)∨

paren(p))

p =̃ i

(p ≈ i)∧

(decl(i, p)∨

paren(p))

p = i

Local Comment
(p ≈̃ i)∧

(noun(p))
p =̃ i p ≈ i p = i

As it can be observed, more complex rules are necessary to determine the correct matches for
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Table 5.2 – Lexical Matching Rules for Fields and Local Variables.

p refers to the input and i to the identifier of the element under processing. Each non-header cell in the last

two rows is referred as Cellr,c where r is the row number with value either 1 or 2 and c is the column number

ranging from 1 to 3. The operators are defined in Table 5.3

Comment Type Fields Locals

One term Multiple terms

Global Comment (p = i)∧ (upper(i)∨decl(i, p)) p = i p = i

Local Comment p ≈ i p = i p = i

single term identifiers (e.g., add, copy) due to their common use in program text which creates

a massive amount of ambiguity. We provide an example to illustrate the use of these matching

rules: assuming the problem case is to determine the comments that are fragile with respect to the

declaration of a method copy declared in class Interval of project JFlex and that the comments

in Figure 5.1 and Figure 5.2 are under consideration. Based on the design of the approach, with

respect to the declaration shown in Figure 5.1, Fraco considers two cases: first, if the comment is

a local comment for the method (i.e., its header block) as shown in Figure 5.1, and another case

if the comment is a global comment i.e., not directly associated with the method copy declared in

class Interval.

Considering the local comment shown in Figure 5.1, we select the Cell2,3 of Table 5.1 because

the element is of type method and the identifier is composed of a single term. The rule in Cell2,3

specifies that a phrase matches the identifier if p ≈ i. The only phrase in the comment that vali-

dates this predicate is copy because copy ≈ copy, so the rule returns the only instance of the string

“copy” in the comment.
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Table 5.3 – Description of the operators used in the rules of Table 5.1 and 5.2 with positive examples.

When a phrase p is used as input, it is assumed that its comment-context (the rest of the text in the comment)

is also available to the operator. This context is represented as C in the examples. When an identifier i is used

as input, it is assumed that its declaring element is also available to the operator. This context is represented

as d in the examples.

Operator Description Positive Example

= Case-sensitive match Tag = Tag

≈ Case-insensitive match Tag ≈ tag

=̃ Case sensitive match that tolerates the plural

form

Tag =̃ Tags

≈̃ Case-insensitive match that tolerates the plural

form

tag ≈̃ Tags

noun(p) True if the POS tag of p is a noun or proper

noun (sensitive to the language model used in

the POS tagger)

noun(tag)

paren(p) True if p is immediately followed by the open-

ing and closing round parentheses having the

number of intermediate tokens equal to the

count of declaration’s arguments, if any.

paren(read) where C =

...read(File) ... and

d =copy(String file)

decl(i, p) True 1) If p is present in the i’s declaring class.

OR 2) If first condition is false, check if the

simple name of i’s declaring class can be found

in the same comment as p, without considering

case.

decl(copy,copy) where

C = ...copy this

interval... and d =

Interval

upper(i) True if i is all in upper case characters upper(SORTED)
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/**

* Make a copy of this interval.

* @return the copy

*/

public Interval copy() {

Figure 5.1 – Example from the project JFlex’s source code showing the method “copy” from class Inter-

val.java.

However, in the case where the comment is global with respect to the element copy of class

Interval, the rule of Cell1,3 of Table 5.1 applies. An example of global comment is shown in

Figure 5.2. The first part of the rule states that any matched phrase must be the same as the identifier

(insensitive of case), whereas the second part offers two options to detect a match. The first options

checks the string that corresponds to the method’s declaring class’s identifier (i.e., Interval) must

also be in the comment unit given the matched phrase and program element declaration are not

located in the same class. Second option checks if the token immediately following the phrase

is an opening round parenthesis followed by a closing round parenthesis having the number of

intermediate tokens equal to the count of declaration’s arguments, if any. Thus, the rule matches

the instance of string “copy” because of its verbatim similarity with the declaration in question,

i.e., the method copy of class Interval. Because the comment neither mentions the declaring

class name i.e., “interval” nor has any instance of string “copy” followed by empty pair of round

parentheses such as copy(), the rule returns an empty set for the comment.

/**

* Return a (deep) copy of this char set

* @return the copy

*/

public IntCharSet copy() {

Figure 5.2 – Example from the project JFlex’s source code showing the method “copy” from class

IntCharSet.java.
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5.3 Semantic Matching Rules

The lexical rules match identical or near-identical terms pairwise. In many situations, a set of

keywords in comment’s text can refer, as a whole, to an identifier. We have designed a new match-

ing rule to capture this situation called the semantic matching rule. Because this rule is intended

to match “units of meaning” in comments that are likely to refer to an identifier, it is referred as

“semantic” to distinguish them from the lower-level text matching rules described in the previous

section. In practice, the developers tend to describe a program element’s identifier using full sen-

tences or phrases appearing only in the header comments. Thus, the semantic matching rule is

applicable only to the local comments.

We apply the semantic rule on the comments taking one sentence at a time. Given all the (non-

stopword) lemmas of an identifier obtained as described in §4.3, our approach looks for identical

lemmas in the sentence of the comment unit. If all lemmas of an identifier are found in the sen-

tence, the corresponding lemmas in the comment are returned as the fragile phrase. Note that a

comment may contain multiple fragile phrases if it is composed of more than one sentence.

For instance, as shown in Figure 5.3, after preprocessing the comment and identifier which

includes the removal of stop words like “and”, the sentence contains 4 token-lemmas matching the

4 term-lemmas of the identifier i.e., “parse”, “javadoc”, “print” and “tree”.

/**

* Parses block comment as javadoc and prints its tree.

* @param node block comment begin

* @return string javadoc tree

*/

private String parseAndPrintJavadocTree(DetailAST node)

Figure 5.3 – Example from Checkstyle’s source code.
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The implementation of this semantic matching heuristic must take into account some of the id-

iosyncrasies of common commenting practices that depend on the type of identifier being matched.

Methods: There are two special cases for method identifiers:

1. If a method’s identifier has the word “get” as its first term, the term can be matched with

both the word get and the tag @return or lemma return in a comment. The @return tag

signifies the return of a value which aligns with the main functionality of the getter methods

and therefore justifies the use of @return in place of the word get. For example, in the code

below the phrase ⟨last,node⟩ would be returned as fragile:

/**

* @return the last node that was selected ,

* or null if there are no Nodes selected.

*/

public Node getLastNode ()

2. If a method’s identifier starts with “is” and has a local comment of type Javadoc, for instance

isSelected, the word “is” is not matched and instead the rule verifies the presence of the

word “true” or “false” immediately following the @return tag.1 For example, in the code

below the phrases -⟨member,Enum⟩ and ⟨enum,member⟩ on line 2 and 4 respectively would be

returned as fragile:

/**

* Checks if current AST node is member of Enum.

* @param ast AST node

* @return true if it is an enum member

*/

private static boolean isEnumMember(DetailAST ast)

Local Variables: In one special case for matching formal parameters, if the comment is a Javadoc

comment, the parameter’s name only is matched against the tokens present in the text related to its

@param tag, leaving out the rest of the comment.

1A performance-motivated proxy for verifying that the method returns a boolean.
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5.4 Language Specific Rules

Apart from the matching rules discussed in the above sections, there are some common rules

applied for detecting fragile phrases based on the language specifications (Java) or Javadoc docu-

mentation specifications that are described below.

Renaming Overridden Methods: In this section, we provide the description of two dif-

ferent categories of overridden methods and how Eclipse’s refactoring tool handles renaming of

such methods. The declarations of type method can be overridden in the Java language. These

overridden methods are further divided into two categories:

1. Binary type methods - The methods that belong to a “.class” file which does not exist

in the source code as a part of the Java model are called binary methods. These type of

declarations are not allowed to be renamed by Eclipse’s refactoring tool as renaming such

methods can break compatibility with the corresponding API in which they are initially

declared. Therefore, these are out of the scope for our approach.

2. Non-binary type methods - The original declaration of these methods can be found in the

source code of a system being refactored using rename refactoring. However, renaming any

such overridden method will automatically rename all the overridden declarations of that

method present in the source code. Therefore, our approach detects fragile phrases in all the

comments containing the matching phrases related to one such method irrespective of the

method declaration in context.

Since Fraco is built on top of the Eclipse’s refactoring tool, it is vital to understand the restric-

tions imposed by Eclipse’s tool and the services it offers with respect to every type of program

element. Moreover, the clarity about how non-binary type of methods are renamed is crucial for

evaluating the approach because there exist many instances of identifier references in comment’s
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text that can cause ambiguity due to the cross-referenced fully qualified names of overridden meth-

ods. Figure 5.4 shows an example of a non-binary overridden method. Upon renaming the method,

Fraco will detect a fragile phrase in the corresponding comment unit shown in the example but the

fully qualified name used in the comment creates ambiguity i.e. should we consider this reference

as fragile with respect to the method in context or not. Considering the behavior of Eclipse’s refac-

toring tool, all the non-binary methods will be automatically renamed which makes this phrase

fragile even when it is referencing some other declaration of this overridden method.

/*

* (non -Javadoc)

* @see org.springframework.data.convert.EntityConverter#getMappingContext ()

*/

@Override

public RedisMappingContext getMappingContext () {

return this.mappingContext;

}

Figure 5.4 – Example from the project Spring-Redis-Data’s source code showing the method “getMapping-

Context” from class MappingRedisConverter.java.

Javadoc Tag References: Javadoc comments are composed of multiple special-purpose

tags. There are some tags that can be used to reference program elements, which are updated

automatically when the corresponding identifiers are renamed. These tags are: “@link” and

“@linkplain”. Their main purpose is to provide the cross-references inside comments that can

be automatically updated on renaming the program elements. This automatic update of cross-

references is a function of Javadoc comments. Therefore, Fraco ignores the identifier references

found in the text related to such tags.
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5.5 Tool Support

The complete approach is developed as an Eclipse plug-in called Fraco. The plug-in seamlessly

integrates with the normal Eclipse-based workflow. The program routine to detect fragile matches

is triggered whenever the developer renames an identifier using Eclipse’s usual Rename refactoring

feature. The results i.e., the fragile phrases with respect to the renamed identifier, are reported as

Eclipse’s warning markers, which by default appear in the Problem View and as annotations in the

gutter (sidebar) of Eclipse’s Java editor. From the Problem View, a developer can, as usual, click

on a fragile comment warning to immediately access the location of the fragile comment detected

by the approach. The developer can further click on the warnings both in the gutter (sidebar) or

problems view to get resolution options. The resolutions are provided using the quick fix feature

of the Eclipse editor.

5.6 Resolving Fragility

Fraco detects the fragile phrases and reports them as warnings in Eclipse’s editor. It also provides

an option to automatically resolve the detected fragile phrases by replacing them with the new name

of the renamed program element. Note that, it does not resolve the fragility automatically during

detection process, leaving the ultimate decision of fragility resolution with the developer. This

section introduces the different resolution methods offered by Fraco and the resolution techniques

designed based on the type of fragile phrases i.e., lexical and semantic.

Resolution Methods: There are two different methods of resolutions offered by Fraco:

1. Single warning resolution - The tool resolves only one warning at a time. Here, one warning

represents one fragile phrase. Therefore, resolving a single warning related to a comment

does not resolve all of the fragile phrases present in that comment if there are more than one.
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2. Multiple warnings resolution- Fraco gathers information about the warnings related to the

specific renaming and resolves all of them at once. Note that this option only resolves the

warnings related to a single identifier and does not modify any existing warnings in Eclipse.

Replacing lexical fragile phrases: Fraco can resolve lexically fragile phrases, which

includes case-sensitive, case-insensitive and nearly-identical matches (i.e., the matches found by

applying the plurality variant of the lexical matches mentioned in Tables 5.1 and 5.2).

Replacing near-lexical fragile phrases: The phrases detected using case-insensitive variant

of lexical matching rules are simply replaced with the new identifier without preserving their case-

insensitivity attribute. For example, if a class’s identifier is renamed from Property to KeyValue,

our approach replaces the case-insensitive fragile phrases such as “property” with the raw form

of the new identifier i.e. “KeyValue”. The implementation of case-insensitive replacement adds

unnecessary complexity considering the fact that case-ignorant replacement does not have any im-

pact on the comprehensibility of a comment. However, the replacement of the phrases detected

with the plurality variant of lexical matches is a bit complex in nature.

The plurality attribute of the fragile phrases detected through plurality rule is kept intact during

the resolution process. Considering the same example of class Property, our approach replaces

any fragile instance of this class occurring in plural form, such as “properties”, with the plural form

of new identifier i.e. “KeyValues”.

The plural form of the new identifier is obtained by using a rule-based plurality-conversion

algorithm designed as a part of our approach. It is based on the basic English grammar rules to

identify the plural form of an English language word e.g., words ending with “sh”,“ch” etc. will

have the suffix “es” in their plural form. This algorithm is then used to replace the detected fragile

phrases with an appropriate plural form of the new identifier.
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5.7 Replacing semantically fragile phrases:

Resolving the fragile phrases found through semantic rules is a challenging problem because it

cannot be resolved by simply replacing the fragile phrases with a new identifier. As semantic

phrases are composed of multiple words appearing in a comment’s sentence, replacing all of the

words in fragile phrases would require a technique to generate correct phrases based on the new

identifier. Currently, the text generation for resolving inconsistencies is not in the scope of this

thesis. Additionally, it is tricky to design text templates for replacing the old text based on the new

identifier alone. The template designing needs to be contextual and should factor in the overall

source code of a program element while generating the replacement text. There exists a lot of

research on the generation of comments by analyzing source code of an element, but none of them

can be directly integrated with the comment refactoring approach presented in this thesis because

they all work on the final version of the source code obtained after modifications [33, 34, 45, 47].

5.8 Fuzzy Matching Rules: Discarded

This section describes the implementation of fuzzy matching rules and the reason for omitting the

fuzzy rules from the final version of our approach.

In the case of lexical matching, spelling and typographical errors are a potential cause of false

negatives. This issue is mitigated by including a rule that implements fuzzy lexical matching.

The fuzzy matching applies information retrieval technique called n-grams to detect the similarity

between two misspelled words [29]. Fraco uses bi-grams i.e., pair-wise comparison of letters in

both the identifier and matching phrase. The fuzzy matching algorithm puts following constraints

on comparison between two words:

1. The length of both the identifier and the phrase can vary by only one unit i.e., phrase having

one character more or less than the identifier is a valid target for comparison.
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2. The number of pairs allowed to be different/misspelled are limited by a threshold calcu-

lated based upon the length of the identifier e.g., above 80% of the pairs should be same in

the matching phrase and identifier having a character length of 10, therefore it can have a

maximum of 2 misspelled characters.

3. Both the character pairs and the indexes retrieved from the respective phrase and the identi-

fier strings should match. The fuzzy match algorithm does not pair the first and last letter in a

word to avoid detecting two anagrams, i.e., the words generated by rearranging the sequence

of characters, as similar. For instance, “slap” and “laps” will have same number of bi-grams

if the constraint on index matching is removed.

The phrase under consideration needs to satisfy all the three constraints to be detected as a fuzzy

match. We finalized these constraint values after experimenting with various different values of

constraint 1 and 2. Decreasing the percentage value of constraint 2 resulted in a large number of

false positives whereas increasing the value essentially transformed the fuzzy rule into lexical rule

i.e. leaving no room for detection of misspelled words.

However, none of the systems, in the development set of Fraco, contained a single instance of a

textual reference to an identifier that was found through fuzzy match alone. For this reason, fuzzy

matching rule is not considered to be necessary and has been removed from the final version of the

approach.

5.9 Development of the Approach

This section illustrates the step-by-step progression that we followed in designing the final ap-

proach. It explains how the approach is improved by starting from the heuristics and finalizing

the different scoping and matching rules. Also, it presents the rationale behind various approach-

refinement decisions made during the development process.
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Designing Heuristics: The author of this thesis manually studied the relationship between

the identifiers and comments to create a collection of heuristics needed to detect the fragile com-

ments. Initially, lexical matching was tried without the additional constraints shown in Table 5.1

and without categorizing the comments into local and global. As one would expect, it created

more false positives than correct matches. Then, the concept of proximity between the identifier

and a comment was integrated and the distinction is introduced as local and global comments. This

strategy curbed the number of false positives to a great extent but not enough to achieve practical

usefulness.

Later, the introduction of new identifier type-sensitive variants using POS tags, case-sensitivity

and inclusion of the parent identifier in certain cases helped to achieve performance levels that

aligned with practical usefulness. In the case of the semantic matching rule, the use of lemmas

yielded the desired results (no false positives) on the development set.

Extension using POS-tag variants: Initially, both lexical and semantic rules were de-

signed to extract more information from POS tags and use that information in comment parsing.

For example, the general observation of identifiers indicated that most of the class type identifiers

are made up of noun terms and most of the method type identifiers start with a verb or an adjective.

This information was included in the semantic rules by matching both lemmas and POS tags based

on these assumptions which were validated by observing the identifiers in the development set

used for this approach. Noticing that almost 95% of the time the POS tag of the identifier term was

same as the POS tag of the token matched using lemma’s rule, this POS tags extension resulted in

decreased performance of the tool, in terms of execution time, without a counterbalancing increase

in precision or recall. In fact, it was observed that the apriori assumption about the first term of

a method identifier of being mostly a verb or an adjective reduced the recall due to numerous in-

stances of invalidation of this assumption in methods such as yTransform where y is not a verb.

Therefore, the final version of this approach incorporates POS tagging in the lexical rules only.
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Language Features: We designed some new rules, based on the results of ASE study, that

are tailored towards the use of some specific Java language features in the problem of fragility

detection. These language features, described in detail in §5.4, include the ensured similar treat-

ment of all the comments related to non-binary methods irrespective of the method declaration in

context and excluding the binary methods from scope. We added these features to remove the false

positive cases registered in an earlier version of our approach due to overridden methods.
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CHAPTER 6

EVALUATION STUDY DESIGN

The performance of the proposed tool “Fraco” can be evaluated in terms of the metrics of

precision and recall (see Section 3.3) for a sample of input identifiers. The design of the evaluation

study comprises five main components: a) The selection of projects for the development and test

sets; b) The sampling of identifiers for which to detect fragile phrases; c) The creation of a general

benchmark for these identifiers; d) The computation of baseline results to help in the interpretation

of the results; e) The computation of metrics for evaluating the performance of the approach.

6.1 Data Sets

We evaluated our approach in two phases: i) initial development and evaluation; ii) approach refine-

ment and final evaluation. Accordingly, we used two different sets of projects for each evaluation

phase. The development set is used for the initial evaluation, whereas the test set is used to evalu-

ate the final version of the approach. Table 6.1 presents the version and a brief description about

the different types of projects used for the development and testing of the approach. We carefully

selected these sets of projects to represent the diverse open-source community of software systems.

Development Set: We developed the approach iteratively using six code bases as a prelimi-

nary development set, shown in the Table 6.1. These six Java systems are used to evaluate the pre-

final version of the approach. The six target systems are moderately-sized and well-commented
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(see Table 6.1). While these systems offer a diversity of application domain and open-source

communities, their medium size and general-purpose application domain makes it reasonable for

investigators to inspect.

Table 6.1 – Description of projects in Development and Evaluation sets of projects

Development Set Test Set

Project Version Description Project Version Description

Log4j 1.2.17 Logging Utility Commons-

IO

2.5 Utilities library

for IO functional-

ity

JUnit 4.12 Unit testing

Framework

Mockito 2.8.48 Mocking Frame-

work

Joda time 2.9.6 Date and time li-

brary

JFreechart 1.0.18 Chart library

JFlex 1.6.1 Lexer/Scanner

Generator

Findbugs 3.1.0 Static code an-

alyzer to detect

bugs

Chronicle

Map

3.11.0 In-memory key-

value store

Apache

JMeter

3.2 Load testing tool

Spring

Data Redis

1.7.8 Redis data con-

nection configu-

rator

HazelCast 3.7.8 In-memory data

grid

Test Set: For the Test set, we selected the systems based on various attributes of a project like

the project size, the total number of program elements, total number of comments and the density
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of comments. The project size refers to the lines of code (LOC), whereas the comment density

is measured by dividing the total number of comment units by total number of program elements

present in a system. Tables 6.2 and 6.3 show the different metrics calculated for these projects

and demonstrates the categorization of these six projects into different categories based on their

size and comment density. This selection criteria allows us to obtain a set of projects to cover a

variety of projects with different sizes and helps to analyze the impact of comment density on our

approach.

Table 6.2 – Selection metrics of evaluation set projects

Project Name LOC
Comments

(C)
Identifiers (I)

Comment

Density (C/I)

Commons-IO 63410 1718 1136 1.5

Mockito 84134 1152 2026 0.56

JFreechart 302388 12765 7416 1.72

Findbugs 422509 9181 13751 0.67

Apache

JMeter
565510 9766 11844 0.82

HazelCast 1133442 7947 15832 0.50

6.2 Sampling

We evaluated the approach using various projects to cover a variety of potential identifier renam-

ing situations. Because of the underlying structure of programs and commenting practices, a naive

49



6.2. Sampling

Table 6.3 – Categorization of evaluation set projects

Project size (LOC)
Small

(50K-150K)

Medium

(150K-500K)

Large

(>500K)

Comment Density

Well commented (C/I ≥0.8) Commons-io JFreeChart
Apache

Jmeter

Sparsely Commented (C/I < 0.8) Mockito Findbugs HazelCast

random sampling approach is not appropriate to fairly evaluate Fraco. First, in most of the software

projects, only a fraction of identifiers is ever mentioned in the comments. By sampling randomly,

any aggregated result would be heavily biased by the underlying prior distribution of identifiers

in the comments. Second, the proportion of different identifiers types (e.g., local variables vs.

classes) is not uniform and so drawing from the general population of identifiers is likely to lead

to a glut of local variables, thus degrading the ability to evaluate the performance of the approach

for other identifier types. A final constraint on the sampling is scalability and understandability of

the underlying software, given that the resulting benchmark must be created through manual code

inspection (see §6.3).

Target Population: The target population of program elements is defined as only the ele-

ments that have at least one fragile phrase. In principle, this means all elements {e | refersTo(e) ̸=

/0}. However, as described in §3.3, refersTo can only be estimated with matches, which means

that the target population is partially defined in terms of the approach itself. In practice, this im-

perfect and unavoidable situation is mitigated by the high overlap between the output of refersTo

and matches, as discussed in §6.6.
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Stratified Random Sampling: We used a stratified random sampling strategy to achieve

a diversity of program element types while keeping the size of the data set to a manageable level.

Stratified random sampling protects against the selection bias while ensuring that all the classes of

interest are covered in a sampled population.

Development Set Sample: To obtain samples from the development set, we randomly se-

lected 100 identifiers from each of the six development set systems, in proportion to the number of

elements of each type in the target population (of elements with at least one fragile comment).

Tables 6.4 and 6.5 show the number of identifiers in the sample for each program element type.

For each target system (row), the tables indicates the total number of program elements of a given

type, followed by the number (in parentheses) of program elements of this type for which at least

one fragile phrase was detected. The right column for each element type indicates the number

of program elements of that type in the sample. For example, in case of Log4j, 244 classes are

detected, of which 116 had a non-empty result for matches, which is 33% of all identifiers across

all types (116+ 139+ 73+ 20). For this reason, 33 identifiers for elements of class types are

randomly selected to be part of the sample.

When piloting the evaluation on the development set, we discovered that the performance of

the semantic rule contribution to the matches relation had very low coverage. In other words, there

were relatively few cases where the semantic rule yielded results. For this reason, the semantic

rule is evaluated separately using a sample that consists of all different types of elements in each

system (e.g. 244 classes of Log4j).

Test Set Sample: The development set comprised only 0.05% of the total number of identi-

fiers of type local in all the six systems because the local variables were rarely mentioned in the

comments leading to an extremely low number of fragile comments related to local variables. In
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Table 6.4 – Composition of the Development Set Sample - Types and Methods

Project Name Class Type Method Type

Total (Pop.) Sample Total (Pop.) Sample

Log4j 244 (116) 33 853 (139) 40

JUnit 218 (96) 54 587 (72) 40

Joda time 227 (118) 32 933 (223) 54

JFlex 71 (36) 28 297 (66) 40

Chronicle Map 265 (68) 42 784 (67) 4

Spring Data Redis 426 (194) 54 1199 (119) 33

order to obtain the sample capturing the substantial number of local type elements, we increased

the total number of elements selected randomly in the test set sample from 100 to 200. Similar

to the development set, the semantic rule is evaluated using a sample comprising all program ele-

ments in each system of the test set.

We selected a subset of the test set sample containing 50 elements per system. We refer to the

super set with 200 elements as Test Set A and the subset containing 50 elements per system as Test

Set B. The identifiers in Set B are selected by re-sampling the already sampled Set A. The purpose

of Set B is to measure the correctness of the benchmark by measuring inter-annotator agreement.

Since the available resources did not allow us to engage multiple annotators for the full test set A,

we decided to create the subset B that is of manageable size and which helps to mitigate accidental

bias that would be introduced by having a single annotator for the other two sets i.e., development

set and test set A.

Similar to the development set, the Tables 6.6 and 6.7 show the distribution of different types
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Table 6.5 – Composition of the Development Set Sample - Fields and Local Variables.

Project Name Field Type Local Variable Type

Total (Pop.) Sample Total (Pop.) Sample

Log4j 640 (73) 21 776 (20) 6

JUnit 144(11) 6 377 (0) 0

Joda time 500 (52) 12 706 (18) 2

JFlex 250 (34) 20 307 (26) 12

Chronicle Map 342 (23) 14 473 (10) 3

Spring Data Redis 624 (50) 13 689 (3) 0

of identifiers in Set A and Set B. The columns Set A and Set B represent the number of identifiers

of a given type selected in the respective sample. Every identifier selected in the samples has at

least one fragile comment. The sum of all types of identifiers in Set A is 200 for each system.

Similarly, the sum of different types of identifiers in Set B is 50 for each system. For example,

the sample selected for Commons-IO in Set A has (67+ 90+ 52+ 1) = 200 elements where the

sample selected in Set B has (17+23+16+0) = 50.

6.3 Benchmarks

As a necessary component of the evaluation, benchmarks are created for fragile comments that

constitutes a general contribution of this work. We created three different benchmarks for three

sets of data - one development set and two test sets Set A and Set B.

Development Set Benchmark: The benchmark includes, for each element e as reported

in Tables 6.4 and 6.5, the full set refersTo(e). The author of this thesis created the benchmark
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Table 6.6 – Composition of the Test Set Sample - Types and Methods

Project Name Class Type Method Type

Total (Pop.) Set A Set B Total (Pop.) Set A Set B

Commons-IO 120 (81) 67 17 373 (110) 90 23

Mockito 445(120) 86 22 817 (133) 95 24

JFreechart 639(283) 29 8 2967(1372) 140 35

Findbugs 1483 (472) 75 19 4797 (496) 79 20

Apache JMeter 1116 (425) 80 20 3854 (333) 63 16

HazelCast 3062 (810) 108 27 5768 (432) 57 14

by manually inspecting the detected fragile comments. For each phrase returned as the results of

the matches(e) relation for an element e, the researcher made a binary decision as to whether the

phrase referred to the element’s identifier or not. The validation or invalidation of phrases as fragile

is a low subjectivity task given that comments are intended for human consumption and therefore

generally not ambiguous to a human reader. In addition, the false negatives discovered through

the computation of the approximations of recall (R∗ & R∪) as described in §6.5 are also included

in the benchmark.

Test Set Benchmarks: We created two different benchmarks for the test sets A and B—

Benchmark A and Benchmark B respectively. Similar to the development set benchmark, these

two benchmarks include all the elements reported in Tables 6.6 and 6.7. The author of this thesis

created Benchmark A by manually inspecting each fragile instance reported for every element e

present in the samples.

On the other hand, the creation of Benchmark B involved an external annotator. A first year
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Table 6.7 – Composition of the Test Set Sample - Fields and Local Variables.

Project Name Field Type Local Variable Type

Total (Pop.) Set A Set B Total (Pop.) Set A Set B

Commons-IO 251 (63) 52 16 286 (2) 1 0

Mockito 188(18) 13 3 584 (9) 6 1

JFreechart 1483 (280) 28 7 2280 (31) 3 0

Findbugs 3138 (209) 33 8 4309 (85) 13 3

Apache JMeter 3343 (268) 15 13 3527 (36) 7 2

HazelCast 3558 (242) 32 8 3376 (25) 3 0

Masters student in the school of Computer Science at McGill University helped in the annotation

of benchmark B. The external and lead annotator i.e., the author of this thesis, annotated Set B

samples separately. Note that the working and implementation details of the approach were not

provided to the external annotator, who was only provided with general instructions to understand

the task of annotation. Similar to the development set benchmarks, both the annotators made the

binary decision about the phrases being fragile or not and also computed the approximations of

recall (R∗ & R∪) described in §6.5.

6.4 Baseline

Although the performance of the approach can be interpreted in absolute terms, it is interesting to

compare it with an existing baseline. Basic lexical matching is technically an option, but as de-

scribed in §5.9, it performs so poorly that it cannot reasonably qualify as a baseline for this type of

work. A more appropriate domain-specific baseline is offered by Eclipse’s refactoring tool. Along

with refactoring the code, Eclipse’s refactoring tool allows the user to select an option to replace
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the textual matches present in comments when renaming an identifier. As mentioned earlier, this

feature is referred to as Eccore (“Eclipse comment refactoring”). Eccore is only available for type

and field code elements (so not available for methods and local variables). To use Eccore as a

baseline when conducting the evaluation, all of the applicable declarations (types and fields) are

programmatically renamed and all textual replacements are considered to be the fragile phrases.

6.5 Metrics

We evaluated the approach using the standard metrics of precision and recall. For a given program

element e, precision is computed exactly as defined in §3.3. In general, precision measures the

degree of absence of false positives, which in the case of Fraco are the phrases falsely reported as

fragile. In contrast, recall measures the degree of absence of false negatives. In the case of Fraco,

false negatives correspond to the fragile phrases that remain undetected. Recall is not generally

possible to compute, since to compute refersTo(e) one would need to manually inspect the en-

tire source code of a system. For this reason, approximations must be considered as the potential

method of measuring the performance of the tool.

The Eccore feature is only applicable to class and field identifiers and therefore, the union of

the sets of true positives is used for both approaches as the approximation of refersTo(e) in the

denominator of the recall equation in §3.3. This version of recall is denoted as Recall∪. As Eccore

is not applicable to methods and local variables, an alternative strategy is required to estimate the

recall, which, herein is done with a liberal equivalent defined as follows. For a given program

element e, we perform a textual search for all instances of the element’s identifier in comments in

the same file as e, and identify any fragile phrase in the set. Then, the union of the set of these

fragile phrases and matches(e) as the equivalent of refersTo(e) is used as the measure of recall.

This version of recall is referred to as Recall∗. In general, both approximations of recall can be

expected to be an upper bound approximation of the true recall of the approach.
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6.6 Threats and Limitations

The threats to validity and limitations of the experimental design are as follows. First, the pop-

ulation from which the sample of program identifiers is drawn, is defined as a function of the

approach, as described in §6.2. However, this will only introduce bias as a function of the number

of identifiers for which the approach generates a) only false positives, or b) no positives in the

presence of false negatives. Case a) can be precisely controlled and it was verified that across all

of the target projects, the sampling error is between 0 and 3 elements for all projects. Case b) is

impossible to determine reliably, but can be estimated to be very low given the high recall reported

in the next Chapter. The threat of investigator bias when deciding whether a match is a true positive

or not is mitigated by the cross-annotation performed by the second annotator. It is further reduced

by the fact that the task is of low subjectivity, and that we have released our benchmarks publicly1.

Second, the level of the knowledge of both the annotators about programming language as well as

English language can pose a threat to the validity of results. Finally, as mentioned above, the com-

putation of recall designed in this thesis is approximation of a theoretical value that is not feasible

to compute precisely. In consequence of these experimental conditions, the proper way to interpret

the results presented in the next chapter is as an illustration of the potential of the approach in

twelve distinct contexts, as opposed to a general prediction of the operational performance of the

tool.

1http://www.cs.mcgill.ca/~swevo/inderjotmsc
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CHAPTER 7

RESULTS AND DISCUSSIONS

In this chapter, we present the results of evaluation study performed on the approach using two

different datasets - development set and test set A. The development set and test set A benchmarks

are annotated by the author of this thesis and the results obtained comparing the performance of

Fraco and Eccore against these benchmarks are presented in § 7.1 and § 7.2.

To assess the reliability of the benchmark, we asked a second, external evaluator to identify true

positives, false positives, and false negatives for a subset of the Test set A’s benchmark. We then

measured agreements and disagreements between the two annotators. We present this analysis in

Section §7.3. We refer to the subset of identifiers annotated by the external annotator as Test Set

B. Note that, the test set B is essentially the same sample as test set A except that it contains only

one fourth of the elements present in test set A and is annotated by multiple annotators.

7.1 Development Set

We report the results of our evaluation in three parts organized to facilitate the interpretation of the

data collected. First, we present the results of the evaluation of the lexical matching rules for the

methods and local variables. These results must be interpreted in absolute terms because Eccore

does not support replacement for the identifiers of such types. We then report the results of the

lexical matching rules for types and fields, which we compare against Eccore’s output. The results
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of the first two sections are based on the same sample. Finally, we report on the results of the

semantic matching rule which is based on all of the identifiers in the target systems. Note that,

the evaluation results for development set were obtained before including the language-specific

features related to overridden methods.

Lexical Matching of Methods and Local Variables: Table 7.1 shows the results of

the evaluation of the lexical matching rules for the methods and local variables. We note that JUnit

and Spring Data Redis do not have mentions of local variable identifiers in the comments for the

given sample, so performance results in these cases are not available. For methods, the precision

is above 95% for all the systems except Spring Data Redis. However, all of the false positives

in Spring Data Redis are caused by the artificial case that the comment refers to a method that

is being overridden, which is not a likely scenario in practice given that renaming an overriding

method changes the behavior of the code.

The recall∗ is generally very good, with only Chronicle Map registering eight false negatives.

Seven of these cases are caused by overloading or other types of ambiguity related to arguments.

For example, a method named of(first,second) is not matched to an in-comment reference

of(...). The eighth case was one of the confusion between a field and method name. Local

variables are seldom referred to in comments. In our sample, we observe perfect recall∗ but equiv-

ocal precision for both JFlex and Chronicle Map. For these systems, the precision is lower due to

the use of common English words like move as a local variable identifier, which generates natural

ambiguity in the refersTo relation.

Lexical Matching of Types and Fields: Tables 7.2 and 7.3 show the results of the

evaluation of lexical matching rules for types and fields. The results can be interpreted in the

same way as those in Table 7.1 except that in this case we use recall∪ as defined in §3.3. The

main observation for types is that it is a relatively simple problem to solve. Eccore shows perfect
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Table 7.1 – Results of the evaluation for identifiers of local variables and methods in Development set. The

columns indicate the number of identifiers searched (Ids), the number of true positives (TP), the number of

false positives (FN) the number of file-relative false negatives (FN), the precision (P), and file-relative recall

(R*, described in §6.5)

Project Name Method Type Local Variable Type

Ids TP FP FN P R* Ids TP FP FN P R*

Log4j 40 110 2 3 98 97 6 6 0 0 100 100

JUnit 40 102 0 1 100 99 - - - - NA NA

Joda time 54 214 0 1 100 99 2 2 0 0 100 100

JFlex 40 60 0 0 100 100 12 10 2 0 83 100

Chronicle Map 41 139 7 8 95 94 3 2 1 0 67 100

Spring Data Redis 33 57 16 0 78 100 0 0 0 0 NA NA

precision across all projects and Fraco only generates one false positive. On the other hand, the

recall of Fraco is superior for five out of the six projects because of the additional context-sensitive

tolerance for plurals and case-insensitive matching. Fraco performed on par with Eccore in the

case of case-sensitive matches whereas the case-insensitive and plurals matching rule increased

the total number of true fragile comments detection by Fraco, which resulted in higher recall. For

Spring Data Redis, the recall∪ is lower due to some unexpected uses of fully-qualified names.

In the case of fields, Fraco clearly dominates with perfect precision and very high recall for

all but one system. In contrast, Eccore flounders in many situations. For example, if both a field

and a method’s parameter have the same identifier, Eccore replaces the references of the formal

parameter as well. In a more egregious case, when we rename a field named it in Chronicle Map,

Eccore generates 244 false positives in various comments including the copyright block of files.
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Table 7.2 – Results of the evaluation for identifiers of category- Types in Development set. The columns

indicate the number of identifiers evaluated (Ids), the number of true positives (TP), the number of false

positives (FN) the number of false negatives (FN), the precision (P), and recall (R∪, described in §6.5)

Project Name Types

IDs Eccore Fraco

TP FP FN P R∪ TP FP FN P R∪

Log4j 33 161 0 29 100 84 174 0 17 100 91

JUnit 54 372 0 65 100 85 407 1 46 99 90

Joda time 32 272 0 49 100 84 323 0 7 100 97

JFlex 28 138 0 103 100 57 223 0 29 100 88

Chronicle Map 42 297 0 51 100 85 350 0 27 100 93

Spring Data Redis 54 225 0 17 100 93 223 0 52 100 81

Semantic Matching: Tables 7.4 and 7.5 show the precision of the semantic matching rule

for all identifiers that produced at least one match. We do not attempt to compute the recall for

semantic matching because it is not possible to reliably determine the extension of the set of true

positives. The main observation that we can draw from these results is that although coverage is

relatively low, precision is again very high. The few false positives for methods were generated by

the first special case for the return values of method identifiers (see §5.3). However, the handful of

false positives generated by this rule are largely offset by the true positives it properly captures. Fi-

nally, when we project the evaluation of the semantic matching rules back onto the sample used for

lexical rules, we conclude that the number of fragile phrases detected increases by ratios between

4.4% (JFlex) and 51.8% (Chronicle Map).
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Table 7.3 – Results of the evaluation for identifiers of category- Fields in Development Set. The columns

indicate the number of identifiers evaluated (Ids), the number of true positives (TP), the number of false

positives (FN) the number of false negatives (FN), the precision (P), and recall (R∪, described in §6.5).

Project Name Fields

IDs Eccore Fraco

TP FP FN P R∪ TP FP FN P R∪

Log4j 21 10 15 11 40 47 87 0 3 100 96

JUnit 6 4 0 3 100 57 7 0 0 100 100

Joda time 12 4 0 23 100 15 28 0 0 100 100

JFlex 20 28 107 0 20 100 26 0 2 100 93

Chronicle Map 14 9 3 12 75 42 21 0 0 100 100

Spring Data Redis 13 11 49 6 18 65 17 4 0 80 100

7.2 Test Set A

Following the same pattern used to present the results in §7.1, we organized the evaluation results

in three parts. The first part presents the evaluation results of lexical matching rules for the methods

and local variables. We, then, report the results of comparison against Eccore’s output for types

and fields obtained on applying the lexical matching rules. The results presented in these two parts

are based on the same sample i.e., 200 elements taken from each test set system. Finally, we report

the results of semantic matching rules for all of the identifiers present in the six test set systems.

Lexical Matching of Methods and Local Variables: Table 7.6 shows the evaluation

results for methods and local variables obtained on apply lexical matching rules. The systems

Hazelcast, Commons-IO and JFreechart have relatively low number of local variables than the
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Table 7.4 – Results of the semantic matching for Types and Methods in the Development Set.

Project Name Class Type Method Type

Ids TP FP P Ids TP FP P

Log4j 12 15 0 100 80 94 4 96

JUnit 26 39 0 100 73 85 1 98

Joda time 10 11 0 100 90 157 0 100

JFlex 9 9 0 100 41 54 1 98

Chronicle Map 17 27 1 96 9 11 0 100

Spring Data Redis 37 40 0 100 61 71 1 98

other three systems because these systems have an overall lower percentage of local variables,

having at least one fragile comment, compared to other element types. Since, the underlying logic

of stratified random sampling is based on the ratios of different stratas in the overall population,

in our case stratas are the types of identifiers, it is counter-intuitive to add more number of local

variables into the sample. For the small number of local variables selected in the sample, our eval-

uation results show 100% precision and recall. The results for elements of type method almost

achieved a perfect precision score for most of the test set systems except for Commons-IO and

Mockito.

Commons-IO used a specific naming pattern for singleton classes i.e., the method returning

the class instance had same identifier as the class except the first letter was in lower case. Our

lexical matching rules allow for case-insensitive matching in the local comments, which in this

case are the comments inside the class declaration, to capture the various fragile phrases like the

ones described in §5.2. We noted that all cases of false positives are caused by this naming pattern.

However, the number of true positives captured by allowing for case-insensitive matches in the
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Table 7.5 – Results of the semantic matching for Fields and Local Variables in the Development set.

Project Name Field Type Local Variable Type

Ids TP FP P Ids TP FP P

Log4j 5 6 0 100 2 2 0 100

JUnit - - - NA - - - NA

Joda time - - - NA - - - NA

JFlex 2 2 0 100 2 2 0 100

Chronicle Map 1 1 0 100 2 2 0 100

Spring Data Redis - - - NA 0- - - NA

local comments sidetracks the few false positives generated.

In case of Mockito, all the cases of false positives registered are due to the use of one word

identifiers for methods that are common in English language such as only, then, calls etc. Our

lexical rule, shown in Cell3,1 of Table 5.1, searches for the identifier of the declaring class when

detecting fragile phrases referring to the method. Nonetheless, this heuristic failed to prevent these

false positives generated in system Mockito. Although, the fragile phrases detected correctly iden-

tified the relation between the given method and the parent class e.g., “only (method’s name) in

Mockito class” except here “only” was not a method’s name, but the unusual naming pattern used

in Mockito resulted in a bunch of false positives.

Most of the systems had a near-perfect recall∗ except Mockito and JFreechart. JFreechart had

a total of 4 cases of false negatives caused by the typographical errors where a “space” character

was missing between the identifier under processing and an adjacent token. In case of Mockito, a

total of 76 false negatives are produced due to the presence of source-code elements in comments
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as shown below:

when(mock.someMethod("arg1", "arg2")).thenReturn("one", "two");

Our lexical rule in Cell3,1 of Table 5.1 applies a condition to match the number of parame-

ters of a method when detecting fragile phrases. Consider the method under processing is when

declared with only one formal parameter and after tokenization, the above mentioned source-code

line present in a comment is incorrectly marked as not fragile by our lexical rule. This happens due

to incorrect parsing of code snippets by Fraco as parsing the code snippets present in comments

is a very difficult problem and requires special techniques like island parsing. In this example,

based on the number of commas appearing inside round parentheses, Fraco counts two parameters

instead of one and hence, marks it as false positive.

Also, the header comments of class type identifiers in Mockito are extremely long and span

over 1300 to 1500 lines. These 76 cases of false negatives were found in only two comments for

method when. However, keeping track of the commas with respect to the pair of open and close

parentheses can help avoid these kind of false negatives and can be fixed in the future versions of

the approach.

Lexical Matching of Types and Fields: Tables 7.7 and 7.8 show the evaluation results

for types and fields. In case of types and fields, the recall∪ calculated, as described in §3.3, is based

on the baseline results obtained from Eccore.

Types: For types, Eclipse achieved 100% precision whereas Fraco had a few cases of false

positives. All of these false positives are generated due to common single word identifiers. Fraco

allows for case-sensitive matching in global comments that generated these few cases of false

positives. The figure 7.1 shows an example of a comment that refers to the field declaration shown

but Fraco incorrectly matches this comment to the class’s declaration named Day.

The recall of Eccore is extremely low as compared to Fraco. Since Eccore strictly matches
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Table 7.6 – Results of the evaluation for identifiers of local variables and methods in the Test Set A. The

columns indicate the number of identifiers searched (Ids), the number of true positives (TP), the number of

false positives (FN) the number of file-relative false negatives (FN), the precision (P), and file-relative recall

(R*, described in §6.5)

Project Name Method Type Local Variable Type

Ids TP FP FN P R* Ids TP FP FN P R*

Commons-IO 90 247 12 0 95 100 1 1 0 0 100 100

Mockito 95 584 76 76 88 88 6 13 0 0 100 100

JFreeChart 140 270 0 4 100 99 3 3 0 0 100 100

Findbugs 79 136 0 0 100 100 13 13 0 0 100 100

JMeter 63 108 0 0 100 100 7 10 0 0 100 100

Hazelcast 57 110 0 0 100 100 3 3 0 0 100 100

/** Day. */

public static final DateTickUnitType DAY

= new DateTickUnitType("DateTickUnitType.DAY", Calendar.DATE);

Figure 7.1 – Example of a false positive case resulted due to same identifiers used for both field and Type.

the case of an identifier while looking for the matching references in comments, it misses the true

references of the identifier that are detected by Fraco using case-insensitive lexical matching rule.

Fraco achieved a higher recall but also registered some cases of false negatives. These cases are

generated due to two reasons: a) First, the mention of source-code elements in copyright com-

ments. b) The occurrence of case-insensitive matches outside of local comments. JFreechart has

unexpected mention of the source-code elements inside copyright comments. Fraco does not con-

sider copyright comments as a target while detecting fragile comments. The purpose of copyright
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comments is not to contain any references to the source code elements and in eleven out of twelve

systems, no references to source-code elements were found in copyright comments which justi-

fies our decision to ignore such comments while detecting fragile phrases. Also, in case of one

word identifiers, a number of cases are detected where identifier is mentioned in lower case in the

comments that are global with respect to the identifier. Fraco identifies such case-insensitive cases

in local comments only and therefore, failed to capture the reference in global comments. For

example, the fragile phrase located in line 1 of the example shown in Figure 7.2 is not registered

by Fraco because it is located outside the class Packet.

/**

* Transmits a packet to a certain connection.

* If this method is called with a null connection , the call returns false

* @param packet The Packet to transmit.

* @param connection The connection to where the Packet should be transmitted.

* @return true if the transmit was a success , false if a failure.

*/

boolean transmit(Packet packet , Connection connection);

Figure 7.2 – Example showing a fragile comment related to class “Packet” of project “Hazelcast” present

in class file “ConnectionManager.java”

Fields: In case of fields, Fraco performed extremely well as compared to Eccore. Both pre-

cision and recall of Eccore are terribly low and all the cases of false positives are caused by incor-

rectly matching field identifiers with identifiers referring to formal parameters of a method. Also,

Eccore left a number of references undetected resulting in lower recall. These false negatives re-

sulted from the strict use of case-sensitive matching.

Fraco also registered a few cases of false positives owing to the lexical matching rule that

considers a phrase fragile with respect to a field if the whole identifier is in upper case irrespective

of the location of comments i.e., it does not differentiate between local and global comments for
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Table 7.7 – Results of the evaluation for identifiers of category- Types in Test Set A. The columns indicate

the number of identifiers searched (Ids), the number of true positives (TP), the number of false positives

(FN) the number of false negatives (FN), the precision (P), and recall (R∪, described in §6.5)

Project Name Types

IDs Eccore Fraco

TP FP FN P R∪ TP FP FN P R∪

Commons-IO 66 416 0 135 100 76 533 0 0 100 100

Mockito 86 650 0 419 100 60 974 11 0 99 100

JFreechart 29 325 0 262 100 55 451 2 62 99 88

Findbugs 75 390 0 459 100 46 940 11 28 99 97

JMeter 80 347 0 304 100 53 648 0 14 100 98

Hazelcast 108 303 0 219 100 58 634 0 70 100 90

such field identifiers. In most of the cases, this rule captures a lot of true positive references of

an identifier mentioned in global comments which compensates for a few false positives detected.

The recall results for Fraco surpass the Eccore results by a huge margin. However, there are a few

cases of false negatives detected in Commons-IO and JFreechart. Again, JFreechart has source-

code elements mentioned in copyright comments which is solely the reason for its lower recall

value. Commons-IO registered seven cases of false negatives due to the use of same identifier for

a field and the formal parameter of a method creating ambiguity. For example, consider a field

named filter declared in class FileFilter. Figure 7.3 shows a method from the same class

having a formal parameter, which in our case belongs to the local variables category, with same

identifier as the field in consideration. In this example, the line 8 of the comment can be related

to the field with certainty based on our lexical matching rule that also looks for the mention of its

declaring class while searching in global comments. But, there are certain ambiguous references
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to the field such as in line 1 and 3 that cannot be subjectively related to either the field or formal

parameters.

/**

* Construct an instance with a filter and limit the <i>depth </i> navigated to.

* <p>

* The filter controls which files and directories will be navigated to as

* part of the walk. The {@link FileFilterUtils} class is useful for combining

* various filters together. A {@code null} filter means that no

* filtering should occur and all files and directories will be visited.

* Note that this functionality is in addition to the filtering by file filter.

* @param filter the filter to apply , null means visit all files

* @param depthLimit controls how <i>deep </i> the hierarchy is

* navigated to (less than 0 means unlimited)

*/

protected DirectoryWalker(final FileFilter filter , final int depthLimit) {

this.filter = filter;

this.depthLimit = depthLimit;

}

Figure 7.3 – Example from the source code of system “Commons-IO” showing a method and its header

comment from class “FileFilter.java”

Semantic Matching: Similar to the representation of results for the development set, Tables

7.9 and 7.10 show the evaluation results obtained on applying semantic matching rules. Only the

identifiers having at least one fragile phrase detected by semantic matching rules are included in

the results. As described in the semantic results section of the development set, only precision

results are reported in case of semantic matches.

The performance for semantic matching is generally good except. except for a few cases of

false positives. Instead of discussing these false positives according to the identifier categories, we

discuss these cases for all identifiers together because the factors causing these false positives are
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Table 7.8 – Results of the evaluation for identifiers of category- Fields in in Test Set A. The columns

indicate the number of identifiers searched (Ids), the number of true positives (TP), the number of false

positives (FN) the number of false negatives (FN), the precision (P), and recall (R∪, described in §6.5).

Project Name Fields

IDs Eccore Fraco

TP FP FN P R∪ TP FP FN P R∪

Commons-IO 52 107 174 10 38 37 127 1 7 99 95

Mockito 13 38 0 17 100 69 59 0 0 100 100

JFreechart 28 120 570 0 17 100 42 6 16 88 72

Findbugs 33 40 3 0 93 100 59 0 0 100 100

JMeter 50 53 27 4 66 93 67 6 0 92 100

Hazelcast 32 72 8 60 90 55 148 10 0 94 100

common for all types of identifiers. In case of Mockito and Commons-IO, the precision dropped

due to the use of absurd method identifiers like byteThat and afterWrite, which resulted in false

positives due to the use of unrelated and commonly occurring English words.

7.3 Inter-rater Agreement

The sample selected as Set B contains 50 identifiers per test set systems that are extracted as a

subset from Set A through stratified sub-sampling of Set A identifiers and therefore, the evaluation

results in terms of precision and recall have already been discussed profoundly. In this section,

we compare the benchmark annotated by the two different annotators and observe the amount of

agreement or disagreement between them.
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Table 7.9 – Results of the semantic matching for Types and Methods in the Test Set A.

Project Name Class Type Method Type

Ids TP FP P Ids TP FP P

Commons-IO 57 132 5 96 127 199 5 98

Mockito 67 151 0 100 110 150 13 92

JFreechart 26 81 0 100 143 179 0 100

Findbugs 59 172 0 100 145 182 0 100

JMeter 44 70 1 96 150 207 1 99

Hazelcast 45 60 0 100 66 86 0 100

Agreement metric: Initially, we used Cohen’s Kappa statistic to measure the inter-annotator

agreement [56]. Kappa measures the inter-rater agreement for categorical items. Because, we also

have two categories in our result set i.e., 1 and 0 for fragile and not fragile respectively, it seemed an

appropriate choice of a qualitative measure for assessing the agreement. Kappa is usually preferred

over the simple percentage agreement calculation due to the additional factor of chance probability

which makes it robust than the state-of-art statistics.

While measuring the inter-rater agreement using Kappa, we observed that Kappa is not the

right statistic to measure agreement in our case because the false positives were very rare in our

result set which drove the value of chance probability close to zero. We observed 100% general

agreement probability in most of the cases. When the chance probability becomes zero, the Kappa

will always be zero. So in our case, the value of Kappa was always zero or less than 0.3. Therefore,

we decided to use the simple percentage measure to calculate agreement between the annotators.
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Table 7.10 – Results of the semantic matching for Fields and Local Variables in the Test Set A.

Project Name Field Type Local Variable Type

Ids TP FP P Ids TP FP P

Commons-IO 17 17 0 100 - - - NA

Mockito 0 0 0 NA - - - NA

JFreechart 42 0 0 100 - - - NA

Findbugs 3 3 0 100 - - - NA

JMeter 9 9 0 100 9 0 0 NA

Hazelcast 2 2 0 100 - - - NA

Percentage Agreement Calculation: For every fragile phrase detected by the tool, the anno-

tators made a binary decision marking it as fragile or non-fragile. In addition to that, each annotator

marked the number of fragile instances missing in each class file, i.e the Recall (R*) measure as

described in §6.5. In order to calculate percentage agreement between the annotators, for each

system in the test set B, we count the number of phrases marked fragile (TP), non-fragile (FP) and

the number of instances marked missing per identifier (FN) by both the annotators.

For each category of annotation, i.e. true positives (TP), false positives (FP) and false negatives

(FN), we calculate the agreement between annotators by dividing the number of cases agreed upon

by both the annotators by the maximum number of cases in that specific category marked by either

of the annotators. Consider an example from the annotations results shown in Table 7.11 where

in case of Commons-IO, the external annotator marked 222 cases as true positives and the lead

annotator marked 223 cases as true positives. Therefore, to calculate agreement between the two

annotators for the true positives cases, the percentage agreement is 222/223≈ 100%. Similarly for

false positives and false negatives, the agreement calculated is 0% and 2/12 ≈ 17%.
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Comparison of results: The results of evaluation conducted by two annotators are pre-

sented in Tables 7.11 and 7.12. Each table is divided into two parts - the first part shows results

of annotation by the external annotator and second part shows the annotation results generated by

the lead annotator i.e., the author of this thesis. These tables present the data annotations before

resolving the conflicts between annotators. The data shows an agreement of 96% in case of lexical

matches and 100% in case of semantic matches before resolving conflicts.

As it can be noted in the Table 7.12, the annotation results for the semantic matching rules have

exactly the same number of false positives and negatives attributing to 100% agreement between

the annotators. In case of lexical rules, the annotators agree over almost all the systems except

Commons-IO, Mockito and Findbugs.

Both the annotators, i.e. the author of this thesis and external, annotated the data separately.

In order to assess and improve the quality of the annotations done by the external annotator, both

annotators completed annotations for one system at a time and compared the annotated datasets to

resolve any conflicts before annotating the next system’s dataset. This exercise helped us to avoid

the trivial conflicts that arose due to the miscalculation of file-based missing instances or due to

the partially incorrect understanding of instructions given to the external for annotation task i.e. a

few mis-characterizations of the identifier types resulting in incorrect annotations. For example,

both annotators started by annotating the dataset of Commons-IO system and on comparing the

annotated datasets, we found that the external annotator reported 9 missing instances of a method

named directoryFileFilter. However, 5 out of 9 missing instances were a result of miscalcula-

tion whereas 3 belonged to the class DirectoryFileFilter and not the method. We addressed two

more instances of conflicts where the external annotator incorrectly marked the phrase related to a

field type element as missing whereas the phrase was related to the formal parameter and not the

field. Resolving the conflicts registered in the dataset of Commons-IO helped the external annota-

tor to correctly understand the information provided in various columns of the dataset resulting in
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better annotation of the data of the remaining 5 test set systems.

The conflicts registered in other two systems, i.e. Findbugs and Mockito, were due to the

ambiguity between two same identifiers of different categories. An example of such conflicting

comments is shown below:

/* ....

* The gotcha is that Mockito does the validation <b>next time </b>

* you use the framework (e.g. next time you verify , stub , call mock etc.).

* ...

*/

Consider the method framework of class Mockito is renamed and the comment shown above is

under processing to detect the fragile phrases. In this case, the external annotator marked this com-

ment as true positive with respect to the method framework whereas the lead annotator marked it

as false positive because, according to the lead annotator, it refers to the Mockito framework in

general and not the method. There are 13 such instances related to this same method in the dataset

accounting for the major percentage of disagreement between the two annotators.

On resolving all the conflicts between annotators, we achieved an agreement of 100% in case

of both lexical matches and semantic matches. And finally, the results of comparison between the

Set B and the dataset created from the output of Eccore show a 100% inter-annotator agreement

and therefore, the breakdown of Eccore results is not presented in the table. High inter-annotator

agreement proves that the task of marking fragile phrases is of low-subjectivity and, therefore,

mitigates the threats to validity related to manual annotations done by a single annotator.
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Table 7.11 – Evaluation results of lexical matches for all 50 identifiers in Test Set B evaluated by both

annotators. The columns indicate the number of true positives (TP), the number of false positives (FP), the

number of file-relative false negatives (FN), the percentage agreement in case of fragile phrases (FP), the

percentage agreement is case of non-fragile phrases (NFP) and the percentage agreement in case of missing

fragile instances (MFP) per system.

Project Name External Annotator Lead Annotator Agreement %

TP FP FN TP FP FN FP NFP MFP

Commons-IO 222 1 12 223 0 2 99 0 17

Mockito 763 23 82 747 39 82 98 59 100

JFreechart 240 0 6 240 0 6 100 100 100

Findbugs 188 3 6 191 0 6 98 0 100

JMeter 170 3 9 170 3 9 100 100 100

Hazelcast 160 1 7 160 1 7 100 100 100

Overall Percentage Agreement 99% 60% 86%
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Table 7.12 – Evaluation results of semantic matches for all 50 identifiers in Test Set B evaluated by both

annotators. The columns indicate the number of true positives (TP), the number of false positives (FP), the

number of file-relative false negatives (FN), the percentage agreement in case of fragile phrases (FP), the

percentage agreement is case of non-fragile phrases (NFP) and the percentage agreement in case of missing

fragile instances (MFP) per system.

Project Name External Annotator Lead Annotator Agreement %

TP FP FN TP FP FN FP NFP MFP

Commons-IO 79 1 0 79 1 0 100 100 100

Mockito 85 0 4 85 0 4 100 100 100

JFreechart 78 0 0 78 0 0 100 100 100

Findbugs 61 0 2 61 0 2 100 100 100

JMeter 70 0 1 70 0 1 100 100 100

Hazelcast 66 0 0 66 0 0 100 100 100

Overall Percentage Agreement 100% 100% 100%
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CHAPTER 8

CONCLUSIONS

This thesis formalizes the problem of detecting fragile comments with respect to the rename

refactorings and proposes a novel rule-based approach for detecting fragile phrases in the source

code comments by taking into account the type of identifier being renamed, its morphology, the

scope of the identifier and the location of the comments. By limiting the input of the analysis

to general programming language features and common naming conventions, our approach can

remain general-purpose and detect fragile phrases in the comments of any type.

Although our approach relies on language-independent principles, we developed a prototype

for the Java programming language as an Eclipse plug-in called Fraco. We evaluated Fraco on a

sample of 1800 identifiers taken from twelve medium to large sized systems and, when possible,

compared the results against Eccore, Eclipse’s identifier reference replacement feature. While de-

tecting fragile comments for type declarations, both Fraco and Eccore performed at par. However,

when renaming fields, the performance of Eccore showed dramatic unreliability, with precision

varying between 20% and 100% between systems, and recall varying between 15% and 100%.

In contrast, the more sophisticated rule set of Fraco showed a precision of 100% for nine of the

twelve systems, and a recall above 90% for all test systems except Mockito. In fact, Mockito was

a really good test system for our approach because of the unusual names used for the program

elements and the excellent results achieved by Fraco with such names proves that our approach

is robust to the variations in the identifier patterns and can achieve a satisfactory results. While

Eccore currently does not even support the detection of fragile comments when renaming methods
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and local variables, Fraco was able to detect fragile phrases in these cases with precision and recall

of 95% or above for a majority of systems.

8.1 Future Work

The three clear avenues for future work in this area are comment repair, a broadening of the defini-

tion of semantic matching and extending the approach to cover all types of changes done manually

or automatically. Currently, our approach detects fragile phrases and repairs the fragile phrases

detected by lexical matching rules only because the fragile phrases detected by semantic matches

require a context-aware algorithm that not only analyzes a declaration’s source code context but

also the takes into account the scope and multiple different references to a declaration throughout

a system’s source code. Although it is unlikely that the problem of repair is fully automatable for

semantic matches, it will be interesting to explore how to differentiate matches that can be reliably

repaired automatically from those that require developer assistance.

As for semantic matching, our current approach purposefully remains very close to the lexical

layer because it targets the invalidation of textual references to the specific identifiers. Currently,

our approach does not include synonym detection or expansion of abbreviations to match the frag-

ile comments that could be using expanded versions of the identifier which is renamed. In the

greater context of software evolution research, the problem of detecting general inconsistencies

between source code and unstructured text remains a major challenge, which we could modestly

approach with an expansion of the semantic rules to include additional components such as syn-

onyms analysis, expansion of abbreviations and entity recognition.

Currently, our approach is limited to detecting fragile comments only for renamed identifiers.

We plan to extend the detection of fragile comments for all types of changes done manually or

automatically using tools like ChangeDistiller [13] so that our tool covers the full spectrum of

changes made in the source code of a system and help the developer to automate the process of

detecting and repairing fragile comments.
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