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ABSTRACT

With the growing size of Application Programming Interfaces (APIs), both API

usability and API learning become more challenging. API learning resources are often

crucial for helping developers learn an API, but they are distributed across different

documents, which makes finding the necessary information more challenging.

This work focuses on discovering relevant sections of tutorials for a given API type.

We approach this problem by identifying API types in an API tutorial, dividing the

tutorial into small fragments and classifying them based on linguistic and structural

features. The system we developed can ease information discovery for the developers

who need information about a particular API type. Experiments conducted on five

tutorials show that our approach is able to discover sections relevant to an API type

with 0.79 average precision, 0.73 average recall, and 0.75 average F1 measure when

trained and tested on the same tutorial. When trained on four tutorials and tested on

a fifth tutorial the average precision is 0.84, average recall is 0.62, and the F1 measure

is 0.71.
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ABRÉGÉ

Avec la taille grandissante des interfaces de programmation (API), l’aptitude à

l’utilisation ainsi que la facilité d’apprentissage deviennent des préoccupations de pre-

mier ordre. La disponibilité de ressources d’apprentissage des API est de grande im-

portance pour parvenir à developer efficacement à partir de différentes sources de doc-

umentation.

Ce mémoire est consacré au problème de découverte automatique de sections perti-

nentes contenues dans les tutoriels des API. Nous traitons ce problème en commençant

par l’identification du type d’API d’un tutoriel pour ensuite le diviser en fragments

qui seront classés d’après leurs propriétés structurelles et linguistiques. Le système que

nous avons développé rend le processus de découverte de sections de tutoriel beaucoup

plus facile. Une évaluation de notre système a été réalisée avec cinq tutoriels et montre

que notre approche peut découvrir des sections pertinentes avec une précision moyenne

de 0.79, 0.73 en moyenne de rappel, et 0.75 de mesure moyenne F1 lorsque entraîné et

testé pour le même tutoriel. Lorsqu’entraîné depuis quatre tutoriels et testé dans avec

le cinquième, nous obtenons 0.84 de précision moyenne, 0.62 de moyenne de rappel, et

finalement 0.71 de mesure F1
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1
Introduction

The number and the size of Application Programming Interfaces (APIs) are continuously

growing. Applications become increasingly dependent on APIs. For example, Java SE 6,

which is the core of all Java applications, contains 3774 classes and 203 packages. Program-

mers, both novice and experienced, are faced with the problem of learning about the vast

number of APIs. Given the time at their disposal, it is not possible for programmers to learn

all the APIs they need in depth.

Numerous studies of API usability identified the critical role of good API usage examples.

As identified by Robillard [28], out of 80 Microsoft developers, 78% mentioned that they refer

to API documentation and 55% to code examples for learning API. However, API reference

documentation can be long and overwhelming. Javadocs and .Net documentations contain

obvious content in 43% and 51% of randomly sampled API type documentations respec-

tively [16]. The second most popular learning resource for API identified by Robillard [28]

were code examples. The lack of provided API resources, especially good examples, is one

of the main obstacles to learning APIs. According to participants, the main roles of code

examples are providing “best practices”, informing about the design of the API, providing

rationale, and confirming programmers’ intuition about how things work. Though code ex-

amples are one of the key learning resources and play a significant role in understanding and

using APIs, they will not be that useful without any description. Nasehi et al. [22] studied a

different characteristics of a good code example. One of the outcomes of that study is that

good code examples should be accompanied with some description of the code.

2
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API tutorials are API learning resources that combine both descriptive text and code

examples. Tutorials usually are organized as a sequence of API usage examples, where each

section addresses a solution for a particular programming task. However, browsing the table

of content of an API tutorial might not help to find useful information about a particular

API element. First of all, as API tutorials are task based, titles usually describe the task

(e.g. “Error Handling” is a title in Apache.Commons.Math library tutorial, and “Input and

Output” in Joda-Time API user guide). Second, the titles of tutorials sometimes are not

informative at all, such as “Next”, “Example”, “Overview”, “General case”, etc. Finally, a

part of a tutorial might contain useful information about an API element even if the section

is not specifically about this API element.

Figure 1.1: Collections framework tutorial - Section
“General-Purpose Deque Implementations”

For example, Figure 1.1 shows a section from the Collections framework tutorial within

the official Java Tutorials which is titled “General-Purpose Deque Implementations” and

is mainly about different implementations of the Deque interface. The section compares

ArrayDeque and LinkedList implementations and mentions useful information for both.

However, a user browsing for LinkedList would hardly access a section titled “General-
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Purpose Deque Implementations”. Searching would not help either because we observed that

in over 50% of cases a section is not directly relevant to an API element that is mentioned

within it.

The other alternative to browsing API tutorials is using search engines. General search

engines are not designed to support programmers in their tasks. Although search engines

are used a lot by programmers, usually programmers need to open the search results to

assess the relevance of a page for their task [29]. Stylos and Myers [29] also note that the

assessment of the relevance of the result page depends on the expertise of the programmer.

The less experienced are the programmers, the harder it is for them to assess the relevance

of the result page. Hoffmann et al. [13] also stressed the importance of the search engines

but mentioned that useful information can be distributed across different search results.

Both Stylos, Myers [29] and Hoffmann et al. [13] proposed search tools for programmers. In

both cases, the search tool was focused mostly on code examples and the code keywords for

retrieving relevant information. In contrast, the current work will mainly concentrate on the

descriptive text as we believe that text contains information for distinguishing less obvious

relevant cases.

In this work we propose a technique for discovering relevant sections of an API tutorial

to help programmers find additional related information about API elements in which they

are interested. The suggested technique automatically analyses API tutorials to assess the

usefulness of the information contained therein using Natural Language Processing and Text

Classification methods.

The remainder of this thesis is organized as follows. In Chapter 2 we present a detailed

formulation of the problem, experimental corpus, introduction to basic concepts used in the

thesis and discussion of related work. In Chapter 3 we present the data preprocessing and

detailed solution description. In Chapter 4 we present the methodology and the results of

data preparation for experiments. In Chapter 5 we present different experiments and results

for the suggested technique. Finally, in Chapter 6 we conclude with the summary of the

results and future work.



2
Problem Description

The main problem of the current work is the identification of sections relevant to an API

element. An API element is generally any member of an API such as a class, a method, a

field, etc. For the current work we limit the problem to classes only. The motivation of this

is that a single section of an API tutorial usually describes a solution for a programming

task by using a set of methods or classes. For example, in the Chat section (Figure 2.1) of

the Smack API tutorial, the Chat.sendMessage() and Chat.createMessage() methods are

mentioned. However, none of them separately describes how to create a chat, which is the

main task of the section.

We say a section is relevant to an API type if it would help a reader unfamiliar with the

corresponding API to decide when or how to use the API type to complete a programming

task. A section might not be solely about the API type and the API type might not be fully

described in the section, but the section might still be considered as relevant.

In the remainder of the chapter, we present the more detailed description of the problem,

necessary background for the solution and related work.

2.1 Problem Formulation

For solving the problem of identifying tutorial sections relevant to an API type, we divide

the problem into three main sub-problems.

First, for recommending relevant tutorial sections for an API type we decided to consider

5
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Figure 2.1: Smack - Section “Chat”

only API types that are explicitly mentioned in the text of the tutorial. It can be challenging

to find where in the text of the tutorial API types are mentioned. API types are not always

mentioned using specific HTML tags. For example, titles which mention API types rarely

use special HTML tags for marking it as such. Besides, API types can have a name which

is also a word in natural language. Even after identifying that a certain word is a code

element it still needs to be disambiguated, which means to map it to the exact API type to

which it refers. For example, if the found word is RealVector, then it should be mapped

to org.apache.commons.math3.linear.RealVector. The more challenging example is the

word Date, which should be mapped to java.util.Date or java.sql.Date as appropriate.

Second, we need to split an API tutorial into sections. The goal is to limit the size
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of the recommended tutorial section so that it is not too long. This is done because more

concise sections are easier for comprehension and thus would be more useful for programmers.

The longer the section is the more effort the programmer needs to invest to find the useful

information. We need to split the tutorial in such way that each section will not be too long

and will be complete in describing a small task.

The third and the main problem to be solved is to determine if a section is relevant

to an API type. The problem of detecting relevance differs from other, apparently similar,

problems in NLP such as opinion or sentiment analysis. Relevant features for these problems

are explicit expressions of concepts such as agreement, satisfaction, negation. Relevance

is often not expressed in a document, rather it is inferred from the document content in

combination with user annotations and code examples. For example, a tutorial section can

mention more than one API type, however it might only contain useful information for some

of them. The main challenge of this sub-problem would be to distinguish between API types

for which a section contains or does not contain useful information. This problem is treated

as a text classification problem where an API tutorial section–type pair is classified to a

“relevant” or “not relevant” category.

The necessary background for the solution of these three sub-problems is presented in

Section 2.3.

2.2 Experimental Corpus

Studying how to discover tutorial sections relevant to API types requires a corpus of tutorials.

We selected five tutorials covering four different Java APIs. We selected the API tutorials

based on several criteria. First, since part of the solution will require access to source code,

we chose Java APIs that are open-source. Our solution requires people to look at the tu-

torial and manually label each section as relevant or not to an API type. That is why we

selected APIs so that the application domain of the API is common enough for annotators to

complete the task without special training. Besides, tutorials should have acceptable quality,
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such as enough coverage of API types, explanation of some complicated parts of the API,

basic grammatical quality, etc. Tutorials should be diverse in size, format and origin. For

example, the apache.commons.math library tutorial was selected because of its large size,

good structure and the complex logic of the API.

Table 2.1 lists all the tutorials selected for this thesis work. It contains the API name,

the tutorial, the short name for the tutorial used afterwards in this thesis and the number of

words in the tutorial.

Table 2.1: Selected Tutorials for Study

API Tutorial Ref. name N of words
JodaTime API User guide1 JodaTime 4659

apache.commons.math library User guide2 Math Library 28971
Java Collections Framework Implementations in Java Tutorials3 Collections (Official) 23583
Java Collections Framework Tutorials by Jakob Jenkov4 Collections (Jenkov) 12915

Smack API Documentation5 Smack 19075

All of the selected tutorials have different formats and styles. For example, the docu-

mentation of the Smack API has a very primitive structure unlike the Math library or Java

Tutorials. JodaTime was mainly used for development of thesis work. Math Library was

used for testing during the development period, and the other three tutorials were used only

for testing purposes.

2.3 Background

2.3.1 Machine Learning

The problem of identifying sections relevant to an API type can be viewed as a text classifica-

tion problem. Classification is a process that assigns a value from a finite number of discrete

categories to each input based on the properties of the input [3, p. 3]. The process can be
1http://joda-time.sourceforge.net/userguide.html
2http://commons.apache.org/proper/commons-math/userguide/
3http://docs.oracle.com/javase/tutorial/collections/
4http://tutorials.jenkov.com/java-collections/index.html
5http://www.igniterealtime.org/builds/smack/docs/latest/documentation/
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based on machine learning algorithms that specify some functions automatically built from

the content of a training set with the objective of maximizing classification performance. For

the current problem, the input will be the pair formed by an API tutorial section and an

API type. The categories to be assigned would be “Relevant” and “Irrelevant”.

There are two types of learning algorithms, namely supervised and unsupervised. In

the former case the training set is annotated with the class labels the algorithms has to

automatically generate. In the unsupervised case the learning algorithm attempts to form

clusters of input data so that class labels can then be associated with each cluster.

In machine learning categories are usually called labels, inputs are called instances and

the properties of input data are called features. The precise classifier, which will assign labels

to input values, is found during the phase called learning or training by a supervised machine

learning algorithm. During training, the supervised machine learning algorithm goes through

examples with correct labels called training set and based on the features and the labels of

the training set it finds the optimal classifier which will describe the training set as precisely

as possible. Afterwards, the trained classifier is tested on new data called test set for which

labels are unknown to the classifier.

The ability of the trained classifier to correctly classify data samples that are not in

the training set is called generalization. Since the training set is just a sample from real

population of data, the testing set can contain unseen cases of data. For this reason, it is

very important to have learning algorithms with a high generalization capability. It is also

very important to have a representative training set with good coverage of all the forms in

which input data express each classification category. Different machine learning algorithms

have different requirements for training data size. Training and testing sets are usually formed

by splitting the input data. However it is possible that the most difficult examples or the

most easy examples will be in the test set by chance.

To eliminate the chance of unfair splits and for a better evaluation of the generalization

of a classifier, cross validation is commonly used. K-fold cross validation divides the input

dataset into k subsets. Afterwards, the model is trained and tested k times, taking one of
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the k subsets as the test set and the remaining k-1 subsets as the training set. This way

each input data participates in testing the model. The final testing error is computed as the

average of all k tests. The extreme case of k-fold cross validation is when k is equal to the

dataset size. That is called leave-one-out cross validation. In this case, each single input

data is held for testing and the rest is used for training.

There are multiple machine learning algorithms available for text classification tasks. A

paper on user reviews classification by Pang et al. [25] uses supervised machine learning tech-

niques for classifying movie reviews. The authors present results for Naive Bayes, maximum

entropy (MaxEnt) and support vector machine (SVM) classifiers. In their study the MaxEnt

and SVM classifiers showed comparable results while the Naive Bayes classifier performed the

worst. Another comparison of supervised machine learning methods for text classification

was done by Zhang and Oles [39] which showed similar results.

2.3.2 Natural Language Processing

Natural Language Processing (NLP) is a field of Computer Science which mainly concerns

spoken or written language processing and interpretation. Some of the main applications of

NLP are information extraction, machine translation, sentiment analysis, question answering.

At its foundation are basic operations such as sentence detection, part-of-speech tagging and,

tokenization. Some of the low-level operations relevant to this thesis are explained below.

POS tagging Part-Of-Speech tagging is the process of automatically assigning part-of-

speech tag to a word. Examples of part-of-speech tags are nouns (NN), verbs (VB), adjectives

(ADJ), etc. Besides assigning POS tags, POS tagging tools can also determine additional

information such as NNS for plural nouns, VBG for verbs ending with the “-ing” suffix, etc.

As an implementation of POS tagging, the Stanford Parser was selected. More information

about the tagger can be found in separate publications [31, 32]. Among different tag sets the

Stanford Parser uses the Penn Treebank tag set [21].
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Stemming Stemming is the process which removes suffixes of the words for transforming

related words to a common form. By referring to related words here we mean words which

have the same root word but might have different functions. Those words are transformed

to the common root, which might not be the morphological root of any individual word. For

example, “argue”, “argued”, “argues”, “arguing”, and “argus” reduce to the stem “argu”. For

stemming we used an implementation of the commonly used Porter stemming algorithm [26].

Lemmatization In this work, in order to acquire the basic form of the word we used

lemmatization. Lemmatization can be viewed as a softer version of stemming, but it uses a

more complex process for removing suffixes. Lemmatization uses vocabulary and morpho-

logical analysis of words to return a word to its base form or lemma. Words which have the

same root will not always be transformed to the same word, because lemmatization uses the

POS tag information of a word. For this operation we also used the Stanford Parser.

2.3.3 Information Retrieval

Information Retrieval (IR) is the activity of discovering resources or materials corresponding

to the needs of users. IR supports users in browsing and searching activities, supports the

task of grouping a large number of documents, and many others. The formal definition [19]

of Information Retrieval is as follows

Information Retrieval (IR) is finding material (usually documents) of an un-

structured nature (usually text) that satisfies an information need from within

large collections (usually stored on computers).

Below the fundamental ideas of IR which are used in this thesis are described in detail.

Vector-Space Model In IR one of the efficient ways of representing a document and the

corpus of documents is the vector-space model. For this representation, one vocabulary is

built for the document corpus. For each document a vector of the size of the vocabulary is
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formed, where each item of the vector corresponds to a word from the vocabulary. If a word

exists in the document then the corresponding item in the vector form of the document will

have a non-zero value; it will be zero otherwise. There are different ways of calculating the

value for the words. For example, the weight can be zero or one indicating the presence or

the absence of the word. The weight can be the number of times the document contains a

certain word. The most commonly used weight for words is TF-IDF, described in the next

paragraph.

Evaluation in IR The most common measures for evaluating the effectiveness of IR tech-

niques are precision, recall, and the measure which averages both, called the F measure [19,

p. 155]. Precision is the percentage of relevant items among all retrieved items. In other

words, precision shows how noisy the retrieved items are. Recall is the percentage of relevant

retrieved items among all relevant items. This shows how effective the algorithm is for finding

relevant items. Precision and recall are always in a trade-off. For example if the algorithm

retrieves all items then surely all relevant items will be retrieved and recall would be 100%.

However, retrieving all items means retrieving not relevant items as well. Therefore, the

precision would be low. The opposite will happen if the algorithm retrieves no item. As

precision and recall are always in a trade-off, the F measure represents a single measure, the

harmonic mean of precision and recall. Various versions of the F measure are possible which

can emphasise the importance of precision or recall. However, in this work F1 is considered,

which gives equal weight for both recall and precision. The F1 score is calculated according

to the following equation:

F1 = 2PR

P + R
(2.1)

TF-IDF In information retrieval TF − IDF is a measure of the importance of a term

for a certain document. There are multiple ways of calculating the term frequency TF and

inverse document frequency IDF [19, p. 118].The most common expression for TF − IDF
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is as follows:

TF − IDF (t, d) = TFt,d ∗ IDFt = TFt,d ∗ log D

DFt

(2.2)

where TFt,d is the frequency of a term in the current document, IDFt is the inverse document

frequency of a term in the corpus of all documents, D is the size of the corpus and DFt is

the document frequency, which is the number of documents containing the term t. This

equation assumes that the importance of the term for document d is inversely proportional

to the percentage of documents in which it appears. However, for some problems we used a

simplified TF-IDF measure which ignores corpus size.

TF − IDF (t, d)simple = TFt,d

DFt

(2.3)

Cosine Similarity One of the applications of Information Retrieval is the task of as-

sessing the similarity of two documents. As a measure of similarity, the well-known cosine

similarity [19, p. 111] is used later in this thesis. The cosine similarity measure assumes a

vector-space representation of documents and most commonly uses TF-IDF term weight-

ing. The cosine similarity of two documents is calculated as the dot product of the vectors

representing the documents.

sim(d1, d2) = V⃗d1 ∗ V⃗d2

|V⃗d1 ||V⃗d2 |
(2.4)

2.3.4 Maximum Entropy

Maximum entropy (MaxEnt) is a model selection principle for modelling distributions, which

we used for obtaining the classifer for our third sub-problem. The MaxEnt approach works

in two directions. First, it models a distribution which supposedly generated the training

set. Second, it chooses a model with as high entropy as possible [20, ch. 16]. The idea of

entropy comes from information theory and is defined as

H(X) = −
∑

i

P (xi) log P (xi) (2.5)

Entropy is a measure of uncertainty or the measure of the information content of a variable

X. By taking the logarithm in base 2, the entropy will represent the expected number of bits
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necessary to encode variable X. It can be shown to have maximum value when the random

variable X is distributed uniformly. The maximum entropy principle favours a model which

is as uniformly distributed as possible taking into account the training data. Thus, the

name of the approach is maximum entropy. The more uniform is the distribution, the more

uncertainty is preserved for unseen data.

In general the idea of maximum entropy can be applied to a variety of problems. For text

classification we are interested in learning the conditional distribution from training data.

One type of maximum entropy model is the loglinear model of the following form

P (c|d) = 1
Z

exp(
∑

i

αifi(d, c)) (2.6)

where Z is the normalization factor, αs are the learnt feature weights learnt and fi(d, c) is

the value of the ith feature for document d and category c. For text classification, features

are usually defined as binary values. Although real-valued features are theoretically possible,

binary features are more common because the learning process is more efficient in that case.

For example, Nigam et al [23] described the use of the maximum entropy method for text

classification with real-valued features. In general, features are defined as

fi,c′(d, c) =


0, if c ̸= c′

wi, Otherwise
(2.7)

The α weights of the features can be learnt using a variety of optimization algorithms.

The literature most commonly mentions iterative scaling [14, ch. 13], generalized iterative

scaling [20, ch. 16], and improved iterative scaling [23]. The solution we used by default uses

the online limited-memory quasi-Newton BFGS optimization method [24, p. 224], which has

been shown to outperform other optimization algorithms for MaxEnt classifiers [17].

In this work features get a category as an argument. In practice, features are created

regardless of the category and afterwards, during the classifier training process, the weights

of features for each category are calculated during the parameter optimization. For example,

suppose we have a set of documents to classify into the “animals” or “politics” categories.
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One of the possible features can be the existence of the word “government”. During parameter

estimation two α weights will be calculated: one for each category. Supposedly, the weight for

this feature in the “politics” category would be bigger than for the “animals” category. After

all features are created and all feature weights are estimated, then for the classification of a

new document, the conditional probability for each category is calculated according to Eq. 2.6.

If the new document contains the word “government” then that feature will contribute more

to the category “politics” and little for the category “animals”. The category with the bigger

conditional probability for the document would be chosen as the classification result.

As any other machine learning technique, MaxEnt can suffer from overfitting. Overfitting

occurs when the classifier chooses a model which adjusts so much to the training set that it

performs poorly on the testing set. For example, let us consider a case where a classifier is

trained to label data with positive and negative labels. If one of the features occurs once in

the training set and the data is positive, then the evidence will suggest for it to have extreme

positive weight. However, in general that might be an incorrect assumption. The testing set

might contain data with the same feature which are actually negative examples. To overcome

this problem usually smoothing or priors are used. For each feature a prior probability is

estimated and applied to the gathered evidence of the feature. This will smooth out the

extreme values. The solution used for the current problem uses a Gaussian Prior which is

defined as

P (αi) = 1√
2πσ2

i

exp
(

−(αi − µi)2

2σ2
i

)
(2.8)

where σ is usually advised to consider as small (in our implementation it is equal to 1) and

µ as 0 [23]. In this particular setting, Gaussian priors helps to keep weights near their mean

and move them away when evidence is found, with a rate controlled by σ. For example,

the case when σ is infinite corresponds to no smoothing. The more evidence for a feature

is found, the more its weight grows. Therefore, the use of priors favours features for which

the training set has more evidence. This is logical because common features carry more

predictive information. More general features will have higher weight, as opposed to more
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specific features. The use of priors smooths weights of the features in order to avoid extreme

weights. There is, of course, a trade-off between closely mapping to the observed data, and

avoiding extreme values for weights.

One of the issues in classification tasks can be the unbalanced distribution of instances

in different classes (e.g., a very high ratio of negative instances, or vice-versa). The trick

usually used with MaxEnt to account for that is the introduction of a dummy feature. This

is a feature which has constant value for all of the data. As a result, during the training

process the feature gets higher weight for the class which is more probable in the training

set. Using this approach we computed a class − feature to address the issue of unbalanced

negative and positive examples.

2.4 Related Work

2.4.1 Natural Language Processing and Information Retrieval

This section presents some of the foundational works in Natural Language Processing (NLP)

and Information Retrieval (IR), ideas which affected the solution of the presented problem.

One of the influential papers in Natural Language Processing is Turney’s [33] paper on

unsupervised classification of reviews as positive or negative. This paper shows that the

overall polarity of a review depends on the polarity of some of its phrases. For each phrase

a score is calculated, which is the mutual information between the phrase and the terms

“excellent” or “poor”. The total polarity of the review is the average of the polarities of its

phrases. Similarly, in case of our problem, tutorial sections contain information that can

be relevant or not relevant for an API type. The same intuition can be used to assess the

relevance of the section based on the specific phrases from the section text.

Kolcz et al. [15] suggest using ideas from text summarization as features for text classifi-

cation. In particular, they propose using the idea of text zones such as title, first paragraph,

paragraph with most title words, the first two paragraphs, first and last paragraphs and all
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sentences with a minimum number of title words. This idea is also used later in our solution.

Another two more recent papers which used a set of different NLP and IR tricks for

automatically extracting knowledge from natural language texts are presented by Fan et

al. [7] and Yates et al. [38]. Fan et al. [7] use a set of NLP operations to extract regular

linguistic patterns and then based on that infer additional axiomic knowledge using ontology-

based generalization. Yates et al. [38] describe the Open IE (OIE) method for automatically

extracting a set of relational tuples from a natural language text. The paper also introduces

TextRunner, a system which assigns probability to tuples and indexes them. Tuples of

related words are automatically extracted from natural language text using machine learning

techniques

2.4.2 Natural Language Processing and Information Retrieval in

Software Engineering

Software systems have various accompanying natural language resources, such as API doc-

umentation, API specifications, requirements, user manuals, bug reports, etc. For building

systems to improve software quality and productivity, it is important to analyse and use the

information provided in natural language resources. Natural language processing and infor-

mation retrieval techniques have been shown to help with a variety of software engineering

problems. The following papers are examples of successful use of NLP and IR techniques for

a variety of Software Engineering problems.

Anvik et al. [1] use NLP techniques to assist the bug assignment task. They convert

each bug report to a feature vector indicating the frequency of the words in the report.

Afterwards, using the names of assigned developers to the bug as labels, the authors train a

text categorization system using SVM.

Wang et al. [35] suggest a duplicate bug detection approach. They use a combination

of two features in which one is a similarity measure between new and existing bugs. As a

similarity measure, the dot product of the vector representation of two bugs was used.
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Ashok et al. [2] create the DebugAdvisor system to assist developers in acquiring the

necessary context during a bug fixing task. DebugAdvisor is an information retrieval system

that can take long queries and apply them to a search database consisting of different types

of documents.

Xiao et al. [37] describe a system called Text2Policy which uses NLP techniques to extract

user access control policies from requirements. In general, Text2Policy uses shallow parsing of

the document sentences and employs that information to identify and classify access control

polices.

Fry et al. [10] suggest a system for reducing software maintenance effort. They argue

that using natural language clues helps in understanding the source code. The approach is

to extract clues in the form of verbs and direct objects from the source code.

Zhong [40] introduces the Doc2Spec system, which applies NLP techniques to API docu-

mentation in order to infer API specification. Zhong uses Named Entity Recognition (NER)

along with a machine learning approach to identify action-resource pairs from JavaDocs.

The other approach to Software Engineering problems is to build structured models of

concepts of a software project and relationships among them called ontologies. Bontcheva

and Sabou [4] propose uniting all software engineering artifacts (e.g. source code, discussion

forums, user manuals, etc.) into one ontology. They present an unsupervised technique

for learning an ontology from different types of source system artifacts, followed by user

validation. For identifying terms and concepts, the authors used several NLP techniques,

such as lemmatization, TF-IDF, POS tagging and word co-occurrence.

2.4.3 Automatically Interpreting API Documentation

We are not aware of any previous study on analyzing API tutorials. However, there are

systems that serve the same general purpose of the work described in this thesis. The general

purpose of this study is to assist developers while they try to gain more knowledge about a

selected API type. Chhetri’s master thesis [5] finds and recommends knowledge items from
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API reference documentation (e.g. JavaDoc).

Rigby et al. [27]’s work on StackOverflow posts mainly focuses on traceability recovery

of code elements. In their work the authors also suggest a method for identifying important

code elements. The authors also present a comparative study of traceability systems, showing

that Recodoc performs best if the list of elements to link to is limited to certain APIs.

Henß et al. [12] took another approach of making knowledge more accessable to devel-

opers. The authors automatically extract FAQs from mailing lists and Q&A online forums.

First, they identify question topics using a machine learning technique called Latent Dirichlet

Allocation (LDA). LDA models word conditional probabilities as a combination of conditional

probabilities of a word given a hidden topic in a fixed size set of topics. Then they select

Q&A for each topic, and finally order the selected Q&A within each topic by relevance of

the question and the answer to the topic.

Another branch of research tries to improve the search experience for software developers.

Assieme [13] is a web search interface that links different sources of information by identify-

ing implicit references of code elements in code examples. Afterwards the authors indexed

documents using text around the code example. Mica [29] is another tool meant to assist

developers in their search process. Mica is built on the Google web API. It takes Google

search results, finds out all keywords of the Java JDK, orders them according to global fre-

quency and total popularity, and if possible, groups them using the hierarchy in the API.

The identified keywords in proper order are displayed in the sidebar and serve as a link to a

list of all results containing that keyword.

Webar et al. [36] extract tips from Yahoo answers for “How-to”-like questions. First they

select forum questions which are in “How-to” form. Afterwards they extract sentences from

the answers which correspond to certain patterns for tips, taking into account part-of-speech

tagging and grammatical rules, then they transform the questions and extracted sentences

into tips. A sample from all extracted tips was evaluated using crowdsourcing and used as a

training set for predicting the quality for all extracted tips.



3
Preprocessing and Classification

In this section we present the detailed solutions for sub-problems as well as the preprocessing

work necessary for the last sub-problem, which is the classification of API tutorial section–

element pairs to relevant or not relevant categories. The first sub-problem is API type

identification and is solved by using a special tool. The description of the tool and the detailed

solution of this sub-problem is presented in Section 3.1. The second sub-problem is tutorial

segmentation. A tutorial is segmented by a two-phase algorithm, where the first phase splits

the tutorial as much as possible and the second phase groups those small chunks according

to the logic of HTML and the desired length of the sections. A more detailed description

of the algorithm and the results for the experimental corpus is presented in Section 3.2.

Section 3.3 describes in detail all pre-processing steps applied to the API tutorials before

text classification, and the details of the text classification.

3.1 Finding API Elements

Finding API types mentioned in the API tutorial can be also viewed as a traceability problem

between an API and its learning resources. For this task we used Recodoc [6], which identifies

API types in two phases. First, it finds all words which might be API elements, based on the

HTML tags and the title of a section where the word was found. Such words are called code-

like terms(CLTs). Second, it disambiguates code-like terms. As Dagenais and Robillard [6]

state, on average, methods with the same name were declared in 13.5 different types in the

20
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four open source systems they studied. Recodoc was showed to find API elements from

API tutorials and mailing lists with 96% precision and recall. This means that around 96%

of the identified API elements were correct and 96% of all API elements mentioned in the

four studied tutorials were identified by Recodoc. Recodoc not only correctly identifies API

elements, but also identifies almost all mentioned API elements.

Recodoc first forms a codebase based on the source code of the API. A codebase is the

collection of API elements in the API. Recodoc links code-like terms to one or more API

elements for which the name matches. As mentioned, different types can contain methods

and fields with the same name. Therefore, code-like terms might be ambiguous if multiple

matches were found. To overcome this, Recodoc takes into account the context of the code-

like term.

Recodoc defines three levels of context. The immediate context of code-like term c in-

cludes all code-like terms which are mentioned with c. The local context of c contains all

code-like terms in the same section as c. The global context of c contains all code-like terms

in the document or tutorial page. For example, consider a section from Smack API tuto-

rial 2.1. In this example, the intermediate context of the API element createMessage is Chat

element, the local context is Chat, sendMessage, String, Message. The global context will

contain all API elements in the same document as the discussed section, including all API

elements from the local context.

Based on these levels of context, a code-like term is considered closer to the other code-

like terms if it appears in more specific context. Recodoc also uses the source code of the

API to verify the existence the API element. As a result, Recodoc returns all API elements

with fully qualified names (FQN).

3.1.1 Data

To identify API elements in the tutorials of the experimental corpus, Recodoc was applied

on each of them. The statistics of the results are shown in Table 3.1. For example, Re-
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codoc found 901 code-like terms for Math Library, out of which 418 were linked to the

apache.commons.math API.

Table 3.1: Recodoc Results for Studied Tutorials

Tutorial N of CLTs N of links
JodaTime 136 72
Math Library 901 418
Collections (Official) 711 574
Collections (Jankov) 556 409
Smack 574 273

The large difference between the number of code-like terms and the number of API ele-

ments is usually a result of using specific HTML tags for parameter names, formulas, numbers

and other words which are not API elements. Recodoc also helps to eliminate noisy cases.

3.2 Tutorial Segmentation

The next step is to split the API tutorial into reasonably small sections. We split the tutorial

so that the length of each segment is between a desired minimum and maximum length. For

setting maximum and minimum lengths we looked at the small tutorial JodaTime. We

divided it only according to the content table and found the lengths overall convenient.

Figure 3.1 shows section lengths for the JodaTime API tutorial. Each bar corresponds to

a section and the height corresponds to the number of words in each section. As can be seen

from the plot, the average length is around 100 to 150 words. Based on this observation, we

selected 100 words as a min length and 150 as a max length for tutorial sections.

We complete the task of segmentation of a tutorial by using the HTML structure of

tutorials. We measure the length of the section by word count, excluding code snippets and

HTML tags. As a result, a section which contains only code snippets will have length 0. To

split the tutorial, we first split it into as small pieces as possible by taking into account the

HTML structure. Afterwards, the pieces are merged back based on continuity and length.

The following is the step-by-step description of the algorithm.
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Figure 3.1: Section Lengths for JodaTime API Tutorial

Step 1. Split the tutorial according to content table (if provided) or header tags.

Step 2. Exclude the title of the section from the following steps

Step 3. For all sections, split in step 1, recursively split all HTML elements if they are

longer than max − min(e.g. longer than 50 words). We try to split HTML

elements to be smaller than max − min, because if so, later, it would be easier

to keep segments within the range of [min, max]. We do not split HTML

elements even if they are longer than max − min, if

a) the HTML element consists of one HTML tag

b) the HTML element is <P> HTML tag

c) the HTML element is <UL> HTML tag, which is for enumeration

d) the HTML element is <TABLE> HTML tag

e) the HTML element is <DD> HTML tag

f) the HTML element is <DT> HTML tag

Step 4. Merge HTML elements by using the structure of the HTML
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a) <DT> should be merged with the following <DD>s (usually <DT> serves as

a title for <DD>s)

b) <UL> should be merged with the previous text (a section cannot start with

enumerating something without a previous introduction)

Step 5. Sequentially merge sibling elements of HTML until the length of the resulting

element exceeds the min length. Afterwards, following siblings with 0 length

are also added. Adding a single element might increase the length of a section

to exceed the min length. However, as elements were split to be smaller than

the max − min except for a few exceptions, the section length will be shorter

than the max length.

Step 6. If a section has been split into subsections in Steps 3,4,5 then the title of the

subsections is formed by concatenating the title of the section excluded in Step

2 with the subsection index.

Note that we can still get sections which are longer than the max length, because we also

want to get sections not only with reasonable size but also with reasonable continuity. By

merging first by logic, we might get chunks of the text which after grouping will exceed the

max length. This is because we do not want to sacrifice the logic of the section because of

the length. Also sections can be smaller than the min length if the initial length is small.

3.2.1 Data

All tutorials except JodaTime were segmented using the algorithm described above. Table 3.2

presents the results of the algorithm. For example, the Math API tutorial was initially

divided into 77 sections according to the content table of the tutorial. Those 77 sections

were afterwards divided into 158 sections with an average length of 203 words. This is

longer then the desired ideal length (between 100 and 150 words) but as mention previously

we prioritize the connectivity of the section above its length. Furthermore, 418 Math API
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elements, identified by Recodoc, were mapped to 102 tutorial sections. This implies that

in the other 46 sections no API element was found. API elements other than classes and

interfaces were substituted with the corresponding class. Overall, there were 251 API type -

section pairs, out of which 102 were used for the development of the classifier for the third

sub-problem.

Table 3.2: Segmentation Results for Studied Tutorials

Tutorial Sections Segmented Sec. mean(lengths) meadian(lengths) Linked Sec. Pairs Annotated
JodaTime 33 33 140 104 29 72 72

Math Library 77 158 203 201 102 251 102
Collections (Official) 56 73 172 163 57 233 233
Collections (Jankov) 70 79 141 132 69 150 150

Smack 60 65 229 212 46 86 86

Figure 3.2 illustrates the density of API types per section for all five studied tutorials.

Each bar corresponds to a section of the tutorial and the height of the bar represents the

number of distinct API types in the section. From figure 3.2 one can observe that usually the

number of API types per section is under 10, however Collections (Official) and Collections

(Jenkov) contain a few mega-sections which have more than 10 API types.

Similarly, Figure 3.3 illustrates the popularity of API types. Each bar corresponds to an

API type and the height of the bar represents the number of sections mentioning the API

type. For example, in Collections (Jenkov) (Figure 3.3(d)) the popularity of API types is

diverse, unlike in JodaTime (Figure 3.3(a)), where one API type (DateTime class) is much

more popular than the majority of API types, which appear just once in the whole tutorial.
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Figure 3.2: Number of API Types per Section
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Figure 3.3: Number of Sections Mentioning API Type
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3.3 Relevance Classification

This section will describe how we identify sections relevant to an API type. As described in

the previous sections, each API tutorial is processed by RecoDoc, and by the segmentation

program. For addressing the third sub-problem we carefully preprocessed API tutorials before

applying the main algorithm. Afterwards, for formed API tutorial section-API type pairs, a

classifier is created using the features that we designed. Using the experimental corpus and

the created classifier we automatically predict whether a section is relevant or not relevant

to an API type. The following subsections will describe in detail the necessary preprocessing

steps for API tutorials in Section 3.3.1, our choice of classifier in Section 3.3.4, and its features

in Sections 3.3.2 and 3.3.3.

3.3.1 Preprocessing

This section describes all of the NLP preprocessing steps applied to the API tutorials. All

the preprocessing steps aim to improve the performance of the NLP operation specifically

for API tutorials.

Sentence splitting One of the basic NLP operations applied to API tutorials is sentence

splitting. For splitting text into sentences, the Stanford Parser1 was used. It considers

the end of the sentence to be found when a sentence-ending character (., !, or ?) is found

which is not grouped with the preceding word (such as for an abbreviation or number).

However, HTML files, where the text is separated with HTML tags, might not have proper

punctuation. That is why, after the HTML file is converted to text, sentences or text blocks

(e.g. paragraphs, enumerations, tables, etc.) are merged together. For example, titles never

contain punctuation, therefore after HTML tags are removed, the title sticks to the first

sentence. Another problematic case is the enumeration, which forms one gigantic sentence

if punctuation is omitted. Besides, API tutorials contain code snippets which might be

1http://nlp.stanford.edu/software/corenlp.shtml
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inserted in the middle of a sentence. For overcoming these problems, two preprocessing

steps are introduced and applied on API tutorials: code snippet collapse and HTML-based

punctuation.

Collapsing code snippets For processing API tutorials, tutorial texts are cleaned of

code snippets. If necessary, the text blocks preceding and following the removed snippets

are linked. First, all the code snippets are collapsed into a special keyword holding a unique

identifier by which the original code snippet can be referred. The unique identifier has the

form of “CODEID=\d” where \d is the number that can be used to retrieve the original code

snippet. Afterwards the program determines if the code snippet is part of any sentence or not.

For example, Figure 3.4 shows a section of the JodaTime API tutorial in HTML format before

collapsing code snippets. When the code collapsing algorithm is applied to it, it transforms

1 ... In datetime maths you could say: </p>
2
3 <div class=" source ">
4 <pre > instant + duration = instant </pre >
5 </div >
6
7 <p>Currently , there is only one implementation of ....

Figure 3.4: Case 1: Before Modification

into the result presented in the Figure 3.5. Note that in the modified version, punctuation

(e.g. “.”) is added after the code snippet, to indicate the end of the current sentence and the

beginning of the new one. Now the sentence detector can successfully separate this example

1 ... In datetime maths you could say: CODEID =0.
2 Currently , there is only one implementation of ...

Figure 3.5: Case 1: After Modification

into two sentences where CODEID will be part of the first sentence. Figure 3.6 shows the

second case, in which a sentence does not finish with the first code snippet, but continues

until the second code snippet. The result of the code collapse algorithm can be seen in 3.7.

Collapsing code segments will not only make sentence detection better and cleaner, but

will also create a possibility to exploit the relationship between sentence words and code
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1 Similarly , for JDK <tt >Calendar </tt >: </p>
2
3 <div class=" source ">
4 <pre >
5 // from Joda to JDK
6 DateTime dt = new DateTime ();
7 Calendar jdkCal = dt. toCalendar ( Locale . CHINESE );
8
9 // from JDK to Joda

10 dt = new DateTime ( jdkCal );
11 </pre >
12 </div >
13
14 <p> and JDK <tt >GregorianCalendar </tt >: </p>
15
16 <div class=" source ">
17 <pre >
18 // from Joda to JDK
19 DateTime dt = new DateTime ();
20 GregorianCalendar jdkGCal = dt. toGregorianCalendar ();
21
22 // from JDK to Joda
23 dt = new DateTime ( jdkGCal );
24 </pre >
25 </div >

Figure 3.6: Case 2: Before Modification

1 Similarly , for JDK <tt >Calendar </tt >: CODEID =25 and JDK <tt >GregorianCalendar </tt >:
CODEID =26.

Figure 3.7: Case 2: After Modification

snippets. A code snippet now is just another word in the sentence and as any other word

in the sentence, it has relationships with sentence words. As API types are also part of the

sentence, now we can identify the relationship between an API type and the code snippet.

If a relationship does not exist, at least we can identify whether the API type appears in the

same sentence with a code snippet. This is important information because usually important

API types of the code snippet are mentioned before it. For example, in Figure 3.7 each code

snippet is preceded by the API type which is the main API element of the code snippet.
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Adding punctuation The second preprocessing step for improving sentence detection is

the addition of punctuations based on the HTML of the API tutorial. As tutorial blocks

are originally separated by HTML tags, punctuations to indicate the end of the sentence are

sometimes omitted. Therefore, when the text of the API tutorial is extracted, the sentences

lacking punctuation are merged together. That is why it is necessary to add punctuation

where possible before converting HTML to text.

API tutorial blocks like titles, the text in table cells, and the text in enumeration lists,

usually lack punctuation in the end and do not start with upper-case. Sometimes paragraphs

can miss the dot symbol in the end of the last sentence as well. After converting HTML to

text, some of the sentences are merged into one sentence. This leads to undesirable behaviour

of the sentence detector. That is why we added punctuation based on the HTML structure

before converting the HTML to text. If HTML tags such as <H1>, <H2>, <DT>, <DD>, <P>,

<TR> end without punctuation then a dot is added at the end. In case of itemized lists such

as <LI>, <TD>, a comma is added for every item except the last one, and a dot for the last

one.

For example, Figure 3.8 shows a section from the Math Library tutorial, which contain

a list (which uses the <LI> tag) followed by titled paragraphs (uses <DT>, <DD> tags). If no

full stop is added then a sentences will be constructed that includes the phrase preceding

the list, all the elements in the list, the title "Initialization", and the sentence following the

list ("The following code..."). After adding the punctuation the list would form one sentence

with the unfinished sentence preceding it, “Initialization” would be the next sentence, etc.

POS tagging As a POS tagger, the Stanford Parser is used as well. Though this package

is very powerful, it was trained on the Wall Street Journal corpus of the Penn Treebank.

Therefore, the POS tagger might be inaccurate when applied to technical documentation.

Technical documentation contains a lot of unseen words or words in unseen contexts. As a

result, Software Engineering specific words and phrases are tagged incorrectly.

For example, the POS tags assigned to the sentence “If this method returns false, the op-
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Figure 3.8: A Section from Math Library Tutorial: High-
lighted for KalmanFilter API Element

erating system does not support changing the display mode.”2 are {If/IN, this/DT, method-

/NN, returns/NNS, false/JJ, ,/, ,the/DT, operating/VBG, system/NN, does/VBZ,

not/RB, support/VB, changing/VBG, the/DT, display/NN, mode/NN, ./.}. The exis-

tence of the terms “false” and “operating system” confuses the parser, which tags “returns”

as plural noun, “false” as adjective and “operating” as verb. In English, false is truly an

adjective and operating system is a noun phrase containing a verb, but in technical language

those are concepts.

One of the solutions for this problem would be to collect a corpus of technical documen-

tation with correct POS tags and train a new model, as is done in the work of Gimple et

al. [11]. The authors described the similar problem for POS tagging of Twitter data. They

manually labelled and trained a new model for tagging this corpus. This would be a great

solution for technical documents as well, however, it requires a lot of time and resources.

The other way to overcome the mistagging problem would be to distinguish concepts

from other words and phrases, and modify the POS tagger accordingly. Quality would be

2example taken from from http://docs.oracle.com/javase/tutorial/extra/fullscreen/displaymode.html
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compromised, as this would not be a general solution but would cover the cases in which the

most common concepts are used. Our solution identifies commonly used multi-word phrases

and modifies the POS tagger to force the POS tags for them. The details are presented in

the following paragraphs.

Multi-word concepts The Software Engineering field, as all other fields, has its own

lexicon. Often Software Engineering terminology contains concepts which are constructed

from one or more words. These combinations of words might seem unusual for NLP tools

which are trained on a general corpus of data. For example, phrases like “operating system”,

“return value”, “scroll pane” or “source code” can be misinterpreted by general NLP tools

which tag the words “operating”, “return”, “scroll” as verbs. As the solution of the third

sub-problem in this thesis uses POS tags of the words, this behaviour becomes an obstacle

and needs a solution.

To overcome mistagging of technical concepts, we used a multi-word term detection al-

gorithm [9]. This method outputs multi-word phrases with corresponding scores. With the

use of this algorithm, we extracted more than 30000 multi-word phrases from official Java

Tutorials3. Around 20000 phrases had a score bellow two. After manual inspection of the

output, we manually selected 10 as a threshold, which filtered out 1037 multi-word concepts

(Appendix B). The selection of those 1037 concepts is based solely on the manually selected

threshold. Therefore, the selection contains some noise. Some of the selected multi-word

concepts are not real concepts, but reoccurring word combinations (e.g. new connection,

current JDK, etc.). Those cases are not manually removed, because they do not have a

negative effect on the following steps of our solution. Besides, in some cases it is question-

able whether a certain phrase represents a concept or not. For example, in the case of “last

element”, “default layout” it is not obvious whether they are concepts or not. Therefore, for

the cleaning concept list we would need multiple annotations to avoid subjectiveness. The

extracted concepts are not representing all Computer Science fields but are biased towards

3http://docs.oracle.com/javase/tutorial/
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Java terminology.

After obtaining the list of concepts, words in these phrases were concatenated so that

from here on they would be treated as one token, and the POS tagger was forced to tag the

phrases as a noun.

Group noun phrases During multi-word concept extraction we observed that usually an

API type is used in the sentence as part of a noun phrase. For example, in the sentence

from JodaTime user guide4: “Within Joda-Time an instant is represented by the Readable-

Instant interface”, ReadableInstant is an API type and the noun phrase it is part of is “the

ReadableInstant interface”. According to the Stanford Parser, “interface” is the main noun

and ReadableInstant is a descriptive word for it. This means that in the above example,

“interface” is the object which “is represented by ...”. Later, in the solution of the third sub-

problem, when we explore the relationships of API types with other words in the sentence, it

is important to map relationships to the API type “ReadableInstant” instead of “interface”.

To overcome this problem, we replaced all noun phrases which contain an API type with

the API type itself. For example, in our previous case “Within Joda-Time an instant is

represented by ReadableInstant”.

POS tagger modification For tagging concepts and API types we needed to force the

tagger to tag them as nouns. It is important to do this before tagging the whole sentence,

because one mistagged word can lead to the wrong tagging of the whole sentence. That is

why it is not enough to overwrite tags for concept words and API types after the tagging

task. It is important to modify the tagger so that from the beginning, it will have proper tags

for concepts and API types. For that, we added one more step before calling the Stanford

Parser which pretags concepts and API types as nouns. Only after that, the parser will be

called on the partially tagged sentence.

4http://joda-time.sourceforge.net/userguide.html
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3.3.2 Feature Design

For constructing features, the JodaTime tutorial was used as a development set. The Math

Library tutorial was used to validate our initial intuitions. The other tutorials were not used

during the feature design and were reserved for the evaluation. Both linguistic and structural

properties of the text were taken into account. Some of the features are real-valued, others

are binary. All used features were divided into five groups, based on the level of detail, and

are presented in Tables 3.4, 3.5, 3.6, 3.7.

Real-Valued Features

Table 3.3 lists real-valued features used for classification.

Table 3.3: Real-Valued Features

Feature Short Description
freq Feature showing how important is an API type

for an API tutorial section, according to the
TF − IDF simple formula

wordNum Feature describing cases when an API type or
part of it are mentioned in the text as simple
words, not as code words

substituteNum Feature describing cases when an API type is a
substitute for its methods and fields

freq As mentioned in Section 2.3, TF − IDF is a measure widely used in IR to describe

the role of a term in a certain document. For feature freq, we chose the simple version of

TF-IDF over the version normalized with the corpus size. Although normalizing the features

is preferable for the MaxEnt classifier, we decided not to be dependent on the corpus size

which in this case should have been the number of sections in the tutorial. Intuitively,

penalizing this feature for the section from longer tutorials is not appropriate. The most

common expression for TF − IDF is as follows:

TF − IDF (c, s)simple = TFc,s

DFc

(3.1)
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where TFc,s is the frequency of the API type in the section and DFc is the section frequency,

which is number of sections containing the API type c.

wordNum This feature represents how many times an API type or part of it is mentioned

in the text of the section. Some of the API types or part of API type names can be used in

the text of the section as simple words and not as a code term. This feature counts those

occurrences and calculates a weight, which we call the wordNum feature. For calculating the

wordNum feature, first the unnormalized weight is calculated according to following formula:

w(c, s) =
∑

lw∈LW (s)
AreAlike(c, lw) (3.2)

where LW (s) is the set of lemmas of all words in the section s. AreAlike is a function which

returns 1 if lw matches fully the API type c name and 0.5 if lw matches c partially. For

detecting a partial match, c is split by CamelCase and each part is compared with lw.

It is known that unnormalized features might cause problems for classification [23]. As

Nigam et al [23] observed, unscaled frequencies of the terms, negatively affected the accuracy

of the MaxEnt classifier. During the initial experiments we observed the same behaviour,

and for that reason we decided to normalize the wordNum feature. As there is no theoretical

upper limit for w, we used an approximate upper limit. We chose 5 to be the upper limit

and calculated the final value for the feature as follows

wordNum(c, s) =


1, if w(c, s) ≥ 5

w(c,s)
5 , Otherwise

(3.3)

For example, Figure 3.8 shows a section from the Math Library tutorial. For the displayed

section and the KalmanFilter class, the wordNum feature value is calculated to be 0.7. No

full match and 7 partial matches are found. As each partial match is equal to 0.5, the

unnormalized weight would be equal to 3.5 according to Equation 3.2. After normalization,

the value we get is 0.7. For the wordNum feature, the title is not considered, because it is

considered as part of the inTitle and inParentTitle features discussed later in this section.
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substituteNum This feature is calculated as follows:

substituteNum(e, s) = Countsubstitute(e, s)
Count(e, s)

(3.4)

As mentioned in Chapter 2, the decision was made to substitute all methods and fields with

their declaring class. The substituteNum feature is used to quantify how often classes are

introduced to substitute methods or fields, opposed to when classes are explicitly mentioned.

Tutorial Level Features

Table 3.4 lists tutorial level features. These are calculated on the basis of the whole tutorial

and have binary values.

Table 3.4: Tutorial Level Features

Feature Description
inParentT itle TRUE for ⟨s, c⟩ if s is a subsection of another

section S and c is present in the title of S

isOnlyOne TRUE for ⟨s, c⟩ if s is the only section of the
tutorial which mentions c

inParentTitle The sections of some tutorials have hierarchical structure; however, in this

work the hierarchical structure is ignored, except for the inParentTitle feature. If a section

has a parent section, then the API type is compared with the title of the parent section. A

match is found if the API element or part of it is mentioned in the title.

isOnlyOne The isOnlyOne feature is a binary feature which describes whether the API

type is common or not across the tutorial. Intuitively, if the section is the only section

mentioning the API type, then there are higher chances that the section is focused on the

API type.
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Section Level Features

Table 3.5 lists section level features, which are calculated based on the information of a single

section of the tutorial.

Table 3.5: Section Level Features

Feature Description
inCode TRUE for ⟨s, c⟩ if s contains a code snippet and

the code snippet contains c

notInCode TRUE for ⟨s, c⟩ if s contains a code snippet and
the code snippet does not contain c

moreThanOnce TRUE for ⟨s, c⟩ if c is mentioned in s as a code
term more than once

once TRUE for ⟨s, c⟩ if c is mentioned in s as a code
term only once

inTitle TRUE for ⟨s, c⟩ if c is present in the title of s

inFirstSent TRUE for ⟨s, c⟩ if the first sentence of s contains
c as a simple word or as a code word

inCode and notInCode These features are one of the few cases when the information

from code snippets is used. Both these features appeared to be very effective, as important

API types used in the code snippets are usually discussed in the text and vice versa.

moreThanOnce and once These features are also very effective, as important API types

are usually mentioned more than once in the text. If an API type is mentioned only once in

the section, then more evidence is necessary to prove the importance of the API type.

inTitle This feature is similar to the inParentTitle feature, but here only the title of the

current section is considered. If an API type is mentioned in the title of the section, this is

important evidence that the API type is the focus of the section.



3.3. RELEVANCE CLASSIFICATION 39

inFirstSent This feature describes the cases in which the text of the section begins by

mentioning the API type. Intuitively, if the text of the section starts with the discussion of

an API type, then the API type should have an important role in the section.

Sentence Level Features

Table 3.6 lists sentence level features, whose values are calculated based on the individual

sentences of a section.

Table 3.6: Sentence Level Features

Feature Description
isExample TRUE for ⟨s, c⟩ if any sentence of s mentions c

as an example

isInParentheses TRUE for ⟨s, c⟩ if any sentence of s mentions c in
a phrase surrounded with parentheses

withCode TRUE for ⟨s, c⟩ if any sentence of s mentioning c
contains a code snippet

importantSentence TRUE for ⟨s, c⟩ if any sentence of s mentioning c
is considers as “important”

modal TRUE for ⟨s, c⟩ if in any sentence of s mentioning
c, a verb applied to c has modal verb

negation TRUE for ⟨s, c⟩ if in any sentence of s mentioning
c, negation is applied to the verb connected to c

inEnum TRUE for ⟨s, c⟩ if in any sentence of s, c is enu-
merated with more than one other API types, or
connected to other API type with “or” conjuga-
tion.

isExample This feature describes the cases in which an API type is explicitly mentioned as

an example. The isExample feature is TRUE if the name of the API type is preceded, in the

same sentence, by one of the following phrases: “such as”, “for example”, or “for instance”.

isInParentheses This feature has the same motivation as the isExample feature. When

an API type is mentioned in parentheses, it also can be an example and carries a secondary
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function for the text. The only exception we considered is when the text in parentheses starts

with the word “note”. When a phrase starts with the word “note”, it can contain important

information, therefore we made the exception for that case.

withCode As mentioned in the Section 3.3.1, after collapsing code snippets, they can

become part of the sentences. This usually happens when an API type is one of the main

components of the code snippet. Based on this observation, we introduced the withCode

feature, which is TRUE if an API type appears in the same sentence with the code snippet.

importantSentence A sentence is considered important if it is in imperative mood or it

starts with instructive words (to, when, by, try, note, in order). We consider a sentence to

be in the imperative mood if any verb of the sentence does not have a subject or its subject

is “you” (e.g. in cases where the tutorial directly addresses a reader).

modal and negation These features are identified by parsing the sentence which contains

an API type. By using the Stanford Parser, all dependencies between the words are identified.

If an API type is the subject or the object of some verb, and that verb is also connected to

a modal verb, then the modal feature is TRUE. If the verb is connected to the word “not”

then the negation feature is TRUE.

inEnum This feature describes the case in which case an API type is mentioned within a

list of items. Intuitively, if a sentence contains an enumeration, one element of which is the

API type, then the sentence will not contain important information for that particular API

type. We consider an API type to be in enumeration if API type is mentioned along with

other nouns separated by the word “or”, punctuation, or by the word “and” if the number

of enumerated words is more than two. The difference for the words “or” and “and” is based

on observations we made during the development period.
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Dependency-based Features

Table 3.7 presents two features that are calculated with a more detailed analysis of the

linguistic properties of API tutorials. The table mentions brief descriptions of the features.

The more detailed description can be found in Section 3.3.3.

Table 3.7: Dependency-based Features

Feature Description
depScore a score representing how relevant or not relevant

is c for s based on the dependencies of c. Depen-
dencies of c are all phrases in s containing c. The
total score is calculated as the average of scores
per dependency.

relScore a score representing how relevant or not relevant
is c for s, based on the relation types of depen-
dencies of c. Relation types of dependencies of
c are the linguistic relations that connect words
to c in the phrases involving c. The total score
is calculated as the average of scores per relation
type of a dependency

3.3.3 Dependency-based Features

In this section, typed dependencies and their use are discussed. Typed dependencies are

also known as grammatical relations. Words in the sentences relate to each other through

syntactical relations (such as subject, object, preposition, etc) whereby the governor is the

word which possesses the relation and the dependent is the word to which the relation is

applied. For example, in the sentence “Cats eat fish” there are two main dependencies. “Cat”

is the subject of “eat” and “fish” is the object of eat. Typed dependencies between words

sometimes carry very important information about the role of the phrase and constituent

words. Certain dependencies might be indicative of the relevance of a section to a class or

not. For example, when a class is the subject of a verb, then it is very likely that class is

the main focus of the sentence. We decided to exploit this information for improving the

classification results. API tutorials are particularly suitable for exploiting the regularities of
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text because they contain repetitive grammatical structures. For examples, three sections in

JodaTime tutorial start with a similar phrase (Figure 3.9).

Figure 3.9: An Example from JodaTime API Tutorial

To use the idea of typed dependencies in the classifier, first we had to identify positive

and negative dependencies and create a database of such dependencies with corresponding

weights. We used Java Tutorials to create the database; which contains one of the tutorials

from the experimental corpus. Around 1785 dependencies were extracted in which either the

governor or the dependent was the code-like term. Afterwards, we annotated each dependency

as positive, negative or not useful, depending on the context. Here, a single sentence where

the code-like term appeared was considered as context. A typed dependency was labelled as

positive or negative if it contributed to the relevance or non-relevance of the code-like term.
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Otherwise, if the typed dependency had no contribution for relevance or non-relevance, it was

labelled as not useful. The definition of relevance here is the same as during the annotation

process discussed in Chapter 4. From 1785 extracted typed dependencies, 841 were classified

as positive, 752 as negative, and 615 as not useful. Those 615 triples marked as not useful

were ignored and were not used in following steps. The useful dependencies overall contained

246 distinct typed dependencies and 39 distinct relations. As a reminder, typed dependencies

are the triples of governor-relation type-dependency such as (cat-subject-eat), while relation

type is only the linguistic relation connecting words such as subject, object, adjective, etc.

For each kind of dependency, a weight was calculated based on the annotation results.

The intuition for the weight calculation was that the more times a dependency appeared as

positive, the larger the weight should be. However the popularity of the dependency should

also have a role. The more popular the dependency, the more it should contribute to the

final weight, as we can be more confident if we have more evidence. Taking into account this

intuition we decided to use the z − score to calculate the weight for each dependency. The

z − score is defined as in Eq. 3.5. It measures how many standard deviations away a piece

of data is from its mean.

Z = x − µ

σ
(3.5)

To use the z −score as a feature for classification, the normalized version of all scores was

calculated. The total score for the section was calculated by taking all dependencies which

contain an API type and averaging them.

Table 3.8 contains a few examples of dependencies. The third and fourth lines contain

dependencies in which all instances were marked as negative. That means that as percentage

of negative cases, those cases are equivalent; however the z − score takes into account the

number of occurrence and, therefore, distinguishes these two cases. The z − score for third

line is -1.81 as opposed to fourth line, which is -4.42. This is because the dependency which

appears 2 times, as in the third line, gives less confidence than the one in the forth line which

appears 12 times.
5dobjMDneg - object of a verb, where verb is preceded by modal verb and negation word - not
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Table 3.8: A Few Examples of Dependencies

Governor Relation Dependant Total N Positive N Z-score Norm.
use dobjMDneg5 clt6 5 0 -2.85 0.32
clt nsubj7 specify 11 11 2.6 0.93

catch dobjMD8 clt 2 0 -1.81 0.44
define prepIN9 clt 12 0 -4.42 0.19

use dobj10 clt 88 61 1.42 0.79

However, the percentage of positive or negative cases is also important. For example, the

fifth line of the table contains a (use-object-clt) dependency. An example of the sentence

containing this dependency can be “If you want to improve the speed of the search operation

use HashMap”. This dependency appeared in 88 sentences of the JavaTutorial and in 69%

of the cases has been marked as positive and in 31% as negative. The z − score for this case

would be just 1.42, which is less than the z − score in second line. Although the number of

occurrences in the second line is much smaller than in line five, all occurrences of line two

were marked as positive, so it has a higher z − score.

3.3.4 MaxEnt as a Choice of Classifier

As discussed in Section 2.3.1, MaxEnt and SVM are classification algorithms which were

proven successful at a variety of tasks, including text classification. As our choice for clas-

sifier, we selected the MaxEnt classifier as it is especially recommended for text classifica-

tion [23], [18]. In text classification, the number of features can easily exceed the number of

data items, leading to sparse features. Nigam et al. [23] showed that for text classification,

a basic MaxEnt classifier has poor feature selection but a MaxEnt classifier with priors per-

forms the best. As our experimental corpus is not large we expect the features to be sparse.

However, MaxEnt is commonly used with binary features and we have a mix of binary and

real-valued features. To check the possible drawbacks of using real-valued features and also
6clt - code-like term
7nsubj - subject of a verb
8dobjMD - object of a verb, where verb is preceded by modal verb
9prepIN - prepositional phrase with preposition IN

10dobj - object of a verb
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perform a basic comparative evaluation of the MaxEnt classifier, we decided to experiment

with a classifier other than MaxEnt. The second option for a classifier was SVM, which is not

restricted to binary features. SVM was not our first choice of classifier because we have small

dataset and Manning et al. [19, p. 308] advise to apply SVM for larger datasets. We used

the implementation of SVM provided by the SVMlight package which is called internally

through the Stanford Core NLP package. The default configuration was used and no special

parameter tuning was performed to adapt the classifier to the observed data.

As real-valued features were one of the questionable cases, we ran the experiment twice:

once without real-valued features and once with all the features. For assessing the effective-

ness of the classifiers for this experiment and for the following ones the precision, recall and

F1 scores are calculated using Leave One Out Cross Validation. As presented in Table 3.9,

the F1 score is always better or the same for the MaxEnt classifier. For a few cases, the

precision of the SVM classifier is slightly better than MaxEnt but the lower recall makes it

less desirable.

This experiment allowed us confirm that MaxEnt is a reasonable choice of classifier by

comparing it to an off-the-shelf classifier.

Table 3.9: Comparative results for SVM and MaxEnt classifiers

Tutorial SVM(All features) SVM(without RV) MaxEnt(All features) MaxEnt(without RV)
P R F1 P R F1 P R F1 P R F1

Jodatime 0.81 0.57 0.67 0.81 0.57 0.67 0.88 0.73 0.80 0.75 0.70 0.72
Math Library 0.70 0.74 0.72 0.69 0.69 0.69 0.71 0.78 0.74 0.69 0.69 0.69
Collections(Official) 0.77 0.30 0.44 0.50 0.07 0.12 0.68 0.61 0.64 0.69 0.55 0.61
Collections(Jenkov) 0.67 0.05 0.09 0.20 0.02 0.04 0.78 0.76 0.77 0.69 0.69 0.69
Smack 0.75 0.89 0.81 0.74 0.88 0.80 0.84 0.88 0.86 0.82 0.80 0.81
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Annotating The Experimental Corpus

Annotation is the process of assigning specific labels to data. The process includes a subjec-

tive judgement of the data. Therefore, annotation is usually done by multiple annotators.

To ensure that multiple annotators understand the task the same way, an annotation guide

was developed (Appendix A) which for our case contains the definitions and the examples

for ”relevant” and “not relevant” cases. The data items to annotate in this case are the pairs

formed by an API type and an API tutorial section in which the class appears. The labels to

be assigned to data are “relevant” and “not relevant”, indicating whether the tutorial section

helps to explain the usage of the API type or not. Annotators were asked to mark each

appearance of an API type in an API tutorial section as relevant or not relevant according

to the annotation guide.

The following sections discuss the annotation tool we developed to support the annotation

task, the annotation process of the experimental corpus, and the annotation results.

4.1 Annotation Tool

For annotating the experimental corpus, we created a special annotation tool to assist an-

notators in their task. As can be seen in Figure 4.1 the annotation tool has the following

functionality. It:

• displays each section or subsection with HTML formatting;

• one by one highlights all API types found in the section;

46
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Figure 4.1: Annotation Tool

• displays the fully qualified name of the currently highlighted API type when the user

hovers over a tutorial section;

• displays the current progress of the entire annotation task on the progress bar;

• displays in concise form the annotation guide, to help annotators in their decisions;

• provides functionality to save the current state of the annotation and resume after

restarting the application;

• does not include a “previous” button on purpose, so that the annotators must follow

their first impression and not overthink the task.

4.2 Annotation Process

The annotation process of each portion of data is an annotation session. During an an-

notation session, two participants annotate the same data and afterwards discuss the dis-
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agreements. In the beginning of each annotation session, two participants were introduced

to the annotation guide and annotation tool. The annotation guide presented in Appendix

A contains a definition of relevance and examples of common cases of non-relevance. For

developing a detailed annotation guide, first we annotated the JodaTime tutorial. Through

the discussion of results and the experience with collaborators, we developed the annotation

guide. Each session of annotation began with 10 warm-up examples so that the annotators

could get used to the task. This warm-up examples were followed by actual data. The

amount of work was divided so that it would not take more than one hour to complete an

annotation task. Within one hour after the annotation task, the two annotators discussed

their disagreements to reach a common decision for each data item. The disagreement dis-

cussion was done in the presence of the author who took notes of the decisions and made

sure that those complied with the annotation guide. The initial disagreement was measured

with the Cohen-kappa coefficient [34] and is presented in Section 4.3.

4.3 Annotation Results

Each of the five tutorials listed in Chapter 2 was annotated according to the process described

above. The annotation of each tutorial was a separate session except Collection(official). As

Collection(official) was too big for one session of annotation, it was divided into two parts

and was annotated in two sessions. The annotators were the author, her supervisor of current

work, a post-doctoral fellow, a PhD student, a Master’s student and an intern of the same

lab, and also 2 Master’s students from two different groups at McGill University.

Table 4.1 presents the size and the initial disagreement Cohen’s kappa coefficient of each

annotation session. Cohen’s kappa coefficient is used to asses the inter-rater agreement.

According to Fleiss’s [8, Chapter 18] kappa over 0.75 can be considered as excellent, 0.40 to

0.75 as fair to good, and below 0.40 as poor agreement beyond chance. In our case results

for two annotation sessions are below 0.4. For JodaTime the kappa score is 0.39 and for

the first session of the Collections(official) it is 0.29. The JodaTime tutorial was used for
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Table 4.1: Annotation Results

Tutorial N of pairs kappa
JodaTime 72 0.39

Math library 98 0.51

Collections (Official) 107 0.29
113 0.61

Collections (Jenkov) 150 0.57

Smack 86 0.63

developing the annotation guide and for clarifying the definition for relevance. That is why

we accepted the annotation results for JodaTime, though the kappa score is a little below

the fair agreement.

According to table 4.1, the kappa score for Collections(Official) is much below the ac-

ceptable agreement score. The main reason was that the annotators initially held radically

different views on doubtful cases. This session contained sections describing the Collections

class, which is a class of static methods. The annotation guide did not include any specific

instructions for this case and annotators had to make their subjective decisions. Annotators

made well-argumented but still radically different decisions. The other session for Collec-

tions(Official) and the session for Collections(Jenkov) contained sections describing the same

problematic class Collections, but the annotators were more similar in their understanding

of the case. This means that the reason of low agreement score was the subjective view of

the annotators. The disagreement discussion for the first session of Collections(Official) was

extensive. It lasted more than an hour, unlike other sessions, for which it took around 15

minutes. Through long and detailed discussion, the annotators and the author made sure

that the best possible decisions were made for each case. Because of the rigorous discussion,

we accepted the results despite the low initial agreement score.

Table 4.2 contains some of the descriptive statistics for the selected tutorials. The second

column of the table contains the total number of API tutorial sections and API type pairs

preceded by the number of relevant pairs. The third column contains the number of distinct
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API types preceded by the number of relevant distinct API types. For example, Collections

(Official) has 219 pairs from which only 56 were annotated as relevant. That is, only 25%

was found to be relevant. However, the third column shows that of the 58 distinct API types

mentioned in the tutorial, 31 had at least one matching relevant section. This means that

the tutorial covered 53% of the mentioned API types with useful information.

Table 4.2: Tutorial Statistics

Tutorial Section-Element Unique API Types
(Relevant/Total) (Relevant/Total)

JodaTime 30/68 21/36
Math Library 54/98 45/74
Collections (Official) 56/219 31/58
Collections (Jenkov) 42/150 21/28
Smack 56/86 29/40

The detailed results of the annotation process can be found in Figure 4.2 and Figure 4.3.

Figure 4.2 contains a graph for each tutorial describing the density of relevant and not

relevant API types in the section, where each section is represented by a bar in the graph.

In Figure 4.3 each bar shows the number of sections containing an API type, the darker part

corresponds to the number of relevant cases and the lighter part corresponds to not relevant

cases.
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5
Classification Results and Experiments

5.1 Classification Results

For evaluating the performance of the system for each tutorial, we performed leave-one-out

cross validation (LOOCV). For each API tutorial section-class pair, the classifier was trained

on the rest of the tutorial and tested on the held-out pair. Results are accumulated for the

tutorial, and precision, recall, and F1 scores are calculated. The results are presented in

Table 5.1.

Table 5.1: LOOCV Results for All Tutorials

Tutorial P R F1
JodaTime 0.81 0.73 0.77

Math Library 0.69 0.74 0.71
Collections (Official) 0.71 0.62 0.67
Collections (Jenkov) 0.84 0.76 0.80

Smack 0.87 0.80 0.83

From the table we can see that the Math Libary and Collections(offical) tutorials are the

hardest ones to classify. For the Math Library tutorial, out of 31 incorrect classifications

(false positives + false negatives), 18 cases had very few features and probabilities for both

“relevant” and “not relevant” categories were between 40-60. That means that the proba-

bility of both categories was close to 50%. To overcome this problem, more features can be

introduced to better distinguish between the “relevant” and “not relevant” categories.

53
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In the case of Collections(Official), the cases with few features were only 5 out of 35

incorrectly classified cases. Collections(Official) differs from other tutorials through its large

ratio of negative cases. In this case, class − feature (described in Section 2.3.4) has a large

negative value. Therefore, more positive evidence is needed to classify the data into the

positive category. That explains the low recall value for Collections(Official).

It might have been possible to improve performance of the classifier in case of unbalanced

datasets if we sample it to have at least a 2:1 ratio of positive and negative examples.

However, taking into account the scarcity of the data we decided to leave it for future work

when bigger datasets will be available.

The other problem common for Math library and Collections(Official) is that some of the

sentence level features had very little weight. For the MaxEnt classifier, the weights of the

features are learned based on number of times they occur for “relevant” or “not relevant”

data items. If a feature occurs a few times, then it is not going to have a large weight. In

other cases, features like importantSentence can a have small but negative weight, while a

negation feature may have a positive weight. Surely, a large number of negative cases can

decrease the weight for intuitively positive features, like importantSentence. Also, having a

bigger dataset with more occurrences of features would improve and stabilize the weights of

the features. However, the problem here is that for sentence level features it is not obvious

how those should be generalized for a section.

For example, if the same section contains an API type in an enumeration (which enables

the inEnum feature) and also mentions the API type twice with a modal verb (which enables

modal feature) then should both features be present, or should the features be combined?

The question is how to accumulate and average binary features for a section. Moreover, the

longer the section gets, the higher is the chance that sentence level features will appear. Math

Library and Collections(Official) are the tutorials with the biggest average section lengths.

A somewhat similar problem was mentioned by Turney [33]. The author estimated the

total polarity of reviews as an average of the polarities of a review’s phrases. This idea

worked for product and car reviews, but failed for movie reviews. Movie reviews appeared
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to contain contradictory information, irony, etc. As in the case of movie reviews, here also it

is not clear how negative evidence and positive evidence should be combined.

A further analysis of the effects of group of features can be found in Section 5.2

It is also interesting to look at the results per API type. Table 5.2 presents coverage

information per API type. The second column of the table shows the number of distinct API

types mentioned in the tutorial. The third column shows the distinct number of API types

that had at least one relevant section according to the annotation. The number of distinct

API types which had both an annotated relevant section and have been recommended is

presented in the fourth column. The last column shows the distinct number of API types

which did not have any relevant sections but were recommended by the classifier.

Table 5.2: Coverage Provided by Classification per API Element

Tutorial N of API T. Relevant Recommended Falsely Recommended

Joda 36 21 17 3
Math 74 45 30 17

Collections (Offical) 58 31 22 7
Collections (Jenkov) 28 21 16 5

Smack 40 29 22 5

The precision and recall per API type seems an interesting information as well. However,

those results are skipped because as API types have low frequency, precision and recall are

not that informative.

5.2 Results for Different Set of Features

Features for the classifier can be divided into 4 groups (tutorial level(T), section level(SC),

sentence level(ST) and real-valued(RV) features) plus two additional features (dependency(D)

and relation(R)-based features), which we considered as separate groups of features. In this

section we explore the effect of each group of features on the classification results.
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Table 5.3 presents the results of LOOCV for each tutorial by different sets of features. The

first six rows are the classification results for separate feature groups. Afterwards, features

are added group by group, in decreasing order of detail. First, tutorial level features and

real-valued features, then section level, sentence level, dependency features, relation features

and then all features together.

Table 5.3: Classification Results for Different Set of Features

Tutorial JodaTime Math Collections Collections Smack
Library (Official) (Jenkov)

P R F1 P R F1 P R F1 P R F1 P R F1

R 0.70 0.70 0.70 0.65 0.78 0.71 0.72 0.32 0.44 0.65 0.48 0.55 0.70 0.96 0.81
D 0.67 0.67 0.67 0.67 0.69 0.68 0.40 0.07 0.12 0.68 0.40 0.51 0.70 0.96 0.81
ST 0.76 0.63 0.69 0.76 0.54 0.63 0.55 0.20 0.29 0.61 0.83 0.71 0.69 0.91 0.78
SC 0.66 0.63 0.64 0.65 0.81 0.72 0.62 0.43 0.51 0.56 0.45 0.50 0.91 0.77 0.83
T 0.72 0.43 0.54 0.61 0.89 0.72 0.33 0.04 0.06 0.62 0.31 0.41 0.70 0.96 0.81
RV 0.77 0.77 0.77 0.58 0.78 0.67 0.50 0.21 0.30 0.79 0.52 0.63 0.68 0.91 0.78

RV,T 0.84 0.87 0.85 0.56 0.65 0.60 0.62 0.23 0.34 0.84 0.62 0.71 0.73 0.73 0.73
RV,T,SC 0.82 0.77 0.79 0.62 0.74 0.68 0.66 0.48 0.56 0.83 0.81 0.82 0.85 0.79 0.81
RV,T,SC,ST 0.81 0.70 0.75 0.70 0.69 0.69 0.70 0.55 0.62 0.85 0.79 0.81 0.87 0.80 0.83
RV,T,SC,ST,D 0.81 0.70 0.75 0.68 0.74 0.71 0.68 0.54 0.60 0.82 0.79 0.80 0.86 0.79 0.82
RV,T,SC,ST,R 0.81 0.73 0.77 0.73 0.76 0.75 0.68 0.61 0.64 0.84 0.76 0.80 0.85 0.79 0.81
All 0.81 0.73 0.77 0.69 0.74 0.71 0.71 0.62 0.67 0.84 0.76 0.80 0.87 0.80 0.83

According to these results, one of the weakest groups of features is the group of tutorial

level features. This can be explained by the small number of features in the group(only two

binary features). However, real-valued features combined with tutorial level features already

shows improvement for the majority of tutorials.

Collections (Official) is the most difficult task according not only to the performance for

all features, but also for separate groups of features. The same relation can be observed

for the Smack tutorial, which has the overall highest performance, and accordingly, separate

groups of features have the highest performance among other tutorials. In other words,there

is no dominant or weak feature group. If a tutorial is well-served by our choice of features

then all features work well, and vice versa. It is also worth mentioning that adding features

based on their level of detail usually improves the performance. The only level of features

which causes problems, for example for JodaTime, is sentence level features. The problem

with sentence level features is discussed in the previous section.
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Another interesting observation is the effect of the dependency and relation features.

Including dependency features, in the case of JodaTime and Math Library, improves recall

and pulls down the precision. In the case of the other three tutorials, both scores go down.

In contrast, the addition of the relation feature always improves or does not change precision

and recall. Surprisingly, the combination of these two always improves or does not change

the performance. For example, for Collections (Official) the addition of the dependency

feature brings down both precision and recall. However, the dependency feature combined

with the relation feature improves performance, compared to using the feature sets without

dependency.

In this experiment we asses the performance of the classifier by increasingly adding more

and more features without changing the training size. In this experimental setting there is a

potential for overfitting. However based on the results presented in the Table 5.3 we can see

that it is not the case. The MaxEnt classifier with the proper configuration is able to avoid

overfitting.

5.3 Cross-Tutorial Testing

One of the research questions was whether features can generalize across the five tutorials we

studied. To answer this question, we set up an experiment to train a model on four tutorials

and test on the fifth one. Table 5.4 presents the results of this experiment, where each line

corresponds to the case in which a tutorial was used as testing and the other tutorials were

used for training. Precision, recall and F1 score were calculated by using the accumulated

false positives, true positives, false negatives, true negatives for all API tutorial section-class

pairs from a given tutorial.

The main tendency that can be noticed is that recall is overall lower if we compare with

recall for the LOOCV results. However, for JodaTime, Math library, Collections (Official)

precision is improved and for Smack it stayed the same. One of the main reasons for the

observed changes was the difference in positive and negative examples ratios between training
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Table 5.4: Cross Tutorial Testing Results

Test Tutorial Precision recall F1

Jodatime 0.94 0.57 0.71
Math Library 0.87 0.48 0.62
Collections (Official) 0.74 0.76 0.75
Collections (Jenkov) 0.80 0.68 0.73
Smack 0.87 0.64 0.74

and testing sets. For example, for JodaTime the number of positive examples is almost the

same as the number of negative examples, but in the training set for JodaTime the percentage

of positive examples is around 35%. As a result the negative class has a slightly higher weight.

Therefore, fewer sections are classified as relevant, which lowers the recall, but improves the

precision. One possible reason for the observed changes can also be the different training set

sizes for each of the tutorial, but this hypothesis needs more exploration.

5.4 Learning Curves

To better understand the limitation of a small corpus size and its effect on the classification

results, we conducted a separate experiment. All tutorials were merged together forming one

corpus of 621 API tutorial section-class pairs. The corpus was shuffled and split into 120

test pairs and 501 training pairs. Afterwards, the experiment was run for different sizes of

training set from 1 to 521. For each experiment, five performance measures were calculated

for both the test set of 120 pairs and the used training set. The resulting lines are called

learning curves and are presented in Figure 5.1.

Figure 5.1(a) shows the percentage of wrongly classified pairs for training and testing

sets, for different size training sets. As the training set grows the overfitting decreases,

taking the testing error down and training error up. The straight line represents an arbitrary

performance threshold of 0.80 for the classifier. Although there is a gap between the training

and testing errors, the performance is stable for the last 100 examples. This means that

most probably adding one or two tutorials to the corpus will not improve classifier results
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significantly.

For better diagnosing the system, learning curves for precision, recall, F1, and false posi-

tive rate (FPR) are presented. Figure 5.1(b) presents the precision change for training and

testing, sets for various training set sizes. Approximately after the training set size exceeded

350 examples, the precision for both testing and training sets reached the desired performance

and remained constant. Figure 5.1(d) presents similar results for a different measure called

false positive rate (FPR), also known as false alarm ratio. This is a measure for describing

cases which were wrongly classified as relevant. The FPR is slightly above 0.1, which means

that only 10% of pairs that are not relevant were mistakenly classified as relevant. These

are good results showing that the final classifier labelings are not very noisy. However, Fig-

ure 5.1(c) shows low results for recall. Recall is the percentage of right classifications among

all relevant examples. Low recall means that there are more relevant examples which were

not classified as relevant. The recall for both training and testing sets are lower than desired.

However, note that for our particular application, precision is always more important than

recall. It is more important to have a low percentage of noise in the classification results,

even if this implies missing potentially useful sections.

Based on this experiment, we conclude that for improving the performance of our system,

increasing the corpus size might not help considerably. Instead, as a first step for improving

the system, more or better features are necessary.

5.5 IR Comparison

We use a MaxEnt classifier for determining relevant sections of an API tutorial for a particular

API type. However, it remains an open question whether it is possible to achieve similar

results by using existing IR techniques. To explore this question, we conducted the following

experiment. Intuitively, the more common words exists between a section and an API type

description (e.g. JavaDoc), the more similar is the section to the API type description, and

thus, the more focused is the section on the API type. Therefore, the similarity measure
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0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Train set size

R
ec

al
l

Test

Train

Desired

(d) FPR for train and test sets
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Figure 5.1: Learning Curves

between an API tutorial section and an API type description is calculated. As a measure

of similarity, the well-known cosine similarity described in Section 2.3 is used. API tutorial

sections and API documentations are considered as a document corpus. For each API tutorial

section, the similarity between the section text (excluding code snippets) and the API type

documentation is calculated.

We consider an API type relevant if the similarity value is higher than a certain threshold.

The algorithm is based on threshold and is not top-n-based because the number of relevant

API types per section varies a lot and can even be 0. For each tutorial, a threshold is
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Table 5.5: MaxEnt vs. CosSim

Tutorial MaxEnt CosSim
P R F1 P R F1

JodaTime 0.81 0.73 0.77 0.73 0.73 0.73
Math 0.69 0.74 0.71 0.67 0.65 0.66
Collections (Offical) 0.71 0.62 0.67 0.30 0.94 0.45
Collections (Jenkov) 0.84 0.76 0.80 0.33 0.88 0.48
Smack 0.87 0.80 0.83 0.74 0.52 0.61

calculated according to the following description. For each API type ci, the top ni most

similar sections were retrieved, where ni is the number of relevant sections for ci according

to the annotation results. The smallest similarity value of the retrieved sections for all

API types is averaged and considered as a threshold afterwards. Based on the calculated

threshold, sections were selected for each API type. As retrieval was done per API type,

precision, recall, and F1 scores are calculated for each API type. Afterwards, calculated per

API element precision, recall, and F1 scores are averaged and are presented in Table 5.5.

As can be seen, the similarity technique fails, especially in the case of many not relevant

examples, such as in the Collections (official) and Collections (Jenkov) tutorials. However,

generally the performance of similarity measure is not that bad. Surely it cannot be used as

an independent solution for our problem but the results can be used as part of some solution.



6
Conclusion and Future Work

6.1 Conclusion

In this work, we suggested a three-step technique for discovering API tutorial sections that

may help explain API types. The experimental corpus contained five tutorials, where two

tutorials were used for development and three were used for testing. Moreover, we showed

that it is possible to get meaningful results having just small amount og data from which to

learn. When a classifier was trained and tested on the same tutorial using One Leave Out

Cross validation, the achieved precision was 0.69-0.81 and recall 0.62-0.80. In case when a

classifier was trained on four out of five experimental tutorials and tested on the fifth tutorial,

precision varied between 0.74-0.94, and recall was 0.48-0.76. The results are promising and

show good generalization for unseen tutorials. However, it is not possible to claim that the

technique will have comparable results for any unseen tutorial. The results show that the

Math Library tutorial and Collections(Official) tutorial are harder to classify because of lack

of positive features.

The main goal of this work was to show that NLP features can be used along with

structural properties of the text for discovering tutorial sections relevant to an API type.

The experiment with different groups of features showed the success of NLP features, as by

adding more detailed features, the performance of the classifier increased.

A special remark needs to be given also for dependency features. Although a relatively

large corpus was used for acquiring the dependencies, these were taken only from one source
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and were annotated only by the author. That is why the database of dependencies is not

complete and the quality is yet to be verified. However, the technique of using dependencies

was overall successful. The experiments showed improvement of the classification results

after dependency and relation features were integrated.

One of the main limitations of the proposed system is the quality of API tutorials. How-

ever, the suggested technique can be used to combine and link multiple resources of the

same API. The third and the main step of the solution can be used for classifying different

resources containing textual information.

6.2 Future Work

In order to keep the problem tractable, some assumptions had to be made about the gran-

ularity of API types, the role of linguistic properties of the text, tutorial structure, and the

knowledge of the user. In future work, we would like to better understand the effect of these

decisions for the improvement of our system.

Considering the class instead of its methods and fields was one the simplifications. It

was justified by the fact that usually not a method, but rather a group of them solves a

programming task. For the case of static methods, this assumption might not hold. However,

handling this problem by decreasing the granularity level to methods and fields would not be

right either. In the future, it would be better if a distinction is made between task-solving

methods and assisting methods. Afterwards, this information could be used by the classifier.

This is a complex problem and it would deserve separate research.

One of the paths taken in this study was to explore the information in the text of the

tutorial and to exploit linguistic properties of the text. That is why code snippets were not

considered in depth. However, we believe that code snippets contain valuable information

which, if added to a classifier, would improve its performance.

Another assumption made in this work was that tutorial sections are independent. That

is clearly not true. Sections are logical continuations of each other. Therefore, it would
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be interesting to use that information and measure its effect on the classification results.

Moreover, the pairs of API tutorial sections and API types were considered independent as

well. If not,the information of previously classified pairs could be used by a classifier when

making a decision for the current one. This could be done similarly to sequential models

used in NLP [30], but the effectiveness of it is a new research question.

The system proposed in this work can recommend tutorial sections for API types explicitly

selected by the programmer. However, the programmer might not know the exact API type

needed to solve the programming task. We believe that after collecting a reasonable corpus

of API resources, a natural language query can be used to find a section addressing the

programming task.
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A
Annotation Guide

RELEVANCE: A SECTION is relevant to an API ELEMENT if: It would help a reader

unfamiliar with the corresponding API to decide when or how to use the ELEMENT

to complete a programming task;

NON RELEVANCE:

1. When the element is mentioned for completeness in a list of elements, without

being otherwise referenced. Example:

Introduction

. . . In particular, we cover the usage of the key DateTime, Interval, Duration and

Period classes. . .

2. When the element is mentioned just to give more information/supplement for

relevant API type by comparison or by other ways. Example:

Accessing Fields

. . . For a complete reference, see the documentation for the base class AbstractRead-

ableInstantFieldProperty.. . .

3. when the element is mentioned as an example which is not showing the use of the

element. Example:

Fields
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. . . So, for instance, the ’day-of-year’ calendar field would be retrieved by calling the

getDayOfYear() method...

4. The information is structural which can be derived from Javadoc or source code.

Example:

Querying DateTimes

int iDoW = dt.getDayOfWeek(); where iDoW can take the values (from class DateTime-

Constants). public static final int MONDAY = 1; public static final int TUESDAY =

2; ...

5. when the information shows a static relationship. Example:

Date fields

The DateTime implementation provides a complete list of standard calendar fields:

dt.getEra(), dt.getYear(), dt.getWeekyear() ...

6. when too little information is given which is can be considered as non-information.

Example:

Querying DateTimes

...For instance, the direct way to get the day of week for a particular DateTime, involves

calling the method int iDoW = dt.getDayOfWeek(),

7. if not sure whether it is relevant, then it cannot be relevant. Example:

Instants

..Within Joda-Time an instant is represented by the ReadableInstant interface...Other

implementations of ReadableInstant include Instant and DateMidnight
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Multi-word concepts

jar file java se java web start java programming language

java sound api text field example index java web start application

web start launch button java platform scroll pane

java web java se development text area java sound

java programming combo box java virtual machine internal frame

source code method purpose code snippet split pane

jar files jnlp file swing components layout manager

start application virtual machine java se development kit programming language

java db data source text component audio data

xml document layered pane application program key value

web page file system command line content pane

described notes netbeans ide deployment toolkit xml schema

source file menu item progress bar programming language keyword

file chooser data type main method text pane

text fields policy file check box color chooser

remote object regular expression class path root pane

development kit xml file service provider tool bar

tool tip java network launch proto-

col

full-screen exclusive mode security manager

radio buttons java compiler java 2d java language

public key javascript code java network launch action listener

formatted text inner class class name tool tips

bidirectional text internal frames java runtime environment menu bar

dialog box java plug-in progress indicator lambda expression

java runtime layout managers text components class files

first argument xml data coffee break midi messages

splash screen input string applet tag type parameters

try block java plug-in software progress monitor menu items

java web start applications java look sound file type parameter
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formal parameter anonymous classes public key certificate sample program

microsoft windows current directory list selection java class

nested classes lambda expressions code fragment key bindings

dynamic tree jdbcrowset object solaris os try-with-resources statement

property change listener inner classes class file glass pane

java network popup menu anonymous class standard midi

ldap server abstract class assistive technologies java application

regular expressions symbolic link standard output system properties

top-level container focus traversal return type midi file

default settings formatted text fields jdbc driver change listener

editor pane ldap v3 default value launch protocol

combo boxes event listeners path environment variable full path

javascript interpreter properties files mouse wheel user interface

code example exclusive mode ldap service loading progress indicator

midi specification local variables byte streams primitive type

window decorations control flow operating system start applications

string argument manifest file different types rich internet

path environment tool tip text file name runtime environment

java applet security properties corresponding adapter class parameterized type

source files properties object error message mouse events

list data api documentation java tutorials radio button

customized loading progress

indicator

java web start software containment hierarchy system administrator

jndi tutorial local classes structured type standard midi file

memory consistency errors tree expansion image icon security properties file

java 2d api standard edition port number tree model

sample code keyboard focus active directory broken links

sax parser terminal window java applets default setting

resource bundle print dialog window listener document object model

deployment tool complete code miscellaneous fixes default button

output stream midi data exception handler sql statements

java content tree java se platform file format input stream

text file mouse button scroll bar focus traversal policy

primitive types control flow statements jdbc api builder tool

remote objects swing trail return value symbolic links

key bytes class variables check boxes generic type

text editor jre software layout management enum type

data format configuration file property editor xml content

web server new connection dialog java collections framework upper left corner

modal dialog logical name current position user input
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example running time stamps display mode local class

static method loading progress type map time stamp

java content example program target data white space

background task data model special characters first line

scroll panes java development xslt examples scroll bars

rich internet applications focus cycle properties file unicode code point

data types memory consistency java development kit grouplayout layout manager

public key bytes primitive data types internal frame listener string builder

java program reference implementation mouse listener caret listener

next generation java plug-in no-argument constructor jtextcomponent class end user

coffees table tool bars maximum values accessible object

sound api nested class java control editor panes

compile-time error rectangle class javafx ui default constructor

java collections instance variables boolean argument text panes

undoable edit listener selection mode default file sql statement

list selection listener editor kit statement object instance method

tree expansion listener when input background color display area

public string generic method useful methods byte array

editable combo box locale object password field custom mapping

base name generic types event handler default file system

full path name midi wire protocol other objects maximum sizes

main class invisible components auto-commit mode ldap provider

double d abstract methods more details pooled connection

demo application remote interface string value start software

focus owner java tutorial document listener apache ant

standard midi files root node static fields unicode characters

unicode code custom renderer swing text html page

column headers java console command-line arguments jlayer class

document filter root element new connection connection object

abstract classes catch block same directory directory server

previous match graphical user single character event handlers

private key tree-will-expand listener class declaration datasource class

oracle directory server focus traversal keys embedded flag expression internal frame events

modeless dialog box method invocation object reference enum types

bicycle class object class java technology different kinds

common problems jdbcrowset objects other types system property

midi message log file default values home directory

item event cancel button default behavior class hierarchy

new material directory structure root panes first time

policy entry initial value left corner first row
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supplementary character first column xml parser local variable

remote method new data watch service schema definition

sqlxml object component class action object package name

mbean server toggle button static nested class stored procedures

default properties input map ui delegate example code

selection model text layout remote interfaces midi wire

java objects java applications import javafx easiest way

further information deque instance simple example join framework

class-path header default locale paintcomponent method latest version

particular type additional information new line accessory component

preview panel resize weight embedded flag worker thread

stylizer sample init method supplementary characters object-oriented programming

key certificate jaxb binding java cache viewer extensible stylesheet language

javafx ui controls tree model listener java control panel list selection events

unicode locale jdbc tutorial box layout file store

rich internet application value pairs file type parent class

adapter class preparedstatement object midi input return values

printable object custom icon audio input mouse motion

datasource objects command-line argument application programs split panes

editable text data file column header class method

object-oriented program-

ming concepts

method declaration numeric value new operator

java code modeless dialog java api primary key

text areas custom painting item events per-pixel translucency

physical fonts editable combo carriage return ldap entry

host name character streams input verifier following step

functional interface focus cycle root new service demo applet

formal parameters new project variable name factory method

uneditable combo jaxb annotations context instance value value

audio data format string s image file reference type

garbage collection new row intrinsic lock enum constants

midi channel data line web site source object

method description midi input port jaxb binding compiler singleton design pattern

upper bounded wildcard java console log static factory method windows active directory

task interface format method dictionary service new page

box class listener api unicode character parent component

files class tray icon compound messages components lesson

java type happens-before relationship mouse-motion listener security environment

select statement following steps search criteria data directory

sound files last name first step other kinds
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oracle directory non-unicode text primary surface layout code

type inference option pane cell renderer key events

last row java vm layerui subclass low-level events

first application table coffees count program xjc binding

last character runtime exception static int parameterized types

data transfer static field accessible context policy tool

raw type property-change listener other swing parallel group

network interface tree node tostring method implementation type

joinrowset object int arguments entire input while loop

stringbuilder class generic methods list data listener swing component

database connection static factory relative path code sample

source data mac os distinct data coordinate system

authentication information x alignment spring layout logical fonts

language code chooser panel value pair total number

throwable class schema type text nodes saxlocalnamecount program

selection changes event example second column third argument

thread interference member variables default implementation pop-up menu

user types xslt directory dateformat class style element

first character collection views pricelist object key-value pairs

different ways rectanglearea class same type attribute values

layered panes authentication mechanism text node early access

result sets static string tree selection xml schema definition

java application launcher java secure socket java language trail vertical scroll bar

formal type parameter java language specification progress indicator class html file

integer arguments standard mbean font object new value

native methods client program int value audio system

deployment options complete list type java java programs

graphical user interface key binding decimal point minimum version

simple name code excerpt output ports relational database

table lists mouse event attribute value back buffer

tree nodes jnlp api java virtual machines unicode locale extension

button text window system java runtime environment

software

fields of type parameters

general information character stream mixer interface preferred width

audiosystem class pooled connections left mouse document listeners

try statement color selection com pareto current state

start button time limit connectionpooldatasource

object

unchecked exceptions

loan amount accessibility api multiple components start method

test harness type arguments legacy code input parameters
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parent web window listeners key listener minimum value

same width above example return statement end users

other applets dom tree design area search filter

unmarshal validate close method second method error handling

color choosers many examples file permissions tabbed panes

line breaks unchecked warning key-released event info objects

check box menu tree selection listener service provider interface instance variable

info object xpath expression item listener list selection model

applet class vertical scroll system resources java cache

schema validation specific file other java coffee houses

system class advanced data more statements singleton design

environment properties focus listener default set byte stream

large object component listener sql type while statement

character sequence separate thread formatter factory collection interface

input file member variable column values default focus

filteredrowset object zip file key code factory methods

tool bar buttons anonymous class expression right arrow key xjc binding compiler

random access files swing text components midi output port security environment property

file systems drivermanager class version note instance methods

desktop pane xml processing images directory same data

sortedset interface java naming window-closing events same file

schema file immutable objects math class word boundaries

specify requirement most applications footer text directory services

first method sound data directory interface unchecked exception

square brackets dictionaryservicedemo sam-

ple

content panes entire code

concrete subclass raw types swing api other threads

input sequence element type simple program current node

chained exceptions file choosers base direction unicode standard

window events compound message uppercase letter absolute positioning

same object single method serviceloader class property editors

digital signature new integer drop-down list structured types

getsource method midi system action events single argument

ldap name hard link minimum sizes double value

desktop api detailed information lead selection static import

object name top jpanel writelist method most cases

same signature third row highscore class sqlxml objects

new thread runapplet function several methods event-dispatching thread

java classes set interface variable names xml element

background thread public key certificate file invisible component top-to-bottom box
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extensible stylesheet filteredrowset objects dual carets component orientation

tip text other data data structure gui builder

key strokes listener interface custom cell int argument

mutable objects many times bridge method xml stream

wildcard use standard swing midi output gui components

null value right arrow alpha value statement objects

table printing formal type required permission list model

other thread synth xml resource bundles element node

empty string default editor various types other file

environment variables class loader data flavor how-to page

question mark primitive data type public interface map interface

class members related classes file formats distinguished name

mxbean interface line argument transaction isolation level standard midi files specification

single line first statement bulk operations name-value pairs

progress dialog serializable interface custom class resultset interface

sax events main-class header essential java boolean value

particular file stringbuilder insert count limit integer value

other things branch nodes visible area potential line

language transformations shaped windows signature object setter methods

menu layout rmi registry random access state element

new object ext directory code base array objects

runnable object empty table further details api examples

midi files example xml jtable class new policy

access modifiers initial program dialog owner right side

new jdbcrowset integer object semantic events stop method

many methods ldap operations web browser new string

multiple lines interface java more components overloaded methods

accessible contexts value property windows xp data streams

method declarations certificate signing accessor methods glob syntax

social networking xmlaccessororder annota-

tion

close button support assistive

first thing particular object new services same class

method references next figure pattern class numeric values

simple type server-side application path instance files specification

icon argument default layout file owner decimal separator

stringbuilder append string regex other information code examples

path variable last element collection view current jdk

read timeout



C
Tutorial Statistics

Table C.1: JodaTime Statistics per Section

Parent Section Title Section Title Rel Total

Section13-Manipulating DateTimes SubSection13.2-DateTime methods 0 1

Section16-Input and Output SubSection16.5-Direct access 0 1

Section16-Input and Output SubSection16.1-Formatters 0 1

Section17-Advanced features Section17.2-Converters 0 1

Section12-Querying DateTimes SubSection12.1-Accessing fields 0 1

Section13-Manipulating DateTimes Section13-Manipulating DateTimes 1 1

Section11-Working with DateTime SubSection11.1-Construction 1 1

Section12-Querying DateTimes SubSection12.3-Time fields 1 1

Section16-Input and Output SubSection16.2-Standard Formatters 1 1

Section11-Working with DateTime SubSection11.2-JDK Interoperability 1 1

Section13-Manipulating DateTimes SubSection13.3-Using a MutableDateTime 1 1

Section17-Advanced features SubSection17.1-Change the Current Time 1 1

Section17-Advanced features Section17.3-Security 1 1

Section3-Instants Subsection3.1-Fields 0 2

Section5-Durations Section5-Durations 1 2

Section16-Input and Output SubSection16.3-Custom Formatters 2 2

Section16-Input and Output SubSection16.4-Freaky Formatters 2 2
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Section14-Changing TimeZone Section14-Changing TimeZone 2 2

Section9-Interface usage Section9-Interface usage 0 3

Section4-Intervals Section4-Intervals 1 3

Section15-Changing Chronology Section15-Changing Chronology 2 3

Section13-Manipulating DateTimes SubSection13.1-Modifying fields 3 3

Section12-Querying DateTimes Section12-Querying DateTimes 0 4

Section1-Intorduction Section1-Intorduction 0 4

Section12-Querying DateTimes SubSection12.2-Date fields 0 4

Section3-Instants SubSection3.2-Properties 1 4

Section6-Periods Section6-Periods 2 4

Section3-Instants Section3-Instants 4 6

Section7-Chronology Section7-Chronology 2 7

Table C.2: JodaTime Statistics per API type

API type Rel Total

AbstractReadableInstantFieldProperty 0 1

DateTimeConstants 0 1

MutablePeriod 0 1

ReadableDuration 0 1

DateMidnight 0 1

DurationField 0 1

MutableInterval 0 1

DateTime.Property 0 1

appendTwoDigitYear 1 1

DateTimeUtils 1 1

PeriodType 1 1

DateTimeFormat 1 1
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ISODateTimeFormat 1 1

DateTimeZone 1 1

BuddhistChronology 1 1

Instant 1 1

ISOChronology 1 1

JodaTimePermission 1 1

DateTimeFormatter 1 1

DateTimeField 0 2

ReadableInstant 0 2

ReadableInterval 0 2

ReadablePeriod 0 2

Duration 1 2

MutableDateTime 2 2

Period 1 3

Interval 1 3

DateTime.Property 1 3

Chronology 2 3

DateTime 8 18

Table C.3: Math Statistics per Section

Parent Section Title Section Title Rel Total

3 Linear Algebra 3.4 Solving linear systems - part 2 0 1

11 Geometry 11.3 Binary Space Partitioning 0 1

4 Numerical Analysis 4.5 Integration 0 1

4 Numerical Analysis 4.7 Differentiation - part 5 0 1

11 Geometry 11.2 Euclidean spaces - part 6 1 1

3 Linear Algebra 3.4 Solving linear systems - part 3 1 1
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4 Numerical Analysis 4.4 Interpolation - part 5 1 1

8 Probability Distributions 8.2 Distribution Framework 1 1

4 Numerical Analysis 4.3 Root-finding - part 7 1 1

4 Numerical Analysis 4.7 Differentiation - part 2 1 1

4 Numerical Analysis 4.7 Differentiation - part 4 1 1

8 Probability Distributions 8.3 User Defined Distributions 0 2

4 Numerical Analysis 4.4 Interpolation 0 2

11 Geometry 11.2 Euclidean spaces - part 3 1 2

3 Linear Algebra 3.3 Real vectors 1 2

16 Exceptions 16.4 Features 1 2

4 Numerical Analysis 4.7 Differentiation 1 2

4 Numerical Analysis 4.6 Polynomials 1 2

7 Complex Numbers 7.3 Complex Transcendental Functions 1 2

7 Complex Numbers 7.4 Complex Formatting and Parsing 2 2

4 Numerical Analysis 4.3 Root-finding - part 4 2 2

4 Numerical Analysis 4.3 Root-finding - part 5 2 2

9 Fractions 9.3 Fraction Formatting and Parsing 2 2

9 Fractions 9.2 Fraction Numbers 2 2

3 Linear Algebra 3.5 Eigenvalues/eigenvectors ... 2 2

11 Geometry 11.2 Euclidean spaces - part 2 2 2

4 Numerical Analysis 4.7 Differentiation - part 7 2 2

4 Numerical Analysis 4.3 Root-finding 0 3

3 Linear Algebra 3.4 Solving linear systems 1 3

7 Complex Numbers 7.2 Complex Numbers 1 3

4 Numerical Analysis 4.4 Interpolation - part 3 2 3

15 Filters 15.2 Kalman Filter 3 3

11 Geometry 11.2 Euclidean spaces 3 3
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3 Linear Algebra 3.6 Non-real fields (complex,fractions ...) 0 4

16 Exceptions 16.3 Hierarchies 0 4

3 Linear Algebra 3.2 Real matrices 1 4

4 Numerical Analysis 4.7 Differentiation - part 6 1 4

4 Numerical Analysis 4.4 Interpolation - part 4 3 4

4 Numerical Analysis 4.3 Root-finding - part 6 5 5

14 Genetic Algorithms 14.2 GA Framework 1 6

14 Genetic Algorithms 14.3 Implementation 4 6

Table C.4: Math Statistics per API type

API type Rel Total

Fitness 0 1

SparseRealMatrix 0 1

MathArithmeticException 0 1

BigReal 0 1

UnivariateDifferentiableSolver 0 1

Space 0 1

NaN 0 1

ExceptionContextProvider 0 1

Vector3DFormat 0 1

MathIllegalArgumentException 0 1

Array2DRowRealMatrix 0 1

UnivariateIntegrator 0 1

PolynomialSolver 0 1

MathIllegalStateException 0 1

TrivariateFunction 0 1

BlockRealMatrix 0 1
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CrossoverPolicy 0 1

BivariateFunction 0 1

UnivariateInterpolator 0 1

MutationPolicy 0 1

MathUnsupportedOperationException 0 1

IntegerDistribution 0 1

SelectionPolicy 0 1

RealVectorFormat 0 1

PolynomialFunction 0 1

FixedGenerationCount 0 1

SecantSolver 1 1

SingularValueDecomposition 1 1

ComplexFormat 1 1

ExceptionContext 1 1

TournamentSelection 1 1

FiniteDifferencesDifferentiator 1 1

TrivariateGridInterpolator 1 1

PolynomialsUtils 1 1

IntervalsSet 1 1

OnePointCrossover 1 1

IllinoisSolver 1 1

BisectionSolver 1 1

HermiteInterpolator 1 1

BicubicSplineInterpolator 1 1

KalmanFilter 1 1

MeasurementModel 1 1

FractionFormat 1 1



86 APPENDIX C. TUTORIAL STATISTICS

Vector3D 1 1

Interval 1 1

ConvergenceException 1 1

EigenDecomposition 1 1

SmoothingPolynomialBicubicSplineInterpolator 1 1

RandomKeyMutation 1 1

BivariateGridInterpolator 1 1

PolyhedronsSet 1 1

PegasusSolver 1 1

PolygonsSet 1 1

BrentSolver 1 1

RegulaFalsiSolver 1 1

ProcessModel 1 1

TricubicSplineInterpolator 1 1

ComplexUtils 0 2

UnivariateFunction 0 2

StoppingCondition 0 2

BigFraction 1 2

UnivariateDifferentiableFunction 1 2

UnivariateFunctionDifferentiator 1 2

UnivariateSolver 1 2

RealMatrix 1 2

AbstractIntegerDistribution 1 2

DecompositionSolver 2 2

BracketingNthOrderBrentSolver 2 2

GeneticAlgorithm 2 2

Rotation 2 2
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RealVector 1 3

Fraction 2 3

Complex 3 4

DerivativeStructure 3 5

Table C.5: Collections(official) Statistics per Section

Parent Section Title Section Title Rel Total

Wrapper Implementations Wrapper Implementations 0 1

Set Implementations Set Implementations 0 1

Lesson: Custom Collection Implementations Lesson: Custom... 0 1

Lesson: Introduction to Collections Benefits of the J... 0 1

Lesson: Introduction to Collections What Is a Collections F... 0 1

Lesson: Algorithms Composition 0 1

Map Implementations Map Implementations 0 1

API Design Return Values 0 1

Wrapper Implementations Checked Interface Wrappers 0 2

Wrapper Implementations Unmodifiable Wrappers 0 2

Summary of Implementations Summary of Implementations 0 2

Deque Implementations Deque Implementations 0 2

Answers to Questions and Exercises: Exercises 0 2

Lesson: Algorithms Searching - part 2 0 2

List Implementations General-Purpose List Implementations 1 2

Map Implementations Special-Purpose Map Implementations 1 2

Set Implementations General-Purpose Set Implementations 1 2

API Design Return Values - part 2 1 2

Lesson: Algorithms Sorting 2 2

Deque Implementations Concurrent Deque Implementations 2 2
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Compatibility Compatibility 0 3

Compatibility Backward Compatibility - part 2 0 3

Lesson: Algorithms Lesson: Algorithms 0 3

Convenience Implementations List View of an Array 0 3

Lesson: Implementations Lesson: Implementations - part 3 0 3

Lesson: Algorithms Routine Data Manipulation 0 3

Wrapper Implementations Synchronization Wrappers - part 2 0 3

Convenience Implementations Immutable Multiple-Copy List 1 3

Set Implementations General-Purpose Set Implementations 1 3

Lesson: Algorithms Sorting - part 3 1 3

Lesson: Algorithms Searching 1 3

Lesson: Algorithms Finding Extreme Values 2 3

Lesson: Algorithms Sorting - part 2 2 3

List Implementations General-Purpose List Impl... 3 3

Deque Implementations General-Purpose Deque Impl... 3 3

Set Implementations Special-Purpose Set Impl... 3 3

API Design Parameters 0 4

Lesson: Algorithms Shuffling 1 4

Lesson: Custom Collection Implementations How to Write... 2 4

Map Implementations Concurrent Map Implementations 2 4

Map Implementations Special-Purpose Map Implementations 3 4

Convenience Implementations Immutable Singleton Set 4 4

Convenience Implementations Empty Set List and Map Constants 0 5

Compatibility Backward Compatibility 1 5

Lesson: Custom Collection Implementations Reasons to Write... 1 5

Lesson: Implementations Lesson: Implementations - part 4 2 5

Set Implementations General-Purpose Set Impl... 3 5
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Wrapper Implementations Synchronization Wrappers 1 6

Compatibility Upward Compatibility 0 7

Queue Implementations General-Purpose Queue Impl... 2 7

Map Implementations General-Purpose Map Impl... 2 8

List Implementations Special-Purpose List Impl... 3 8

Answers to Questions and Exercises: Questions 1 9

Queue Implementations Concurrent Queue Implementations 1 9

Summary of Implementations Summary of Implementations 0 10

Lesson: Custom Collection Implementations How to Write... 2 10

Lesson: Implementations Lesson: Implementations - part 2 0 17

Table C.6: Collections(official) Statistics per API type

API type Rel Total

AbstractSet 0 1

SynchronousQueue 0 1

ArrayBlockingQueue 0 1

Serializable 0 1

LinkedBlockingQueue 0 1

AbstractSequentialList 0 1

BigInteger 0 1

String 0 1

AbstractQueue 0 1

ClassCastException 0 1

DelayQueue 0 1

PriorityBlockingQueue 0 1

ConcurrentModificationException 0 1

Object 0 1
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ListIterator 0 1

File 0 1

TransferQueue 0 1

Random 0 1

Integer 0 1

Card 0 1

CopyOnWriteArrayList 1 1

AbstractMap 1 1

LinkedBlockingDeque 1 1

EnumSet 1 1

WeakHashMap 1 1

EnumMap 1 1

ConcurrentHashMap 1 1

UnsupportedOperationException 0 2

TreeMap 0 2

CopyOnWriteArraySet 1 2

PriorityQueue 1 2

AbstractCollection 1 2

LinkedHashMap 1 2

IdentityHashMap 1 2

AbstractList 2 2

ConcurrentMap 2 2

BlockingQueue 2 2

SortedSet 0 3

Enumeration 0 3

ArrayDeque 1 3

Queue 1 4
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SortedMap 1 4

TreeSet 1 4

LinkedHashSet 1 4

Hashtable 0 5

HashMap 0 5

Deque 2 5

Arrays 0 6

Vector 1 6

Comparator 1 6

HashSet 3 6

LinkedList 2 7

Set 3 12

ArrayList 2 13

List 4 14

Map 3 19

Collection 5 22

Collections 7 22

Table C.7: Collections(Jenkov) Statistics per Section

Parent Section Title Section Title Rel Total

Java Collections Tutorial Java Collections Tutorial 0 1

Java’s Map Interface Removing Elements 0 1

Java’s Deque Interface Removing Elements 0 1

Java’s Deque Interface More Details in the JavaDoc 0 1

Java’s Map Interface More Details in the JavaDoc 0 1

Java’s Set Interface More Details in the JavaDoc 0 1

Sorting Java Collections Sorting Objects Using a Comparator 0 1
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Java Collections Tutorial Java Collections and Generics 0 1

Java’s Queue Interface More Details in the JavaDoc 0 1

Java’s Collection Interface Java’s Collection Interface 0 1

Java’s Collection Interface Iterating a Collection 0 1

Java’s List Interface More Details in the JavaDoc 0 1

Java’s NavigableMap Interface More Detail in the JavaDoc 0 1

Java’s Collection Interface Collection Size 0 1

Java’s NavigableMap Interface headMap(),tailMap() and... 1 1

Java’s NavigableSet Interface pollFirst() and pollLast() 1 1

Java’s List Interface Removing Elements 1 1

Java’s Set Interface Removing Elements 1 1

Java’s Queue Interface Removing Elements 1 1

Java’s Collection Interface Adding and Removing Elements 1 1

Java’s Stack Class Searching the Stack 1 1

Java’s NavigableMap Interface ceilingKey(), floorKey(),... 1 1

Java’s Collection Interface Checking if a Collection Contains ... 1 1

Java’s Map Interface Adding and Accessing Elements 1 1

Java’s NavigableMap Interface pollFirstEntry() and pollLastEntry() 1 1

Java’s NavigableSet Interface ceiling(), floor(), higher()... 1 1

Java’s NavigableSet Interface headSet(), tailSet() and subSet() 1 1

Implementing hashCode() and equals() equals() 0 2

Java’s Set Interface Generic Sets 0 2

Java’s SortedMap Interface More Details in the JavaDoc 0 2

Implementing hashCode() and equals() hashCode() 0 2

Java’s List Interface List Implementations 0 2

Sorting Java Collections Sorting Java Collections 0 2

Java’s Map Interface Java’s Map Interface 0 2
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Java’s Queue Interface Generic Queue 0 2

Java’s SortedSet Interface More Details in the JavaDoc 0 2

Java’s Set Interface Java’s Set Interface 0 2

Java’s Deque Interface Generic Deque 0 2

Java Collections Tutorial Java Collections and the equals()... 0 2

Java’s List Interface Java’s List Interface 0 2

Java’s NavigableMap Interface celingEntry(), floorEntry()... 0 2

Java’s List Interface Generic Lists 0 2

Java’s Deque Interface Adding and Accessing Elements 1 2

Java’s NavigableSet Interface descendingIterator() and... 1 2

Java’s Iterable Interface Java’s Iterable Interface 1 2

Java’s Set Interface Java Set Example 1 2

Java’s Deque Interface Java’s Deque Interface 1 2

Sorting Java Collections Sorting Objects by their Natural Order 1 2

Java’s NavigableSet Interface Java’s NavigableSet Interface 0 3

Java’s Queue Interface Java’s Queue Interface 0 3

Java Collections Overview Java Collections Overview 0 3

Java’s Map Interface Generic Maps 0 3

Java’s Set Interface Adding and Accessing Elements 1 3

Java’s Collection Interface Adding and Removing Elements 1 3

Sorting Java Collections Sorting Objects Using a Comparator 1 3

Java’s Queue Interface Adding and Accessing Elements 1 3

Java’s Stack Class Java’s Stack Class 1 3

Sorting Java Collections Sorting Objects by their Natural Order 1 3

Java’s NavigableMap Interface descendingKeySet() and descendingMap() 2 3

Java’s Map Interface Map Implementations 3 3

Java’s NavigableMap Interface Java’s NavigableMap Interface 0 4
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Generic Collections in Java Generic Collections in Java 0 4

Java’s List Interface Adding and Accessing Elements 1 4

Java’s Deque Interface Deque Implementations 2 5

Java’s SortedSet Interface Java’s SortedSet Interface 2 5

Java’s Set Interface Set Implementations 3 5

Java’s SortedMap Interface Java’s SortedMap Interface 1 6

Java’s Set Interface Set Implementations - part 2 1 6

Java’s Queue Interface Queue Implementations 2 6

Table C.8: Collections(Jenkov) Statistics per API type

API type Rel Total

ArrayList 0 1

Entry 0 1

Iterable 1 1

LinkedHashSet 1 1

PriorityQueue 1 1

ArrayDeque 1 1

LinkedList 0 2

Stack 2 2

SortedMap 1 3

HashSet 1 3

HashMap 1 3

Iterator 0 4

TreeMap 1 4

TreeSet 2 4

Object 0 6

String 0 6
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Comparator 1 6

SortedSet 1 6

Comparable 2 6

Deque 3 6

NavigableSet 5 6

NavigableMap 4 7

Collections 0 8

Map 2 9

Queue 3 9

Set 4 11

List 2 15

Collection 3 18

Table C.9: Smack Statistics per Section

Parent Section Title Section Title Rel Total

Pubsub Publishing to a node 0 1

Messaging using Chats Messaging using Chats 0 1

Roster Item Exchange Send a entire roster 1 1

Roster Item Exchange Send a roster entry 1 1

File Transfer Send a file to another user - part 2 1 1

XHTML Messages Discover support for XHTML Messages 1 1

Multi User Chat Discover MUC support 1 1

Multi User Chat Manage affiliation modifications - part 2 1 1

Pubsub Retrieving persisted pubsub messages 1 1

Multi User Chat Discover room information 1 1

Data Forms Answer a Form - part 2 1 1

Multi User Chat Join a room 1 1
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Multi User Chat Discover joined rooms 1 1

Pubsub Node creation and configuration 1 1

Multi User Chat Create a new Room 1 1

Service Discovery Manage XMPP entity features 1 1

Roster Item Exchange Send a roster group 1 1

Pubsub Receiving pubsub messages 1 1

Message Events Requesting Event Notifications 1 1

File Transfer Send a file to another user 1 1

XHTML Messages Receive an XHTML Message 1 1

XHTML Messages Send an XHTML Message 0 2

Provider Architecture:... Provider Architecture:... 0 2

Message Events Reacting to Event Notification Requests - part 2 0 2

Roster and Presence Roster and Presence 1 2

Service Discovery Discover information about an XMPP entity 1 2

Debugging with Smack Debugging with Smack 1 2

Multi User Chat Start a private chat 1 2

Service Discovery Discover items associated with an XMPP entity 1 2

Data Forms Answer a Form 1 2

XHTML Messages Compose an XHTML Message - part 2 2 2

Service Discovery Provide node information 2 2

Multi User Chat Manage changes on room subject 2 2

Pubsub Discover pubsub information 2 2

Data Forms Create a Form to fill out 2 2

File Transfer Recieving a file from another user - part 2 2 2

Service Discovery Publish publicly available items 2 2

File Transfer Monitoring the progress of a file transfer 1 3

Roster Item Exchange Receive roster entries 1 3
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Multi User Chat Manage room invitations 1 3

Message Events Reacting to Event Notifications 2 3

File Transfer Recieving a file from another user 2 3

Processing Incoming Packets Processing Incoming Packets 2 4

Message Events Reacting to Event Notification Requests 2 4

Multi User Chat Manage affiliation modifications - part 3 3 5

Multi User Chat Manage role modifications - part 2 3 5

Table C.10: Smack Statistics per API type

API type Rel Total

PacketFilter 0 1

DiscoverInfo 0 1

SmackDebugger 0 1

InvitationListener 0 1

PacketExtension 0 1

MessageEventRequestListener 0 1

IQProvider 0 1

InvitationRejectionListener 0 1

SubjectUpdatedListener 1 1

RosterExchangeListener 1 1

Roster 1 1

MessageEventNotificationListener 1 1

FileTransferListener 1 1

FileTransfer 1 1

NodeInformationProvider 1 1

PacketCollector 1 1

PacketListener 1 1
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XHTMLText 1 1

DefaultParticipantStatusListener 0 2

DefaultUserStatusListener 0 2

FileTransferRequest 1 2

DefaultMessageEventRequestListener 1 2

IncomingFileTransfer 1 2

DiscoverItems 1 2

OutgoingFileTransfer 1 2

FormField 1 2

LeafNode 1 2

PubSubManager 2 2

ParticipantStatusListener 2 2

FileTransferManager 2 2

UserStatusListener 2 2

Node 2 2

Chat 0 3

Form 3 3

XHTMLManager 3 3

RosterExchangeManager 3 4

MessageEventManager 3 4

ServiceDiscoveryManager 5 5

Connection 1 7

MultiUserChat 11 11
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