ENABLING PRECISE INTERPRETATIONS OF SOFTWARE CHANGE
DATA

by
David Kawrykow

School of Computer Science
McGill University, Montreal

August 2011

A THESIS SUBMITTED TOMCGILL UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF
MASTER OFSCIENCE

Copyright(©) 2011 by David Kawrykow

Abstract

Numerous techniques mine change data captured in softwetne/@s to assist soft-
ware engineering efforts. These change-based approagheally analyze change sets —
groups of co-committed changes — under the assumptionthasavelopment work repre-
sented by change sets is both meaningful and related to ke singnge task. However, we
have found that change sets often violate this assumptiatobtaining changes that we
consider to benon-essentialor less likely to be representative of the kind of meanihgfu
software development effort that is most interesting tadgochange-based approaches.
Furthermore, we have found many change sets addressingpl@mgiibtasks- groups of
isolated changes that are related to each other, but ndtéo changes within a change set.
Information mined from such change sets has the potentiatferfering with the analyses
of various change-based approaches.

We propose a catalog of non-essential changes and desaribgt@mated technique
for detecting such changes within version histories. Wel wsg technique to conduct an
empirical investigation of over 30 000 change sets capguowver 25 years of cumulative
development activity in ten open-source Java systems. @esiigation found that be-
tween 3% and 26% of all modified code lines and between 2% af@ df6all method
updates consisted entirely of non-essential modificativ¥s further found that eliminat-
ing such modifications reduces the amount of false posidgemmendations that would
be made by an existing association rule miner. These findirgsupported by a manual
evaluation of our detection technique, in which we found tha technique falsely identi-
fies non-essential method updates in only 0.2% of all cadess& observations should be
kept in mind when interpreting insights derived from versiepositories.

We also propose a formal definition of “subtasks” and preaardutomated technique

for detecting subtasks within change sets. We describe éeeshmark containing over
1800 manually classified change sets drawn from seven apgces Java systems. We
evaluated our technique on the benchmark and found thaetimigue classifies single-
and multi-task change sets with a precision of 80% and alret@4%. In contrast, the
current “default strategy” of assuming all change sets mges-task classifies single- and
multi-task change sets with a precision of 95% and a rec@¥afWe further characterized
the performance of our technique by manually assessinglés tlassifications. We found
that in most cases (78%), false classifications made by ohnigue can be further refined
to produce useful recommendations for change-based ag@®aOur observations should
aid future change-based seeking to derive more precisesemiations of the changes they
analyze.

Résum é

De nombreuses techniques de génie logiciel exploitemofmation stockée dans des
systemes de gestion de versions. Ces techniques anafy@srialement des groupes de
changements (ou change sets) sous I'hypothése que Ié ttavdéveloppement contenus
dans ces change sets est a la fois pertinent et relié &utestache. Nous avons constaté que
les change sets violent souvent cette hypothese lorsquiitiennent des changements que
nous considérons comme non-essentiels, c’est-a-direreprésentatif des changements
normalement associés au développement de logiciel. iPamra, nous avons trouvé de
nombreux change sets qui contiennent plusieurs sousgacties groupes de changements
isolés qui sont reliés les uns aux autres, mais pas ardaaohangements du méme change
set. Linformation extraite de change sets contenants dasgements non-essentiels ou
des changements reliés a plusieurs sous-taches perféner avec les diverses techniques
qui exploitent des systemes de gestion de versions.

Nous proposons un catalogue de modifications non-esdestétlune technique auto-
matisée pour détecter de tels changements dans les®sstie gestion de versions. Nous
avons utilisé notre technique pour mener une étude equgirde plus de 30000 change
sets dans dix logiciels libres en Java. Notre étude d&éyde entre 3% et 26% de toutes
les lignes de code modifiés et entre 2% et 16% de toutes l#wdeEs modifiees sont mo-
difiées seulement par des modifications non-essentielless Mvons également constaté
gue I'élimination de telles modifications réduit la gugntle fausses recommandations qui
seraient faites par un analyse de type “associtation ruhngn’ Ces conclusions sont ap-
puyées par une évaluation manuelle de notre techniqueetbetibn, par laquelle nous
avons constaté que notre technique identifie faussementné¢hodes non-essentielles

dans seulement 0,2% des cas. Ces observations devragetargies en compte dans I'in-
terprétation des résultats d’analyse de données coesettas des systemes de gestion de
versions.

Nous proposons aussi une définition formelle de “soukdstet présentons une tech-
nigue automatisée pour détecter les sous-taches daehdmge sets. Nous décrivons un
benchmark contenant plus de 1800 change sets tirées dsystgmes Java. Nous avons
évalué notre technique sur cette réference et avonwérque la technique classifie des
change sets mono-tache et multi-tache avec une praai®®0% et un rappel de 24%.
En revanche, la “stratégie par défaut” qui assume que lEsishange sets sont mono-
taches classifie les change sets avec une précision detQi¥%appel de 0%. Nous avons
eégalement caractérisé la performance de notre techreguévaluant manuellement ses
classifications erronées. Nous avons constaté que dahspart des cas (78%), les clas-
sifications fausses faites par notre technique peuveatatéliorées pour produire des
recommandations utiles.

Acknowledgments

The author thanks his advisor, Martin P. Robillard, for hiany useful insights and
detailed feedback about all ideas presented in this worle author thanks Barthélémy
Dagenais for his expertise in and continued technical sugd&GEMDIFF and PPA. The
author also thanks Yijia Xu, Tristan Ratchford, Karl Kettiewy, Sammy Scheibenhauer,
and Martha Mansternacker for their personal support, asasISERC for its funding.

Abstract

Contents

[
Résune il
Acknowledgments v
Contents Vi
List of Figures iX
List of Tables X
1 Introduction 1
1.1 Background 3
1.1.1 \VersionRepositories 3
1.1.2 ChangeSets. i 4
1.1.3 EditScripts e 5
1.1.4 Current Data RefinementModel 6
1.2 Motivation and Problem Statement 7
1.3 ProposedSolution. 9
2 Detecting Non-Essential Changes 10
2.1 Motivating Example 11
2.2 A Catalogue of Non-EssentialChanges 12
2.3 Detecting Non-Essential Changes 17

Vi

2.4 ViewingDetectedChanges 26

25 Empirical Study 28
251 Setup e 28
2.5.2 Prevalence of Non-Essential Differences. 31
2.5.3 ImpactonAssociationRules 6 3
2.5.4 Impact on Bug-Fixing Change Sets 8 3
2.5.5 Precision of the Detection Technique 40
2.5.6 DISCUSSION 43

3 Detecting Subtasks 46

3.1 Definitions and Problem Statement 48

3.2 Motivating Example 49

3.3 Approach e 51
3.3.1 KeywordConnections 53
3.3.2 Dataflow Connections 54
3.3.3 ContextConnections, 58
3.3.4 Hierarchy Connections 58
3.3.5 CombiningConnections 58

3.4 Evaluation e 59
3.4.1 CreatingtheBenchmark 60
3.4.2 Quantitative Results 62
3.4.3 Qualitative Analysis 65
3.4.4 DISCUSSION 67

4 Related Work 71

4.1 ChangeDescriptions 17
4.1.1 Basic DifferencingTools 17
4.1.2 Tools Detecting Basic High-Level Changes 72
4.1.3 Tools Detecting SystematicChanges73
4.1.4 Similarity DetectionTools 73

4.2 Change Interpretations 75

Vii

4.2.1 Significance of Low-Level Change Types 75

4.2.2 Classifications of Development Activity 76

4.2.3 ImpactofCodeChanges 76

4.2.4 The Qualityof MinedDataSets 77
5 Final Discussion 78

viii

11
1.2
1.3

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2

List of Figures

Data Refinement Model for Change-Based Approaches 6
Non-Essential Changesin Ant 8
Proposed Data Refinement Model for Change-Based Appesac. 9
Trivial Changes between two JavaFiles 11
Catalogue of Non-Essential Changes 13
DiffCat Output Format 12
Overview of the ChangeDistiller Wrapper 22
DiffCat Implementation 24
Viewing Detected Changes 27
Detecting SubtasksinChange Sets 52
Dataflow Connections between Variables. 56

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3

List of Tables

Characteristics of Target Systems 29
Code Churn in Target Systems (inkLOC) 32
Method Updatesin TargetSystems 33
Non-Essential Methods in Change Sets 34
RecommendationQuality 38
Bug-FixingChange Sets 9
Characteristics of Selected Change Sets 41
Precision of the Technique (in%) 42
Characteristics of the Benchmark 60
SplitChange Sets
SplitChange Setsby Category 65

63

Chapter 1
Introduction

Software development teams typically use version reposg®o manage the evolution
of their software systems. Version repositories are udsfchuse they allow developers
to commit (persist) changes made to a set of software agifawd to later rollback those
changes to retrieve previous versions of those artifacedard version repositories such
as CVS or SVN typically enable this service by storing both the currerdpshot of a
given software artifact and a representation of all the gkearthat were applied to previous
versions of that artifact.

Given the widespread use of version repositories in soéwi@velopment, numerous
research techniques now propose mining the change dagal stoversion repositories to
assist software engineering efforts. For example, thengiof change data has been used
to measure code decay in aging systems [9], to predict dafesbftware modules [16,34],
and to detect non-obvious relationships between code elsniE3, 44, 46]. We refer to
these kinds of approaches@sange-basedpproaches.

Although their techniques and end goals may vary, most aaged approaches oper-
ate onchange setsor groups of changes that were co-committed as part of éestognmit
operation to the repository [45]. This approach is motigdig the fact that changes within
a given change set often correspond to the development Watks carried out as part of
a single and coherenhange tasksuch as a bug fix or feature enhancement. Change-based

http://www.nongnu.org/cvs
2http://subversion.tigris.org

approaches exploit this natural correspondence betwesmgehsets and change tasks to
infer useful properties about the underlying softwareesysbeing changed. For example,
Zimmermann et al.’'s ROSE tool mines change sets to identifie @lements that are fre-
guently co-modified together, and then reminds develofddigese associations whenever
the developers are found to modify a given subset of thoseezits [46].

Unfortunately, change-based approaches cannot guartiiatiegata mined from a ver-
sion repository actually conforms to the assumptions treateade about that data. Specif-
ically, it is not always the case that all changes mined frachange set reflect interesting
development work or effort that was necessarily part of glsiand coherent change task.
In fact, as we show in Chapter 2, developers for some softegstems often commit
non-essentiamodifications — changes that are so basic in nature that tbeyot actu-
ally reflect the kind of meaningful software developmenbsgfthat is most interesting to
change-based approaches. For example, whenever a developmes a given code el-
ement using a modern Integrated Development Environm&i)(kuch as Eclipsgall
references to that element will la@itomaticallyupdated by the IDE without the developer
doing any actual work. Such automatetiame-inducednodifications are then less likely
to carry valuable information than other changes, such adifroations to the system’s
control flow, for example. Furthermore, as we show in Chaptelevelopers may also co-
commit groups of changes that are clearly related to meltthange tasks. Such multi-task
change sets may then contain numerous non-essential dieatal associations between
elements that only happened to be committed together, batidid not actually need to
be. Without further processing, this non-essential datdatned within change sets can
interfere with the analyses of typical change-based ajghexa For example, in the case of
the ROSE tool, non-essential or unrelated changes couhpally decrease the overall
precision of its approach by introducing accidental asgmmns between groups of unre-
lated code elements. Our goal is to help change-based ajhy@®aetect and eliminate
such non-essential information from their input data.

Swww.eclipse.org

1.1. Background

1.1 Background

Software developers use version repositories to storaovey®f their source code files.
Many software engineering techniques then seek to mine tfegmsitories to infer useful
properties about the underlying software. To better foataibur problem statement in
Section 1.3, we first outline our assumptions about the kfndformation that is available

to typical repository-mining techniques and how thesenagples process that information
to infer useful properties about the system being analyzed.

1.1.1 Version Repositories

Typical version repositories such as CVS or SVN store soaocke and other software
artifacts as plain text or binary files. They thus provide npport for encoding any pos-
sible syntactic or semantic structure contained withinfiles they store. Change-based
approaches must reconstruct this structure after retigetvie files from the repository.

For a given fileF, typical repositories maintain an explicit copy only of fagest ver-
sion of I, say I, with each prior versiort’;; committed to the repository represented
only as a delta);. Eachd, describes the changes betwenand F},, in terms of the
lines of textin both file versions that do not have a matching line in thefeetive) other
file version. These deltas are typically computed using extiasedliff utility, e.g., the
UNIX DIFF tool [21]. Whenever a developer commits a new version of amgfile F;, the
repository stores the computéd ; and replaces the previous versibn; with this latest
F,. An explicit copy of a given prior versioR; can then be reconstructed and retrieved by
applying the computed deltas 4, ..., J; to the currentF; in succession. Consequently, to
facilitate our subsequent discussion of how this infororats actually mined by change-
based approaches, we will simply assume that change-bppeabahes always have direct
access to the explicit representation of each committed/éitsion, as opposed to some
repository-specific format.

Version repositories do not monitor the specific developmeark made to the files
stored within them. Similarly, diffing tools such asrr only express theverall differ-
ences between two files, not the specific sequence of chamrgatimms that were actually

1.1. Background

performed by developers. Consequently, although thest éimeworks for monitoring
developers as they work, e.gp BVARE [40], we assume that it is generally impossible to
retrieve the actual development work separating the filsigas within a version reposi-
tory.

Typical version repositories allow users to commit mudifiles at the same time. For
a given n-file commit (n> 1), a developer may associate a comment with the commit.
These comments typically consist of a short, free-form tkedcription summarizing the
changes being committed, or a default tag in case no suchiptest was entered. The
repository then associates this comment with eachHil¢ghat was co-committed along
with that comment. However, although each repository aasexthe same comment with
each file from the same n-file commit, only some repositodas, SVN, explicitly encode
which files were actually committed together [38]. Othergshsas CVS, only associate
with each file aime stamghat describes the time that the repository actually pedithat
file [45]. However, given the availability of widely used hatics for reconstructing what
files were co-committed as part of the same commit operatverassume that each n-file
commit can be recovered from the repository [45].

1.1.2 Change Sets

Many change-based approaches, e.g., the ROSE tool, charge setsetrieved from a
version repository to infer higher level knowledge that hipe useful to software de-
velopers. A change set consists of a group of file péfts F!),...(FF, F¥), where the
files F},...,F* represent the group of files that were co-committed by a deeglto the
repository (i.e., an n-file commit), and the fil€s,....F'* represent their respective previous
versions in the repository. Each change set also contains seetadata, which generally
includes the comment associated with the commit, the awthibre commit, and the time
the files that were committed.

Change sets represent partial programs, i.e., a subséfitdsain the system they come
from. Consequently, given only a change set, it is genenalpossible to obtain the same
level of information about the code within its files as can beamed from a complete and
compileable program snapshot. For example, given an arpiglement expression (e.g.,

1.1. Background

a method invocation) within a Java-based change set, ittiguaranteed that this element
expression can be resolved to its fully qualified elemematigre (e.qg., its fully qualified
method signature), because the file in which that elemegt, flne method) was declared
might not be part of the change set being analyzed. In cangksnent resolution of this
nature is always possible for complete and compileableraragnapshots.

Change-based approaches can use one of three possildgisgdb deal with this dif-
ficulty: They mayi) avoid the more complex analyses like element resolutionsangly
limit themselves to deriving information on a textual or ®gtic level, they mayi) main-
tain a snapshot of the system being analyzed, or theyiimayse heuristics to to infer as
much of the missing information as possible. For examplangk-based approaches can
usepartial program analysigPPA) to resolve a high proportion of the element expression
within a change set to their fully qualified element signasui7]. Although PPA typically
enables less element resolution than a complete prograpsisoi it is not always fea-
sible to maintain such snapshots when mining version regoes, for example, because
developers may commit changes that cause the system to gerloompile.

1.1.3 Edit Scripts

Change sets implicitly encode the differences between &ilessp To operate on these im-
plicit differences, an analysis must therefore expressitasing some sort of explicit rep-
resentation, also known as adit script Edit scripts describe the changes between two
files as a sequence of fine-grain edit operatignse;), where eachio;, e;) encodes some
fine-grain element; and some operatiot) that describes what happenectiwetween the
two file versions. Edit scripts allow change-based appresith link code elements across
program versions and to then assess how those elementshvesrged [26].

The most general edit scripts are computed by the UNIX tool, which describes
the differences between two files in terms of line insertiand deletions [21]. In con-
trast, more advanced diffing tools compute edit scripts imseof actual code blocks
or program statements, and whether these were modified oeanowt just inserted or
deleted [11]. The tradeoff in this case is that more expveddiffing tools allow change-
based approaches to reason more precisely about the spéerfients that were modified

1.1. Background

Change Set > Edit Script —>» Edit Model |—>» High-Level Property

[] Data Format =~ —> Refine into

Figure 1.1: Data Refinement Model for Change-Based Appexch

between versions, but that they do so with higher computatioverhead, or only for spe-
cific inputs, e.g., only for Java files.

1.1.4 Current Data Refinement Model

Typical change-based approaches, such as the ROSE toelasakput a collection of
change sets from a given software system’s version repgsital produce as output some
kind of higher-level knowledge that is usable by a softwaggetbper. To help abstract
the specific details of how each individual change-basedoagh achieves this, we can
consider all change-based approaches to be roughly eguoivi@ a series of data refine-
ments, which we depict in Figure 1.1. As we show in the figunange-based approaches
start by extracting from a given change set an edit scrigtdeacribes the changes en-
coded by that change set. For example, ROSE infers the nptydimes of code that
were added or removed as part of the change set. This egit &then converted into a
high-level edit model that describes the low-level detaflshe edit script in terms more
closely aligned with the goals of the approach. For exanfip@SE maps the added and
deleted code lines of the edit script to the functions thatweodified by those operations.
Finally, this edit model is used to infer high-level propestthat might then be useful to a
software developer. For example, ROSE uses groups of médifrections to boost sup-
port and confidence values for an association rule desgriibimctions that are frequently
co-modified together.

1.2. Motivation and Problem Statement

1.2 Motivation and Problem Statement

Typical change-based approaches often assume that a d¢igege set captures software
development effort that is both coherent and essentiale¥ample, the ROSE tool implic-
itly assumes that methods updated as part of the same chetgars all related to a single
change task anil) all capture what can be referred to essentialoftware development
effort, such as changes related to bug fixes or feature eehsends, as opposed to those
that were automatically performed by an IDE, for exampleweeer, this assumption does
not always hold in practice. Developers might commit changéated to multiple change
tasks, or they might commit what we refer toram-essentiathanges, which do not rep-
resent the kind of meaningful development effort that is thmatgresting to change-based
approaches. To illustrate this, we can consider two chaatedawn from the version
histories of two open-source Java projects, the first frowt Aa task management systém,
the second from XRCES an XML processing tool.

The first change set includes updates to the syntactic coatesix methods, among
other change$.The change set's commit comment indicates that it is relate@ “update
to useget Logger () . <net hod>() rather than og() ,” which involves a “move [of the]
EchoLevel inner class to [a] top level class.” However, in this case,amual inspection
of the change set reveals that it would be inappropriate fonange-based approach to
associate all of the changes in the change set with the edlated to the main or any other
important development task. Specifically, apart of the wetlted to the main task, the
developer also performs a number of less meaningful codmales, among them the re-
naming of three fields (e.d.j | e tomf i | e) and a number ohon-essentiainodifications
to two of the six methods, some of which are shown in Figure TRRese non-essential
modifications are so basic that they do not really captureitie of meaningful software
development effort that is most interesting to change-thaggproaches, e.g., updates to
method invocations, control or data flow, etc. It would thesitappropriate to treat the
two method updates resulting from these very simple modiifica in the same way as the

“http://ant.apache.org
Shttp://xerces.apache.org/#xerces2-j
6Committed bydonal dp on 2001-12-29 at 07:16:00

1.2. Motivation and Problem Statement

Iz
* Sets the file attribute. Fox
i t Sets the file attribute.
+ file The new File value '
* + file The new File value
public void setFile(File file) v/))
{ public void setFile(final File file)
this.file = file; i
m_file = file;

Figure 1.2: Non-Essential Changes in Ant

four resulting from the more meaningful work related to thaimchange task described
in the commit comment. For example, the association betweese two and the other
four methods, as might be captured by the ROSE tool, woulé$erheaningful than the
associations between the four methods associated withdhreahange task.

The second change set includes structural updates that &g methods and one
field definition/ Without further insight into the changes within this chasgg, a typical
change-based approach might then assume that these fiven¢éllavel updates are part
of a single and coherent change task, and perhaps infei@ddiproperties based on this
information. However, a manual inspection of the changeesetals that this interpretation
would be incorrect. In fact, as is explained in its commit coemt, the change set performs
changes related tihreeseparate subtasks: “1. fixing bug [623]” in theURI class (one
method),ii) “2. fixing bug [2451]” within theDat at ypeVal i dat or Fact oryl npl and
Traver seSchema classes (two methods), amg “3. fixing an error message” within
the SchemaMessages andTr aver seSchena classes (one method, one field definition).
In this case, it would be more appropriate to split each nekthrofield update based on
the coherent subtask it actually corresponds to. For exanipé ROSE tool could avoid
possible noise in its detected associations by splitting¢hange set into three separate
change tasks, one per bug fix.

As these two examples show, it is not always appropriategarae that all the work
within a change set is both coherent and relevant. In thedkainple, the developer per-
forms work that includes a number of changes that should edtdated in the same was
as the work related to the change set’s main change task.elsetond, they committed
work that relates to several change tasks. Ideally, suchggsashould be appropriately

“Committed bysandygao on 2001-07-13 at 01:54:00

1.3. Proposed Solution

Edit Model 1 |—)| High-Level Property 1 |

Essential Changes : :
Change Set I»' Edit Script . .
Non-Essential Changes | Edit Model N |9| High-Level Property N |

[] pata Format —> Refine into

Figure 1.3: Proposed Data Refinement Model for Change-Bapptbaches

catalogued for the change-based approaches that opertteran However, we know of
no automated technique that can help change-based appsoactke these kind of distinc-
tions between the changes within change sets.

1.3 Proposed Solution

We propose an automated technique thabmputes a fine-grained edit script describing
changes within a change sé), identifies changes that we consider tormn-essential
andiii) identifies subtasks within change sets, or groups of chahgésare related to each
other, but unrelated to other groups of changes within theeseghange set.

Figure 1.3 illustrates how the proposed improvements oftecinnique relate back to
the data refinement process used by change-based appreackesin Figure 1.1. The
first goal of our technique is to allow change-based appegtheliminate changes that are
less likely to reflect the kind of meaningful effort that ogpitally associates with coherent
change tasks. The second goal is to further split this mgéulieffort into separate and
cohesive subtasks, thus allowing a more fine-grained tagétlproperty inference than
would otherwise be possible.

We further elaborate on each of these goals in the rest ofitesertation. Chapter 2
further motivates our detection of non-essential diffee=nand outlines our efforts to detect
them. Chapter 3 presents our technique for splitting chaegginto subtasks, as well as
an evaluation of its usefulness. Chapter 4 presents anieweof prior research related to
our two goals. Finally, Chapter 5 presents a final discusabut our findings. We have
also released all code, experimental designs, and gedeatata on a companion website:
http://www.cs.mcgill.ca/"dkawry/thesis.

Chapter 2
Detecting Non-Essential Changes

Change-based approaches generally seek to model only thasges that are most
likely to represent the kind of software development efthit is most relevant to the
actual analyses of those approaches. For that reasongdiffols such as Fluri et al.'s
CHANGEDISTILLER automatically filter out what can be referred totasial changes,
e.g., those arising from simple code rearrangement, thegtinoa or removal of unneces-
sary curly braces, or updates to the lincensing informagiotihe top of a file [11]. The
idea is that changes like these are less likely to be assdcwith the most meaningful
kind of development effort, such as effort related to bugdire feature enhancements.
For example, @ANGEDISTILLER deems the two Java files in Figure 2.1 to be identical
because the only differences between them are trivial inreatNone of them affect the
behavior or structure of the code they modify. All that cheshgetween the two versions is
i) the location of thé i el d attribute w.r.t.net hod, ii) the location of the curly brace near
met hod, andiii) the indentation of the two integer declarations withn hod.

As part of our manual investigations of change sets withfiwsse archives, we have
come across an additional group of changes that, like trohanges, are less likely to
represent the kind of development work that is most likelpéandicative of meaningful
software development activity. However, unlike trivialactges, no modern change-based
approach actually detects or removes these kind®pofessentiathanges when analyzing
change sets. In this section we provide examples of what wsider to be non-essential
changes and describeHBCAT, our novel diffing infrastructure for detecting these kinds

10

2.1. Motivating Example

@SuppressWarnings (" unused") 2 @SuppressWarnings ("unused")
public class V1 { 4public class v1 {

private Object field; public void method (}
7 {
public void method () { 8 int x = 5;
int x = 5; =} int y = 6;
int y = &; 10 }

12 private Object field;
i 3

Figure 2.1: Trivial Changes between two Java Files

of changes within Java change sets. We useeFQOAT to study the prevalence of non-
essential differences in change sets capturing over twitrgyears of development history
in ten long-lived open-source software systems. In doingveofound that approximately
10% of all modified lines of code and 8% of all updated methadsupdated entirely by
the kinds of non-essential differences we detect. We algnddhat non-essential method
updates can have a non-negligible impact on the kinds ofcaggm rules that might be
inferred by tools like Zimmermann et al.'s ROSE tool [46].€Ble and other observations
are important to keep in mind when studying changes mined frersion histories.

This chapter is an extension of our previous paper on noeréiss changes in version
histories [23]. Everything presented in that previous papeur own work.

2.1 Motivating Example

We illustrate the concept of non-essential differenceslaeid potential for interfering with
higher-level information extracted by change analyseh wait actual change set retrieved
from the revision history of AUREUS, a highly downloaded media sharing applicatton.
The change set includes modifications to 77 methods, amdrey structural changes.
The modified methods are spread out across 55 classes, whitheanselves spread out
across 24 packages. The method modifications all involuetstrally meaningful updates
to method invocations,f -statement conditions, or variable assignments. In ay 300
lines of code are affected by the change, none of them wihsitespr documentation-related.
All of this information can be readily extracted using cunttg available automated differ-
encing techniques.

Ihttp://www.vuze.com

11

2.2. A Catalogue of Non-Essential Changes

As the change appears to be quite large, to span a signifioamter of elements, and
to feature non-trivial structural changes, analyses dpgyat any of these levels of ab-
straction might infer that the change is likely to introdweceug [34] or be symptomatic
of a decaying system [9]. Other analyses might mine the maywjse associations
between the modified methods and eventually detect noreabwdependencies between
them [46]. However, the developer who committed the chanbasacterizes the commit
in another way. Their commit comment reads: “[Renamed] a&tants class to Con-
stantsV3 to make it easier on my brain.” Indeed, the develogggamed th&onst ant s
class taConst ant sV3 and then committed all files that were trivially modified besa of
references to th€onst ant s class.

Based on this manual assessment, automated interpratafithnis change set based on
lines, fine-grained structural differences, or the set ofatpd methods, are likely to yield an
inaccurate interpretation of the software developmenvtiacbr effort behind the change,
and may thereby yield incorrect conclusions about potehtigs, system complexity, or
non-obvious associations between methods. In this caseteatibn of rename-induced
and other non-essential differences would have supportedra meaningful abstraction
of the change set.

2.2 A Catalogue of Non-Essential Changes

We informally define non-essential changes to be low-lewdlecchanges that argcos-
metic in natureii) generally behavior-preserving, aiil unlikely to yield further insights
into the roles of or relationships between the programiestihey modify. We keep our
definition open-ended to emphasize that the true “essieytiaf code changes still de-
pends on the individual contexts in which they are studiea féd¢us on those changes
that are unlikely to capture meaningful information abde development effort behind a
change in many contexts.

To help catalog the kinds of non-essential differences weistl, we refer to two ver-
sions of the same Java code, which we show in Figure 2.2. Toeénsions of theNEl
class exhibit a number of differences, almost all of whioh maon-essential. On line 9, a

12

2.2. A Catalogue of Non-Essential Changes

1package sand; | 1package sand;

Zimport java.util.LinkedList; Zimport java.util.LinkedList;

Zimport java.util.list; 4import java.util.List;

5 @SuppressWarnings ({"unused", "rawtypes", "unche & @SuppresswWarnings ({"unused", " rawtypes", "unch
7public class NEL { 7public class NE1 {

private object vall = null; | private object vall;

Lo private Object walZ; /10 private Object m val2;
L1 11

12 public nEL () { 12 void methodl () {

13 13 " List list = new LinkedList();
14 } 114 list.add(this.vall);

15 15 m_valz = 2;

5 void methodl () { i |8 1

i java.util.list 1 = new Linkedlist(); |/ |17
he 1.add(this.vall); 18 void methodz () {
o this.val2 = 2; 19 boolean x = false;
o return; | 20 if (I xJ 1

21 b2 2 int y[] = new int[5];
o2 1 else {

= void method2 () { String y = "Hello" + * World";

24 boolean x = false; T

5 1t (x==false) { String s = "boo";
int[] y = new int[5]; System.out.printlnis);
- Pl : ;i

String y = "Hello world';
e ¥

System.out.println(heo]) ;]

Figure 2.2: Catalogue of Non-Essential Changes

redundannul | assignment to theal 1 attribute is deleted. Lines 12 through 14 see the
deletion of a redundant default constructor. On line 17 véré@ablel is renamed tdi st
and its declared type is trivially updated. The variablearag also induces a rename-
induced difference on line 18. Lines 19 and 20, see the deletf redundant hi s and

r et ur n keywords, respectively. On line 25, ah-statement is trivially modified, line 26
sees a redundant array bracket rearrangemengtthieng on line 28 is trivially split into
two substrings, and on line 30 thed'o” expression is placed into a single-use temporary
variable. Finally, theval 2 attribute is renamed tmval 2 (an essential change), which
then induces a non-essential rename-induced differenteeh9.

Although all of these program differences may be of intefeistertain change-based
approaches, we believe that they are unlikely to contribeievant information for many
techniques seeking to measure meaningful software dewelopeffort. It would be un-
likely, for example, for a developer to perform the kinds ajdifications affecting th&lE1
class to advance the implementation of a cohesive changestash as developing a new
feature or fixing a complicated bug. We further justify tressoning by considering each
type of non-essential difference in isolation.

13

2.2. A Catalogue of Non-Essential Changes

Trivial Assignment Updates

Java assigns default values to all declared variables wietteose variables are not specif-
ically initialized at the time of their declaration. Specdily, it assigns a value of 0 to nu-

meric variablesf al se to boolean variables, amail | to all other variables. Consequently,
adding or removing these default values to or from a varidbldaration (e.g., line 9) has

no effect on the runtime behavior of the program. These kfridwal assignment updates

are thus far less likely to be indicative of interesting depenent work than other kinds of

assignment updates.

Redundant Default Constructor Updates

Java automatically creates a public default constructoalloclasses that do not explic-
itly declare at least one other constructor. Consequenttgn no other constructors are
present, inserting or deleting these default construataaslass (e.g., lines 12 through 14)
does not change the semantic or structural properties télidss.

Trivial Type Updates

Textual updates to an entity’s declared type are non-as$énthe actual declared type
is not affected by the update (e.g., lines 17 and 26). Speltfia trivial replacement of
a type’s qualified name with its simple name does not affeet tiee declared entity is
handled at runtime. Similarly, in Java, moving the angleackets from after the type to
after a variable name does not affect the actual type of thiabla. In some situations,
updates of this nature are made to distinguish the type fr@@cand recently-imported
type that shares the same simple name. In these situati@enstibwconsider trivial type
updates to be non-essential because they preserve expstigtam behavior given other
essential changes, such as newly inserted references newlg imported type. We note
that such changes cannot be detected by considering ontytétxeual properties, since
with only textual information, it would not be obvious whetitheLi st word refers to
java.util.List orsome othetLi st type, e.g.j ava. awt . Li st .

14

2.2. A Catalogue of Non-Essential Changes

Local Variable Renames

Developers may rename local variables only to increasewvbrat readability of the code.

While a cosmetic change of this nature might be interestingfstudy of code readability,

in the general case it is typically unimportant to a chang& ta bug fix. In those cases
where a variable name update truly does imply a change indlleeof the variable, then

this role change will be accompanied by other essential cbdeges, e.g., modifications
to method invocations or control flow involving that variaBl

Rename-Induced Modifications

Whenever a developer renames a program entity (i.e., diak, method, parameter, or
local variable), any code statement referencing thatyewilt be textually modified as part
of the rename (e.g., lines 18 and 19). These secondary tettaages are generally not
relevant when studying program differences, as they ang @mecessary by-product of
existing program structure, which must be adapted to avandpilation or runtime errors.
In fact, many IDEs, e.g. Eclipse, even help developers pari@name refactorings by
automatically updating all references to renamed entifibgese kinds of automated refer-
ence updates are thus far less likely to contribute meaniinggight about the development
effort behind a change than the actual renaming of the caeegit itself. Therefore, we
consider the actual renaming of the code element to be antedsghange, but argue that
the textual reference updates induced by that renamingareessential. This argument
echoes one made in previous work by Neamtiu et al., whicheptesa differencing tech-
nique that corresponding rename-induced updates as & sliffffrence between program
versions [35]. Similarly, in their work on change significanclassification, Fluri et al.
suggest that theffectsof parameter renames should not be considered “significaimé&h
analyzing code changes [10]. Like these approaches, wecalssider rename refactor-
ings to constitute a single (essential) developer modi@inghat also induces a number of
non-essential side effects as a by-product.

2In very rare cases, a variable renaming might cause theblaria shadow an existing attribute. We
consider these renames to be essential because they camcagistially noticeable changes in the behavior
of the program.

15

2.2. A Catalogue of Non-Essential Changes

Trivial Keyword Modifications

In Java, prepending thehi s keyword to a program entity only affects program behav-
ior in a limited number of cases.In Figure 2.2, the deletion of thehi s keyword (line
19) has no effect on the behavior of theet hod1 method. While changes involving the
t hi s keyword might improve readability of the code, they can bestdered non-essential
in most contexts. Similar to type updates, in those casesendudding a hi s keyword

IS necessary to preserve an existing field access, we stdlider such an insertion to be
non-essential because it preserves existing behavion gitreer unrelated changes. In this
situation, missed hi s keyword insertions actually have a greater impact on pragra-
havior than redundantinsertions. In this category we alseeatly include trivial insertions
or deletions of et ur n statements at the endwbi d-returning methods (e.g., line 20) and
trivial insertions or deletions of defauduper invocations occurring at the top of default
constructors (not shown).

Trivial If-Statement Updates

We have come across cases where developers trivially mioflitatements, for example,
by replacing their simple boolean conditions with otheriegjent expressions (e.g., line
25). Such rewrites might improve the readability of the ¢dul& do not usually modify

the way that code behaves at runtime. We do not include inctitisgoryi f -statement

updates that consist of reorderings of composite expnessivolving field or array ac-

cesses, or method invocations, because such reorderitigsjgh semantically equivalent
during standard program execution, are not always iddrdizang exceptional program
execution, e.g., in the casemidl | pointers.

Cosmetic String Splits

In some cases, developers might split Iatg i ng literals into a series of smaller con-
catenations involving the operator. Although such concatenations can introducéitslig

3Specifically, thet hi s keyword is required to reference a field inside scopes foardktlare a local
variable sharing the same name as the field.

16

2.3. Detecting Non-Essential Changes

additional runtime overhead, it is unlikely that such coBmt ri ng splits are meant to
modify anything except the readability of the code.

Local Variable Extractions

Developers may improve the readability of code by using @y variables to store
expressions and using those variables instead of the epnasin asingle subsequent
program statement. Such local variable extraction refade are cosmetic in nature, have
no effect on a program’s behavior, and do not need to be peedrin the context of a
related change task.

Whitespace and Documentation-Related Updates

Whitespace and documentation-based modifcations aradglignored by other change
analysis tools, such asHBNGEDISTILLER [11]. investigation of non-essential differences,
we took steps to eliminate these modifications from our imfasd. We thus only report on

the prevalence and possible impact of the non-essentiateliices outlined above.

2.3 Detecting Non-Essential Changes

All of the non-essential changes outlined in Section 2.2afindividual programming lan-
guage statements or expressions. Consequently, to de¢set thanges in change history
requires analyzing changes at a level of granularity finan tstatement-level differences.
Detecting the non-essential differences in our catalog r@quires resolving arbitrary pro-
gram expressions within statements to their fully quali@einent signatures, a technically
challenging task given that the files analyzed are not paa cdmplete and compilable
system. For example, to detect trividhi s keyword insertions or deletions requires an
analysis that detects not only the additional or missihigs keywords within statements,
but also verifies that no element expressions were actu#dised by their insertion or re-
moval. Detecting non-essential changes in version hesahus requires a differencing
technique that is both fine-grained (working at the levebgdressions within statements)

17

2.3. Detecting Non-Essential Changes

and semantically-sensitive (to reason about the impachafges on the program behav-
ior). Furthermore, although existing change analysisst@teady support fine-grained
differencing of individual program statements (e.gHABIGEDISTILLER [11]), we know
of no change differencing tool that is both fine-grained amkgive to the semantics at the
expression (sub-statement) level.

To detect non-essential differences, we thus developedea ddferencing technique
that is both fine-grained and able to reason about the elerafamences within individual
element expressions. We implemented our technique in acal@dd DFFCAT. Similar
to existing change analysis tools|HPCAT takes as input a group of co-committed source
files retrieved from a software repository (a change set)ratutns as output a descrip-
tion of the various structural modifications charactegzomanges to statements within the
change set (a statement-level edit script). In additiorrévipus techniques, however, our
technique is also able to reason precisely about the elsmeigrenced within individual
element expressions and to identify and label structui@hghs that we consider to be non-
essential. For example,l[EFCAT detects and labels cases where a program statement was
modified only by the trivial insertion of one or maréi s keywords. DFFCAT is currently
implemented to handle Java code stored in CVS and SVN. Readrrdownload a version
of our tool from our companion website: http://www.cs.mcga/"dkawry/thesis.

Reused Components

To resolve element expressions within the Java files it aealyDFFCAT reuses an ex-
isting implementation of partial program analysis, calRi@A [7]. PPA takes as input a
collection of Java files (e.g., the old or new files within amfpaset) and produces as output
a collection of resolved Abstract Syntax Trees (ASTSs) re@néing those files. The nodes
within each AST are also supplemented wittimdings which link elements referenced
within an AST node (e.g., method invocations, variable rgne¢c.) to their fully quali-
fied element signatures. We chose to detect non-essefitgabdices using partial program
analysis because we know of no existing infrastructure ehables efficient retrieval and
compilation of a separate program snapshot for each ingivichange set.

To further facilitate our detection of fine-grained nonesgsal differences between the

18

2.3. Detecting Non-Essential Changes

ASTs produced by PPA, we useHENGEDISTILLER [11], a state-of-the-art differenc-
ing tool that identifies various kinds of statement-levelistural changes between Java
AST pairs. These differences are outlined in a separatéogath0]. DIFFCAT enhances
the output computed by KANGEDISTILLER with PPA-inferred bindings and then per-
forms additional processing to detect non-essentialrdiffees. We chose to perform AST-
differencing as opposed to, for example, token- or grapgedalifferencing, to avoid the
conceptual challenges of working with two distinct progreepresentations. We chose
to specifically reuse BANGEDISTILLER because, although other AST-differencing tools
also exist (e.g., DFFTS [17]), CHANGEDISTILLER is well-documented and also used by
other software engineering researchers [25].

Finally, we have integrated IBFCAT within SEMDIFF [8], a change analysis frame-
work that runs within the Eclipse IDE.EMDIFF retrieves change sets from CVS and SVN
repositories, performs partial program analysis using P&l provides hooks that en-
able third-party diffing tools to identify and persist fineagped differences between the
PPA-enhanced files within each change set.

Two Challenges

To implement DFFCAT, we were forced to address two important challenges. Thie firs
challenge arose due to a mismatch in the input/output reptagons of two of our reused
components PPA andHANGEDISTILLER. PPA produces element-resolved JDT-Core
based ASTs and we need to rurANGEDISTILLER on pairs of these ASTSs to identify
differences between them. However, we found thah€GEDISTILLER i) only operates
on Java files (read from an Eclipse project) @éheéxpresses detected differences between
those files using a custom output format, i.e., not in termA®T nodes. Because we
found it too difficult to modify GHANGEDISTILLER’S code base, we were forced to write
an adaptor to map between PPA’s andABGEDISTILLER’s input/output formats. The
implementation of this adaptor was non-trivial.

The second challenge arose becauseGGEDISTILLER does not characterize pro-
gram updates at granularities finer than individual progséatements. Instead, it relies on
measures dextual similaritypbetween statement versions to detect cases where a statemen

19

2.3. Detecting Non-Essential Changes

was modified, rather than inserted or deleted [11]. This melaat, given a high enough

textual disparity between statementsiABIGEDISTILLER flags unmatched statement pairs
as deletions/insertions, rather than updates. For examepending on its specific input

similarity thresholds, BANGEDISTILLER, might identify the following statement pair as
arising due to a deletion and an insertion, rather than aatepd

this.old =val; //vl newal ue = arg; //v2

Although high textual disparity between candidate stat@rpairs is generally a good indi-
cation that the pair corresponds to an insertion-deleteongnd not a modified statement,
in some cases, high textual disparity between versions dified statement can also arise
because ohon-essential differences.g., rename refactorings involving textually dissim-
ilar names. For example, if a developer renames a field calleddto newval ue and

a local variable calledal to ar g, then the statement pair above would actually corre-
spond to three non-essential statement updates (a triviad keyword deletion and two
rename-induced updates), instead of a statement delagertion pair. Given that all of
the non-essential differences outlined in our catalog owathin modifiedstatements, we
were required to address this challenge to avoid misladpaipotentially large amount of
non-essential differences.

ChangeDistiller Wrapper

To address the input/output mismatch between PPA amneNGEDISTILLER, we imple-
mented a wrapper that takes as input any two resolved ASTsn@ddled the old and
new ASTS) and returns as output an enhanced represent&@nCHANGEDISTILLER-
inferred changes (diffs) between them. Each diff contagvesal attributes:

1. The old AST node affected by the change, which we call #fe Node.
2. The new AST node affected by the change, which we call tlyht Node.

3. A textual descriptor that summarizes the change, whicltallethechangeType.
Our descriptors extend those presented in Fluri and Gaksgipus catalog of fine-
grain changes [10].

20

2.3. Detecting Non-Essential Changes

leftParent rightParent
void bar () { void bar () {
foo ("Hello, World!"); foo ("Hello, Bob!");
) I— leftNode) I— rightNode

Figure 2.3: DiffCat Output Format

4. The old/new AST nodes that constitute the logical pareftise old/new AST nodes,
which we call thd ef t Par ent andri ght Par ent , respectively.

5. Additional intermediate information to facilitate lajgrocessing

We illustrate these attributes with the help of Figure 2.3he Tigure depicts the old
and new version of a hypothetidadr method, the body of which was modified by an up-
date to an invocation of a hypothetidalo method. ThehangeType for this change is a
“method invocation update,” theef t Node andr i ght Node are the AST nodes represent-
ing the old and new invocations 6bo, and thd ef t Par ent andri ght Par ent are the
AST nodes representing the old and neav method declarations. In contrasti&NGE-
DiSTILLER would represent the change using only textual descriptorghe various AST
nodes corresponding to the old and e invocations and the twbar parent methods.

Figure 2.4 presents a conceptual overview of our wrappes.Wiapper is coordinated
by a CDW apper component, which coordinates the analyses of several hetpapo-
nents. After receiving as input the old and new ASTBW apper uses itSASTFi | e-

Pri nt er to convert the ASTs into two Eclipse-based Java files. Thise dire then fed

to our reusedChangeDi sti | | er component, which outputs the changes (diffs) between
them.CDW apper then uses it®i f f Mapper component to convert these diffs into those
outlined above. Finally, it usesSuppl! Di f f Fi nder to find additional diffs not found by
CHANGEDISTILLER. For example, th&uppl Di f f Fi nder detects updates to a method
declaration’s thrown exceptions.

TheDi f f Mapper component takes as input the diffsletected byhangeDi sti | | er,
as well as the old and new ASTs, and maps egcto the actual pair of AST nodes

21

2.3. Detecting Non-Essential Changes

ASTFilePrinter CDWrapper ChangeDistiller
DiffMapper SuppIDiffFinder
StmtFinder ElementFinder RefactoredElementFinder

—> Uses

Figure 2.4: Overview of the ChangeDistiller Wrapper

it describes. This process consists of traversing the vedoRSTs and searching for
the exact AST nodes that match the textual descriptors @tedowith eachy;. Find-

ing the exact AST nodes based @mangeDi sti | | er’s textual descriptors is not always
straightforward because thie sometimes containeslyntheticmethod signature descrip-
tors, for which no equivalent AST nodes can be found in thes®uode. Such discrep-
ancies can arise whenever a method signature was affectetlltple signature refac-
torings. In these caseShangeDi sti | | er uses synthetic signature descriptors to sep-
arately represent the old version of the method for eaclvikhaal refactoring in isola-
tion, rather than the actual method signature to which tfectering was applied. For
example, suppose an old method signatweehod(Typel) was refactored into a new
method signatureret hod(Type3, Type2) by replacingTypel with Type3 and by in-
sertingType2. In this caseChangeDi stil | er might then refer to a synthetic signa-
turemet hod(Typel, Type2) to express the starting signature on which the update from
Typel to Type3 was applied. However, given that the insertionTghe2 was also ap-
plied, no such signature can actually be found in the oldweersf the code. Consequently,
the use of byChangeDi sti || er of such synthetic signatures made it difficult to map
individual §; to the actual methods in which they were discovered.

To deal with this problem, oubi f f Mapper maps diffs in two steps. In the first, it
collects all refactoring diff$; that yield the same element signature as their final product.
For example, we collect all method signature refactorifigbat ChangeDi sti | | er as-
sociates with the finalret hod(Type3, Type2) refactoring. For each such signatuse

22

2.3. Detecting Non-Essential Changes

and its diffsé;, we then use &ef act or edEl enent Fi nder to visit all the elements;
declared in the old AST and check whether applyatighed; to e; yieldse;. We then use
these discovered pairings;(e;) in a second phase to map the individdjato their respec-
tive AST nodes. This is achieved using a number of AST visijterg., &t nt Vi si t or,
that look for specific nodes correspondingitavhen traversing an AST.

Detecting Statement Updates

We observed that the difficulties in detecting some statémapdates sometimes arises
because of rename refactorings. Rename refactorings ciaase both the textual disparity
between individual program statements and the generatuliffi of operating on AST-
based representations of code change. For example, disuptlee non-essential statement
update outlined in Section 2.3 is far more difficult than disering the same update minus
the effects of rename refactorings:

this.old = val; //vl old =val: //v2

This latter update exhibits a higher degree of textual sinty, making it easier to identify
it as a statement update in the first place. Furthermore, |yt testually differs because
of t hi s keyword deletions, which, in our setting, makes it easiatdtect and verify the
non-essentiality of the statement update.

Our overall technique for detecting non-essential difiees is based on the realiza-
tion that the effects of rename refactorings should be elted when differencing source
files. We thus use awo-phaseree-differencing technique to identify fine-grained modi
fications between source files and to label those that areessertial. In the first phase,
we use GIANGEDISTILLER and our own analyses to detect rename refactorings. We then
roll back those renames in the files we analyze by resetting the tedasariptors of all
renamed-affected program references to display theirades. We then re-runHANGE-
DisTILLER on the modified files and further process the detected uptiatdsntify those
that were affected only by the non-essential differencelén@a in our catalog.

23

2.3. Detecting Non-Essential Changes

SemDiff Core ——=>{ PPA

L
?

Rename Detector [« DiffCat Main Controller =3 CD Wrapper

Rename Rollback Alg, Non-Essential Diff Detector

This Keyword Detector| e e o [Trivial If-Update Detector

> —
Uses Ext. Point Extends

Figure 2.5: DiffCat Implementation

Implementation

Figure 2.5 presents a conceptual overview of owrFOAT implementation. For a given
change set, FFCAT’s Mai nCont rol | er first receives the old and new resolved ASTs
from SEMDIFF. It then then uses KANGEDISTILLER (via aCDW apper) to detect struc-
tural changes between the input ASTs; it stores these changa special set, called
firstRoundDi ffs. ARenaneDet ect or then processes thié r st RoundDi f f s to col-
lect those that represent rename refactorings and to dedddional rename refactorings
not detected by GANGEDISTILLER. The Mai nControl | er then rolls back those re-
name refactorings by traversing the new ASTs and modifyiiegéxtual descriptors of all
element expressions found to reference a renamed elemext, tNeMai nCont r ol | er
again uses BANGEDISTILLER, this time to detect a second round of refined structural
changes between the old and new ASTs, which are stored iroagset, calledecond-
RoundDi ffs. ThefirstRoundDi ffs andsecondRoundDi f fs are thenreconciled
i.e., those rename-related differences preseht irst RoundDi f f s but not insecond-
RoundDi f f s (because of the rename rollback) are mergedseiondRoundDi f f s and

24

2.3. Detecting Non-Essential Changes

tagged as either rename refactorings or rename-induciedatites. Finally, theecond-
RoundDi f f s are sent through a series of detectors, each of which flatstdt corre-
spond to the specific kinds of changes that we consider to heeggential differences,
e.g., trivial keyword modifications, trivial if-statemempdates, etc. Whenever such a non-
essential difference is identified by a detector, the detenbdifies the diff'schangeType
property to reflect the specific kind of non-essential défere it embodies. For example,
the trivial keyword detector might update the “method iratb@n update’changeType
detected by @ANGEDISTILLER.

Detecting Class Renames

CHANGEDISTILLER does not identify class renamesiFBCAT detects these by detecting
class insert-delete pairs sharing a high proportion oftidehfield and method signatures
(> 0.5). We chose this threshold because we found it to work welihduypsrototyping.

Detecting Field Renames

CHANGEDISTILLER detects field renames by comparing their declaration st&téswsing
the Levenshtein similarity measure [31]. In certain caS€ess\NGEDISTILLER is unable to
recognize a renamed field because of a high textual disgaettyeen its declaration pairs.
We try to augment the number of detected field renames bytiitgraver all possible field
insert-delete pairs within each class and checking whe#ferences to the old field were
always replaced by references to the new field. We check dmdition in all statement
updates stored ifii r st RoundDi f f s. Our analysis rejects a field insert-delete candidate
if even a single statement update does not satisfy our icriter

Rename Reconciliation

The reconciliation of i r st RoundDi f f s andsecondRoundDi f f s is hecessary to prop-
erly identify rename-induced non-essential differenbes were eliminated by the rename
rollback. For example, the rename-induced statement apdat

old =val: //vl newal ue = val; //v2

25

2.4. Viewing Detected Changes

will be detected by our first GANGEDISTILLER pass because of the textual disparity
between theol d andnewval ue entity. However, after rename rollback, the two state-
ments will be textually equivalent and the update will nogdenbe detected by KANGE-
DISTILLER in our second pass. To cope with this, we collect all staterhased struc-
tural differences fronfi r st RoundDi f f s and verify whether these are again present in
secondRoundDi f f s. If achange was no longer detected in the second phase, wkiden
that the change was rename-induced and add it to our listettdel changes. Without this
additional step, our procedure would miss these updates.

Detecting Trivial i f -Statement Updates

We currently detect only a subset of all possible equivalérstatements. Specifically, we
only process f -statements that involve combinationstgk , =, ! =, | | , and&& operators,
and for these, we mainly look for updates involving pairneseression re-orderings (e.g.,
==b is equivalent tdo==a) or certain patterns (e.d.x is equivalent tox==f al se). This
means that we cannot detect complex re-orderings suchas,cases whera==b==c
is equivalent toc==a==b, or cases involving numerical equivalence, e.g., casegenvhe
1+1==2 is equivalent t®==2. Our analysis also conservatively skips expressionsvavol
ing both object dereferences and eithefr|aor && operator, because we cannot safely
determine how those dereferences behave at runtime. Fompdgaalthoughx! =nul | &&
x. f oo() might always be equivalent to. f oo() && x!=nul | at runtime, our analysis
cannot safely detect the equivalence using only a statilysisd To detect more compli-
catedi f -statement updates, future implementations BfHCAT could use semantic clone
detection tools such as H. Kim et al.'sB@C [24].

2.4 Viewing Detected Changes

As part of our overall implementation ofiIEFCAT, we have also implemented an Eclipse-
based viewing plugin that can be used to conveniently vieangks detected bylEFCAT,

4Due to the order in which the Java runtime evaluatksstatement conditions, ¥ is indeednul | , the
second f -statement will crash the program, but the first will not. \Wag cannot assume that the second is
equivalent to the first.

26

2.4. Viewing Detected Changes

£F compare 2 =l
Jawva Source Compare A W & B
/ need to wrap the LSInput with an XMLInput need to wrap the LSInput with an XML]
XMLInputSource xmlInputSource = domZxmlInput XMLInputSource xmlInputScurce = dom2xml]
fBusy = true; fBusy = true;
try { if [fBusy) {
parse(xmlInputSource]; String msg = DOMMessageFormatter.forr
fBusy = false; DOMMessageFormatter.DOM DOMAIN, =
} catch (Exception e) { "INVALID_STATE_ERR",null);
fBusy = false; throw new DOMException(DOMExcep| «
| > ! >
[problems | @ Javadoc | [@ Declaration 4” Search | [] SemDiff Repositories |4k Transactions J{\'J__Z%D\ﬁcat View &3 wiml

&% ol 0 oo T
Username: |venu | Commit: [Patches for bugs #24795 ,#24797: Patches submitted by ramesh mal -
2752 of 423 — L |

Date: [2003-11-18 03:10:0]
= arg.apache xerces parsers. DOMParserimpl.parse(org.w3c.dom |s LSInput) -
+ IF_STATEMENT INSERT fBusy
5 VARIABLE_DECLARATION_STATEMENT_INSERT String msg=DOMMessageFormatterformatMessage(DOMMessageFormatt [
&F THROW_STATEMENT_INSERT new DOMException(DOMException INVALID_STATE_ERR,misg) ‘

= org.apache xerces parsers.DOMParserimpl.parseURI(java.lang.String)

IF S TATERAR T ST £e

Figure 2.6: Viewing Detected Changes

to associate user-defined keywords with groups of chandtes, dut changes based on
their keywords, and remove various kinds of non-essentiahges from the view using
pre-defined filters. The viewer, which we show in Figure 2.&swnplemented to have the
same look and feel ase®DIFF's transaction viewer.

After using SEMDIFF to select a given repository and to rumFBCAT on a change set
from that repository, users can use our viewer to examinehbeages that were detected
by DIFFCAT within the change set. The viewer automatically groups gkarbased on the
elements they modified. For example, in Figure 2.6, our viedisplays changes that mod-
ified thepar se andpar seURI methods, respectively. Each change is textually repredent
by i) a textual marker indicating the kind of change it embodiasigra textual summary
of the code snippet(s) associated with that change. Forgeam the Figure, the user has
highlighted a change corresponding to the insertion of thetatement involving ahBusy
variable. Double-clicking on a given change automaticafigns up an Eclipse comparison
view that shows the old and new files affected by the changerendpproximate location
of the change itself. For example, in the figure, the userdsgipuble-clicked on a change
and that change is displayed in the comparison view abovelisfilay changes BFCAT

27

2.5. Empirical Study

reuses the Eclipse comparison view, which only displaydektial changes between two
files; it then approximates the location of a given change tgirfig the diff-region within

the comparison view that most closely correspond to the rfineegrained changes de-
tected by DFFCAT. For example, in the figure, the highlighted code region énEalipse
comparison view captures the selecitédstatement insert, as well as all the other changes
within the par se method. In the future, we could improve the granularity e Eclipse
comparison view by directly incorporating changes detebte DIFFCAT.

Our viewer provides several other services. Besides frdowalg users to view in-
dividual changes, it also allows them to assign text keywaodeach change and to filter
changes based on their keywords. It also allows users toraiwally filter out all non-
essential differences from the view, thus reducing the itvgrburden of abstracting over
those changes when inspecting change sets. Although simpégure, our viewer greatly
facilitated the numerous amounts of manual inspectionsasf@pned as part of this thesis.
For a download of our viewer, the reader is refered teFBAT’S main webpage.

2.5 Empirical Study

We sought to understand the potential impact of non-esdeattierences on higher-level
abstractions of software development effort. To this end,used DFFCAT to analyze
change sets from ten open-source Java systems and to @dbsitial and non-essential
differences between committed file-pairs. We then detezthinthe relative code churn
associated with non-essential differences anthow often change sets include methods
that were modified only via non-essential differences. Wausur results to estimate how
non-essential differences would interfere with the infatimn measured by change-based
approaches. We have released all our data and a full desargftour setup on our website:
http://www.cs.mcgill.ca/"dkawry/thesis.

251 Setup

Table 2.1 describes the systems used for our evaluatioun@d in the table include the
number of change sets studied for each system (Chg. Set#)eandmber of days spanned

28

2.5. Empirical Study

Table 2.1: Characteristics of Target Systems

System First Last Days Chg. Sets
Ant 6 Dec2001 17 Jul2007 2,048 3,853
Azureus 12 Nov 2003 14 Jul 2004 244 3,103
Hibernate 4 Dec 2003 19 Aug 2005 623 3922
JDT-Core 17 Jan 2002 15 Jul 2003 544 4192
JDT-UI 20 Aug 2001 15 May 2002 268 3081
JEdit 11 Feb 2001 10Jun2011 3792 3143
Nutch 2 Jun 2005 23 May 2011 2182 678
Spring 1Feb 2004 6 Feb 2006 736 3627
Struts 16 Jul 2000 16 Sep 2009 3350 2370
Xerces 17 May 2001 8 Nov 2007 2366 2681
Total 9813 30650

by those change sets (Days). Seven of the systems we stueliegreviously investigated
by Robillard and Dagenais [41]; for these systems, we sadettte same time frames as
those used by Robillard and Dagenais. The other three sggtHinI T, NUTCH, STRUTS)
are all well-known and widely used open-source projectdjfese, we considered all avail-
able change sets, starting with the 50th. We did not considse systems’ initial change
sets to avoid processing the very large changes that mayneitted as part of a system’s
initial introduction to its version control system; howewvaur specific selection of the 50th
change set was otherwise completely arbitrary. For eadkmsysve studied all change sets
that occur within the ranges reported in Table 2.1. In vewy ¢ases (74 0.0025%), we
aborted processing change sets because we could notedtresfiles for those change sets
from their repositories or because PPA did not appear toitete on the retrieved files.
We used DFFCAT to determine the differences within change sets. Like otliier
ferencing tools, DFFCAT does not report any differences arising from white spaces. W
also ignored all differences affecting comments and Jasgdoe.,we did not consider
whitespace-, documentation-, or comment-based diffeseimcany of our results/Ve used

29

2.5. Empirical Study

the remaining differences to compute each change setisdotie churni(modified LOC)
and to identify the methods that were modified by each chaege\8/e then identified
all non-essential differences to compute non-essentidé¢ amurn and to identify which
methods were modified only by non-essential modifications.

We computed code churn by considering the LOCs involved ah eaported struc-
tural difference. Our code churn measure thus differs 8lighom that which would be
computed by purely line-based differencing techniques. éxample, because of our re-
name rollback, DFFCAT may identify that a LOC was updated, while other differegcin
techniques may report this difference as a LOC insertidatda pair. We chose to use
DIFFCAT to compute churn to obtain the most precise estimate of tleedhurn arising
from non-essential differences.

A change set was considered to modify a method if it updatedtiy of that method
via one or more structural differences (i.e., we never amrsed documentation-related
differences as updates to a method). For simplicity, wer iefehe number of methods
found to have been updated by a change set as the numineetbbd updatefor that
change set. We labeled a method updata@sessentiaif the method update consisted
only of non-essential differences. All other method upgatere considereglssential The
total number of method updates for a system correspondsttothl number of method
updates found across all change sets.

We explicitly tracked method signature refactorings tigloaut our evaluation, i.e., we
did not treat methods modified by such refactorings as metig®ition-deletion pairs. If
a method’s signature and body were both updated by a chahgibee we included the
refactored method within the set of method updates for thamge set. If only the method’s
signature was updated, then we did not include the methddnmtlie method update count
for that change set. We did not include method deletions sertions within the method
update count because our investigation focused on the raddifethods for each change
set.

We ran GHANGEDISTILLER on its default settings. We set PPA to compile change sets
using Java 1.5.

30

2.5. Empirical Study

2.5.2 Prevalence of Non-Essential Differences

Table 2.2 records the overall code churn for each targeesyéh kLOC). The table shows
the total number of code lines that wenedifiedfor each system (Modified). It shows how
many of the modified lines were caused by four major classesmfessential differences
detected by our approach: differences induced by renamésd{iRed), trivial keyword
updates (Key), local variable refactorings (Local), antteotkinds of non-essential differ-
ences (Other). The “Local” column aggregates local vagiabitractions, local variable
renames, and trivial updates to local variable declaredsymd initializers. The “Other”
column aggregates trivial string splits, redundant classs; triviali f -statement updates,
and trivial updates to declared and return types of methoddialds. The combined non-
essential line modifications are reported in the final colydMon Ess). The percentages
displayed in this column correspond to the proportion ofraddified code lines (Modified)
that were found to be non-essential. We did not display thad tieleted or inserted lines
for each system because we found those measures remaitellyiunaltered after we
removed the kinds of non-essential differences that cacttfiem. In other words, inser-
tions and deletions of trivial constructors, trivialper () invocations, and trivial et ur n
keywords had virtually no impact on the total deleted or itestlines for each system.
Table 2.2 helped us derive the following observation:

Between 2.8% and 25.8% of modified code lines were updatgd/i@nhon-essentis
differences.

This suggests that for some systems, non-essential diffesecan significantly increase
line-modification-based abstractions of change.

From the table, we also see that across the target systemsitared 266 KLOC were
modified. We see that 26.3 (10%) of the total 266 modified kLO&eamodified only by
non-essential differences. However, based on a previdustam of total code churrj34],
which combines modified and inserted code lines into a singgasure, we find that the
26.3 non-essential kKLOC constitute only a small fractier2%) of the overallchurned
code & 1.56 mLOC) across the ten systems. This observation sugythestthe kinds of

31

2.5. Empirical Study

Table 2.2: Code Churn in Target Systems (in kLOC)

System Modified R-Induced Key Local Other Non Ess

Ant 32.2 6.7 .8 5 3 8.3 (25.8%)
Azureus 95.1 2.5 1 0 2.7 (2.8%)
Hibernate 27.6 2.8 2 A 3.2 (11.6%)
JDT-Core 15.3 1.8 3 A 2.5 (16.3%)
JDT-UI 16.3 1.3 0 1 0 1.5 (9.2%)
JEdit 21.4 7 2 1 1 1.1 (5.1%)
Nutch 10.0 3 0 0 0 0.4 (4.0%)
Spring 23.2 3.8 .5 2 2 4.7 (20.3%)
Struts 10.0 .6 0 2 0 0.8 (8.0%)
Xerces 14.9 1.0 0 1 0 1.1(7.3%)
Total 266.0 21.5 21 138 8 26.3 (9.9%)

non-essential differences studied in our investigatiomoibaffect measures tbtal code
churn(that include added and modified lines).
Table 2.2 also enabled us to infer the following property:

Out of the non-essential differences currently detecteduyapproach most norj
essential modifications were induced by rename refactsrimgupdates involving
trivial t hi s keywords.

In particular, of the 26.3 non-essential KLOC reported ia table, approximately 82%
consisted of rename-induced statement updates, 8% aahsistrivial updates involving
t hi s keywords, 5% consisted of local variable renames, and 5%vad the remaining
kinds of non-essential differences.

32

2.5. Empirical Study

Table 2.3: Method Updates in Target Systems

Total Non-Essential R-Induced Keyword Local Other

Ant 17793 2870 (16.1%) 2196 542 141 131
Azureus 8786 257 (2.9%) 223 32 6 2
Hibernate 15975 1189 (7.4%) 1123 46 51 15
JDT-Core 8867 622 (7.0%) 504 113 92 26
JDT-UI 9690 443 (4.6%) 414 28 13 2
JEdit 13803 238 (1.7%) 125 50 16 56
Nutch 3570 100 (2.8%) 83 18 5 3
Spring 11046 1789 (16.2%) 1497 257 73 60
Struts 5515 228 (4.1%) 128 26 80 24
Xerces 8409 247 (2.9%) 226 17 5 4
Total 103454 7983 (7.7%) 6519 1129 482 323

Non-Essential Method Updates

Table 2.3 records the total number of method updates that detected for each target
system. The table shows the total number of method updatgal®and the number
of those updates that were induced entirely by non-esseliffierences (Non-Essential).
It also records how often different classes of non-essedifferences contributed to a
non-essential method update. We recorded this number fianre-induced updates (R-
Induced), keyword updates (Keyword), updates to locabdei (Local), and various other
non-essential differences, such as redundant updatdsimyo f -statements, string splits,
and class casts (Other). We note that the sum across thédingivolumns is higher than
the total number of non-essential updates because somessential method updates in-
volved multiple classes of non-essential differences.

From the table, we see that out of a combined 103 454 methoatepdcross the ten
systems, 7 983 (7.7%) were non-essential. The table alde=nas to make the following
observation:

33

2.5. Empirical Study

Table 2.4: Non-Essential Methods in Change Sets

System Total Non-Essential R-Induced Keyword Local Other

Ant 2580 319 (12.4%) 251 89 47 63
Azureus 2870 56 (2.0%) 56 24 5 2
Hibernate 3059 325 (10.6%) 286 39 39 6
JDT-Core 2017 158 (7.8%) 134 29 41 12
JDT-UI 2155 157 (7.3%) 137 25 12 1
JEdit 2619 136 (5.2%) 65 50 13 21
Nutch 506 28 (5.5%) 26 4 3 2
Spring 2401 487 (20.3%) 391 117 61 47
Struts 1509 82 (5.4%) 50 21 22 9
Xerces 2038 75 (3.7%) 60 13 5 3
Total 21754 1823 (8.4%) 1456 411 248 166

In the individual systems analyzed, between 1.7% and 1628 method update

)

were non-essential.

This suggests that for some systems, non-essential diffesecan distort method-based
abstractions othange span

Distribution of Non-Essential Method Updates

Table 2.4 shows how many of the analyzed change sets inchate@ssential method up-
dates. The table records the total number of change setsthatled modifications to at
least one method (Total). The remaining columns record timeler of change sets found
to include at least one non-essential method update (Nearial), one non-essential
method update featuring a rename-induced difference @Reed), a keyword difference
(Keyword), a local variable refactoring (Local), or an ufgavolving a redundant class
cast, triviali f -statement, or trivial string split (Other).
From the table, we see that out of 21 754 change sets found difyrat least one

34

2.5. Empirical Study

method, 1823 (8.4%) included at least one non-essentidiodaipdate. The table also
enabled us to make the following observation:

In some systems, non-essential differences distortecbadliel change representp-

tions of over 10% of change sets.

This suggests that non-essential differences can impatttoakdevel representations of a
non-negligible number of change sets.

We next observed that method updates in smaller change se¢sless likely to be
non-essential than method updates in larger change setex&mple, we found that only
(723/23302~) 3.1% of method updates within “small” change sets (e.gps¢hl5 327
change sets modifying 1 to 3 methods) were found to be nognéak This ratio increases
to (3028/43102) 7.0% for “regular” change sets (e.g., those 5 605 changasedlifying
4 to 19 methods) and (4232/37125 11.4% in “large” change sets (e.g., those 826 change
sets modifying 20 or more methods). We observed similar gmtams for other ranges.
This data enabled us to draw the following conclusion:

Non-essential differences had the highest impact on mdédwvad representations ¢f

larger change sets.

This observation is important because it means that chbaged approaches could both
eliminate a majority of non-essential method updates aridyate their most significant
relative impact on method-level representations by usitegraate differencing strategies
for larger change sets. For example, we found that asidefiataring relatively high den-
sities of non-essential method updates (11.4%), changevszdifying 20 or more meth-
ods also contained an overall majority (53% pdifdetected non-essential method updates.
Change-based approaches could exploit this general @iserwhen scanning change
sets by first using a lightweight differencing technique ¢onpute a change set’s method
level change spamnd then switching to a more sophisticated differencingrigque only

in cases where the measu@thnge spaexceeds a certain threshold, e.g., 20. This kind of
strategy is advantageous because larger change sets tappear relatively infrequently

35

2.5. Empirical Study

in change history (e.g., in the data we analyzed, only 2.7%llafthange sets modify 20
or more methods), which means change-based approachesasmidl the computational
burden of partial program analysis in most cases, whiledgttecting a relevant proportion
of non-essential method updates within change sets.

Finally, we observed that non-essential method updates iwtarleavedwith other
essential method updates in most (79%) change sets. Thi$ cesroborates findings of
a previous investigation by Murphy-Hill et al., which shathat developers often in-
terleaved refactorings with other modifications [33]. Tdebservations suggest that in
cases of interleaved changes, a fine-grained detectiomeéssential differences can help
change-based approaches obtain precise representdtibiesweaningful software devel-
opment work behind a change (as opposed to capturing thetefiétool-assisted refac-
torings or trivial keyword updates).

2.5.3 Impact on Association Rules

To help us further asses the possible impact of non-estdiffexences on the results of
existing change-based approaches, we implemented a singbhed-pair association rule
mining analysis similar to that of Zimmermann et al. [46] an@luated how theuality
of the recommendations produced by our analysis was affdnyethe kinds of method
updates used to train the analysis. Specifically, we sougbbmpare the quality of the
recommendations produced when all method updates werdaatn rules against their
guality when only essential updates were used.

Our analysis takes as input a given sequence of change $etstes from a system’s
change history, records the methods that were modified asfpeach change set, and then
uses this information to produce recommendations for aldpee Specifically, similar to
Zimmermann et al.'s BSE tool [46], our analysis supports developers who have matlifie
some initial methodn; as part of some change sgtand who would like to find additional
methodsn; that also need to be changed along with methodOur analysis helps devel-
opers by inferring association rulés,; — m;), from which we can return a ranked list of
methodsn; that were found to have been frequently co-modified within prior change
setsHy, = ty, ..., t,—1. We rank recommendatioris:;) for a change sef, based on the

36

2.5. Empirical Study

confidenceof the inferred rulgm; — m;). We use theisupportvalues as tie breakers.
Finally, like Zimmermann et al., we also filter out recommatioins with confidence lower
than 0.1 and cap the number of recommendations at ten [46].

To compare the quality of the recommendations produced bgmalysis when trained
using all methods (the regular setup) against their quaditgn we train it only on essential
methods (our proposed setup), we compared several metedday Zimmermann et al. in
their evaluation [46]. To compute these metrics, we repldalie change history intervals of
the ten target systems (see Table 2.1) and determined wdméled recommendations,
our analysis would have made for method updaiem ¢, w.r.t. rules learned up until then
from Hj.> We then recorded whether; was also updated as partigfand used this to tag
each ranked seed-recommendation paiy, m;) in t; as either “helpful” or not. Overall,
this produced two sets abn-emptyanked recommendation lists for 39 246 different seed
methods. We found that the recommendations were differeti2 208 (31.1%) cases. We
then compared the quality of the recommendations for th22©8& cases.

Our metrics allowed us to to make the following observation:

In those cases where a removal of non-essential method epdéected the qualit

<

of a seed method’s recommendations, the overall precididheorecommendations
increased by 10% and their recall decreased by 3%.

Table 2.5 presents this observation in more detail. For 8208 cases considered for
each setup, the table records the total number of recomrtiendanade by our approach
(Tot Rec), the number of method changes for which at leastesmmmendation was made
(Feedback), and the proportion of recommendations that veemd to have been helpful
(Prec). It also records the proportion of changed methods/fach at least one helpful
recommendation was found in the top three recommendatid®)safd the proportion for
which no helpful recommendations were made (Only Err).

From the table, we see that the precision of the approachowedrby (.253/.230%)

SWe only considereéssentiaimethod updates as candidate seeds to eliminate all spumietigds that
were only indirectly modified via one or more rename refaotgs, and hence not legitimate candidate seeds
for our experiment.

37

2.5. Empirical Study

Table 2.5: Recommendation Quality

Setup TotRec Feedback Prec L3 OnlyErr

Reg 111712 12200 0.230 0.453 0.215
Prop 97950 11109 0.253 0.483 0.178

10% and its total number of helpful recommendations deec&®m (.230*111712 =)
25661 to (.253*97950 =) 24882, or by around 3%. We also seethieaproportion of
changed methods for which at least one helpful recommemdatas found in the top
three recommendations increased by (.483/4%8.6% and that the proportion for which
only erroneous recommendations were made decreased By.{28~) 20.8%. Hence,
given this general reduction in the number of false posstw@duced by our approach, and
despite the slight loss in recall, we argue that the overality of the recommendations
produced by our association analysis was improved afteem®ved non-essential method
updates from consideration.

2.5.4 Impact on Bug-Fixing Change Sets

Some change-based approaches mine the individual charitpés bug-fixing change sets
to identify fix-inducing(i.e., bug-introducing) changes [42]. Fix-inducing chasgan then
be used to identify, for example, faulty components or fatiaulty changes. To further
assess the possible impact of non-essential differencehamge-based approaches, we
measured how often bug-fixing change sets contain renadueéad and other non-essential
changes. Such changes are less likely to embody the actyiding activity of bug-fixing
change sets, and may thus result in inaccuracies when debtegfix-inducing changes.
Change-based approaches can detect two kinds of bug-fikarge sets — those fixing
a specific bug (referenced via bug id) and those that perfogenaral fix with or without
specifying a bug. To detect the former, we use common h&sgisimilar to those used
by previous approaches [42]. Our heuristics parse the loase version of the commit
message for each change set to identify those messagesountaug-related substrings
(“bug,” “fix,” and “patch”) or some other system-specific bongirker (“nutch,” “pr,” “spr,”

38

2.5. Empirical Study

Table 2.6: Bug-Fixing Change Sets

Bug ID Fix No Fix
System Bug ID +Nemu Fix +Nemu No Fix +Nemu
Ant 780 21(3%) 1189 52 (4%) 2664 267 (10%)
Azureus 27 0(0%) 509 8 (2%) 2594 48 (2%)

Hibernate 690 42 (6%) 1137 82(7%) 2785 243 (9%)
JDT-Core 585 10(2%) 665 13 (2%) 3527 145 (4%)

JDT-UI 348 9(3%) 597 21(4%) 2484 136 (5%)
JEdit 391 10(3%) 1303 41(3%) 1840 95 (5%)
Nutch 328 13 (4%) 420 20 (5%) 258 8 (3%)
Spring 47 2(4%) 331 24(7%) 3296 463 (14%)
Struts 516 9(2%) 798 22(3%) 1572 60 (4%)
Xerces 565 11(2%) 1136 31(3%) 1545 44 (3%)
Total 4277 127 (3.0%) 8085 314 (3.9%) 22565 1509 (6.7%)

“hb,” and “hhh,”), followed by any amount of arbitrary textdt includes at least one digit,
which we then assume to be a bug id. To detect more generas,fwe take the set of
all change sets detected by the above heuristic and addng @hteange sets with commit
messages containing a fix-related substring (“fix”, “bugléfect,” “repair,” and “patch”).
Finally, we record which of the matched change sets alsaaoat least one non-essential
method update.

Table 2.6 records the results of this process. The table stiosvnumber of detected
change sets fixing a specific bug (Bug ID) and how many of thbaage sets also featured
at least one non-essential method update (Bug ID +Nemulsdtdisplays the number of
detected change sets featuring a general fix (Fix) and howy wighose contained at least
one non-essential method update (Fix +Nemu). Finally,abketdisplays those change sets
that were not identified as containing a fix (No Fix) and how ynahthose contained at
least one non-essential method update (No Fix +Nemu). W# pat that, for each system,
all change sets fixing a specific bug (Bug ID) are also counsechange sets featuring a

39

2.5. Empirical Study

general fix (Fix). The number of change sets featuring no fig fik) was derived by
subtracting the number of change sets featuring a fix frontdta number of change sets
scanned for that system, i.e., the number reported in Table 2

From the table, we see that, of those change sets referemsiegific bug id, 3.0% also
contain at least one non-essential method update. Thismateases slightly to 3.9% when
we consider all bug-fixing change sets. In contrast, noergsd method updates appear
within 6.7% of regular change sets, or approximately (69743) 70% more frequently.
This suggests that non-essential method updates arelelstb yield inaccurate method-
level representations of bug-fixing change sets than theefparegular change sets. In fact,
the data allows us to make the following observation:

Non-essential method updates are less likely to appeargrfizing change sets than
in regular change sets.

A Chi-square test reveals the above relationship to bestitatily significant withp < 10~%.

To validate the precision of our detection of bug-fixing aparsets, we selected 200
random change sets that our heuristics identified as camgainbug id and 200 random
change sets that our heuristics labeled as containing aajdixe We then manually inves-
tigated the commit comments for these change sets and foahdur heuristics correctly
classified (181/206:) 90% of all change sets in the former category and (190/295%) of
change sets in the latter category. We thus conclude thabitve observation is grounded
in a reasonably precise estimate of the overall bug-fixirgnge sets within the systems
we analyzed.

2.5.5 Precision of the Detection Technique

We performed a manual inspection to verify the precisiomwihich DIFFCAT identified
rename refactorings and non-essential method updatesodivedd on rename refactorings
and non-essential method updates, rather than all repodeessential differences, be-
cause erroneous classifications of rename refactoringmatitbd updates are more likely
to have a negative influence on the representations useddngefbased approaches than

40

2.5. Empirical Study

Table 2.7: Characteristics of Selected Change Sets

System CS NEMUs CR MR FR PR VR

Ant 23 1154 0 4 675 203 91
Azureus 4 115 2 28 3 2 31
Hibernate 38 609 30 169 62 106 34
JDT-Core 22 333 2 17 52 136 74
JDT-UI 20 200 27 48 15 40 29
JEdit 12 64 3 29 16 33 12
Nutch 4 42 1 21 9 17 9
Spring 45 773 43 240 123 452 38
Struts 9 77 1 8 19 4 9
Xerces 8 110 13 98 17 19 1
Total 185 3478 122 662 991 807 328

erroneous classifications of isolated statement updates.

To select change sets for a given system, we selected a ewaff removed all change
sets featuring fewer than rename-induced method updates. We seleotso that the
remaining change sets accounted for approximadtaliyof all the rename-induced method
updates for that system. In this way, we investigated apprately half of all rename-
induced method updates reported in Table 2.3, while ligitar inspection to just 185
change sets across the ten systems.

Table 2.7 records, for each system, the number of changestseted (CS) and the
number of non-essential method updates that were deteg@dbCAT. It also records the
number of class, method, field, parameter, and variablewenafactorings (CR, MR, FR,
PR, VR) that were detected by E*CAT. We investigated the correctness of these reported
refactorings and non-essential method updates. We adsegs®ted rename refactorings
by carefully inspecting all available code, the relativagament of inserted and deleted
entities within code, documentation, and the commit contrabeach change set. We used
our rename classifications to judge the correctness of renaduced statement updates

41

2.5. Empirical Study

Table 2.8: Precision of the Technique (in %)

System NEMUs CR MR FR PR VR

Ant 100 n/a 50 100 100 98
Azureus 100 100 100 100 100 100
Hibernate 99.8 100 93 97 80 91
JDT-Core 100 100 76 98 100 96
JDT-UI 95 89 83 87 98 83
JEdit 984 100 79 88 85 42
Nutch 100 100 100 100 100 89
Spring 100 100 97 100 99 95
Struts 96.1 100 50 90 50 100
Xerces 98.2 100 96 94 95 100
Total 998 98 93 99 97 93

that were detected by IBFCAT. We used the correctness of rename-induced statement
updates and other non-essential differences to judge tineatoess of each non-essential
method update. Based on our manual investigation, we wéed@hbssert that:

99.8% of all method updates that were classified as non-gakbg DIFFCAT were
correctly classified.

Table 2.8 presents the precision of our detected renametoefsgs and non-essential
method updates in more detail. The table displays the ptiopoof correct classifications
for each of the results reported in Table 2.7. From the taldesee that the overall precision
of our approach for rename detection ranges from 93% (medimoldvariable renames)
to 99% (field renames). The table also shows that our apprioctified non-essential
method updates within individual systems with a precisemging from 96.1% to 100%.

The precision of non-essential method updates was higherttiat of detected rename
refactorings because only a small number of all erroneotiglysified insertion-deletion

42

2.5. Empirical Study

pairs actually resulted in erroneously classified statempdates, and only a few of those
statement updates were sufficiently isolated within metitoctause an entire method up-
date to be erroneously classified.

2.5.6 Discussion
Non-Essential Differences

The true “essentiality” of modified code lines and updatedhoas is tied to the specific
goals of individual change-based approaches. We beliemeatttounting for the kinds
of non-essential changes detected by our approach will s oseful for change-based
approaches that aim to analyze only specific classes of adtdevelopment effort, such
as effort related to feature implementations or bug fixee dllimate goal of our research
is to enable change-based approaches to more precisety theldow-level modifications
on which they base their higher-level change representio

Our current catalog of non-essential differences did ndtiote a number of additional
fine-grained differences that may be considered non-aak@mtsome contexts. For in-
stance, change-based approaches might also be interasgpibring updates involving
trivial f i nal keywords in local variable declarations or other updatetie that are less
likely to provide meaningful insight into the kind of devplment work that is of interest
to these approaches. Ideally, change-based approachdd be@ble to parameterize their
change representations to include only those code chahgeare most relevant for their
analyses. Because the types of non-essential differeneé€dn be detected is open, it
should be noted that the numbers we report are an underéstahall the possible non-
essential changes that may exist in the histories of thevaodtsystems we studied. More-
over, we did not attempt to estimate the recall of our tealsidn general, we designed the
technique to be precise (i.e., to characterize differeasason-essential only in the pres-
ence of strong evidence). For this reason, hard-to-cladgferences that may turn out to
be non-essential in practice would not have been includedimesults, further contribut-
ing to our numbers representing a lower-bound estimateeoptavalence of non-essential
differences.

43

2.5. Empirical Study

Our empirical investigation produced a number of obseovatabout non-essential dif-
ferences that we believe are relevant to a variety of chéaged approaches. For example,
we observed that between 1.7% and 16.2% of a system’s mefitzdas can be described
exclusively in terms of non-essential differences, and these kinds of method updates
interfere with a non-negligible number of frequent paimusethod associations supported
by change data. Eliminating non-essential method upddiesld thus have a positive
impact on the results of change-based approaches seekdeject meaningful associa-
tions between non-obvious method pairs. Based on othemaisms, we also expect
non-essential method updates to be most relevant for cHaegpsd approaches that do not
specifically pre-filter large or modification-intensive olge sets from their analyses. We
also expect non-essential differences to be most relevartiange-based approaches that
do not specifically analyze bug-fixing change sets.

Generalizability of the Results

Our investigation focused on ten open-source Java systévasexpect our observations
on non-essential differences to most readily generalizether systems of similar size
and developed using similar development practices as ek by the developers of our
studied target systems. Except for#REUS and JBDIT, the systems we analyzed are all
developed in association with major open-source softwastilolitors (Spring, Apache,
JBoss, and Eclipse). The development afUREUS is coordinated by a digital media
technology company (Vuze) and that ofQIE by an unaffiliated group of individuals. All
analyzed systems included code commits from between 6 tao@8iloutors, and 17 on
average. The investigated projects all contain in the asfibetween 100 and 1000 KLOC.
Our results may therefore not generalize to projects fegjwignificantly larger code bases
or development teams, or those following more tightly regimed development practices.
Systems developed in other programming language may ndiiegimilar proportions of
non-essential differences as those reported in our imgadsdn.

Our investigation of non-essential differences makes tesrgit to characterize the re-
call achieved by our differencing technique. We thus furthelify our individual observa-
tions by noting that our currently detected non-essenifif@rénces may represent distorted

44

2.5. Empirical Study

representations of the actual proportions of these diffegs in change history. However,
based on extensive manual assessments of the differenteesedeby our approach, we
believe that our overall proportions of non-essentialedd@hces are not incorrect. We plan
to further investigate the recall of our approach as partiafre work.

45

Chapter 3
Detecting Subtasks

Change-based approaches often process change sets undestimption that each
change set constitutes a conceptually isolated and distisk such as a feature enhance-
ment, code cleanup, or bug fix. This assumption allows thppeoaches to derive useful
insights about the code elements that were affected by a glvange. However, in our
manual investigations of change history, we have come ag¢r@sy cases where change
sets clearly contain changes related to multiple dissnbtasksFor example, as we show
in our motivating example in Section 3.2, developers mayu#ismeously commit distinct
patches for several independent bugs as part of the samgechan In other cases, devel-
opers may intersperse various code cleanups or otherasdafainor modifications along
with an unrelated bug fix or feature enhancement. In genehalnge-based approaches
cannot guarantee that a given change set actually contaamges related to exactly one
task.

We propose that change-based approaches automaticatlg divange sets containing
changes related to multiple subtasks, so that change sgisceatain updates related to
precisely one task/subtask. We argue that splitting chaatgein this fashion would allow
change-based approaches to avoid harvesting accidelatbmne between co-committed
code elements. We hypothesize that removing such accldesgaciations from inputs
considered by various tools, such as, for example, the R@S8E dould help those tools
produce better results.

In the previous chapter, we proposed the concept of nomeakdifferences, or changes

46

that are unlikely to capture the kind of software developnediort that is most meaningful
to change-based approaches. In this chapter, we build stk by presenting an au-
tomated approach that attempts to split change setsiutitasks- groups of smaller and
conceptually related changes that are unrelated to otlarges within a change set. Our
approach takes as input the essential changes within a elstgas computed by EF-
CAT, and then automatically groups those changes into norlap@ng sets (subtasks) by
identifying basic textual and static relationships betwdgem. As far as we know, our
approach is the first automated technique that splits chegigento subtasks.

To evaluate our technique, we constructed a new benchmanlpriging over 1 800
change sets drawn from the revision histories of seven,-llwed open-source Java sys-
tems. We manually classified each change set as being eitigge-sask or multi-task,
and then manually split all multi-task change sets intortbenstituent subtasks. Running
our approach on this benchmark showed that it correctlygg@ements into subtasks for
approximately 80% of all change sets. Specifically, the aagin correctly identifies 84%
of all single-task change sets and correctly splits 24% lahalti-task change sets. If we
consider that the current “default strategy” simply groafpglements in multi-task change
sets into single tasks, then we can also say that for over 9@#bmulti-task change sets,
the subtasks inferred by our approach are better, or atheasbrse, than those produced
by the current default stragey. Finally, we manually inigeded the results of our approach
for those single- and multi-task change sets for which the@gch inferred erroneous sub-
tasks. Our investigation revealed that, although our agagrancorrectly splits 16% of all
change sets, its erroneous results can still be consideasdmably useful for 78% of those
change sets.

The contributions of this chapter inclugehe precise formulation of a hitherto unstud-
ied problem|i) an automated technique that seeks to address that prob)eanreusable
benchmark that can be used to evaluate and compare futtw@dees in this area, and)

a detailed summary that describes the performance of oaniggee on the benchmark.

47

3.1. Definitions and Problem Statement

3.1 Definitions and Problem Statement

Given a change sét, we define aupdated elemerdf C' to be any element (field, method,
or class) that was either inserted or deleted as pait,ahat had its declaration signature
modified in any way as part @f, or (in the case of methods) that had its body modified as
part of C'.

Our goal is to separate the updated elements whenever those elements were mod-
ified as part of distinct and conceptually isolated subtadkg default, we assume each
change set addresses a single task. We say a changepgetorms multiple distinct and
conceptually isolatedubtasksvhenever the commit message@fexplicitly refers to or
names two or more changes that were performed as péftarfid the descriptions of those
changes are textually isolated from another. We say thastatask descriptions are tex-
tually isolated from another if they are separated usingeeit bullet-, comma-, or other
token-centric list, line breaks, or other whitespaceteslaormatting, or if they appear
within distinct phrases that are themselves separated oy $orm of punctuation (com-
mas, full-stops, or semi-colons) and some concrete déseripansition such as “also did,”
“also worked on,” etc. The basic assumption behind this d&fimis that if a developer
takes the time to split the description of their work intoaelg separated sub-sections, then
this is an indication that the developer considered therdest changes to be conceptually
separate.

To illustrate the reasoning behind our definition, we cansaer a change set from
ANT, in which the developer writes: “javadoc, some refactosirgitempt to delete VMS
command file when process completes.” In this case, bechasd#eveloper’s description
explicitly isolates the refactorings from the VMS deletiaativity, we assume that the
changes associated with each activity are conceptuallgragp In contrast, in another
change set from AT, the developer writes: “Add some preliminary test casesiere,
because the added test cases are not further distinguisirecohe another through some
kind of textual separation, we assume that their additiomstitutes a single task, even
if each test case could have been committed separately.laBinin a change set from
AZUREUS, a developer writes: “fix signature calculation and add saeleug.” Again,
because the two changes are not textually separated, we domsder them to belong to

48

3.2. Motivating Example

different subtasks. In this case, if the developer had amittfix signature calculation. Also

add some debug,” we would assume that the textual sepalstaeen the two activities is

indicative of a stronger conceptual split between them tamte a corresponding division
into separate subtasks.

Our goal is to help change-based approaches operate onesmibéd subtask in isola-
tion. Formally, we seek to develop an automated technicategiven a change set consist-
ing of element updates, associates each with one subtask;, such that the description
of eacht; is separate in the change set’s commit message.

We note that our definition of a subtask is restrictive in sgM@ays. First, aside from
missing all subtasks that are not explicitly commented ohigydeveloper, we also miss
all cases where a developer uses a single phrase to desarlbplenpotentially isolated
actions (e.g., “implemented/fixed X and Y,” “fixed some bugsjade minor tweaks,”
“cleaned up the code,” “last commit of the day,” etc.). Ferthore, we miss cases where
a developer outlines only one main task within their charegevhile also performing sev-
eral other more minor change tasks alongside the descrilaéul task. We prefer these
restrictions to avoid possible bias or ambiguities in whatoensider to be a “conceptually
isolated subtask” and to facilitate the expression of oobfam statement above. How-
ever, as our qualitative assessment in Section 3.4.3 slmwgroposed approach is able
to detect many cases where changes can be considered téebedsubtasks, even if they
are not explicitly outlined in the change set's commit comine

3.2 Motivating Example

To motivate the problem we seek to address, let us considearsge sétfrom the revi-
sion history of XXRCES a Java-based XML-processing toolkitThe change set inserts
one method and modifies three others. One of the modified migtisodeclared within
Abst r act DOVPar ser ; the other three methods are declared witbvPar ser | npl .
The change set’s commit comment reveals that the changersetits two separate patches

1Committed by authovenu on 2003-11-18 03:10:00.
2http://xerces.apache.org/xerces2-j/

49

3.2. Motivating Example

for two unrelated bugs: bug #2470&nd bug #24797. A manual inspection of the bug
reports and the two submitted patches for the two bugs reveal the two issues are con-
ceptually distinct and their changes not linked in any wae®ically, the changes for bug
#24795 update a single if-statement within et r act DOVPar ser method from

if (fDOVFilter.getWiat ToShow() & NodeFilter. SHONTEXT) ! =0)

to
if (child.getNodeType() == Node. TEXT_NCDE &&
(f DOVFi | t er. get What ToShow() & NodeFi | t er. SHONTEXT) ! =0)

to avoid the duplicate traversal of certain child nodes. dntast, the changes for bug
#24797 insert a new methadbor t with body

if (fBusy) { reset(); fBusy = false;}

and two identical code blocks, each of the form

if (fBusy) {
String nmsg =
DOMVessageFor matt er. f or mat Message(
DOvMessageFor mat t er . DOVIDOVAI N,
"1 NVALI D.STATE_LERR', nul |
);
t hr ow new DOVExcept i on(
DOVExcept i on. | NVALI D.STATE.ERR, nsgQ) ;

Hence, in this case, given that the change set commits chaalged to two isolated and
conceptually distinct subtasks, we want to separate thgtaups of changes to be able to
process each in isolation.

Shttps://issues.apache.org/jira/browse/XERCESJ-838
“https:/lissues.apache.org/jira/browse/XERCESJ-839

50

3.3. Approach

3.3 Approach

There exist numerous possible avenues for identifyinginagk change sets and for map-
ping the changes within these change sets to their respesitivtasks. For example, an
approach might parse the commit message of the change eetifydextual sub-regions
within that message, and then map textual keywords assdcvith the changes of the
change to keywords in each sub-region. In other cases,reitpe case of our motivating
example, a strategy could be to search for the specific pa@bsociated with a commit
and disambiguate the commit’s changes by mapping them baglspecific patch. How-
ever, we decided to investigate the applicability of a tlsitdtegy. Specifically, we sought
to assess how well the raw structural changes themselvéd bewsed to identify and
map subtasks within change sets. We did so for several reagarst, the two strategies
outlined above depend on input data that might be incompheigeading, or even com-
pletely unavailable. For example, in typical software eys$, detailed commit comments
or separate patches describing subtasks within a changargaly do not exist for some
commits. Furthermore, commit comments themselves can bleading in cases where
textual artefacts like bullet lists are used for reasonsmatiman listing subtasks. For exam-
ple, we have seen many commit comments that use bulletdigtesent justification for a
single change, rather than outline multiple changes, ‘@his [change] has many benefits:
1.[...] 2. [...] 3. [...].® In contrast, the raw changes themselves are always prastara
less easily misinterpreted than natural language. Finablyking with changes allowed us
to build on our existing DFFCAT diffing infrastructure.

During the development of our approach, we made two impbdiaservationsi) most
commits contain changes related to a single taskiiqndis always safer to miss splitting
a multi-task change set than it is to erroneously split alsi&sk change set, since in the
former case we do no worse than the current “default strdtedpereas in the latter case
we might cause a change-based approach to miss potentaliylassociations between
co-committed elements. Our underlying strategy for gplitthange sets thus assumes
that all updated elements are generally related, unlessnderéiry strong evidence to the
contrary. In this way, we sought to do no worse than the cufdafault strategy” in most

SCommitted bysandygao to XERCEson 2002-09-16 01:07.

51

3.3. Approach

O Detect O O
@) O Lmks Filter @) Group o

© = o
O o

O Updated Element — Element Link — Element Link O Subtask

Figure 3.1: Detecting Subtasks in Change Sets

cases, and possibly do better than this strategy in the némgatases.

Our overall approach consists of three steps, which wermuth Figure 3.1. In the
first step, we use four basic heuristics to detect weigbteguhectiondbetween pairs of up-
dated elements. Each of our heuristics parses the low-dtaglges affecting each updated
element and connects pairs of elements if their low-levahges meet specific similarity
criteria. We then combine the basic element-level conaestirom each heuristic into
combined weighted connections between elements and use tihduild a weighted el-
ement graph, where nodes in the graph represent updateérdgkerand weighted edges
denote combined weighted connections between updateeptenin the second step, we
filter out those connections that we deem to be too weak. Ilgjmathe third step, we detect
all connected sub-graphs within our element graph and kdieh connected sub-graph as
an isolated subtask. The idea behind this approach is thase/éenient linking criteria to
eagerly connect as many elements as possible into comm¢eeskspso that two updated
elements;, e; are very likely to appear within the same subtask unless wlevény strong
evidence to the contrary, i.e., not a single path froro e; anywhere in our graph. The
eagerness of our approach is motivated by the two obsengatiotlined in the previous
paragraph.

We next outline the details of each of our four heuristics gaderal procedure. We
have released a prototype implementation of our technigweiowebsite: http://www.cs.mcgill.ca/"d-
kawry/thesis.

52

3.3. Approach

3.3.1 Keyword Connections

During our general manual investigations of change setspatieed that developers of-
ten reuse names and keywords when working on a specific gulftas example, in our
motivating example in Section 3.2, two of the three changé&sed to the second subtask
are textually identical, and all three changes feature ereete to thé Busy field. In
contrast, the change related to the first subtask has véeytkixtual overlap with any of
the three changes of the second subtask. Specifically, #negehof the first subtask in-
volves keywords such asi | d, node, t ype, t ext, etc., whereas the combined changes
of the second subtask involve keywords suclbasy, r eset , nsg, nessage, f or mat,
etc. In all, the textual cohesion between the change retatétk first subtask and any of
the changes related to the second subtask is much lowerttbaextual cohesion between
any pair of changes related to the second subtask.

Given this insight, our first heuristic is based on the hypsih that changes (diffs)
featuring similar textual keywords are more likely to beatetl to the same task/subtask
than diffs featuring dissimilar keywords. In other words fwpothesize that if the diffs
associated with one updated element share similar texayaldrds as diffs associated
with another element update, then those two element updageiskely to be part of the
same task/subtask. Conversely, if the keywords assocrdtbdwo element updates are
dissimilar, then it is less likely that the updates are szlat

To associate keywords with an updated elemaemte first collect all diffs); associated
with e. We say &, is associated withif §; inserts or deletes if it modifies the declaration
signature ok or, in the case of methods, if it modifies the bodyoiVe then traverse the
| ef t Node andr i ght Node AST nodes of eachy, and collect all text-based elements (sim-
ple and qualified names, and words within string literalg} #gppear within these nodes.
We then tokenize each text-based element by splitting édbas common token separators
(periods and underscores), camel case word separatichgyanps of capitalized letters
appearing together (e.g., “DOM”). We eliminate non-ess¢or low-value tokens by fil-
tering out one-letter tokens and common stop wérdsd by ignoring words picked up
from primitive and basic Java types (eignt , Obj ect, St ri ng, etc.). Finally, we convert

Shttp://www.textfixer.com/resources/common-englishragotxt

53

3.3. Approach

all tokens to lower case and filter out duplicates, so thavargioken is associated at most
once with a given elemerat

Given two elements;, e; and their token setS§;, Sy, we calculate the weighted con-
nection betweemr; ande, based on the size of the normalized intersectios;0dnd S,.
Specifically, we compute

|S1 N S

U AN

(3.1)
We take a normalized size so that smaller changes invoheagkieywords can still be
connected to larger changes involving many keywords. We radde that ifS; or .S is
empty, theriV (eq, €3),e, := 0.

In our motivating example, our heuristic associates thevieegischi | d, node, t ype,
text, dom filter, andshow with the method updated as part of thiest r act DOV
Par ser subtask. None of these words appear in the the change et abor t
method, which yields keywordsusy, reset, andabort, so thatWV,,, = 0. In con-
trast, the insertion of thebort method has a relative overlap of,., = % with the two
other changes in the change set, because those also fédatiBty field, and hence the
busy keyword.

3.3.2 Dataflow Connections

Our keyword heuristic only connects updates whenever aaleeeexplicitly works with
similar textual content. When this is not the case, we cdindgtiect connections between
diffs if we consider basic dataflow dependencies betweem.thBor example, we can
consider the case where a developer updates the condifiartsypothetical f -condition
within a methodn

if (! foo) {// deletion of the ““!’’ character

and then adapts a related boolean assignment to preserpeotiram’s behavior at a call
site ofm

bar = true; // becones bar = fal se

54

3.3. Approach

m (bar) ;

In this case, using a keyword heuristic like the one outliabdve, the first change might
only generate the keywoiftbo, whereas the second would only generate the keyward
which do not textually overlap. However, the results of aibastaflow analysis would
detect that the assignmentitar in the second change is related to the conditiohomin
the first change, because the valuéaf might determine the value éfo at runtime. In
other words, the overatlataflowof the second diff is generally related to the dataflow of
the first diff. Given this insight, we hypothesize that ugghélements involved in similar
dataflow have a higher likelihood of being related than el@séhat are not involved in
similar dataflow.

We next outline our detection such dataflow connections éetvelements.

Detecting Basic Dataflow Connections

We first perform a light-weight inter-procedural dataflovabysis to build a dataflow de-
pendency graph between all variables that are referendadhwvine old or new files of the
change set. Each node in the graph represents a referentaolesas part of the change
set and edges between variahlgs; indicate that the value of eithey or v, influences the
value of the other. Specifically, we build an edge betweervavi@ablesy; andv; whenever
v; andv; appear together in one of four basic relations. We furttestitate these relations
in Figure 3.2. The figure displays a representative codgshipn the left and the various
basic variable connections on the right. Given this, we bayut andv; are connected if

1. v; is directly assigned te; in an assignment statement in an old or new file. For
example, in Figure 3.2, we conngctaindx becausg is assigned ta in the code.

2. v; is assigned a value inside the scope of a conditional blocktlae conditional
statement of that block references For example, in Figure 3.2, we connacvith
bothr andt because appears within the condition of ar -block assigning values
tor andt .

55

3.3. Approach

try {
mty=>5;
intx=ys;
int z = m(x);

}

int m(int p) {
ints =p;
if (s >2){
intr=4;
return r;
}else {
mt=35;
return t;

}

variable dataflow
connection

Figure 3.2: Dataflow Connections between Variables

3. v, corresponds to the'ldeclared parameter within a method badyandv; is the K
input argument to an invocation of in another part of the source code. For example,
in Figure 3.2 we connect andp because is passed as the first input argument to
an invocation olnandnis first formal parameter ig.

4. v; is returned from within a method body (i.e., via ar et ur n statement) and,; is
assigned the returned value of an invocatiomgfe.g.,vi = n()). For example, in
Figure 3.2, we conneat with bothr andt because andt are both returned by
andz is assigned the returned value of an invocatiomto

Several things should be noted about the construction ofdataiflow dependency
graph. First, we only pick up inter-procedural connectitmrsall method bodies that were
committed as part of the change set. Consequently, we doicloup any connections
from method invocations referring to unknown method bod8escond, to deal with Java’s
dynamic dispatch mechanism, we associate a given methodatienm with the bodies
of all declared and available methods sharing the same name aphkk giarameter types

56

3.3. Approach

asm. We do not take into account additional control-flow or imi@tion related to the
program’s type hierarchy because this information is taeroincomplete when analyzing
change sets. Similarly, we do not link a given thrown exaapti with any caught excep-
tions in the code because we do not have enough structurgperinformation to refine
our associations in a consistent fashion; while prototymuar approach, we tried linking
a given exception with all other caught exceptions, but ébtivat this strategy caused too
many unrelated changes to be linked by the resulting, oftaneous dataflow connec-
tions. Finally, we also note that our analysis deals withtegesnethod invocations, e.g.,
m(f ()), by unrolling these through imaginary temporary varialitestore intermediate
expressions, e.g., by rewriting nested expressionsag) ; n(t).

Connecting Updated Elements

Having once established connections between individuas$ jgd variables, we next use
these to identify weighted element-level connections betwupdated elements. To do
this, we first collect all variables referenced as part ofdifis for each updated elemest

to construct a set of initial seed variablgs For example, in the case of our motivating ex-
ample, we would associate the $ethi | d, TEXT_NODE, f Donfi | t er , SHONTEXT } with

the updated\bst r act DOVPar ser method. We then use the basic dataflow dependencies
between all variables to compute the transitive clostifg;) for each.S;. Conceptually,
T'(S;) represents all variables that influence or are influencedhéyariables inS;. We

then compute a weighted connection betwegande; using the normalized size of the
intersection betweeh'(S;) andT'(S;):

|T(S:) NT(S;)]
min(|7(S;)], |T(S;)|)

Wiei, ej)a = (3.2)
The idea is that if the variables of one updated method relagbet of another updated
method via our basic dataflow connections, then the tramstiosures of their variable
sets will overlap and we will associate them with the samk/sabtask. In the case of
our motivating example, we find that the transitive closuréhe Abst r act DOVPar ser
method has zero overlap with those declareddnPar ser | npl , whereas the methods in

57

3.3. Approach

the latter group all share an overlaplof.

3.3.3 Context Connections

Not all related elements can be connected based on keywodasgadlow alone. For exam-
ple, in object oriented programs, elements are often pegntgnconnected via inheritance
relations, so that pairs of elements are often intrinsfaa@llated because they, for example,
override the same method, implement the same interfacehaoe she same name. We
thus assigri¥ (e;, ;). := 1 to two updated elements, e¢; whenever they share similar
declaration signatures, i.e., have the same name, ovéhiédsame method, or extend or
implement the same type. Otherwise we say tdt;, ¢;).., := 0. This heuristic echoes
previous approaches linking code elements or changes bagedir sharing similar struc-
tural context [19, 27].

3.3.4 Hierarchy Connections

Given two elements; ande;, we automatically assight/ (e;, e;), = 1 if e; is either a
newly inserted or deleted element®is declaration signature was modified in some way,
and ife; is modified to contain a newly inserted or deleted refereaeg in these cases, we
assume that changesdpocannot be independent frosnbecause of these direct adaptations
involving both elements.

3.3.5 Combining Connections

We have implemented our connection heuristics by extentfiagEMDIFF framework.
Our prototype implementation takes as input the old and nles &f a change set (rep-
resented as resolved ASTs) and all the essential diffese(uitis) between those files, as
detected by DFFCAT. We then compute four weighted connections between eaclopai
elements;, e; using our heuristics and combine these weighted connectia a single
weighted connection using the following linear combinatio

1 1 1 1
Wie;, ej) = ZW(@, ej)n + ZW(@, €;)con + ZW(% € ey + ZW(% €;)t (3.3)

58

3.4. Evaluation

Next, we remove all connections that do not satisfy our setkthreshold ofV (¢;, ¢;) > 1.
The combined effect of our linear combination and seledteelshold is that we eliminate
all connections between pairs of updated elements)tidatnot share any contextual or hi-
erarchical connections afijl have at most very low combinations of keyword and dataflow
similarity. We selected the specific threshold®fe;, e;) > 1 based on experience gained
while prototyping the approach. Finally, we use the renmgrdonnections to construct a
graphG, where each vertex represents an updated element and ezfygie donnections
between elements. We then say that each connected compeitient G' represents an
isolated subtask. For examplefconsists of two connected componeftsandS,, then
we say that all the elements withify constitute one subtask and all those witBiconsti-
tute another subtask. Conceptually, this means that eyetgtad element withig; does
not share a connection witmy element withinS,, and vice versa. We interpret this as
constituting strong evidence that changes withlirare conceptually separate from those
in Sy, and likely to embody the kind of subtasks that might be noered separately within
the change set’'s commit comment.

Finally, we note that we always remove non-essential dififees when processing the
diffs associated with a given updated element. We do thigda@grocessing non-essential
method updates and isolated changes that are less likegydsdmciated with documented
tasks/subtasks. For example, a trividdi s keyword insertion is less likely to be part
of a documented task/subtask than, say, an update id @tatement. We assume that
processing statements that were updated by such a trigattion would only pollute our
results in most cases.

3.4 Evaluation

We sought to evaluate whether our approach can accurati#yclspnge sets containing
changes related to multiple subtasks. To do so, we retrigé\88ib change sets from the
change histories of seven of the ten target systems inteatlinc Section 2.5.1 and used
the commit comments of the selected change sets to manéitiyfrem into subtasks.

"We did not analyze BERNATE and JDT-UI because we were unable to download some of thésitsqu
files from their repositories. We did not analyzerR&ITs because we had not yet selected it for analysis in

59

3.4. Evaluation

Table 3.1: Characteristics of the Benchmark

Total N-Task N-Task 1-Task N-Task N-Task N-Task
System Ch Sets Ch Sets Authors Avg Size Avg Size Avg#Sub Ambig

Ant 274 13 8 11 17 5 17

Azureus 264 10 1 8 4 2 10
JDT-Core 92 0 -- 20 -- -- 0

JEdit 309 19 7 13 19 2 20
Nutch 308 18 5 21 18 2 9
Spring 284 10 3 13 9 2 11
Xerces 274 25 15 11 2 4
Total 1805 95 39 13 13 2.5 71

We then applied our approach to each change set and compareesults of its analysis
against the manually-inferred subtasks in our benchmaekh&Ve released our benchmark,
details of our experimental setup, and all data on our webkitp://www.cs.mcgill.ca/"d-
kawry/thesis.

3.4.1 Creating the Benchmark

We randomly selected 500 change sets from each of the ttamsadstories of the seven
selected benchmark systefhdVe then used IFFCAT to identify the essential element
updates within each change set and removed all change sdifyimg less than two ele-
ments. To avoid ambiguities, we also removed all those ahaats for which there was no
commit message because we could not easily estimate theemainkubtasks within such
change sets. This left us with 1805 candidate change sktf,vahich had a non-empty
commit comment and two or more updated elements.

We next read the commit message for each selected changedstetmine which of

Chapter 2.
8Given the relatively short history of lrcH, we selected 500 consecutive change sets from its change
history, starting with the 100th.

60

3.4. Evaluation

these included updates related to two or more subtasks. &/Bea commit message did
not clearly indicate the presence of multiple subtasks, ssmed that all updated ele-
ments for that change set belonged to a single task. Wherslerege set’s commit mes-
sage did clearly outline at least two subtasks, we used tRedAT viewer to investigate
the elements that were updated as part of the change set|laswee actual fine-grained
structural changes that modified each element. During tlfs sve labelled each updated
element based on what concrete subtask(s) that element ediied as part of. To avoid
bias, and in keeping with our definition of subtasks, we abuaferred specifically to the
subtasks outlined in the change set's commit comment whellilag updated elements.
We did not attempt to label element updates in change setiddavague commit com-
ments or changes that were too complex; in these cases, vgedldbe change sets as
being “ambiguous, ” and made no further attempt to classifgiated elements therein.
Furthermore, whenever we found that an updated element sgagn@d to more than one
subtask, we fused those subtasks and all their updated miem® a single task. In total,
this process yielded 95 multi-task change sets for which ewddccollect clear evidence
that they represented more than one subtask. Furthermerigentified 71 change sets as
having commit messages that suggested the presence oplmsitibtasks, but for which
we were unable to clearly relate changes to those subtasks.

Table 3.1 summarizes properties of the benchmark. The shioles the total number
of change sets included for each system (Total Ch Sets) awdrany of these change
sets described clearly separable subtasks within theimiboomments (N-Task Ch Sets).
The table also shows the total number of contributors (asthad any contributors of
patches) for the change sets featuring two or more subtadsRagk Authors), as well as
the average number of updated elements for both single- attdtask change sets (1-Task
and N-Task Avg Size, respectively). The benchmark incluesges by 39 contributors,
thus limiting any bias that may arise from studying changederby only a small number
of authors. The average number of elements updated as p#re ohulti-task change
sets in the benchmark (N-Task Average Size) is roughly edemt to the average number
of elements updated as part of the single-task change sd@sklAverage Size). The
multi-task change sets also contained about 2.5 subtask#oage, with most change sets
featuring two subtasks (N-Task Avg #Sub). Finally, the¢abbplays the number of change

61

3.4. Evaluation

sets that feature commit messages implying the presenceltpla subtasks, but for which
we were unable to produce unambiguous element classifisafid Task Ambig). We also
note that the benchmark features numerous combinationshwésks, including change
sets featuring multiple isolated bug fixes or enhancemast®iell as change sets featuring
both a fix and an enhancement, a fix and a code cleanup, an enhamnticand a cleanup, or
a combination of all three.

We note that the average multi-task change set size recandéé table is not likely
to be an estimate of the true size of general multi-task chaegs because we found at
least 71 change sets with commit comments that suggestgad¢hence of multiple sub-
tasks, but which we were unable to disentangle. Furtherngoren the restrictions of our
definition of a subtask, the benchmark does not include aast change sets containing
conceptually isolated, albeit undocumented changes. egpesitly, the benchmark does
not allow us to measure the overall recall of our approactesd giving us insight into
how well the approach can identify the kind of smaller, movaaise multi-task change
sets for which we were able to manually split their updateaneints. We also note that
since we did not attempt to process change sets for whick thas no commit message,
our evaluation cannot reveal how well our approach perfoomshese kinds of change
sets. However, we prefer these limitations to avoid ambiggiin the element assignments
within our benchmark.

3.4.2 Quantitative Results

We applied our approach to the change sets within the ben&hmMénenever the approach
split a change set into subtasks, we compared the inferfgihsits against those in the
benchmark to categorize the result into one of five categonich are shown in Table 3.2.
For each system, the table records how often our appripactorrectly split a single-task
change set into several subtasks (1-Task Inco)rgorrectly split a multi-task change set
into its subtasks (n-Task Coriji) identified at least one correct subtask within a multi-task
change set, but fused others into a single subtask (n-TaBkiRgincorrectly separated the
updated elements of a multi-task change set into subtaffiesedit than those defined in
our benchmark (n-Task Err), @) split elements into more than one subtask for one of the

62

3.4. Evaluation

Table 3.2: Split Change Sets

1-Task n-Task n-Task n-Task
System Incorr Corr Part Err Ambig
Ant 35/244 (14%) 2/13 (15%) 1/13(8%) 3/13 (23%) 1/17 (6%)
Azureus 35/244 (14%) 1/10(10%) 0/10 (0%) 1/10(10%) 1/104)10
JDT-Core 15/92 (16%) - - - - -- - -
JEdit 69/270 (26%) 5/19 (26%) 1/19 (5%) 1/19 (5%) 7/20 (35%)
Nutch 42/281 (15%) 4/18 (22%) 0/18 (0%) 1/18 (6%) 4/9 (44%)
Spring 44/263 (17%) 1/10 (10%) 1/10(10%) 1/10(10%) 2/1P4)8
Xerces 30/245 (12%) 6/25 (24%) 1/25(4%) 1/25 (4%) 2/4 (50%)
Total 270/1639 (16.5%) 19/95 (20%) 4/95 (4%) 8/95 (8%) 1{2A%)

71 “ambiguous” change sets (Ambig).

As shown in Table 3.2, our approach split (270+19+4+8+178) &f the 1805 change
sets in the benchmark. Of those, 270 were found to be siagle¢hange sets, so that
overall, the aproach correctly classified (1639-270) = 186®e 1639 single-task change
sets in the benchmark (83.5%). The approach produced fuliadially correct splits for
(19+4=) 23 of the 95 multi-task change sets (24%), and iectly split eight of the 95
multi-task change sets (8%); the remaining (95-23-8=) 64irtask change sets were not
split and thus incorrectly classified as single-task chaege (67%). Finally, we found that
the approach splits 17 of the 71 “ambiguous” change sets 24%

Precision and Recall

We define theprecisionof our approach as the overall proportion of unambiguousgéa
sets for which the approach produces correct or partialtyecd subtasks. We define its
recallto be the proportion of correct or partially split multi-kashange sets. Based on these
definitions and the values in Table 3.2, we see that our apprbas an overall precision
of (1369+19+4=1392/1734) 80% and a recall of 24%. In contrast, the current “default
strategy” of splitting no change sets would have a precisiof1639/1734~) 95% and a

63

3.4. Evaluation

recall of 0%.

Properties of Inferred Subtasks

Whenever our approach split change sets, it typically sjpdated elements into exactly
two subtasks (75% of the 318 split change sets). In almostaks (96%), the approach
split change sets into no more than five subtasks. The apgpedse typically grouped most

elements into one large subtask, with the remaining elesrsging divided into addtional

and typically very small subtasks. Specifically, 59% of aferred subtasks consisted of
a single “breakaway” element and 83% of all inferred suldasinsisted of no more than
five elements.

Correctly Split Multi-Task Change Sets

We found that the 23 multi-task change sets that were céyrecat least partially split by
our approach tended to contain fewer subtasks and elemenssiptask, on average, than
the 72 multi-task change sets that were not split or onlyriremly split by our approach.
Specifically, when we combined these two measures to defintsitte” of a change set as

#Elements

size = #Subtasks+ ZiSubtasks

(3.4)
we found that the 23 change sets in the former group had aagesize of approximately
5, whereas the average size of the 72 change sets in thegaitgr was around 8.5. If we
then say that a “small” multi-task change set is one whose sis less than the average
size of all multi-task change sets: (7.7), then our approach correctly classified 20 of 43
small change sets (47%), versus just 3 of 52 large chang€&¥i)s A Fischer’'s Exact
Test showed this relationship to be statistically signiftcavith p < 0.0001. From this
result, we infer that our approach is more likely to corngsplit a multi-task change set if
it features both few subtasks and few elements per subtaskaddy that we also noted a
similar relationship when we defined “size” to be only therage number of elements per
subtask ¢ = 0.0057). However, we noted no similar statistically significanfatenship
when considering only the number of subtasks for each chseige

64

3.4. Evaluation

Table 3.3: Split Change Sets by Category

Change Undoc Unused Limit Unusable Other
Group Atomic Elements Approach Changes Indirect

Single-Task 116 (43%) 17 (6%) 13 (5%) 64 (24%) 60 (22%)
Multi-Task 3(38%) 0(0%) 1(13%) 2(25%) 2 (25%)
Ambig 7 (41%) 0 (0%) 1(6%) 6(35%) 3 (18%)

Total 126 (43%) 17 (6%) 15 (5%) 72 (24%) 65 (22%)

3.4.3 Qualitative Analysis

We manually investigated the results of our approach fosei{@70+8=) 278 cases where
the approach incorrectly split the updated elements of glesiror multi-task change set,
and for those 17 cases where the approach split an ambighang& set. To do this,

we used the DFFCAT viewer to study the updated elements for the change set and to
identify reasons why some of those updated elements werknketl to the appropriate
subtask. The following is a discussion of the different easuse identified, which are also
summarized in Table 3.3. The table displays, for each offtheetgroups of split change
sets (rows), the number and proportion of change sets that sydit for a given reason
(columns).

Undocumented Atomic Changes

In (126/295=) 43% of the change sets, our approach identified we call “undocumented
atomic changes,” or changes that, although not explicgscdbed in the change set’s com-
mit comment as separate subtasks, are nevertheless celypelated from the change
set’s other changes. Changes in this category includdaésblgpdates to logging- or debug-
related outputs, updates to methods describing the cuytgdtversion, isolated insertions
or deletions of i nal keywords, reductions in an element’s accessibility, cogenups in-
volving generics or other minor rewrites, checkstyle casaans, isolated micro-bug fixes,
insertions of separate utility methods, and other cleatjated changes. This category

65

3.4. Evaluation

included 116 single-task change sets, seven ambiguougelsats, and three incorrectly
classified multi-task change sets.

Deletions of Unused or Unusable Elements

In (17/295=) 6% of the change sets, our approach isolatedide$ of unused elements or
null-returning methods. In these cases, change sets dedelated code elements but were
not adapted in any other way to deal with the deletion. In soases, the deleted elements
were either private, deprecated, stub implementationsingple delegates to methods de-
clared in a parent class. In other cases, the elements waldevoutside of their class
scope, but no other code changes were committed as partiofiéhetion, making it diffi-
cult to determine whether these elements were truly unusadhether the change ended
up breaking the build. This category consisted entirelyirgle-task change sets.

Limitations in our Approach

In (15/295=) 5% of the change sets, element updates weltedsiglito limitations in our
approach. In most of these cases, our approach failed tapdited elements that were
updated via similar changes. For example, in several chegtgewe could have linked an
updated field to a related updated method because both tleetetype of the field and
the formal return type of the method were replaced by the sametype. In other cases,
incomplete bindings returned by PPA or bugs iRABIGEDISTILLER caused us to miss
information that would have helped us link udated elemektghis category, 13 change
sets were single-task, one was ambiguous, and one was areicttpclassified multi-task
change set.

Unusable Changes

In (72/295=) 24% of the change sets, our approach could motlements that were mod-
ified only via changes involving either not enough or too mtett. For example, in many
cases, elements were updated only via an increase in tleeissibility, e.g., by changing a
pri vat e keyword topubl i c. In other cases, elements were updated only via insertions o
deletions of et ur n or br eak statements, additional exceptions in their signatureatgsd

66

3.4. Evaluation

to cat ch clauses, insertions afhi s() constructors, updates to large natural-language
string messages featuring too many keywords, updatesvingol nt s orbool eans, up-
dates to fields with very small names, and other changesriiegtno or only very little
reusable textual keywords or variables. In these casegpréugsion of our approach could
be improved by automatically linking elements updated ondyvery small changes to
all other elements. This category consisted of 64 singk-thange sets, six ambiguous
change sets, and two incorrectly classified multi-task gbaets.

Other Indirect Changes

In the remaining (65/295=) 22% of the change sets, our appréaled to link updated
elements because the keywords and variables associatedosiie updated elements sim-
ply did not overlap with those of other updated elements.hSQinanges can arise because
of indirect dependencies between updated elements, fon@eawhen they are are con-
trolled by third-party GUI framewaorks. This category indkd 60 single-task change sets,
three ambiguous change sets, and two multi-task change sets

3.4.4 Discussion
Precision of the Approach

Our assessments show that our approach incorrectly spli&d.of all single-task change
sets, 8% of all multi-task change sets, and 24% of all amhigwhange sets (295/1885
16% overall). In the worst case, erroneously splitting geasets can induce clients of our
approach to miss potentially valuable associations betweecommitted elements. How-
ever, we found that in many cases (43% of 295), our approasitiftedatomic changes
or changes which did not appear to be related to the othemyelsain the change set. In
these cases, we hypothesize that any lost associationsdret@-updated elements are less
likely to have a negative impact on client results and mighfact improve those results.
In other cases, our approach split change sets because pdated elements featured too
few or too many keywords (24%) or because the deletions aetlebements were not di-
rectly linked to other changes (6%). To avoid lost elemesbegtions, our approach can

67

3.4. Evaluation

be modified to automatically categorize change sets fegjsuch changes as single-task.
Similarly, in a few cases (5%), future improvements to owrfgtics or reused components
could avoid any lost associations altogether. Hence, ghvequalitative breakdown of our
results, we found that our general linking strategy was detely inappropriate for only
16% of the 295 change sets we considered, or (65/1805=) 4%btbkahange sets in the
benchmark. Consequently, although the overall precisfauoapproach was only 80%,
we find that our general heuristics are not unreasonablysaige in about 96% of all cases.

Comparison Against the Default Strategy

Our approach incorrectly classified about two thirds of akmbiguous multi-task change
sets as single-task. In these cases, the outcome of ouraabpioidentical to the current
“default strategy,” which assumes all change sets are esitagk. Consequently, given
that our approach also correctly splits 24% of all unambigumulti-task change sets, we
say that our approach performs better or no worse than thauliestrategy” on 92% of
all unambiguous multi-task change sets. However, it perfoworse than the “default
strategy” on the remaining multi-task change sets (8%).

Identifying Small Subtasks

Our assessments suggest that our heuristics are moretbkadyrectly (or at least partially)
split multi-task change sets if those change sets contaimedbemall number of subtasks and
few elements per subtask. Whether an identification of sowlsubtasks in change sets
can actually help client analyses will depend partly on #tative frequency of such change
sets in change history. Our benchmark contained only vewysimall and unambiguous
multi-task change sets (46 out of 1805, based on our proptesfaaition of “smallness”),
which suggests our approach is unlikely to have a strong aétnpathe results of change-
based approaches in the general case. However, our applsachmanaged to identify
many small and undocumented atomic changes in an additi@2él/1805~) 7% of all
change sets. Hence, if we expand our definition of “subtaskit¢lude such small multi-
task change sets, our identificationsshall subtasksould be relevant for approximately
(126+46=172/180%) 10% of all change sets in the benchmark.

68

3.4. Evaluation

Further Improvements to the Approach

Our current linking strategy does not use artefacts in thegh set’s commit comment,
possibly linked bug database entries, or any other datgéefmethe raw structural changes
themselves. This allows us to perform equally well giveneptillly confusing commit
comments or missing bug entries. However, our approactdaab be improved by in-
corporating such additional knowledge when available afidlsle. For example, in the
case of our motivating example in Section 3.2, our approacidchave found the appro-
priate (and separate) patches for the two bug fixes on #rC¥Xsbug repository website.
Or, in the case of lengthy commit messages, text-basedsesabould be used to identify
those messages featuring no textually separated sulbneegi@ny kind.

One additional limitation of our use of structural changeshat our approach does
not namethe subtasks it infers, i.e., we provide no links betweeniofarred subtasks
and identifiable entities such as bug ids, named featuresrarete development activity.
Consequently, approaches that wish to operate on the &shtasnfer would not know the
relevant portions of the commit comment describing thostesks. Consequently, naming
our inferred subtasks remains as interesting future work.

Threats to Validity

Possible misinterpretations of commit comments or indigichanges during the construc-
tion of our benchmark could have influenced our quantitatgelts. We tried to minimize
possible misinterpretations by using very strict critéoiawhat constitutes a separate sub-
task and by separately labelling those classificationswleatborted due to ambiguities
about a change set’s changes. We thus emphasize that thdt®askuchange sets within
our benchmark are likely to be less complex than generali+tagk change sets.

An additional threat to validity is a possible selectionsb@ising from our choice of
target systems. We tried to minimize this bias by selectorgyilived projects that have
been previously studied and that are distributed by diffevendors. However, as all of
our projects are medium-sized, open-source, and develppsaall- to medium-sized core
development teams, we cannot generalize our results terlargjects or those following
propietary development models. For example, several ofstudied projects regularly

69

3.4. Evaluation

include patches by other contributors, which, when reveeared committed together by
a core developer, might be more easily disentangled thangesathat are unrelated but
committed as part of a regular commit. The overall proportimd characterizations of
multi-task change sets might thus not hold for systems tleatat updated through patches
from external contributors.

70

Chapter 4
Related Work

Our investigation of non-essential differences and ntaklk change sets in change his-
tory complements existing research that seeks to incraaggécision with which software
changes can be abstracted and incorporated into softwgiteeening tools.

4.1 Change Descriptions

There exist numerous techniques for summarizing the éifiees (or changes) between
two software elements. Our work is similar to these priohtegues in that we also seek

to summarize changes in terms of their essentiality to obdoaged approaches, as well as
their relatedness to each other.

4.1.1 Basic Differencing Tools

There exist many general-purpose differencing tools thatate on various program rep-
resentations (e.g., text or Abstract Syntax Trees) andfatelnt levels of granularity (e.g.,
lines or element references) to compute edit scripts suimmgthe changes between pro-
gram versions. Many of these techniques have been summamnize existing survey by
M. Kim et al. [26]. Similar to these differencing tools, oura is to identify and describe
changes that occur within a change set. However, our ovgwallis to also classify these

71

4.1. Change Descriptions

changes in terms of their relevance to higher-level reprtasiens of development effort
and to discover what changes are related to each other.

Most existing differencing tools partially focus on eliniing the effects of spurious
textual differences from their computed edit scripts. Faareple, similar to our work,
Neamtiu et al. developed an AST-based differencing tecleitpat compares program
snapshots and detects rename refactorings and renaneedsiatement updates [35]. In
contrast, we describe a more general category of changenitiaties rename-induced
updates and other non-essential differences.

Our own differencing tool builds specifically onHBNGEDISTILLER, Fluri et al’s
tool-supported differencing technique that identifiegesteent-level differences between
Abstract Syntax Trees [11, 12]. Like other tool${ANGEDISTILLER ignores whitespace-
related differences and identifies documentation-relapethtes. Our approach extends its
technique by using PPA-inferred bindings to further categathese changes.

Our use of Dagenais and Hendren’s partial program analykis [infer type bindings
and support program differencing at the granularity ofre&fieed program elements echoes
previous work by Dagenais and Robillard on framework evoiuf8], in which the authors
identify differences between the call graphs of the old aewd files within a change set
to identify call-change relations. In contrast, we workhwiihe-grained modifications to
detect non-essential differences occurring at the subrtnt level and to group these
differences into subtasks.

4.1.2 Tools Detecting Basic High-Level Changes

Our research complements existing approaches that aimmmatize groups of low-level
changes mined from version history in terms of higher-leh&nge patterns. Such ap-
proaches include tools detecting refactorings [43], ad4method splits and merges [15,
28], or moves of arbitrary lines of code between methods][5C&ir work could benefit
from such approaches when detecting rename-refactorimgy®ther kinds of changes at

or above the element level. For example, although we cuyreletect rename refactor-
ings using GIANGEDISTILLER and our own custom analyses, we could also validate these
detected refactorings using any of the techniques outkhede.

72

4.1. Change Descriptions

4.1.3 Tools Detecting Systematic Changes

Several techniques detect what can be referred to as systernanges between program
versions. Work in this area include techniques that minexgbaistory to find aspects or
cross-cutting concerns in source code [1, 4, 36]. Resulésrad by these aspect-mining
approaches could help our technique link changes whenlesgmiodify the same aspect.
However, in keeping with their goal to identify aspects,tdehniques used by these aspect-
mining approaches usually require changes to exhibiticepte-defined patterns, so that
they naturally fail to link arbitrary groups of changes. xample, Breu and Zimmer-
mann’s technique links changes to a common aspect if th@seels delete or insert similar
method invocations [4]. Similarly, Nguyen et al.'s aspettiing technique links changes if
they modify similar code snippets [36]. In keeping with ooagof finding subtasks within
a change set, our change-linking heuristics are more lemehat they cluster all changes
as long as there exist certain loose and transitive relsti@tween them.

One additional approach in this area is M. Kim and Notkin'€L&-, which compares
program snapshot pairs to detect groups of coarse-graovedelel changes exhibiting
logical high-level structural patterns [27]. For examdl&DIFF detects cases where all
sub-types of a given type added calls to a new methad or where all methods of a certain
name no longer callar . In our work, we use similar ideas to link changes. For exaipl
the two cases outlined above, our keyword heuristic woulkl thhe changes based on their
references to a commdroo or bar keyword. However, as our goal is to discover more
basic links between all kinds of changes, we process moudslahfine-grained structural
changes than LSIBF and also use more lenient linking criteria to cluster thdsenges
together. Furthermore, we also apply our analysis on chaeige not program snapshots.

4.1.4 Similarity Detection Tools

Our work complements existing tools identifying similam@arly-identical code elements.
Tools in this area include dozens of code clone detectiols towany of which have been
outlined in an existing survey by Bellon et al. [2]. Similar¢lone detection, our aim is
to detect pairs of code fragments (e.g., methods) that argi@l except for non-essential
differences. In particular, all of the non-essential difeces currently detected by our

73

4.1. Change Descriptions

approach are or could be used by existing code clone desectaletect similar program
fragments [2]. However, the converse is not true, i.e., €ldetectors generally ignore ad-
ditional kinds of differences that we consider to be essérfiior example, a clone detector
might detect code fragments that differ only by the inserbban additional method invo-
cation or updated variable assignment, whereas we corsidérupdates to be essential.
Furthermore, unlike our approach, clone detectors do rmmtajly label the differences
between fragments, preventing potential clients of thegeaaches from operating on the
differences themselves.

H. Kim et al’s MECC detects what they refer to aemantic clonesor small code
snippets that may not be syntactically similar, but whiclplement the same or similar
functionality [24]. Their approach compares pairs of codggets by modelling how
those snippets access memory; snippets with similar mermgsses are then deemed
to be semantic clones. H. Kim et al. show that this approaohdesect numerous kinds
of non-essential differences, such as genefastatement reorderings and various kinds
of redundant statement reorganizations. However, likerattone detection tools, KCC
only requiressimilar memory usage in its detection of clones, whereas we seaedifisp
for a restricted number of particular fine-grained chan&@#silarly, unlike our approach,
MECC does not describe the exact differences between clones.

Other approaches in this area include our previous work tectdeg APl method imita-
tions [22], in which we compare element references (fieléss@nd method invocations)
to detect similar code snippets, and work by Long et al. [8&]ich attempts to cluster
related API functions into modules based on their use ofeshprogram state and com-
mon private functions. Our keyword and dataflow heuristressamilar to these similarity
heuristics in that they link updated elements sharing simdiataflow and using similar
keywords (e.g., calling similarly named methods, refergmnsimilarly named fields, etc.).
However, in keeping with our desire to link changes to chaagks, our heuristics operate
primarily on the changes affecting updated elements, ahtheo entire content.

74

4.2. Change Interpretations

4.2 Change Interpretations

Previous techniques have sought to assess the generahmefai change, either in terms
of its impact on the underlying system, or the kind of deveiept activity that it embod-

ies. Our work complements these techniques in that we seeka@cterize the overall
essentiality of fine-grained changes and to identify chasege that are likely to feature
development effort related to multiple subtasks.

4.2.1 Significance of Low-Level Change Types

Our investigation of non-essential differences is reldted previous case study by Fluri
and Gall, which showed that an interpretation of a change ‘stgnificance” is tied to the
particular representation with which its low-level delsas represented [10]. Similarly, we
also measured how higher-level change representationsecampacted by different low-
level change characterizations. In their work, Fluri andl §zecifically contrasted a purely
line-based representation of change significance agamesbased on their taxonomy of
fine-grained structural differences. In contrast, we camgbaon-essentiamodifications
against fine-grained structural differences and by evalgaipact in the more concrete
terms of a method level representation, as opposed to aajam#ion of significance.
Furthermore, Fluri and Gall's proposed significance measdiindividual change types
is partly based on their likelihood of inducing changes ineotentities. In contrast, our
notion of non-essentiality imposes stricter conditiongratividual changes that is based
partly on resolved element references and on the likelihtbatl the change is relevant
to higher-level representations of software developméotte We also implemented a
novel differencing technique to detect non-essentiaediffices, which we used to further
characterize their impact in an empirical investigatioradarge number of change sets
retrieved from multiple open-source systems.

Our work also complements a more recent investigation byeiGeg al. [14], which
showed that bug prediction techniques based on fine-gratradtural changes can be
more precise than those based only on line-based changeswddkiis similar in that
we showed that eliminating non-essential differences filoennput data used by a simple

75

4.2. Change Interpretations

association rule miner improved the precision of that miner

4.2.2 Classifications of Development Activity

Our investigation of non-essential differences is reldtedxisting approaches character-
izing the development activity behind changes. These delan approach by Robbes
and Lanza for eliciting higher-level properties of changesde during development ses-
sions [39]. As part of this approach, all development atiis directly monitored, a
strategy that could also be adapted to identify non-esaletifferences as they happen.
Other approaches include the use of machine learning on dometadata (e.g., commit
comments) to classify large commits into different maiatere categories, such as code
cleanups [18], or the use of pattern matching on commit contsnt® identify changes
introducing or fixing a bug [42]. A detection of non-essentidferences and multi-task
change sets could help these approaches produce moresdedimss of the specific devel-
opment activity behind each change.

4.2.3 Impact of Code Changes

Our detection of non-essential differences is related fr@gches that measure the pos-
sible impact of changes on the underlying system. Theseoappes can warn develop-
ers about changes that are likely to introduce bugs [29%caffrogram behavior [37], or
introduce unexpected dynamic behavior at runtime [20]. ®@ark complements these
approaches by identifying non-essential changes thatxdreneely unlikely to introduce
bugs, require re-testing, or introduce unexpected dyndmai@vior. In addition, unlike
these approaches, our discovery of non-essential diffeserequires only the files within a
change set, whereas most impact-assessment tools redditieaal input data. For exam-
ple, S. Kim et al.'s detection of buggy changes uses mack&mming to discover patterns
from previous buggy changes; the approach is less effertieases where such data is
not yet available [29]. Similarly, although differentiafrabolic execution by Person et
al. discovers non-essential method updates by identifigagttaviour-preserving changes,

76

4.2. Change Interpretations

their approach requires a complete and compileable snap$leach version being ana-
lyzed [37].

4.2.4 The Quality of Mined Data Sets

Our attempts to improve the quality of data mined from versiEpositories is motivated,
in part, by previous work highlighting impurities that migéxist in various archives and
datasets that are frequently mined by software enginegicigniques. For example, in
2009, Bird et al. showed that bug-fixing change sets withieikpinks to the bugs they
fix contain disproportionate amounts of simple fixes when gared to all the bugs that
are found in a system’s bug database [3]; the bias in thes¢ellbug-fixing changes may
then affect default-prediction techniques that learnuiesst from such changes, such as, for
example, S. Kim et al.'s BGCACHE approach [30]. Our work is similar in that we seek to
detect non-essential differences and multi-task charigeasd thereby improve the quality
of data that can be mined from version histories.

77

Chapter 5
Final Discussion

Numerous techniques involve mining change data storedftwae archives. Many
of these techniques work with change sets under the assamtpit the changes within
change sets are all equally meaningful and all related togesiwell-defined development
task. In this dissertation we provide empirical evidenagg®sting that this may not always
be true. For example, in Chapter 2, we found that between 36%oof all modified lines
of code and 2% to 16% of all method updates are due entirelpmeaessential changes —
minor cosmetic changes that are less likely to represenkititeof meaningful software
development effort that is most interesting to change-dhapproaches. Furthermore, we
found that over 80% of all non-essential differences wetaadly induced entirely by re-
name refactorings, which are typically entirely automdtgdnodern IDEs such as Eclipse.
These kinds of automated changes are less likely to provemmgful or non-obvious in-
formation than other kinds of changes, such as those madifyie system’s structure or
control flow. Based on the qualitative assessments in Ch@ptee also found that, among
those commented change sets modifying two or more programegits, approximately
10% contain work related to either multiple documented ashg or one or more undocu-
mentedatomic changethat are unrelated to the main task outlined in the chan¢gecseh-
mit comment. These subtasks may then induce false assmsdietween co-committed
code elements. We believe these ratios should motivategehlaased approaches to more
precisely categorize the kind of data that they mine fronsieer histories.

We have developed a general framework for detecting noenéss$ differences and

78

subtasks within change sets. Our framework makes use okeker@solution provided by
PPA [7] to precisely label individual changes and detectessential differences, and to
link changes based on shared structural properties aneliheetect subtasks. Although
we do not yet identify all possible kinds of non-essentiffedences and although we were
not perfectly successful in identifying all the subtask&wi our benchmark, we believe
that future approaches can incorporate the ideas we prs#ns dissertation to reason
more precisely about the changes they process in their ggmlyFor example, in Chap-
ter 2, we showed that an elimination of non-essential difiees can lead to a general
improvement in the precision of a simple association ruleeni

We emphasize that the use of PPA limits the usefulness ofengrgl strategy in sev-
eral ways. First, our current techniques are limited speadlfi to the Java language. Ex-
tending our work to cover other popular programming langsagill also require new
implementations of PPA for those languages. Second, byligad to specific program-
ming languages, rather than more general text- or treed@egram representations, tech-
niques using PPA must also adapt to the specific propertiggeddnguages they process.
Specifically, as programming languages evolve, steps neustiden to ensure that different
regions of a system’s change history are appropriatelygssed using the proper version
of that language. In the case of PPA, clients must selectrumdieh version of Java they
would like to compile the code they are analyzing, becauerdnt versions of Java sup-
port non-overlapping Java constructs. Failure to detegrttie appropriate version of Java
for a specific system snapshot can lead to imprecisions iA81s inferred by PPA. Fi-
nally, although PPA allows very precise analysis of a chesgds element references, the
use of PPA significantly slows down the rate at which chan¢® s be processed. In-
formally, we noted that, for some systemafFBCAT processed less than 100 change sets
per hour, with most of DFFCAT’s processing time spent using PPA. Furthermore, in some
cases, PPA required many minutes to process a single chahg<hough specific pro-
cessing speeds are less relevant when conducting moderptecal evaluations such as
ours (30000 change sets), they do matter in other contextexample, when processing
millions of change sets. However, as we showed in Chapten@)ge-based approaches
can also reduce the amount of PPA required for their analyge®nsidering) that the

79

effects of non-essential differences are most noticeablarge change sets (those modi-
fying 20 or more methods), which we estimated to constitess than 3% of all change
sets, andi) that bug-fixing change sets are less likely to contain naemsal differences
than other kinds of change sets. Consequently, changetbageoaches that specifically
process only very small or non bug-fixing change sets migbtilshconsider the tradeoff
between PPA’s (and hencaHpCAT’s) limitations and the potential gains from detecting
non-essential differences and subtasks.

So far, we have loosely defined non-essential differencéesrims of their possible rel-
evance to certain forms of development activity, e.g., fixigg or work related to feature
enhancements. However, informally, we have also noteditiatessential differences are
also conceptually similar to the kind of undocumented atocthenges we describe in Sec-
tion 3.4.3. Specifically, like undocumented atomic changesfound that non-essential
differences are often not documented as part of a changecsetimit comment. It might
thus be reasonable to redefine a “non-essential” differasdgeing a minor or automated
modification that is both independent from other changesadswunlikely to be explicitly
documented. Given such a modified definition, it would thepdssible to reformulate the
fairly separate problem statements of Chapters 2 and 3 agke smore concise problem
statement: Namely, that, rather than identify non-esakdifferences and split multi-task
change sets, an approach could simply seek to ideatiifjnic changewithin change sets,
or changes that are not in any way mentioned by a change setimit message. Eliminat-
ing such undocumented atomic changes from a change settbeulgrovide change-based
approaches with a more concise mapping between a changelsstribed task(s) and the
actual changes related to those tasks.

80

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

B. Adams, Z. M. Jiang, and A. E. Hassan. ldentifying coagBng concerns using
historical code changes. Proceedings of the 32nd ACM/IEEE International Con-
ference on Software Engineerimupges 305-314, 2010.

S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. MerComparison and evalua-
tion of clone detection tool$EEE Transactions on Software EngineeriB§(9):577—
591, 2007.

C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, Ikev, and P. Devanbu.
Fair and balanced?: bias in bug-fix datasetroceedings of the the 7th joint meet-
ing of the European Software Engineering Conference and\@d SIGSOFT Sym-
posium on the Foundations of Software Engineerpages 121-130. ACM, 2009.

S. Breu and T. Zimmermann. Mining aspects from versi@tdry. InProceedings of
the 21st IEEE/ACM International Conference on Automateitiw&oe Engineering
pages 221-230, 2006.

G. Canfora, L. Cerulo, and M. Di Penta. ldentifying chadgource code lines from
version repositories. IProceedings of the 4th International Workshop on Mining
Software Repositoriepage 14, 2007.

G. Canfora, L. Cerulo, and M. Di Penta. Ldiff: An enhandex differencing tool.
In Proceedings of the 31st IEEE International Conference ditwsoe Engineering
pages 595-598, 20009.

81

Bibliography

[7] B. Dagenais and L. Hendren. Enabling static analysigfaotial Java programs. In
Proceedings of the 23rd ACM SIGPLAN Conference on Objexr@rd Program-
ming Systems Languages and Applicatjgragges 313-328, 2008.

[8] B. Dagenais and M. P. Robillard. Recommending adapthenges for framework
evolution. InProceedings of the 30th ACM International Conference onv&oé
Engineering pages 481-490, 2008.

[9] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Nkas. Does code de-
cay? assessing the evidence from change managementlB&fa. Transactions on
Software Engineerin®27(1):1-12, 2001.

[10] B. Fluri and H. C. Gall. Classifying change types for lifiying change couplings. In
Proceedings of the 14th IEEE International Conference asgPam Comprehension
pages 35-45, 2006.

[11] B. Fluri, M. Wursch, M. Pinzger, and H. C. Gall. Changstdiing: Tree differenc-
ing for fine-grained source code change extractilfEE Transactions on Software
Engineering33(11):725-743, 2007.

[12] H. C. Gall, B. Fluri, and M. Pinzger. Change analysishaivolizer and ChangeDis-
tiller. IEEE Software26(1):26—33, 2009.

[13] H. C. Gall, M. Jazayeri, and J. Krajewski. CVS releasstdry data for detecting
logical couplings. IrProceedings of the 6th International Workshop on Princpé
Software Evolutionpages 13—-23, 2003.

[14] E. Giger, M. Pinzger, and H. Gall. Comparing fine-grairsource code changes
and code churn for bug prediction. Rroceeding of the 8th Working Conference on
Mining Software Repositorigpages 83-92, 2011.

[15] M. W. Godfrey and L. Zou. Using origin analysis to detewtrging and splitting of
source code entitiesSlEEE Transactions on Software Engineer,jrg81(2):166—-181,
2005.

82

Bibliography

[16] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Preiigtfault incidence using
software change historylEEE Transactions on Software Engineerir$(7):653—
661, 2000.

[17] M. Hashimoto and A. Mori. Diff/TS: A tool for fine-grairestructural change anal-
ysis. InProceedings of the 15th Working Conference on Reverse Eagngy pages
279-288, 2008.

[18] A. Hindle, D. M. German, M. W. Godfrey, and R. C. Holt. Aumbatic classifica-
tion of large changes into maintenance categorieRrateedings of the 17th IEEE
International Conference on Program Comprehensjmges 30-39, 2009.

[19] R. Holmes, R.J. Walker, and G.C. Murphy. Approximateistural context match-
ing: An approach to recommend relevant examplB&E Transactions on Software
Engineering pages 952-970, 2006.

[20] Reid Holmes and David Notkin. Identifying program, tteand environmental
changes that affect behaviour. Rioceedings of the 33rd ACM/IEEE International
Conference on Software Engineerjpgges 371-380, 2011.

[21] J. W. Hunt and T. G. Szymanski. A fast algorithm for cormapg longest common
subsequence€ommunications of the ACN0(5):350-353, 1977.

[22] D. Kawrykow and M. P. Robillard. Improving API usage ¢ligh automatic detection
of redundant code. IRroceedings of the 24th IEEE/ACM International Conference
on Automated Software Engineerjmge 111-122, 2009.

[23] D. Kawrykow and M. P. Robillard. Non-essential changesersion histories. In
Proceedings of 33rd ACM/IEEE International Conference oftv#are Engineering
pages 351-360, 2011.

[24] H. Kim, Y. Jung, S. Kim, and K. Yi. MeCC: Memory comparistased clone de-
tector. InProceeding of the 33rd ACM/IEEE International ConferenceSwftware
Engineering pages 301-310, 2011.

83

Bibliography

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

M. Kim, D. Cai, and S. Kim. An empirical investigationtmthe role of API-level
refactorings during software evolution. Rroceedings of the 33rd ACM/IEEE Inter-
national Conference on Software Engineetipgges 151-160, 2011.

M. Kim and D. Notkin. Program element matching for mudérsion program analy-
ses. InProceedings of the 3rd International Workshop on Mining\8Bafe Reposito-
ries, pages 64—71, 2006.

M. Kim and D. Notkin. Discovering and representing gysttic code changes. In
Proceedings of the 31st IEEE International Conference oftwdwe Engineering
pages 309-319, 20009.

S. Kim, K. Pan, and E. J. Whitehead Jr. When functionsgeaheir names: Auto-
matic detection of origin relationships. Rroceedings of the 12th Working Confer-
ence on Reverse Engineerjmpges 143-152, 2005.

S. Kim, E.J. Whitehead Jr, and Y. Zhang. Classifyingwafe changes: Clean or
buggy?IEEE Transactions on Software Engineeri34(2):181-196, 2008.

S. Kim, T. Zimmermann, E.J. Whitehead Jr, and A. Zell@redicting faults from
cached history. IrProceedings of the 29th International Conference on Saéwa
Engineering pages 489-498, 2007.

V.l. Levenshtein. Binary codes capable of correctietptions, insertions, and rever-
sals. InSoviet Physics Doklagyolume 10, pages 707—710, 1966.

F. Long, X. Wang, and Y. Cai. Api hyperlinking via strucal overlap. InProceed-
ings of the 7th joint meeting of the European Software Ereging Conference and
the ACM SIGSOFT Symposium on the Foundations of Softwarmé&argqig page
203-212, 2009.

E. Murphy-Hill, C. Parnin, and A. P. Black. How we refactand how we know it.
In Proceedings of the 31st IEEE International Conference ditwsoe Engineering
pages 287-297, 20009.

84

Bibliography

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

N. Nagappan and T. Ball. Use of relative code churn messsto predict system
defect density. IfProceedings of the 27th ACM International Conference otw&aoé
Engineering pages 292-301, 2005.

I. Neamtiu, J.S. Foster, and M. Hicks. Understandingree code evolution using
abstract syntax tree matching. Rmoceedings of the 1st International Workshop on
Mining Software Repositoriepages 1-5, 2005.

T. T. Nguyen, H. V. Nguyen, H. A. Nguyen, and T. N. Nguyehkspect recommen-
dation for evolving software. IfProceeding of the 33rd ACM/IEEE International
Conference on Software Engineerjpgges 361-370, 2011.

S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pasaredbifferential symbolic
execution. InProceedings of the 16th ACM SIGSOFT International Symposin
Foundations of Software Engineerinmpges 226—237, 2008.

C. M. Pilato, B. Collins-Sussman, and B. W. Fitzpatridkersion Control with Sub-
version O’Reilly Media, 2008.

R. Robbes and M. Lanza. Characterizing and undergtgraévelopment sessions. In
Proceedings of the 15th IEEE International Conference asgPam Comprehension
pages 155-166, 2007.

R. Robbes and M. Lanza. Spyware: A change-aware dewvelaptoolset. IrnPro-
ceedings of the 30th ACM International Conference on Soé\Eagineering pages
847-850, 2008.

M. P. Robillard and B. Dagenais. Recommending changstets to support software
investigation: an empirical studylournal of Software Maintenance and Evolution:
Research and Practi¢2(3):143-164, 2010.

J.Sliwerski, T. Zimmermann, and A. Zeller. When do changesigadfixes? IrPro-
ceedings of the 1st International Workshop on Mining SatvWRepositoriespages
1-5, 2005.

85

Bibliography

[43] P. Weissgerber and S. Diehl. Identifying refactorifiggn source-code changes. In
Proceedings of the 21st IEEE/ACM International Conferemecdutomated Software
Engineering pages 231-240. IEEE, 2006.

[44] A. T.T.Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carrollrdlicting source code
changes by mining change historyfEEE Transactions on Software Engineerjing
30:574-586, 2004.

[45] T.Zimmermann and P. Weil3gerber. Preprocessing CV&fdafine-grained analysis.
In Proceedings of the 1st International Workshop on Miningare Repositories
pages 2—6, 2005.

[46] T. Zimmermann, P. Weissgerber, S. Diehl, and A. ZelMiming version histories to
guide software changedEE Transactions on Software Engineerj4.(6):429-445,
2005.

86

