
ENABLING PRECISE INTERPRETATIONS OF SOFTWARE CHANGE
DATA

by

David Kawrykow

School of Computer Science

McGill University, Montreal

August 2011

A THESIS SUBMITTED TOMCGILL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF

MASTER OFSCIENCE

Copyright c© 2011 by David Kawrykow

Abstract

Numerous techniques mine change data captured in software archives to assist soft-

ware engineering efforts. These change-based approaches typically analyze change sets –

groups of co-committed changes – under the assumption that the development work repre-

sented by change sets is both meaningful and related to a single change task. However, we

have found that change sets often violate this assumption bycontaining changes that we

consider to benon-essential, or less likely to be representative of the kind of meaningful

software development effort that is most interesting to typical change-based approaches.

Furthermore, we have found many change sets addressing multiple subtasks– groups of

isolated changes that are related to each other, but not to other changes within a change set.

Information mined from such change sets has the potential for interfering with the analyses

of various change-based approaches.

We propose a catalog of non-essential changes and describe an automated technique

for detecting such changes within version histories. We used our technique to conduct an

empirical investigation of over 30 000 change sets capturing over 25 years of cumulative

development activity in ten open-source Java systems. Our investigation found that be-

tween 3% and 26% of all modified code lines and between 2% and 16% of all method

updates consisted entirely of non-essential modifications. We further found that eliminat-

ing such modifications reduces the amount of false positive recommendations that would

be made by an existing association rule miner. These findingsare supported by a manual

evaluation of our detection technique, in which we found that our technique falsely identi-

fies non-essential method updates in only 0.2% of all cases. These observations should be

kept in mind when interpreting insights derived from version repositories.

We also propose a formal definition of “subtasks” and presentan automated technique

i

for detecting subtasks within change sets. We describe a newbenchmark containing over

1 800 manually classified change sets drawn from seven open-source Java systems. We

evaluated our technique on the benchmark and found that the technique classifies single-

and multi-task change sets with a precision of 80% and a recall of 24%. In contrast, the

current “default strategy” of assuming all change sets are single-task classifies single- and

multi-task change sets with a precision of 95% and a recall of0%. We further characterized

the performance of our technique by manually assessing its false classifications. We found

that in most cases (78%), false classifications made by our technique can be further refined

to produce useful recommendations for change-based approaches. Our observations should

aid future change-based seeking to derive more precise representations of the changes they

analyze.

ii

Résum é

De nombreuses techniques de génie logiciel exploitent l’information stockée dans des

systèmes de gestion de versions. Ces techniques analysentgénéralement des groupes de

changements (ou change sets) sous l’hypothèse que le travail de développement contenus

dans ces change sets est à la fois pertinent et relié à une seule tâche. Nous avons constaté que

les change sets violent souvent cette hypothèse lorsqu’ils contiennent des changements que

nous considérons comme non-essentiels, c’est-à-dire, non-représentatif des changements

normalement associés au développement de logiciel. Par ailleurs, nous avons trouvé de

nombreux change sets qui contiennent plusieurs sous-tâches – des groupes de changements

isolés qui sont reliés les uns aux autres, mais pas à d’autres changements du même change

set. L’information extraite de change sets contenants des changements non-essentiels ou

des changements reliés à plusieurs sous-tâches peut interférer avec les diverses techniques

qui exploitent des systèmes de gestion de versions.

Nous proposons un catalogue de modifications non-essentielles et une technique auto-

matisée pour détecter de tels changements dans les systèmes de gestion de versions. Nous

avons utilisé notre technique pour mener une étude empirique de plus de 30 000 change

sets dans dix logiciels libres en Java. Notre étude a révélé que entre 3% et 26% de toutes

les lignes de code modifiés et entre 2% et 16% de toutes les méthodes modifiées sont mo-

difiés seulement par des modifications non-essentielles. Nous avons également constaté

que l’élimination de telles modifications réduit la quantité de fausses recommandations qui

seraient faites par un analyse de type “associtation rule mining.” Ces conclusions sont ap-

puyées par une évaluation manuelle de notre technique de détection, par laquelle nous

avons constaté que notre technique identifie faussement des méthodes non-essentielles

iii

dans seulement 0,2% des cas. Ces observations devraient être tenues en compte dans l’in-

terprétation des résultats d’analyse de données contenues das des systèmes de gestion de

versions.

Nous proposons aussi une définition formelle de “sous-tâches” et présentons une tech-

nique automatisée pour détecter les sous-tâches dans les change sets. Nous décrivons un

benchmark contenant plus de 1800 change sets tirées de septsystèmes Java. Nous avons

évalué notre technique sur cette référence et avons trouvé que la technique classifie des

change sets mono-tâche et multi-tâche avec une précision de 80% et un rappel de 24%.

En revanche, la “stratégie par défaut” qui assume que tousles change sets sont mono-

tâches classifie les change sets avec une précision de 95% et un rappel de 0%. Nous avons

également caractérisé la performance de notre technique en évaluant manuellement ses

classifications erronées. Nous avons constaté que dans laplupart des cas (78%), les clas-

sifications fausses faites par notre technique peuvent être améliorées pour produire des

recommandations utiles.

iv

Acknowledgments

The author thanks his advisor, Martin P. Robillard, for his many useful insights and

detailed feedback about all ideas presented in this work. The author thanks Barthélémy

Dagenais for his expertise in and continued technical support of SEMDIFF and PPA. The

author also thanks Yijia Xu, Tristan Ratchford, Karl Kettenring, Sammy Scheibenhauer,

and Martha Mansternacker for their personal support, as well as NSERC for its funding.

v

Contents

Abstract i

Résuḿe iii

Acknowledgments v

Contents vi

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Background . 3

1.1.1 Version Repositories . 3

1.1.2 Change Sets . 4

1.1.3 Edit Scripts . 5

1.1.4 Current Data Refinement Model 6

1.2 Motivation and Problem Statement 7

1.3 Proposed Solution . 9

2 Detecting Non-Essential Changes 10

2.1 Motivating Example . 11

2.2 A Catalogue of Non-Essential Changes 12

2.3 Detecting Non-Essential Changes 17

vi

2.4 Viewing Detected Changes .26

2.5 Empirical Study . 28

2.5.1 Set up . 28

2.5.2 Prevalence of Non-Essential Differences 31

2.5.3 Impact on Association Rules . 36

2.5.4 Impact on Bug-Fixing Change Sets 38

2.5.5 Precision of the Detection Technique 40

2.5.6 Discussion . 43

3 Detecting Subtasks 46

3.1 Definitions and Problem Statement 48

3.2 Motivating Example . 49

3.3 Approach . 51

3.3.1 Keyword Connections . 53

3.3.2 Dataflow Connections . 54

3.3.3 Context Connections . 58

3.3.4 Hierarchy Connections . 58

3.3.5 Combining Connections . 58

3.4 Evaluation . 59

3.4.1 Creating the Benchmark . 60

3.4.2 Quantitative Results . 62

3.4.3 Qualitative Analysis . 65

3.4.4 Discussion . 67

4 Related Work 71

4.1 Change Descriptions . 71

4.1.1 Basic Differencing Tools . 71

4.1.2 Tools Detecting Basic High-Level Changes 72

4.1.3 Tools Detecting Systematic Changes 73

4.1.4 Similarity Detection Tools .73

4.2 Change Interpretations .. 75

vii

4.2.1 Significance of Low-Level Change Types 75

4.2.2 Classifications of Development Activity 76

4.2.3 Impact of Code Changes . 76

4.2.4 The Quality of Mined Data Sets 77

5 Final Discussion 78

viii

List of Figures

1.1 Data Refinement Model for Change-Based Approaches 6

1.2 Non-Essential Changes in Ant .. 8

1.3 Proposed Data Refinement Model for Change-Based Approaches 9

2.1 Trivial Changes between two Java Files 11

2.2 Catalogue of Non-Essential Changes 13

2.3 DiffCat Output Format . 21

2.4 Overview of the ChangeDistiller Wrapper 22

2.5 DiffCat Implementation .. 24

2.6 Viewing Detected Changes .27

3.1 Detecting Subtasks in Change Sets 52

3.2 Dataflow Connections between Variables 56

ix

List of Tables

2.1 Characteristics of Target Systems 29

2.2 Code Churn in Target Systems (in kLOC) 32

2.3 Method Updates in Target Systems .. . 33

2.4 Non-Essential Methods in Change Sets 34

2.5 Recommendation Quality .38

2.6 Bug-Fixing Change Sets . 39

2.7 Characteristics of Selected Change Sets 41

2.8 Precision of the Technique (in %) .. . 42

3.1 Characteristics of the Benchmark 60

3.2 Split Change Sets . 63

3.3 Split Change Sets by Category .. 65

x

Chapter 1

Introduction

Software development teams typically use version repositories to manage the evolution

of their software systems. Version repositories are usefulbecause they allow developers

to commit (persist) changes made to a set of software artifacts and to later rollback those

changes to retrieve previous versions of those artifacts. Standard version repositories such

as CVS1 or SVN2 typically enable this service by storing both the current snapshot of a

given software artifact and a representation of all the changes that were applied to previous

versions of that artifact.

Given the widespread use of version repositories in software development, numerous

research techniques now propose mining the change data stored in version repositories to

assist software engineering efforts. For example, the mining of change data has been used

to measure code decay in aging systems [9], to predict defects in software modules [16,34],

and to detect non-obvious relationships between code elements [13, 44, 46]. We refer to

these kinds of approaches aschange-basedapproaches.

Although their techniques and end goals may vary, most change-based approaches oper-

ate onchange sets, or groups of changes that were co-committed as part of a single commit

operation to the repository [45]. This approach is motivated by the fact that changes within

a given change set often correspond to the development work that was carried out as part of

a single and coherentchange task, such as a bug fix or feature enhancement. Change-based

1http://www.nongnu.org/cvs
2http://subversion.tigris.org

1

approaches exploit this natural correspondence between change sets and change tasks to

infer useful properties about the underlying software system being changed. For example,

Zimmermann et al.’s ROSE tool mines change sets to identify code elements that are fre-

quently co-modified together, and then reminds developers of these associations whenever

the developers are found to modify a given subset of those elements [46].

Unfortunately, change-based approaches cannot guaranteethat data mined from a ver-

sion repository actually conforms to the assumptions that are made about that data. Specif-

ically, it is not always the case that all changes mined from achange set reflect interesting

development work or effort that was necessarily part of a single and coherent change task.

In fact, as we show in Chapter 2, developers for some softwaresystems often commit

non-essentialmodifications – changes that are so basic in nature that they do not actu-

ally reflect the kind of meaningful software development effort that is most interesting to

change-based approaches. For example, whenever a developer renames a given code el-

ement using a modern Integrated Development Environment (IDE) such as Eclipse,3 all

references to that element will beautomaticallyupdated by the IDE without the developer

doing any actual work. Such automatedrename-inducedmodifications are then less likely

to carry valuable information than other changes, such as modifications to the system’s

control flow, for example. Furthermore, as we show in Chapter3, developers may also co-

commit groups of changes that are clearly related to multiple change tasks. Such multi-task

change sets may then contain numerous non-essential or accidental associations between

elements that only happened to be committed together, but that did not actually need to

be. Without further processing, this non-essential data contained within change sets can

interfere with the analyses of typical change-based approaches. For example, in the case of

the ROSE tool, non-essential or unrelated changes could potentially decrease the overall

precision of its approach by introducing accidental associations between groups of unre-

lated code elements. Our goal is to help change-based approaches detect and eliminate

such non-essential information from their input data.

3www.eclipse.org

2

1.1. Background

1.1 Background

Software developers use version repositories to store versions of their source code files.

Many software engineering techniques then seek to mine these repositories to infer useful

properties about the underlying software. To better formulate our problem statement in

Section 1.3, we first outline our assumptions about the kind of information that is available

to typical repository-mining techniques and how these techniques process that information

to infer useful properties about the system being analyzed.

1.1.1 Version Repositories

Typical version repositories such as CVS or SVN store sourcecode and other software

artifacts as plain text or binary files. They thus provide no support for encoding any pos-

sible syntactic or semantic structure contained within thefiles they store. Change-based

approaches must reconstruct this structure after retrieving the files from the repository.

For a given fileF , typical repositories maintain an explicit copy only of thelatest ver-

sion ofF , sayFi, with each prior versionFj<i committed to the repository represented

only as a deltaδj . Eachδj describes the changes betweenFj andFj+1 in terms of the

lines of textin both file versions that do not have a matching line in the (respective) other

file version. These deltas are typically computed using a line-baseddiff utility, e.g., the

UNIX DIFF tool [21]. Whenever a developer commits a new version of a given fileFi, the

repository stores the computedδi−1 and replaces the previous versionFi−1 with this latest

Fi. An explicit copy of a given prior versionFj can then be reconstructed and retrieved by

applying the computed deltasδi−1, ..., δj to the currentFi in succession. Consequently, to

facilitate our subsequent discussion of how this information is actually mined by change-

based approaches, we will simply assume that change-based approaches always have direct

access to the explicit representation of each committed fileversion, as opposed to some

repository-specific format.

Version repositories do not monitor the specific development work made to the files

stored within them. Similarly, diffing tools such asDIFF only express theoverall differ-

ences between two files, not the specific sequence of change operations that were actually

3

1.1. Background

performed by developers. Consequently, although there exist frameworks for monitoring

developers as they work, e.g., SPYWARE [40], we assume that it is generally impossible to

retrieve the actual development work separating the file versions within a version reposi-

tory.

Typical version repositories allow users to commit multiple files at the same time. For

a given n-file commit (n≥ 1), a developer may associate a comment with the commit.

These comments typically consist of a short, free-form textdescription summarizing the

changes being committed, or a default tag in case no such description was entered. The

repository then associates this comment with each fileFi that was co-committed along

with that comment. However, although each repository associates the same comment with

each file from the same n-file commit, only some repositories,e.g., SVN, explicitly encode

which files were actually committed together [38]. Others, such as CVS, only associate

with each file atime stampthat describes the time that the repository actually persisted that

file [45]. However, given the availability of widely used heuristics for reconstructing what

files were co-committed as part of the same commit operation,we assume that each n-file

commit can be recovered from the repository [45].

1.1.2 Change Sets

Many change-based approaches, e.g., the ROSE tool, minechange setsretrieved from a

version repository to infer higher level knowledge that might be useful to software de-

velopers. A change set consists of a group of file pairs(F 1
o , F

1
n),...,(F

k
o , F

k
n), where the

files F 1
n ,...,F k

n represent the group of files that were co-committed by a developer to the

repository (i.e., an n-file commit), and the filesF 1
o ,...,F k

o represent their respective previous

versions in the repository. Each change set also contains some metadata, which generally

includes the comment associated with the commit, the authorof the commit, and the time

the files that were committed.

Change sets represent partial programs, i.e., a subset of all files in the system they come

from. Consequently, given only a change set, it is generallyimpossible to obtain the same

level of information about the code within its files as can be obtained from a complete and

compileable program snapshot. For example, given an arbitrary element expression (e.g.,

4

1.1. Background

a method invocation) within a Java-based change set, it is not guaranteed that this element

expression can be resolved to its fully qualified element signature (e.g., its fully qualified

method signature), because the file in which that element (e.g., the method) was declared

might not be part of the change set being analyzed. In contrast, element resolution of this

nature is always possible for complete and compileable program snapshots.

Change-based approaches can use one of three possible strategies to deal with this dif-

ficulty: They mayi) avoid the more complex analyses like element resolution andsimply

limit themselves to deriving information on a textual or syntactic level, they mayii) main-

tain a snapshot of the system being analyzed, or they mayiii) use heuristics to to infer as

much of the missing information as possible. For example, change-based approaches can

usepartial program analysis(PPA) to resolve a high proportion of the element expressions

within a change set to their fully qualified element signatures [7]. Although PPA typically

enables less element resolution than a complete program snapshot, it is not always fea-

sible to maintain such snapshots when mining version repositories, for example, because

developers may commit changes that cause the system to no longer compile.

1.1.3 Edit Scripts

Change sets implicitly encode the differences between file pairs. To operate on these im-

plicit differences, an analysis must therefore express them using some sort of explicit rep-

resentation, also known as anedit script. Edit scripts describe the changes between two

files as a sequence of fine-grain edit operations(oi, ei), where each(oi, ei) encodes some

fine-grain elementei and some operationoi that describes what happened toei between the

two file versions. Edit scripts allow change-based approaches to link code elements across

program versions and to then assess how those elements were changed [26].

The most general edit scripts are computed by the UNIXDIFF tool, which describes

the differences between two files in terms of line insertionsand deletions [21]. In con-

trast, more advanced diffing tools compute edit scripts in terms of actual code blocks

or program statements, and whether these were modified or moved, not just inserted or

deleted [11]. The tradeoff in this case is that more expressive diffing tools allow change-

based approaches to reason more precisely about the specificelements that were modified

5

1.1. Background

Figure 1.1: Data Refinement Model for Change-Based Approaches

between versions, but that they do so with higher computational overhead, or only for spe-

cific inputs, e.g., only for Java files.

1.1.4 Current Data Refinement Model

Typical change-based approaches, such as the ROSE tool, take as input a collection of

change sets from a given software system’s version repository and produce as output some

kind of higher-level knowledge that is usable by a software developer. To help abstract

the specific details of how each individual change-based approach achieves this, we can

consider all change-based approaches to be roughly equivalent to a series of data refine-

ments, which we depict in Figure 1.1. As we show in the figure, change-based approaches

start by extracting from a given change set an edit script that describes the changes en-

coded by that change set. For example, ROSE infers the non-empty lines of code that

were added or removed as part of the change set. This edit script is then converted into a

high-level edit model that describes the low-level detailsof the edit script in terms more

closely aligned with the goals of the approach. For example,ROSE maps the added and

deleted code lines of the edit script to the functions that were modified by those operations.

Finally, this edit model is used to infer high-level properties that might then be useful to a

software developer. For example, ROSE uses groups of modified functions to boost sup-

port and confidence values for an association rule describing functions that are frequently

co-modified together.

6

1.2. Motivation and Problem Statement

1.2 Motivation and Problem Statement

Typical change-based approaches often assume that a given change set captures software

development effort that is both coherent and essential. Forexample, the ROSE tool implic-

itly assumes that methods updated as part of the same change set i) are all related to a single

change task andii) all capture what can be referred to asessentialsoftware development

effort, such as changes related to bug fixes or feature enhancements, as opposed to those

that were automatically performed by an IDE, for example. However, this assumption does

not always hold in practice. Developers might commit changes related to multiple change

tasks, or they might commit what we refer to asnon-essentialchanges, which do not rep-

resent the kind of meaningful development effort that is most interesting to change-based

approaches. To illustrate this, we can consider two change sets drawn from the version

histories of two open-source Java projects, the first from ANT, a task management system,4

the second from XERCES, an XML processing tool.5

The first change set includes updates to the syntactic content of six methods, among

other changes.6 The change set’s commit comment indicates that it is relatedto an “update

to usegetLogger().<method>() rather thanlog(),” which involves a “move [of the]

EchoLevel inner class to [a] top level class.” However, in this case, a manual inspection

of the change set reveals that it would be inappropriate for achange-based approach to

associate all of the changes in the change set with the effortrelated to the main or any other

important development task. Specifically, apart of the workrelated to the main task, the

developer also performs a number of less meaningful code clean-ups, among them the re-

naming of three fields (e.g.,file to m file) and a number ofnon-essentialmodifications

to two of the six methods, some of which are shown in Figure 1.2. These non-essential

modifications are so basic that they do not really capture thekind of meaningful software

development effort that is most interesting to change-based approaches, e.g., updates to

method invocations, control or data flow, etc. It would thus be inappropriate to treat the

two method updates resulting from these very simple modifications in the same way as the

4http://ant.apache.org
5http://xerces.apache.org/#xerces2-j
6Committed bydonaldp on 2001-12-29 at 07:16:00

7

1.2. Motivation and Problem Statement

Figure 1.2: Non-Essential Changes in Ant

four resulting from the more meaningful work related to the main change task described

in the commit comment. For example, the association betweenthese two and the other

four methods, as might be captured by the ROSE tool, would be less meaningful than the

associations between the four methods associated with the main change task.

The second change set includes structural updates that affect four methods and one

field definition.7 Without further insight into the changes within this changeset, a typical

change-based approach might then assume that these five element-level updates are part

of a single and coherent change task, and perhaps infer additional properties based on this

information. However, a manual inspection of the change setreveals that this interpretation

would be incorrect. In fact, as is explained in its commit comment, the change set performs

changes related tothreeseparate subtasks:i) “1. fixing bug [623]” in theURI class (one

method),ii) “2. fixing bug [2451]” within theDatatypeValidatorFactoryImpl and

TraverseSchema classes (two methods), andiii) “3. fixing an error message” within

theSchemaMessages andTraverseSchema classes (one method, one field definition).

In this case, it would be more appropriate to split each method or field update based on

the coherent subtask it actually corresponds to. For example, the ROSE tool could avoid

possible noise in its detected associations by splitting this change set into three separate

change tasks, one per bug fix.

As these two examples show, it is not always appropriate to assume that all the work

within a change set is both coherent and relevant. In the firstexample, the developer per-

forms work that includes a number of changes that should not be treated in the same was

as the work related to the change set’s main change task. In the second, they committed

work that relates to several change tasks. Ideally, such changes should be appropriately

7Committed bysandygao on 2001-07-13 at 01:54:00

8

1.3. Proposed Solution

Figure 1.3: Proposed Data Refinement Model for Change-BasedApproaches

catalogued for the change-based approaches that operate onthem. However, we know of

no automated technique that can help change-based approaches make these kind of distinc-

tions between the changes within change sets.

1.3 Proposed Solution

We propose an automated technique thati) computes a fine-grained edit script describing

changes within a change set,ii) identifies changes that we consider to benon-essential,

andiii) identifies subtasks within change sets, or groups of changesthat are related to each

other, but unrelated to other groups of changes within the same change set.

Figure 1.3 illustrates how the proposed improvements of ourtechnique relate back to

the data refinement process used by change-based approachesshown in Figure 1.1. The

first goal of our technique is to allow change-based approaches to eliminate changes that are

less likely to reflect the kind of meaningful effort that one typically associates with coherent

change tasks. The second goal is to further split this meaningful effort into separate and

cohesive subtasks, thus allowing a more fine-grained high-level property inference than

would otherwise be possible.

We further elaborate on each of these goals in the rest of thisdissertation. Chapter 2

further motivates our detection of non-essential differences and outlines our efforts to detect

them. Chapter 3 presents our technique for splitting changesets into subtasks, as well as

an evaluation of its usefulness. Chapter 4 presents an overview of prior research related to

our two goals. Finally, Chapter 5 presents a final discussionabout our findings. We have

also released all code, experimental designs, and generated data on a companion website:

http://www.cs.mcgill.ca/˜dkawry/thesis.

9

Chapter 2

Detecting Non-Essential Changes

Change-based approaches generally seek to model only thosechanges that are most

likely to represent the kind of software development effortthat is most relevant to the

actual analyses of those approaches. For that reason, diffing tools such as Fluri et al.’s

CHANGEDISTILLER automatically filter out what can be referred to astrivial changes,

e.g., those arising from simple code rearrangement, the insertion or removal of unneces-

sary curly braces, or updates to the lincensing informationat the top of a file [11]. The

idea is that changes like these are less likely to be associated with the most meaningful

kind of development effort, such as effort related to bug fixes or feature enhancements.

For example, CHANGEDISTILLER deems the two Java files in Figure 2.1 to be identical

because the only differences between them are trivial in nature: None of them affect the

behavior or structure of the code they modify. All that changed between the two versions is

i) the location of thefield attribute w.r.t.method, ii) the location of the curly brace near

method, andiii) the indentation of the two integer declarations withinmethod.

As part of our manual investigations of change sets within software archives, we have

come across an additional group of changes that, like trivial changes, are less likely to

represent the kind of development work that is most likely tobe indicative of meaningful

software development activity. However, unlike trivial changes, no modern change-based

approach actually detects or removes these kinds ofnon-essentialchanges when analyzing

change sets. In this section we provide examples of what we consider to be non-essential

changes and describe DIFFCAT, our novel diffing infrastructure for detecting these kinds

10

2.1. Motivating Example

Figure 2.1: Trivial Changes between two Java Files

of changes within Java change sets. We used DIFFCAT to study the prevalence of non-

essential differences in change sets capturing over twenty-five years of development history

in ten long-lived open-source software systems. In doing so, we found that approximately

10% of all modified lines of code and 8% of all updated methods are updated entirely by

the kinds of non-essential differences we detect. We also found that non-essential method

updates can have a non-negligible impact on the kinds of association rules that might be

inferred by tools like Zimmermann et al.’s ROSE tool [46]. These and other observations

are important to keep in mind when studying changes mined from version histories.

This chapter is an extension of our previous paper on non-essential changes in version

histories [23]. Everything presented in that previous paper is our own work.

2.1 Motivating Example

We illustrate the concept of non-essential differences andtheir potential for interfering with

higher-level information extracted by change analyses with an actual change set retrieved

from the revision history of AZUREUS, a highly downloaded media sharing application.1

The change set includes modifications to 77 methods, among other structural changes.

The modified methods are spread out across 55 classes, which are themselves spread out

across 24 packages. The method modifications all involve structurally meaningful updates

to method invocations,if-statement conditions, or variable assignments. In all, over 700

lines of code are affected by the change, none of them whitespace or documentation-related.

All of this information can be readily extracted using currently available automated differ-

encing techniques.

1http://www.vuze.com

11

2.2. A Catalogue of Non-Essential Changes

As the change appears to be quite large, to span a significant number of elements, and

to feature non-trivial structural changes, analyses operating at any of these levels of ab-

straction might infer that the change is likely to introducea bug [34] or be symptomatic

of a decaying system [9]. Other analyses might mine the many pairwise associations

between the modified methods and eventually detect non-obvious dependencies between

them [46]. However, the developer who committed the changescharacterizes the commit

in another way. Their commit comment reads: “[Renamed] az3 constants class to Con-

stantsV3 to make it easier on my brain.” Indeed, the developer renamed theConstants

class toConstantsV3 and then committed all files that were trivially modified because of

references to theConstants class.

Based on this manual assessment, automated interpretations of this change set based on

lines, fine-grained structural differences, or the set of updated methods, are likely to yield an

inaccurate interpretation of the software development activity or effort behind the change,

and may thereby yield incorrect conclusions about potential bugs, system complexity, or

non-obvious associations between methods. In this case, a detection of rename-induced

and other non-essential differences would have supported amore meaningful abstraction

of the change set.

2.2 A Catalogue of Non-Essential Changes

We informally define non-essential changes to be low-level code changes that arei) cos-

metic in nature,ii) generally behavior-preserving, andiii) unlikely to yield further insights

into the roles of or relationships between the program entities they modify. We keep our

definition open-ended to emphasize that the true “essentiality” of code changes still de-

pends on the individual contexts in which they are studied. We focus on those changes

that are unlikely to capture meaningful information about the development effort behind a

change in many contexts.

To help catalog the kinds of non-essential differences we studied, we refer to two ver-

sions of the same Java code, which we show in Figure 2.2. The two versions of theNE1

class exhibit a number of differences, almost all of which are non-essential. On line 9, a

12

2.2. A Catalogue of Non-Essential Changes

Figure 2.2: Catalogue of Non-Essential Changes

redundantnull assignment to theval1 attribute is deleted. Lines 12 through 14 see the

deletion of a redundant default constructor. On line 17, thevariablel is renamed tolist,

and its declared type is trivially updated. The variable rename also induces a rename-

induced difference on line 18. Lines 19 and 20, see the deletion of redundantthis and

return keywords, respectively. On line 25, anif-statement is trivially modified, line 26

sees a redundant array bracket rearrangement, theString on line 28 is trivially split into

two substrings, and on line 30 the “boo” expression is placed into a single-use temporary

variable. Finally, theval2 attribute is renamed tom val2 (an essential change), which

then induces a non-essential rename-induced difference online 19.

Although all of these program differences may be of interestfor certain change-based

approaches, we believe that they are unlikely to contributerelevant information for many

techniques seeking to measure meaningful software development effort. It would be un-

likely, for example, for a developer to perform the kinds of modifications affecting theNE1

class to advance the implementation of a cohesive change task, such as developing a new

feature or fixing a complicated bug. We further justify this reasoning by considering each

type of non-essential difference in isolation.

13

2.2. A Catalogue of Non-Essential Changes

Trivial Assignment Updates

Java assigns default values to all declared variables whenever those variables are not specif-

ically initialized at the time of their declaration. Specifically, it assigns a value of 0 to nu-

meric variables,false to boolean variables, andnull to all other variables. Consequently,

adding or removing these default values to or from a variabledeclaration (e.g., line 9) has

no effect on the runtime behavior of the program. These kind of trivial assignment updates

are thus far less likely to be indicative of interesting development work than other kinds of

assignment updates.

Redundant Default Constructor Updates

Java automatically creates a public default constructor for all classes that do not explic-

itly declare at least one other constructor. Consequently,when no other constructors are

present, inserting or deleting these default constructorsin a class (e.g., lines 12 through 14)

does not change the semantic or structural properties of that class.

Trivial Type Updates

Textual updates to an entity’s declared type are non-essential if the actual declared type

is not affected by the update (e.g., lines 17 and 26). Specifically, a trivial replacement of

a type’s qualified name with its simple name does not affect how the declared entity is

handled at runtime. Similarly, in Java, moving the angled brackets from after the type to

after a variable name does not affect the actual type of the variable. In some situations,

updates of this nature are made to distinguish the type from asecond recently-imported

type that shares the same simple name. In these situations, we still consider trivial type

updates to be non-essential because they preserve existingprogram behavior given other

essential changes, such as newly inserted references to thenewly imported type. We note

that such changes cannot be detected by considering only their textual properties, since

with only textual information, it would not be obvious whether theList word refers to

java.util.List or some otherList type, e.g.,java.awt.List.

14

2.2. A Catalogue of Non-Essential Changes

Local Variable Renames

Developers may rename local variables only to increase the overall readability of the code.

While a cosmetic change of this nature might be interesting for a study of code readability,

in the general case it is typically unimportant to a change task or bug fix. In those cases

where a variable name update truly does imply a change in the role of the variable, then

this role change will be accompanied by other essential codechanges, e.g., modifications

to method invocations or control flow involving that variable.2

Rename-Induced Modifications

Whenever a developer renames a program entity (i.e., class,field, method, parameter, or

local variable), any code statement referencing that entity will be textually modified as part

of the rename (e.g., lines 18 and 19). These secondary textual changes are generally not

relevant when studying program differences, as they are only a necessary by-product of

existing program structure, which must be adapted to avoid compilation or runtime errors.

In fact, many IDEs, e.g. Eclipse, even help developers perform rename refactorings by

automatically updating all references to renamed entities. These kinds of automated refer-

ence updates are thus far less likely to contribute meaningful insight about the development

effort behind a change than the actual renaming of the code element itself. Therefore, we

consider the actual renaming of the code element to be an essential change, but argue that

the textual reference updates induced by that renaming are non-essential. This argument

echoes one made in previous work by Neamtiu et al., which presents a differencing tech-

nique that corresponding rename-induced updates as a single difference between program

versions [35]. Similarly, in their work on change significance classification, Fluri et al.

suggest that theeffectsof parameter renames should not be considered “significant”when

analyzing code changes [10]. Like these approaches, we alsoconsider rename refactor-

ings to constitute a single (essential) developer modification that also induces a number of

non-essential side effects as a by-product.

2In very rare cases, a variable renaming might cause the variable to shadow an existing attribute. We
consider these renames to be essential because they can cause potentially noticeable changes in the behavior
of the program.

15

2.2. A Catalogue of Non-Essential Changes

Trivial Keyword Modifications

In Java, prepending thethis keyword to a program entity only affects program behav-

ior in a limited number of cases.3 In Figure 2.2, the deletion of thethis keyword (line

19) has no effect on the behavior of themethod1 method. While changes involving the

this keyword might improve readability of the code, they can be considered non-essential

in most contexts. Similar to type updates, in those cases where adding athis keyword

is necessary to preserve an existing field access, we still consider such an insertion to be

non-essential because it preserves existing behavior given other unrelated changes. In this

situation, missedthis keyword insertions actually have a greater impact on program be-

havior than redundant insertions. In this category we also currently include trivial insertions

or deletions ofreturn statements at the end ofvoid-returning methods (e.g., line 20) and

trivial insertions or deletions of defaultsuper invocations occurring at the top of default

constructors (not shown).

Trivial If-Statement Updates

We have come across cases where developers trivially modifyif-statements, for example,

by replacing their simple boolean conditions with other equivalent expressions (e.g., line

25). Such rewrites might improve the readability of the code, but do not usually modify

the way that code behaves at runtime. We do not include in thiscategoryif-statement

updates that consist of reorderings of composite expressions involving field or array ac-

cesses, or method invocations, because such reorderings, although semantically equivalent

during standard program execution, are not always identical during exceptional program

execution, e.g., in the case ofnull pointers.

Cosmetic String Splits

In some cases, developers might split longString literals into a series of smaller con-

catenations involving the+ operator. Although such concatenations can introduce slight

3Specifically, thethis keyword is required to reference a field inside scopes found to declare a local
variable sharing the same name as the field.

16

2.3. Detecting Non-Essential Changes

additional runtime overhead, it is unlikely that such cosmetic String splits are meant to

modify anything except the readability of the code.

Local Variable Extractions

Developers may improve the readability of code by using temporary variables to store

expressions and using those variables instead of the expressions in asingle subsequent

program statement. Such local variable extraction refactorings are cosmetic in nature, have

no effect on a program’s behavior, and do not need to be performed in the context of a

related change task.

Whitespace and Documentation-Related Updates

Whitespace and documentation-based modifcations are already ignored by other change

analysis tools, such as CHANGEDISTILLER [11]. investigation of non-essential differences,

we took steps to eliminate these modifications from our inputdata. We thus only report on

the prevalence and possible impact of the non-essential differences outlined above.

2.3 Detecting Non-Essential Changes

All of the non-essential changes outlined in Section 2.2 affect individual programming lan-

guage statements or expressions. Consequently, to detect these changes in change history

requires analyzing changes at a level of granularity finer than statement-level differences.

Detecting the non-essential differences in our catalog also requires resolving arbitrary pro-

gram expressions within statements to their fully qualifiedelement signatures, a technically

challenging task given that the files analyzed are not part ofa complete and compilable

system. For example, to detect trivialthis keyword insertions or deletions requires an

analysis that detects not only the additional or missingthis keywords within statements,

but also verifies that no element expressions were actually altered by their insertion or re-

moval. Detecting non-essential changes in version histories thus requires a differencing

technique that is both fine-grained (working at the level of expressions within statements)

17

2.3. Detecting Non-Essential Changes

and semantically-sensitive (to reason about the impact of changes on the program behav-

ior). Furthermore, although existing change analysis tools already support fine-grained

differencing of individual program statements (e.g., CHANGEDISTILLER [11]), we know

of no change differencing tool that is both fine-grained and sensitive to the semantics at the

expression (sub-statement) level.

To detect non-essential differences, we thus developed a novel differencing technique

that is both fine-grained and able to reason about the elementreferences within individual

element expressions. We implemented our technique in a toolcalled DIFFCAT. Similar

to existing change analysis tools, DIFFCAT takes as input a group of co-committed source

files retrieved from a software repository (a change set) andreturns as output a descrip-

tion of the various structural modifications characterizing changes to statements within the

change set (a statement-level edit script). In addition to previous techniques, however, our

technique is also able to reason precisely about the elements referenced within individual

element expressions and to identify and label structural changes that we consider to be non-

essential. For example, DIFFCAT detects and labels cases where a program statement was

modified only by the trivial insertion of one or morethis keywords. DIFFCAT is currently

implemented to handle Java code stored in CVS and SVN. Readers can download a version

of our tool from our companion website: http://www.cs.mcgill.ca/˜dkawry/thesis.

Reused Components

To resolve element expressions within the Java files it analyzes, DIFFCAT reuses an ex-

isting implementation of partial program analysis, calledPPA [7]. PPA takes as input a

collection of Java files (e.g., the old or new files within a change set) and produces as output

a collection of resolved Abstract Syntax Trees (ASTs) representing those files. The nodes

within each AST are also supplemented withbindings, which link elements referenced

within an AST node (e.g., method invocations, variable names, etc.) to their fully quali-

fied element signatures. We chose to detect non-essential differences using partial program

analysis because we know of no existing infrastructure thatenables efficient retrieval and

compilation of a separate program snapshot for each individual change set.

To further facilitate our detection of fine-grained non-essential differences between the

18

2.3. Detecting Non-Essential Changes

ASTs produced by PPA, we use CHANGEDISTILLER [11], a state-of-the-art differenc-

ing tool that identifies various kinds of statement-level structural changes between Java

AST pairs. These differences are outlined in a separate catalog [10]. DIFFCAT enhances

the output computed by CHANGEDISTILLER with PPA-inferred bindings and then per-

forms additional processing to detect non-essential differences. We chose to perform AST-

differencing as opposed to, for example, token- or graph-based differencing, to avoid the

conceptual challenges of working with two distinct programrepresentations. We chose

to specifically reuse CHANGEDISTILLER because, although other AST-differencing tools

also exist (e.g., DIFFTS [17]), CHANGEDISTILLER is well-documented and also used by

other software engineering researchers [25].

Finally, we have integrated DIFFCAT within SEMDIFF [8], a change analysis frame-

work that runs within the Eclipse IDE. SEMDIFF retrieves change sets from CVS and SVN

repositories, performs partial program analysis using PPA, and provides hooks that en-

able third-party diffing tools to identify and persist fine-grained differences between the

PPA-enhanced files within each change set.

Two Challenges

To implement DIFFCAT, we were forced to address two important challenges. The first

challenge arose due to a mismatch in the input/output representations of two of our reused

components PPA and CHANGEDISTILLER. PPA produces element-resolved JDT-Core

based ASTs and we need to run CHANGEDISTILLER on pairs of these ASTs to identify

differences between them. However, we found that CHANGEDISTILLER i) only operates

on Java files (read from an Eclipse project) andii) expresses detected differences between

those files using a custom output format, i.e., not in terms ofAST nodes. Because we

found it too difficult to modify CHANGEDISTILLER’s code base, we were forced to write

an adaptor to map between PPA’s and CHANGEDISTILLER’s input/output formats. The

implementation of this adaptor was non-trivial.

The second challenge arose because CHANGEDISTILLER does not characterize pro-

gram updates at granularities finer than individual programstatements. Instead, it relies on

measures oftextual similaritybetween statement versions to detect cases where a statement

19

2.3. Detecting Non-Essential Changes

was modified, rather than inserted or deleted [11]. This means that, given a high enough

textual disparity between statements, CHANGEDISTILLER flags unmatched statement pairs

as deletions/insertions, rather than updates. For example, depending on its specific input

similarity thresholds, CHANGEDISTILLER, might identify the following statement pair as

arising due to a deletion and an insertion, rather than an update:

this.old = val; //v1 newValue = arg; //v2

Although high textual disparity between candidate statement pairs is generally a good indi-

cation that the pair corresponds to an insertion-deletion pair and not a modified statement,

in some cases, high textual disparity between versions of modified statement can also arise

because ofnon-essential differences, e.g., rename refactorings involving textually dissim-

ilar names. For example, if a developer renames a field calledold to newValue and

a local variable calledval to arg, then the statement pair above would actually corre-

spond to three non-essential statement updates (a trivialthis keyword deletion and two

rename-induced updates), instead of a statement deletion/insertion pair. Given that all of

the non-essential differences outlined in our catalog occur within modifiedstatements, we

were required to address this challenge to avoid mislabeling a potentially large amount of

non-essential differences.

ChangeDistiller Wrapper

To address the input/output mismatch between PPA and CHANGEDISTILLER, we imple-

mented a wrapper that takes as input any two resolved AST nodes (called the old and

new ASTs) and returns as output an enhanced representation of all CHANGEDISTILLER-

inferred changes (diffs) between them. Each diff contains several attributes:

1. The old AST node affected by the change, which we call theleftNode.

2. The new AST node affected by the change, which we call therightNode.

3. A textual descriptor that summarizes the change, which wecall thechangeType.

Our descriptors extend those presented in Fluri and Gall’s previous catalog of fine-

grain changes [10].

20

2.3. Detecting Non-Essential Changes

Figure 2.3: DiffCat Output Format

4. The old/new AST nodes that constitute the logical parentsof the old/new AST nodes,

which we call theleftParent andrightParent, respectively.

5. Additional intermediate information to facilitate later processing

We illustrate these attributes with the help of Figure 2.3. The figure depicts the old

and new version of a hypotheticalbar method, the body of which was modified by an up-

date to an invocation of a hypotheticalfoo method. ThechangeType for this change is a

“method invocation update,” theleftNode andrightNode are the AST nodes represent-

ing the old and new invocations offoo, and theleftParent andrightParent are the

AST nodes representing the old and newbar method declarations. In contrast, CHANGE-

DISTILLER would represent the change using only textual descriptors for the various AST

nodes corresponding to the old and newfoo invocations and the twobar parent methods.

Figure 2.4 presents a conceptual overview of our wrapper. The wrapper is coordinated

by a CDWrapper component, which coordinates the analyses of several helper compo-

nents. After receiving as input the old and new ASTs,CDWrapper uses itsASTFile-

Printer to convert the ASTs into two Eclipse-based Java files. Those files are then fed

to our reusedChangeDistiller component, which outputs the changes (diffs) between

them.CDWrapper then uses itsDiffMapper component to convert these diffs into those

outlined above. Finally, it uses aSupplDiffFinder to find additional diffs not found by

CHANGEDISTILLER. For example, theSupplDiffFinder detects updates to a method

declaration’s thrown exceptions.

TheDiffMapper component takes as input the diffsδi detected byChangeDistiller,

as well as the old and new ASTs, and maps eachδi to the actual pair of AST nodes

21

2.3. Detecting Non-Essential Changes

Figure 2.4: Overview of the ChangeDistiller Wrapper

it describes. This process consists of traversing the resolved ASTs and searching for

the exact AST nodes that match the textual descriptors associated with eachδi. Find-

ing the exact AST nodes based onChangeDistiller’s textual descriptors is not always

straightforward because theδi sometimes containedsyntheticmethod signature descrip-

tors, for which no equivalent AST nodes can be found in the source code. Such discrep-

ancies can arise whenever a method signature was affected bymultiple signature refac-

torings. In these cases,ChangeDistiller uses synthetic signature descriptors to sep-

arately represent the old version of the method for each individual refactoring in isola-

tion, rather than the actual method signature to which the refactoring was applied. For

example, suppose an old method signaturemethod(Type1) was refactored into a new

method signaturemethod(Type3,Type2) by replacingType1 with Type3 and by in-

sertingType2. In this case,ChangeDistiller might then refer to a synthetic signa-

turemethod(Type1,Type2) to express the starting signature on which the update from

Type1 to Type3 was applied. However, given that the insertion ofType2 was also ap-

plied, no such signature can actually be found in the old version of the code. Consequently,

the use of byChangeDistiller of such synthetic signatures made it difficult to map

individualδi to the actual methods in which they were discovered.

To deal with this problem, ourDiffMapper maps diffs in two steps. In the first, it

collects all refactoring diffsδi that yield the same element signature as their final product.

For example, we collect all method signature refactoringsδi thatChangeDistiller as-

sociates with the finalmethod(Type3,Type2) refactoring. For each such signatureei

22

2.3. Detecting Non-Essential Changes

and its diffsδi, we then use aRefactoredElementFinder to visit all the elementsej

declared in the old AST and check whether applyingall theδi to ej yieldsei. We then use

these discovered pairings (ej , ei) in a second phase to map the individualδi to their respec-

tive AST nodes. This is achieved using a number of AST visitors, e.g., aStmtVisitor,

that look for specific nodes corresponding toδi when traversing an AST.

Detecting Statement Updates

We observed that the difficulties in detecting some statement updates sometimes arises

because of rename refactorings. Rename refactorings can increase both the textual disparity

between individual program statements and the general difficulty of operating on AST-

based representations of code change. For example, discovering the non-essential statement

update outlined in Section 2.3 is far more difficult than discovering the same update minus

the effects of rename refactorings:

this.old = val; //v1 old = val; //v2

This latter update exhibits a higher degree of textual similarity, making it easier to identify

it as a statement update in the first place. Furthermore, it only textually differs because

of this keyword deletions, which, in our setting, makes it easier todetect and verify the

non-essentiality of the statement update.

Our overall technique for detecting non-essential differences is based on the realiza-

tion that the effects of rename refactorings should be eliminated when differencing source

files. We thus use atwo-phasetree-differencing technique to identify fine-grained modi-

fications between source files and to label those that are non-essential. In the first phase,

we use CHANGEDISTILLER and our own analyses to detect rename refactorings. We then

roll back those renames in the files we analyze by resetting the textualdescriptors of all

renamed-affected program references to display their old names. We then re-run CHANGE-

DISTILLER on the modified files and further process the detected updatesto identify those

that were affected only by the non-essential differences outlined in our catalog.

23

2.3. Detecting Non-Essential Changes

Figure 2.5: DiffCat Implementation

Implementation

Figure 2.5 presents a conceptual overview of our DIFFCAT implementation. For a given

change set, DIFFCAT ’s MainController first receives the old and new resolved ASTs

from SEMDIFF. It then then uses CHANGEDISTILLER (via aCDWrapper) to detect struc-

tural changes between the input ASTs; it stores these changes in a special set, called

firstRoundDiffs. A RenameDetector then processes thefirstRoundDiffs to col-

lect those that represent rename refactorings and to detectadditional rename refactorings

not detected by CHANGEDISTILLER. The MainController then rolls back those re-

name refactorings by traversing the new ASTs and modifying the textual descriptors of all

element expressions found to reference a renamed element. Next, theMainController

again uses CHANGEDISTILLER, this time to detect a second round of refined structural

changes between the old and new ASTs, which are stored in a second set, calledsecond-

RoundDiffs. The firstRoundDiffs and secondRoundDiffs are thenreconciled,

i.e., those rename-related differences present infirstRoundDiffs but not insecond-

RoundDiffs (because of the rename rollback) are merged intosecondRoundDiffs and

24

2.3. Detecting Non-Essential Changes

tagged as either rename refactorings or rename-induced differences. Finally, thesecond-

RoundDiffs are sent through a series of detectors, each of which flags diffs that corre-

spond to the specific kinds of changes that we consider to be non-essential differences,

e.g., trivial keyword modifications, trivial if-statementupdates, etc. Whenever such a non-

essential difference is identified by a detector, the detector modifies the diff’schangeType

property to reflect the specific kind of non-essential difference it embodies. For example,

the trivial keyword detector might update the “method invocation update”changeType

detected by CHANGEDISTILLER.

Detecting Class Renames

CHANGEDISTILLER does not identify class renames. DIFFCAT detects these by detecting

class insert-delete pairs sharing a high proportion of identical field and method signatures

(≥ 0.5). We chose this threshold because we found it to work well during prototyping.

Detecting Field Renames

CHANGEDISTILLER detects field renames by comparing their declaration statements using

the Levenshtein similarity measure [31]. In certain cases,CHANGEDISTILLER is unable to

recognize a renamed field because of a high textual disparitybetween its declaration pairs.

We try to augment the number of detected field renames by iterating over all possible field

insert-delete pairs within each class and checking whetherreferences to the old field were

always replaced by references to the new field. We check this condition in all statement

updates stored infirstRoundDiffs. Our analysis rejects a field insert-delete candidate

if even a single statement update does not satisfy our criterion.

Rename Reconciliation

The reconciliation offirstRoundDiffs andsecondRoundDiffs is necessary to prop-

erly identify rename-induced non-essential differences that were eliminated by the rename

rollback. For example, the rename-induced statement update

old = val; //v1 newValue = val; //v2

25

2.4. Viewing Detected Changes

will be detected by our first CHANGEDISTILLER pass because of the textual disparity

between theold andnewValue entity. However, after rename rollback, the two state-

ments will be textually equivalent and the update will no longer be detected by CHANGE-

DISTILLER in our second pass. To cope with this, we collect all statement-based struc-

tural differences fromfirstRoundDiffs and verify whether these are again present in

secondRoundDiffs. If a change was no longer detected in the second phase, we conclude

that the change was rename-induced and add it to our list of detected changes. Without this

additional step, our procedure would miss these updates.

Detecting Trivial if-Statement Updates

We currently detect only a subset of all possible equivalentif-statements. Specifically, we

only processif-statements that involve combinations of+, *, =, !=, ||, and&& operators,

and for these, we mainly look for updates involving pairwiseexpression re-orderings (e.g.,

a==b is equivalent tob==a) or certain patterns (e.g.,!x is equivalent tox==false). This

means that we cannot detect complex re-orderings such as, e.g., cases wherea==b==c

is equivalent toc==a==b, or cases involving numerical equivalence, e.g., cases where

1+1==2 is equivalent to2==2. Our analysis also conservatively skips expressions involv-

ing both object dereferences and either a|| or && operator, because we cannot safely

determine how those dereferences behave at runtime. For example, althoughx!=null &&

x.foo() might always be equivalent tox.foo() && x!=null at runtime, our analysis

cannot safely detect the equivalence using only a static analysis.4 To detect more compli-

catedif-statement updates, future implementations of DIFFCAT could use semantic clone

detection tools such as H. Kim et al.’s MECC [24].

2.4 Viewing Detected Changes

As part of our overall implementation of DIFFCAT, we have also implemented an Eclipse-

based viewing plugin that can be used to conveniently view changes detected by DIFFCAT,

4Due to the order in which the Java runtime evaluatesif-statement conditions, ifx is indeednull, the
secondif-statement will crash the program, but the first will not. We thus cannot assume that the second is
equivalent to the first.

26

2.4. Viewing Detected Changes

Figure 2.6: Viewing Detected Changes

to associate user-defined keywords with groups of changes, filter out changes based on

their keywords, and remove various kinds of non-essential changes from the view using

pre-defined filters. The viewer, which we show in Figure 2.6, was implemented to have the

same look and feel as SEMDIFF’s transaction viewer.

After using SEMDIFF to select a given repository and to run DIFFCAT on a change set

from that repository, users can use our viewer to examine thechanges that were detected

by DIFFCAT within the change set. The viewer automatically groups changes based on the

elements they modified. For example, in Figure 2.6, our viewer displays changes that mod-

ified theparse andparseURImethods, respectively. Each change is textually represented

by i) a textual marker indicating the kind of change it embodies and ii) a textual summary

of the code snippet(s) associated with that change. For example, in the Figure, the user has

highlighted a change corresponding to the insertion of theif-statement involving anfBusy

variable. Double-clicking on a given change automaticallyopens up an Eclipse comparison

view that shows the old and new files affected by the change andthe approximate location

of the change itself. For example, in the figure, the user has just double-clicked on a change

and that change is displayed in the comparison view above. Todisplay changes DIFFCAT

27

2.5. Empirical Study

reuses the Eclipse comparison view, which only displays thetextual changes between two

files; it then approximates the location of a given change by finding the diff-region within

the comparison view that most closely correspond to the morefine-grained changes de-

tected by DIFFCAT. For example, in the figure, the highlighted code region in the Eclipse

comparison view captures the selectedif-statement insert, as well as all the other changes

within theparse method. In the future, we could improve the granularity of the Eclipse

comparison view by directly incorporating changes detected by DIFFCAT.

Our viewer provides several other services. Besides from allowing users to view in-

dividual changes, it also allows them to assign text keywords to each change and to filter

changes based on their keywords. It also allows users to automatically filter out all non-

essential differences from the view, thus reducing the cognitive burden of abstracting over

those changes when inspecting change sets. Although simplein nature, our viewer greatly

facilitated the numerous amounts of manual inspections we performed as part of this thesis.

For a download of our viewer, the reader is refered to DIFFCAT ’s main webpage.

2.5 Empirical Study

We sought to understand the potential impact of non-essential differences on higher-level

abstractions of software development effort. To this end, we used DIFFCAT to analyze

change sets from ten open-source Java systems and to collectessential and non-essential

differences between committed file-pairs. We then determined i) the relative code churn

associated with non-essential differences andii) how often change sets include methods

that were modified only via non-essential differences. We used our results to estimate how

non-essential differences would interfere with the information measured by change-based

approaches. We have released all our data and a full description of our setup on our website:

http://www.cs.mcgill.ca/˜dkawry/thesis.

2.5.1 Set up

Table 2.1 describes the systems used for our evaluation. Columns in the table include the

number of change sets studied for each system (Chg. Sets) andthe number of days spanned

28

2.5. Empirical Study

Table 2.1: Characteristics of Target Systems

System First Last Days Chg. Sets

Ant 6 Dec 2001 17 Jul 2007 2,048 3,853

Azureus 12 Nov 2003 14 Jul 2004 244 3,103

Hibernate 4 Dec 2003 19 Aug 2005 623 3 922

JDT-Core 17 Jan 2002 15 Jul 2003 544 4 192

JDT-UI 20 Aug 2001 15 May 2002 268 3 081

JEdit 11 Feb 2001 10 Jun 2011 3 792 3 143

Nutch 2 Jun 2005 23 May 2011 2 182 678

Spring 1 Feb 2004 6 Feb 2006 736 3 627

Struts 16 Jul 2000 16 Sep 2009 3 350 2 370

Xerces 17 May 2001 8 Nov 2007 2 366 2 681

Total 9 813 30 650

by those change sets (Days). Seven of the systems we studied were previously investigated

by Robillard and Dagenais [41]; for these systems, we selected the same time frames as

those used by Robillard and Dagenais. The other three systems (JEDIT, NUTCH, STRUTS)

are all well-known and widely used open-source projects; for these, we considered all avail-

able change sets, starting with the 50th. We did not considerthese systems’ initial change

sets to avoid processing the very large changes that may be committed as part of a system’s

initial introduction to its version control system; however, our specific selection of the 50th

change set was otherwise completely arbitrary. For each system, we studied all change sets

that occur within the ranges reported in Table 2.1. In very few cases (74< 0.0025%), we

aborted processing change sets because we could not retrieve the files for those change sets

from their repositories or because PPA did not appear to terminate on the retrieved files.

We used DIFFCAT to determine the differences within change sets. Like otherdif-

ferencing tools, DIFFCAT does not report any differences arising from white spaces. We

also ignored all differences affecting comments and Javadocs, i.e.,we did not consider

whitespace-, documentation-, or comment-based differences in any of our results. We used

29

2.5. Empirical Study

the remaining differences to compute each change set’s total code churn(modified LOC)

and to identify the methods that were modified by each change set. We then identified

all non-essential differences to compute non-essential code churn and to identify which

methods were modified only by non-essential modifications.

We computed code churn by considering the LOCs involved in each reported struc-

tural difference. Our code churn measure thus differs slightly from that which would be

computed by purely line-based differencing techniques. For example, because of our re-

name rollback, DIFFCAT may identify that a LOC was updated, while other differencing

techniques may report this difference as a LOC insertion-deletion pair. We chose to use

DIFFCAT to compute churn to obtain the most precise estimate of the true churn arising

from non-essential differences.

A change set was considered to modify a method if it updated the body of that method

via one or more structural differences (i.e., we never considered documentation-related

differences as updates to a method). For simplicity, we refer to the number of methods

found to have been updated by a change set as the number ofmethod updatesfor that

change set. We labeled a method update asnon-essentialif the method update consisted

only of non-essential differences. All other method updates were consideredessential. The

total number of method updates for a system corresponds to the total number of method

updates found across all change sets.

We explicitly tracked method signature refactorings throughout our evaluation, i.e., we

did not treat methods modified by such refactorings as methodinsertion-deletion pairs. If

a method’s signature and body were both updated by a change set, then we included the

refactored method within the set of method updates for that change set. If only the method’s

signature was updated, then we did not include the method within the method update count

for that change set. We did not include method deletions or insertions within the method

update count because our investigation focused on the modified methods for each change

set.

We ran CHANGEDISTILLER on its default settings. We set PPA to compile change sets

using Java 1.5.

30

2.5. Empirical Study

2.5.2 Prevalence of Non-Essential Differences

Table 2.2 records the overall code churn for each target system (in kLOC). The table shows

the total number of code lines that weremodifiedfor each system (Modified). It shows how

many of the modified lines were caused by four major classes ofnon-essential differences

detected by our approach: differences induced by renames (R-Induced), trivial keyword

updates (Key), local variable refactorings (Local), and other kinds of non-essential differ-

ences (Other). The “Local” column aggregates local variable extractions, local variable

renames, and trivial updates to local variable declared types and initializers. The “Other”

column aggregates trivial string splits, redundant class casts, trivialif-statement updates,

and trivial updates to declared and return types of methods and fields. The combined non-

essential line modifications are reported in the final column(Non Ess). The percentages

displayed in this column correspond to the proportion of allmodified code lines (Modified)

that were found to be non-essential. We did not display the total deleted or inserted lines

for each system because we found those measures remained virtually unaltered after we

removed the kinds of non-essential differences that can affect them. In other words, inser-

tions and deletions of trivial constructors, trivialsuper() invocations , and trivialreturn

keywords had virtually no impact on the total deleted or inserted lines for each system.

Table 2.2 helped us derive the following observation:

Between 2.8% and 25.8% of modified code lines were updated only via non-essential

differences.

This suggests that for some systems, non-essential differences can significantly increase

line-modification-based abstractions of change.

From the table, we also see that across the target systems, a combined 266 kLOC were

modified. We see that 26.3 (10%) of the total 266 modified kLOC were modified only by

non-essential differences. However, based on a previous definition of total code churn[34],

which combines modified and inserted code lines into a singlemeasure, we find that the

26.3 non-essential kLOC constitute only a small fraction (<2%) of the overallchurned

code (≈ 1.56 mLOC) across the ten systems. This observation suggests that the kinds of

31

2.5. Empirical Study

Table 2.2: Code Churn in Target Systems (in kLOC)

System Modified R-Induced Key Local Other Non Ess

Ant 32.2 6.7 .8 .5 .3 8.3 (25.8%)

Azureus 95.1 2.5 .1 .1 0 2.7 (2.8%)

Hibernate 27.6 2.8 .1 .2 .1 3.2 (11.6%)

JDT-Core 15.3 1.8 .4 .3 .1 2.5 (16.3%)

JDT-UI 16.3 1.3 0 .1 0 1.5 (9.2%)

JEdit 21.4 .7 .2 .1 .1 1.1 (5.1%)

Nutch 10.0 .3 0 0 0 0.4 (4.0%)

Spring 23.2 3.8 .5 .2 .2 4.7 (20.3%)

Struts 10.0 .6 0 .2 0 0.8 (8.0%)

Xerces 14.9 1.0 0 .1 0 1.1 (7.3%)

Total 266.0 21.5 2.1 1.8 .8 26.3 (9.9%)

non-essential differences studied in our investigation donot affect measures oftotal code

churn(that include added and modified lines).

Table 2.2 also enabled us to infer the following property:

Out of the non-essential differences currently detected byour approach most non-

essential modifications were induced by rename refactorings or updates involving

trivial this keywords.

In particular, of the 26.3 non-essential kLOC reported in the table, approximately 82%

consisted of rename-induced statement updates, 8% consisted of trivial updates involving

this keywords, 5% consisted of local variable renames, and 5% involved the remaining

kinds of non-essential differences.

32

2.5. Empirical Study

Table 2.3: Method Updates in Target Systems

Total Non-Essential R-Induced Keyword Local Other

Ant 17 793 2 870 (16.1%) 2 196 542 141 131

Azureus 8 786 257 (2.9%) 223 32 6 2

Hibernate 15 975 1 189 (7.4%) 1 123 46 51 15

JDT-Core 8 867 622 (7.0%) 504 113 92 26

JDT-UI 9 690 443 (4.6%) 414 28 13 2

JEdit 13 803 238 (1.7%) 125 50 16 56

Nutch 3 570 100 (2.8%) 83 18 5 3

Spring 11 046 1 789 (16.2%) 1 497 257 73 60

Struts 5 515 228 (4.1%) 128 26 80 24

Xerces 8 409 247 (2.9%) 226 17 5 4

Total 103 454 7 983 (7.7%) 6 519 1 129 482 323

Non-Essential Method Updates

Table 2.3 records the total number of method updates that were detected for each target

system. The table shows the total number of method updates (Total) and the number

of those updates that were induced entirely by non-essential differences (Non-Essential).

It also records how often different classes of non-essential differences contributed to a

non-essential method update. We recorded this number for rename-induced updates (R-

Induced), keyword updates (Keyword), updates to local variable (Local), and various other

non-essential differences, such as redundant updates involving if-statements, string splits,

and class casts (Other). We note that the sum across the individual columns is higher than

the total number of non-essential updates because some non-essential method updates in-

volved multiple classes of non-essential differences.

From the table, we see that out of a combined 103 454 method updates across the ten

systems, 7 983 (7.7%) were non-essential. The table also enables us to make the following

observation:

33

2.5. Empirical Study

Table 2.4: Non-Essential Methods in Change Sets

System Total Non-Essential R-Induced Keyword Local Other

Ant 2 580 319 (12.4%) 251 89 47 63

Azureus 2 870 56 (2.0%) 56 24 5 2

Hibernate 3 059 325 (10.6%) 286 39 39 6

JDT-Core 2 017 158 (7.8%) 134 29 41 12

JDT-UI 2 155 157 (7.3%) 137 25 12 1

JEdit 2 619 136 (5.2%) 65 50 13 21

Nutch 506 28 (5.5%) 26 4 3 2

Spring 2 401 487 (20.3%) 391 117 61 47

Struts 1 509 82 (5.4%) 50 21 22 9

Xerces 2 038 75 (3.7%) 60 13 5 3

Total 21 754 1 823 (8.4%) 1 456 411 248 166

In the individual systems analyzed, between 1.7% and 16.2% of all method updates

were non-essential.

This suggests that for some systems, non-essential differences can distort method-based

abstractions ofchange span.

Distribution of Non-Essential Method Updates

Table 2.4 shows how many of the analyzed change sets includednon-essential method up-

dates. The table records the total number of change sets thatincluded modifications to at

least one method (Total). The remaining columns record the number of change sets found

to include at least one non-essential method update (Non-Essential), one non-essential

method update featuring a rename-induced difference (R-Induced), a keyword difference

(Keyword), a local variable refactoring (Local), or an update involving a redundant class

cast, trivialif-statement, or trivial string split (Other).

From the table, we see that out of 21 754 change sets found to modify at least one

34

2.5. Empirical Study

method, 1 823 (8.4%) included at least one non-essential method update. The table also

enabled us to make the following observation:

In some systems, non-essential differences distorted method-level change representa-

tions of over 10% of change sets.

This suggests that non-essential differences can impact method-level representations of a

non-negligible number of change sets.

We next observed that method updates in smaller change sets were less likely to be

non-essential than method updates in larger change sets. For example, we found that only

(723/23302≈) 3.1% of method updates within “small” change sets (e.g., those 15 327

change sets modifying 1 to 3 methods) were found to be non-essential. This ratio increases

to (3028/43102≈) 7.0% for “regular” change sets (e.g., those 5 605 change sets modifying

4 to 19 methods) and (4232/37125≈) 11.4% in “large” change sets (e.g., those 826 change

sets modifying 20 or more methods). We observed similar proportions for other ranges.

This data enabled us to draw the following conclusion:

Non-essential differences had the highest impact on methodlevel representations of

larger change sets.

This observation is important because it means that change-based approaches could both

eliminate a majority of non-essential method updates and mitigate their most significant

relative impact on method-level representations by using alternate differencing strategies

for larger change sets. For example, we found that aside fromfeaturing relatively high den-

sities of non-essential method updates (11.4%), change sets modifying 20 or more meth-

ods also contained an overall majority (53%) ofall detected non-essential method updates.

Change-based approaches could exploit this general observation when scanning change

sets by first using a lightweight differencing technique to compute a change set’s method

level change spanand then switching to a more sophisticated differencing technique only

in cases where the measuredchange spanexceeds a certain threshold, e.g., 20. This kind of

strategy is advantageous because larger change sets tend toappear relatively infrequently

35

2.5. Empirical Study

in change history (e.g., in the data we analyzed, only 2.7% ofall change sets modify 20

or more methods), which means change-based approaches could avoid the computational

burden of partial program analysis in most cases, while still detecting a relevant proportion

of non-essential method updates within change sets.

Finally, we observed that non-essential method updates were interleavedwith other

essential method updates in most (79%) change sets. This result corroborates findings of

a previous investigation by Murphy-Hill et al., which showed that developers often in-

terleaved refactorings with other modifications [33]. These observations suggest that in

cases of interleaved changes, a fine-grained detection of non-essential differences can help

change-based approaches obtain precise representations of the meaningful software devel-

opment work behind a change (as opposed to capturing the effects of tool-assisted refac-

torings or trivial keyword updates).

2.5.3 Impact on Association Rules

To help us further asses the possible impact of non-essential differences on the results of

existing change-based approaches, we implemented a simplemethod-pair association rule

mining analysis similar to that of Zimmermann et al. [46] andevaluated how thequality

of the recommendations produced by our analysis was affected by the kinds of method

updates used to train the analysis. Specifically, we sought to compare the quality of the

recommendations produced when all method updates were usedto learn rules against their

quality when only essential updates were used.

Our analysis takes as input a given sequence of change sets extracted from a system’s

change history, records the methods that were modified as part of each change set, and then

uses this information to produce recommendations for a developer. Specifically, similar to

Zimmermann et al.’s ROSE tool [46], our analysis supports developers who have modified

some initial methodmi as part of some change settk and who would like to find additional

methodsmj that also need to be changed along with methodmi. Our analysis helps devel-

opers by inferring association rules(mi → mj), from which we can return a ranked list of

methodsmj that were found to have been frequently co-modified withmi in prior change

setsHk := t0, . . . , tk−1. We rank recommendations(mj) for a change settk based on the

36

2.5. Empirical Study

confidenceof the inferred rule(mi → mj). We use theirsupportvalues as tie breakers.

Finally, like Zimmermann et al., we also filter out recommendations with confidence lower

than 0.1 and cap the number of recommendations at ten [46].

To compare the quality of the recommendations produced by our analysis when trained

using all methods (the regular setup) against their qualitywhen we train it only on essential

methods (our proposed setup), we compared several metrics used by Zimmermann et al. in

their evaluation [46]. To compute these metrics, we replayed the change history intervals of

the ten target systems (see Table 2.1) and determined which ranked recommendationsmj

our analysis would have made for method updatesmi in tk w.r.t. rules learned up until then

fromHk.5 We then recorded whethermj was also updated as part oftk and used this to tag

each ranked seed-recommendation pair(mi, mj) in tk as either “helpful” or not. Overall,

this produced two sets ofnon-emptyranked recommendation lists for 39 246 different seed

methods. We found that the recommendations were different in 12 208 (31.1%) cases. We

then compared the quality of the recommendations for these 12 208 cases.

Our metrics allowed us to to make the following observation:

In those cases where a removal of non-essential method updates affected the quality

of a seed method’s recommendations, the overall precision of the recommendations

increased by 10% and their recall decreased by 3%.

Table 2.5 presents this observation in more detail. For the 12 208 cases considered for

each setup, the table records the total number of recommendations made by our approach

(Tot Rec), the number of method changes for which at least onerecommendation was made

(Feedback), and the proportion of recommendations that were found to have been helpful

(Prec). It also records the proportion of changed methods for which at least one helpful

recommendation was found in the top three recommendations (L3) and the proportion for

which no helpful recommendations were made (Only Err).

From the table, we see that the precision of the approach improved by (.253/.230≈)

5We only consideredessentialmethod updates as candidate seeds to eliminate all spuriousmethods that
were only indirectly modified via one or more rename refactorings, and hence not legitimate candidate seeds
for our experiment.

37

2.5. Empirical Study

Table 2.5: Recommendation Quality

Setup Tot Rec Feedback Prec L3 Only Err

Reg 111 712 12 200 0.230 0.453 0.215

Prop 97 950 11 109 0.253 0.483 0.178

10% and its total number of helpful recommendations decreased from (.230*111712 =)

25 661 to (.253*97950 =) 24 882, or by around 3%. We also see that the proportion of

changed methods for which at least one helpful recommendation was found in the top

three recommendations increased by (.483/.453≈) 6.6% and that the proportion for which

only erroneous recommendations were made decreased by (.215/.178≈) 20.8%. Hence,

given this general reduction in the number of false positives produced by our approach, and

despite the slight loss in recall, we argue that the overall quality of the recommendations

produced by our association analysis was improved after we removed non-essential method

updates from consideration.

2.5.4 Impact on Bug-Fixing Change Sets

Some change-based approaches mine the individual changes within bug-fixing change sets

to identifyfix-inducing(i.e., bug-introducing) changes [42]. Fix-inducing changes can then

be used to identify, for example, faulty components or future faulty changes. To further

assess the possible impact of non-essential differences onchange-based approaches, we

measured how often bug-fixing change sets contain rename-induced and other non-essential

changes. Such changes are less likely to embody the actual bug-fixing activity of bug-fixing

change sets, and may thus result in inaccuracies when determining fix-inducing changes.

Change-based approaches can detect two kinds of bug-fixing change sets – those fixing

a specific bug (referenced via bug id) and those that perform ageneral fix with or without

specifying a bug. To detect the former, we use common heuristics similar to those used

by previous approaches [42]. Our heuristics parse the lowercase version of the commit

message for each change set to identify those messages containing bug-related substrings

(“bug,” “fix,” and “patch”) or some other system-specific bugmarker (“nutch,” “pr,” “spr,”

38

2.5. Empirical Study

Table 2.6: Bug-Fixing Change Sets

Bug ID Fix No Fix

System Bug ID +Nemu Fix +Nemu No Fix +Nemu

Ant 780 21 (3%) 1 189 52 (4%) 2 664 267 (10%)

Azureus 27 0 (0%) 509 8 (2%) 2 594 48 (2%)

Hibernate 690 42 (6%) 1 137 82 (7%) 2 785 243 (9%)

JDT-Core 585 10 (2%) 665 13 (2%) 3 527 145 (4%)

JDT-UI 348 9 (3%) 597 21 (4%) 2 484 136 (5%)

JEdit 391 10 (3%) 1 303 41 (3%) 1 840 95 (5%)

Nutch 328 13 (4%) 420 20 (5%) 258 8 (3%)

Spring 47 2 (4%) 331 24 (7%) 3 296 463 (14%)

Struts 516 9 (2%) 798 22 (3%) 1 572 60 (4%)

Xerces 565 11 (2%) 1 136 31 (3%) 1 545 44 (3%)

Total 4 277 127 (3.0%) 8 085 314 (3.9%) 22 565 1 509 (6.7%)

“hb,” and “hhh,”), followed by any amount of arbitrary text that includes at least one digit,

which we then assume to be a bug id. To detect more general “fixes,” we take the set of

all change sets detected by the above heuristic and add to it any change sets with commit

messages containing a fix-related substring (“fix”, “bug,” “defect,” “repair,” and “patch”).

Finally, we record which of the matched change sets also contain at least one non-essential

method update.

Table 2.6 records the results of this process. The table shows the number of detected

change sets fixing a specific bug (Bug ID) and how many of those change sets also featured

at least one non-essential method update (Bug ID +Nemu). It also displays the number of

detected change sets featuring a general fix (Fix) and how many of those contained at least

one non-essential method update (Fix +Nemu). Finally, the table displays those change sets

that were not identified as containing a fix (No Fix) and how many of those contained at

least one non-essential method update (No Fix +Nemu). We point out that, for each system,

all change sets fixing a specific bug (Bug ID) are also counted as change sets featuring a

39

2.5. Empirical Study

general fix (Fix). The number of change sets featuring no fix (No Fix) was derived by

subtracting the number of change sets featuring a fix from thetotal number of change sets

scanned for that system, i.e., the number reported in Table 2.1.

From the table, we see that, of those change sets referencinga specific bug id, 3.0% also

contain at least one non-essential method update. This ratio increases slightly to 3.9% when

we consider all bug-fixing change sets. In contrast, non-essential method updates appear

within 6.7% of regular change sets, or approximately (6.7/3.9 ≈) 70% more frequently.

This suggests that non-essential method updates are less likely to yield inaccurate method-

level representations of bug-fixing change sets than they are for regular change sets. In fact,

the data allows us to make the following observation:

Non-essential method updates are less likely to appear in bug-fixing change sets than

in regular change sets.

A Chi-square test reveals the above relationship to be statistically significant withp < 10−4.

To validate the precision of our detection of bug-fixing change sets, we selected 200

random change sets that our heuristics identified as containing a bug id and 200 random

change sets that our heuristics labeled as containing a general fix. We then manually inves-

tigated the commit comments for these change sets and found that our heuristics correctly

classified (181/200≈) 90% of all change sets in the former category and (190/200=)95% of

change sets in the latter category. We thus conclude that theabove observation is grounded

in a reasonably precise estimate of the overall bug-fixing change sets within the systems

we analyzed.

2.5.5 Precision of the Detection Technique

We performed a manual inspection to verify the precision with which DIFFCAT identified

rename refactorings and non-essential method updates. We focused on rename refactorings

and non-essential method updates, rather than all reportednon-essential differences, be-

cause erroneous classifications of rename refactorings andmethod updates are more likely

to have a negative influence on the representations used by change-based approaches than

40

2.5. Empirical Study

Table 2.7: Characteristics of Selected Change Sets

System CS NEMUs CR MR FR PR VR

Ant 23 1 154 0 4 675 203 91

Azureus 4 115 2 28 3 2 31

Hibernate 38 609 30 169 62 106 34

JDT-Core 22 333 2 17 52 136 74

JDT-UI 20 201 27 48 15 40 29

JEdit 12 64 3 29 16 33 12

Nutch 4 42 1 21 9 17 9

Spring 45 773 43 240 123 452 38

Struts 9 77 1 8 19 4 9

Xerces 8 110 13 98 17 19 1

Total 185 3 478 122 662 991 807 328

erroneous classifications of isolated statement updates.

To select change sets for a given system, we selected a cutoffn and removed all change

sets featuring fewer thann rename-induced method updates. We selectedn so that the

remaining change sets accounted for approximatelyhalf of all the rename-induced method

updates for that system. In this way, we investigated approximately half of all rename-

induced method updates reported in Table 2.3, while limiting our inspection to just 185

change sets across the ten systems.

Table 2.7 records, for each system, the number of change setsstudied (CS) and the

number of non-essential method updates that were detected by DIFFCAT. It also records the

number of class, method, field, parameter, and variable rename refactorings (CR, MR, FR,

PR, VR) that were detected by DIFFCAT. We investigated the correctness of these reported

refactorings and non-essential method updates. We assessed reported rename refactorings

by carefully inspecting all available code, the relative placement of inserted and deleted

entities within code, documentation, and the commit comment of each change set. We used

our rename classifications to judge the correctness of rename-induced statement updates

41

2.5. Empirical Study

Table 2.8: Precision of the Technique (in %)

System NEMUs CR MR FR PR VR

Ant 100 n/a 50 100 100 98

Azureus 100 100 100 100 100 100

Hibernate 99.8 100 93 97 80 91

JDT-Core 100 100 76 98 100 96

JDT-UI 99.5 89 83 87 98 83

JEdit 98.4 100 79 88 85 42

Nutch 100 100 100 100 100 89

Spring 100 100 97 100 99 95

Struts 96.1 100 50 90 50 100

Xerces 98.2 100 96 94 95 100

Total 99.8 98 93 99 97 93

that were detected by DIFFCAT. We used the correctness of rename-induced statement

updates and other non-essential differences to judge the correctness of each non-essential

method update. Based on our manual investigation, we were able to assert that:

99.8% of all method updates that were classified as non-essential by DIFFCAT were

correctly classified.

Table 2.8 presents the precision of our detected rename refactorings and non-essential

method updates in more detail. The table displays the proportion of correct classifications

for each of the results reported in Table 2.7. From the table,we see that the overall precision

of our approach for rename detection ranges from 93% (methodand variable renames)

to 99% (field renames). The table also shows that our approachidentified non-essential

method updates within individual systems with a precision ranging from 96.1% to 100%.

The precision of non-essential method updates was higher than that of detected rename

refactorings because only a small number of all erroneouslyclassified insertion-deletion

42

2.5. Empirical Study

pairs actually resulted in erroneously classified statement updates, and only a few of those

statement updates were sufficiently isolated within methods to cause an entire method up-

date to be erroneously classified.

2.5.6 Discussion

Non-Essential Differences

The true “essentiality” of modified code lines and updated methods is tied to the specific

goals of individual change-based approaches. We believe that accounting for the kinds

of non-essential changes detected by our approach will be most useful for change-based

approaches that aim to analyze only specific classes of software development effort, such

as effort related to feature implementations or bug fixes. The ultimate goal of our research

is to enable change-based approaches to more precisely select the low-level modifications

on which they base their higher-level change representations.

Our current catalog of non-essential differences did not include a number of additional

fine-grained differences that may be considered non-essential in some contexts. For in-

stance, change-based approaches might also be interested in ignoring updates involving

trivial final keywords in local variable declarations or other updates tocode that are less

likely to provide meaningful insight into the kind of development work that is of interest

to these approaches. Ideally, change-based approaches should be able to parameterize their

change representations to include only those code changes that are most relevant for their

analyses. Because the types of non-essential differences that can be detected is open, it

should be noted that the numbers we report are an underestimate of all the possible non-

essential changes that may exist in the histories of the software systems we studied. More-

over, we did not attempt to estimate the recall of our technique. In general, we designed the

technique to be precise (i.e., to characterize differencesas non-essential only in the pres-

ence of strong evidence). For this reason, hard-to-classify differences that may turn out to

be non-essential in practice would not have been included inour results, further contribut-

ing to our numbers representing a lower-bound estimate of the prevalence of non-essential

differences.

43

2.5. Empirical Study

Our empirical investigation produced a number of observations about non-essential dif-

ferences that we believe are relevant to a variety of change-based approaches. For example,

we observed that between 1.7% and 16.2% of a system’s method updates can be described

exclusively in terms of non-essential differences, and that these kinds of method updates

interfere with a non-negligible number of frequent pairwise method associations supported

by change data. Eliminating non-essential method updates should thus have a positive

impact on the results of change-based approaches seeking todetect meaningful associa-

tions between non-obvious method pairs. Based on other observations, we also expect

non-essential method updates to be most relevant for change-based approaches that do not

specifically pre-filter large or modification-intensive change sets from their analyses. We

also expect non-essential differences to be most relevant to change-based approaches that

do not specifically analyze bug-fixing change sets.

Generalizability of the Results

Our investigation focused on ten open-source Java systems.We expect our observations

on non-essential differences to most readily generalize toother systems of similar size

and developed using similar development practices as thoseused by the developers of our

studied target systems. Except for AZUREUS and JEDIT, the systems we analyzed are all

developed in association with major open-source software distributors (Spring, Apache,

JBoss, and Eclipse). The development of AZUREUS is coordinated by a digital media

technology company (Vuze) and that of JEDIT by an unaffiliated group of individuals. All

analyzed systems included code commits from between 6 to 29 contributors, and 17 on

average. The investigated projects all contain in the orderof between 100 and 1000 kLOC.

Our results may therefore not generalize to projects featuring significantly larger code bases

or development teams, or those following more tightly regimented development practices.

Systems developed in other programming language may not exhibit similar proportions of

non-essential differences as those reported in our investigation.

Our investigation of non-essential differences makes no attempt to characterize the re-

call achieved by our differencing technique. We thus further qualify our individual observa-

tions by noting that our currently detected non-essential differences may represent distorted

44

2.5. Empirical Study

representations of the actual proportions of these differences in change history. However,

based on extensive manual assessments of the differences detected by our approach, we

believe that our overall proportions of non-essential differences are not incorrect. We plan

to further investigate the recall of our approach as part of future work.

45

Chapter 3

Detecting Subtasks

Change-based approaches often process change sets under the assumption that each

change set constitutes a conceptually isolated and distinct task, such as a feature enhance-

ment, code cleanup, or bug fix. This assumption allows these approaches to derive useful

insights about the code elements that were affected by a given change. However, in our

manual investigations of change history, we have come across many cases where change

sets clearly contain changes related to multiple distinctsubtasks. For example, as we show

in our motivating example in Section 3.2, developers may simultaneously commit distinct

patches for several independent bugs as part of the same change set. In other cases, devel-

opers may intersperse various code cleanups or other isolated minor modifications along

with an unrelated bug fix or feature enhancement. In general,change-based approaches

cannot guarantee that a given change set actually contains changes related to exactly one

task.

We propose that change-based approaches automatically divide change sets containing

changes related to multiple subtasks, so that change sets each contain updates related to

precisely one task/subtask. We argue that splitting changesets in this fashion would allow

change-based approaches to avoid harvesting accidental relations between co-committed

code elements. We hypothesize that removing such accidental associations from inputs

considered by various tools, such as, for example, the ROSE tool, could help those tools

produce better results.

In the previous chapter, we proposed the concept of non-essential differences, or changes

46

that are unlikely to capture the kind of software development effort that is most meaningful

to change-based approaches. In this chapter, we build on this work by presenting an au-

tomated approach that attempts to split change sets intosubtasks– groups of smaller and

conceptually related changes that are unrelated to other changes within a change set. Our

approach takes as input the essential changes within a change set, as computed by DIFF-

CAT, and then automatically groups those changes into non-overlapping sets (subtasks) by

identifying basic textual and static relationships between them. As far as we know, our

approach is the first automated technique that splits changesets into subtasks.

To evaluate our technique, we constructed a new benchmark comprising over 1 800

change sets drawn from the revision histories of seven, long-lived open-source Java sys-

tems. We manually classified each change set as being either single-task or multi-task,

and then manually split all multi-task change sets into their constituent subtasks. Running

our approach on this benchmark showed that it correctly groups elements into subtasks for

approximately 80% of all change sets. Specifically, the approach correctly identifies 84%

of all single-task change sets and correctly splits 24% of all multi-task change sets. If we

consider that the current “default strategy” simply groupsall elements in multi-task change

sets into single tasks, then we can also say that for over 90% of all multi-task change sets,

the subtasks inferred by our approach are better, or at leastno worse, than those produced

by the current default stragey. Finally, we manually investigated the results of our approach

for those single- and multi-task change sets for which the approach inferred erroneous sub-

tasks. Our investigation revealed that, although our approach incorrectly splits 16% of all

change sets, its erroneous results can still be considered reasonably useful for 78% of those

change sets.

The contributions of this chapter includei) the precise formulation of a hitherto unstud-

ied problem,ii) an automated technique that seeks to address that problem,iii) a reusable

benchmark that can be used to evaluate and compare future techniques in this area, andiv)

a detailed summary that describes the performance of our technique on the benchmark.

47

3.1. Definitions and Problem Statement

3.1 Definitions and Problem Statement

Given a change setC, we define anupdated elementof C to be any element (field, method,

or class) that was either inserted or deleted as part ofC, that had its declaration signature

modified in any way as part ofC, or (in the case of methods) that had its body modified as

part ofC.

Our goal is to separate the updated elements ofC whenever those elements were mod-

ified as part of distinct and conceptually isolated subtasks. By default, we assume each

change set addresses a single task. We say a change setC performs multiple distinct and

conceptually isolatedsubtaskswhenever the commit message ofC explicitly refers to or

names two or more changes that were performed as part ofC, and the descriptions of those

changes are textually isolated from another. We say that twosubtask descriptions are tex-

tually isolated from another if they are separated using either a bullet-, comma-, or other

token-centric list, line breaks, or other whitespace-related formatting, or if they appear

within distinct phrases that are themselves separated by some form of punctuation (com-

mas, full-stops, or semi-colons) and some concrete descriptive transition such as “also did,”

“also worked on,” etc. The basic assumption behind this definition is that if a developer

takes the time to split the description of their work into clearly separated sub-sections, then

this is an indication that the developer considered the described changes to be conceptually

separate.

To illustrate the reasoning behind our definition, we can consider a change set from

ANT, in which the developer writes: “javadoc, some refactorings, attempt to delete VMS

command file when process completes.” In this case, because the developer’s description

explicitly isolates the refactorings from the VMS deletionactivity, we assume that the

changes associated with each activity are conceptually separate. In contrast, in another

change set from ANT, the developer writes: “Add some preliminary test cases...” Here,

because the added test cases are not further distinguished from one another through some

kind of textual separation, we assume that their addition constitutes a single task, even

if each test case could have been committed separately. Similarly, in a change set from

AZUREUS, a developer writes: “fix signature calculation and add somedebug.” Again,

because the two changes are not textually separated, we do not consider them to belong to

48

3.2. Motivating Example

different subtasks. In this case, if the developer had written: “fix signature calculation. Also

add some debug,” we would assume that the textual separationbetween the two activities is

indicative of a stronger conceptual split between them, andhence a corresponding division

into separate subtasks.

Our goal is to help change-based approaches operate on each described subtask in isola-

tion. Formally, we seek to develop an automated technique that, given a change set consist-

ing of element updatesei, associates eachei with one subtaskti, such that the description

of eachti is separate in the change set’s commit message.

We note that our definition of a subtask is restrictive in several ways. First, aside from

missing all subtasks that are not explicitly commented on bythe developer, we also miss

all cases where a developer uses a single phrase to describe multiple potentially isolated

actions (e.g., “implemented/fixed X and Y,” “fixed some bugs,” “made minor tweaks,”

“cleaned up the code,” “last commit of the day,” etc.). Furthermore, we miss cases where

a developer outlines only one main task within their change set while also performing sev-

eral other more minor change tasks alongside the described main task. We prefer these

restrictions to avoid possible bias or ambiguities in what we consider to be a “conceptually

isolated subtask” and to facilitate the expression of our problem statement above. How-

ever, as our qualitative assessment in Section 3.4.3 shows,our proposed approach is able

to detect many cases where changes can be considered to be isolated subtasks, even if they

are not explicitly outlined in the change set’s commit comment.

3.2 Motivating Example

To motivate the problem we seek to address, let us consider a change set1 from the revi-

sion history of XERCES, a Java-based XML-processing toolkit.2 The change set inserts

one method and modifies three others. One of the modified methods is declared within

AbstractDOMParser; the other three methods are declared withinDOMParserImpl.

The change set’s commit comment reveals that the change set commits two separate patches

1Committed by authorvenu on 2003-11-18 03:10:00.
2http://xerces.apache.org/xerces2-j/

49

3.2. Motivating Example

for two unrelated bugs: bug #247953 and bug #24797.4 A manual inspection of the bug

reports and the two submitted patches for the two bugs reveals that the two issues are con-

ceptually distinct and their changes not linked in any way. Specifically, the changes for bug

#24795 update a single if-statement within theAbstractDOMParsermethod from

if (fDOMFilter.getWhatToShow() & NodeFilter.SHOW TEXT)!=0)

to

if (child.getNodeType() == Node.TEXT NODE &&

(fDOMFilter.getWhatToShow() & NodeFilter.SHOW TEXT)!=0)

to avoid the duplicate traversal of certain child nodes. In contrast, the changes for bug

#24797 insert a new methodabort with body

if (fBusy) { reset(); fBusy = false;}

and two identical code blocks, each of the form

if (fBusy) {

String msg =

DOMMessageFormatter.formatMessage(

DOMMessageFormatter.DOM DOMAIN,

"INVALID STATE ERR", null

);

throw new DOMException(

DOMException.INVALID STATE ERR, msg);

}

Hence, in this case, given that the change set commits changes related to two isolated and

conceptually distinct subtasks, we want to separate the twogroups of changes to be able to

process each in isolation.

3https://issues.apache.org/jira/browse/XERCESJ-838
4https://issues.apache.org/jira/browse/XERCESJ-839

50

3.3. Approach

3.3 Approach

There exist numerous possible avenues for identifying multi-task change sets and for map-

ping the changes within these change sets to their respective subtasks. For example, an

approach might parse the commit message of the change set, identify textual sub-regions

within that message, and then map textual keywords associated with the changes of the

change to keywords in each sub-region. In other cases, e.g.,in the case of our motivating

example, a strategy could be to search for the specific patches associated with a commit

and disambiguate the commit’s changes by mapping them back to a specific patch. How-

ever, we decided to investigate the applicability of a thirdstrategy. Specifically, we sought

to assess how well the raw structural changes themselves could be used to identify and

map subtasks within change sets. We did so for several reasons. First, the two strategies

outlined above depend on input data that might be incomplete, misleading, or even com-

pletely unavailable. For example, in typical software systems, detailed commit comments

or separate patches describing subtasks within a change setsimply do not exist for some

commits. Furthermore, commit comments themselves can be misleading in cases where

textual artefacts like bullet lists are used for reasons other than listing subtasks. For exam-

ple, we have seen many commit comments that use bullet lists to present justification for a

single change, rather than outline multiple changes, e.g.,“This [change] has many benefits:

1. [...] 2. [...] 3. [...].”5 In contrast, the raw changes themselves are always present and are

less easily misinterpreted than natural language. Finally, working with changes allowed us

to build on our existing DIFFCAT diffing infrastructure.

During the development of our approach, we made two important observations:i) most

commits contain changes related to a single task andii) it is always safer to miss splitting

a multi-task change set than it is to erroneously split a single-task change set, since in the

former case we do no worse than the current “default strategy,” whereas in the latter case

we might cause a change-based approach to miss potentially useful associations between

co-committed elements. Our underlying strategy for splitting change sets thus assumes

that all updated elements are generally related, unless we find very strong evidence to the

contrary. In this way, we sought to do no worse than the current “default strategy” in most

5Committed bysandygao to XERCESon 2002-09-16 01:07.

51

3.3. Approach

Figure 3.1: Detecting Subtasks in Change Sets

cases, and possibly do better than this strategy in the remaining cases.

Our overall approach consists of three steps, which we outline in Figure 3.1. In the

first step, we use four basic heuristics to detect weightedconnectionsbetween pairs of up-

dated elements. Each of our heuristics parses the low-levelchanges affecting each updated

element and connects pairs of elements if their low-level changes meet specific similarity

criteria. We then combine the basic element-level connections from each heuristic into

combined weighted connections between elements and use these to build a weighted el-

ement graph, where nodes in the graph represent updated elements, and weighted edges

denote combined weighted connections between updated elements. In the second step, we

filter out those connections that we deem to be too weak. Finally, in the third step, we detect

all connected sub-graphs within our element graph and labeleach connected sub-graph as

an isolated subtask. The idea behind this approach is that weuse lenient linking criteria to

eagerly connect as many elements as possible into common subtasks, so that two updated

elementsei, ej are very likely to appear within the same subtask unless we find very strong

evidence to the contrary, i.e., not a single path fromei to ej anywhere in our graph. The

eagerness of our approach is motivated by the two observations outlined in the previous

paragraph.

We next outline the details of each of our four heuristics andgeneral procedure. We

have released a prototype implementation of our technique on our website: http://www.cs.mcgill.ca/˜d-

kawry/thesis.

52

3.3. Approach

3.3.1 Keyword Connections

During our general manual investigations of change sets, wenoticed that developers of-

ten reuse names and keywords when working on a specific subtask. For example, in our

motivating example in Section 3.2, two of the three changes related to the second subtask

are textually identical, and all three changes feature a reference to thefBusy field. In

contrast, the change related to the first subtask has very little textual overlap with any of

the three changes of the second subtask. Specifically, the change of the first subtask in-

volves keywords such aschild, node, type, text, etc., whereas the combined changes

of the second subtask involve keywords such asbusy, reset, msg, message, format,

etc. In all, the textual cohesion between the change relatedto the first subtask and any of

the changes related to the second subtask is much lower than the textual cohesion between

any pair of changes related to the second subtask.

Given this insight, our first heuristic is based on the hypothesis that changes (diffs)

featuring similar textual keywords are more likely to be related to the same task/subtask

than diffs featuring dissimilar keywords. In other words, we hypothesize that if the diffs

associated with one updated element share similar textual keywords as diffs associated

with another element update, then those two element updatesare likely to be part of the

same task/subtask. Conversely, if the keywords associatedwith two element updates are

dissimilar, then it is less likely that the updates are related.

To associate keywords with an updated elemente, we first collect all diffsδi associated

with e. We say aδi is associated withe if δi inserts or deletese, if it modifies the declaration

signature ofe or, in the case of methods, if it modifies the body ofe. We then traverse the

leftNode andrightNodeAST nodes of eachδi and collect all text-based elements (sim-

ple and qualified names, and words within string literals) that appear within these nodes.

We then tokenize each text-based element by splitting it based on common token separators

(periods and underscores), camel case word separations, and groups of capitalized letters

appearing together (e.g., “DOM”). We eliminate non-essential or low-value tokens by fil-

tering out one-letter tokens and common stop words,6 and by ignoring words picked up

from primitive and basic Java types (e.g.,int, Object, String, etc.). Finally, we convert

6http://www.textfixer.com/resources/common-english-words.txt

53

3.3. Approach

all tokens to lower case and filter out duplicates, so that a given token is associated at most

once with a given elemente.

Given two elementse1, e2 and their token setsS1, S2, we calculate the weighted con-

nection betweene1 ande2 based on the size of the normalized intersection ofS1 andS2.

Specifically, we compute

W (e1, e2)key =
|S1 ∩ S2|

min(|S1|, |S2|)
(3.1)

We take a normalized size so that smaller changes involving few keywords can still be

connected to larger changes involving many keywords. We also note that ifS1 or S2 is

empty, thenW (e1, e2)key := 0.

In our motivating example, our heuristic associates the keywordschild, node, type,

text, dom, filter, andshow with the method updated as part of theAbstractDOM-

Parser subtask. None of these words appear in the the change inserting theabort

method, which yields keywordsbusy, reset, andabort, so thatWkey = 0. In con-

trast, the insertion of theabort method has a relative overlap ofWkey =
1

3
with the two

other changes in the change set, because those also feature thefBusy field, and hence the

busy keyword.

3.3.2 Dataflow Connections

Our keyword heuristic only connects updates whenever a developer explicitly works with

similar textual content. When this is not the case, we can still detect connections between

diffs if we consider basic dataflow dependencies between them. For example, we can

consider the case where a developer updates the conditions of a hypotheticalif-condition

within a methodm:

if (! foo) { // deletion of the ‘‘!’’ character

and then adapts a related boolean assignment to preserve theprogram’s behavior at a call

site ofm:

bar = true; // becomes bar = false

54

3.3. Approach

m (bar);

In this case, using a keyword heuristic like the one outlinedabove, the first change might

only generate the keywordfoo, whereas the second would only generate the keywordbar,

which do not textually overlap. However, the results of a basic dataflow analysis would

detect that the assignment tobar in the second change is related to the condition onfoo in

the first change, because the value ofbar might determine the value offoo at runtime. In

other words, the overalldataflowof the second diff is generally related to the dataflow of

the first diff. Given this insight, we hypothesize that updated elements involved in similar

dataflow have a higher likelihood of being related than elements that are not involved in

similar dataflow.

We next outline our detection such dataflow connections between elements.

Detecting Basic Dataflow Connections

We first perform a light-weight inter-procedural dataflow analysis to build a dataflow de-

pendency graph between all variables that are referenced within the old or new files of the

change set. Each node in the graph represents a referenced variable as part of the change

set and edges between variablesvi, vj indicate that the value of eithervi or vj influences the

value of the other. Specifically, we build an edge between twovariablesvi andvj whenever

vi andvj appear together in one of four basic relations. We further illustrate these relations

in Figure 3.2. The figure displays a representative code snippet on the left and the various

basic variable connections on the right. Given this, we say thatvi andvj are connected if

1. vi is directly assigned tovj in an assignment statement in an old or new file. For

example, in Figure 3.2, we connecty andx becausey is assigned tox in the code.

2. vj is assigned a value inside the scope of a conditional block and the conditional

statement of that block referencesvi. For example, in Figure 3.2, we connects with

bothr andt becauses appears within the condition of anif-block assigning values

to r andt.

55

3.3. Approach

Figure 3.2: Dataflow Connections between Variables

3. vj corresponds to the kth declared parameter within a method bodym andvi is the kth

input argument to an invocation ofm in another part of the source code. For example,

in Figure 3.2 we connectx andp becausex is passed as the first input argument to

an invocation ofm andm’s first formal parameter isp.

4. vj is returned from within a method bodym (i.e., via areturn statement) andvi is

assigned the returned value of an invocation ofm (e.g.,vi = m()). For example, in

Figure 3.2, we connectz with bothr andt becauser andt are both returned bym

andz is assigned the returned value of an invocation tom.

Several things should be noted about the construction of ourdataflow dependency

graph. First, we only pick up inter-procedural connectionsfor all method bodies that were

committed as part of the change set. Consequently, we do not pick up any connections

from method invocations referring to unknown method bodies. Second, to deal with Java’s

dynamic dispatch mechanism, we associate a given method invocationm with the bodies

of all declared and available methods sharing the same name and simple parameter types

56

3.3. Approach

asm. We do not take into account additional control-flow or information related to the

program’s type hierarchy because this information is too often incomplete when analyzing

change sets. Similarly, we do not link a given thrown exception e with any caught excep-

tions in the code because we do not have enough structural or type information to refine

our associations in a consistent fashion; while prototyping our approach, we tried linking

a given exception with all other caught exceptions, but found that this strategy caused too

many unrelated changes to be linked by the resulting, often erroneous dataflow connec-

tions. Finally, we also note that our analysis deals with nested method invocations, e.g.,

m(f()), by unrolling these through imaginary temporary variablesto store intermediate

expressions, e.g., by rewriting nested expressions ast=f(); m(t).

Connecting Updated Elements

Having once established connections between individual pairs of variables, we next use

these to identify weighted element-level connections between updated elements. To do

this, we first collect all variables referenced as part of thediffs for each updated elementei

to construct a set of initial seed variablesSi. For example, in the case of our motivating ex-

ample, we would associate the set{ child, TEXT NODE, fDomFilter,SHOW TEXT } with

the updatedAbstractDOMParsermethod. We then use the basic dataflow dependencies

between all variables to compute the transitive closureT (Si) for eachSi. Conceptually,

T (Si) represents all variables that influence or are influenced by the variables inSi. We

then compute a weighted connection betweenei andej using the normalized size of the

intersection betweenT (Si) andT (Sj):

W (ei, ej)df =
|T (Si) ∩ T (Sj)|

min(|T (Si)|, |T (Sj)|)
(3.2)

The idea is that if the variables of one updated method reach those of another updated

method via our basic dataflow connections, then the transitive closures of their variable

sets will overlap and we will associate them with the same task/subtask. In the case of

our motivating example, we find that the transitive closure of the AbstractDOMParser

method has zero overlap with those declared inDOMParserImpl, whereas the methods in

57

3.3. Approach

the latter group all share an overlap of1.0.

3.3.3 Context Connections

Not all related elements can be connected based on keywords or dataflow alone. For exam-

ple, in object oriented programs, elements are often permanently connected via inheritance

relations, so that pairs of elements are often intrinsically related because they, for example,

override the same method, implement the same interface, or share the same name. We

thus assignW (ei, ej)con := 1 to two updated elementsei, ej whenever they share similar

declaration signatures, i.e., have the same name, overridethe same method, or extend or

implement the same type. Otherwise we say thatW (ei, ej)con := 0. This heuristic echoes

previous approaches linking code elements or changes basedon their sharing similar struc-

tural context [19,27].

3.3.4 Hierarchy Connections

Given two elementsei andej , we automatically assignW (ei, ej)hi := 1 if ei is either a

newly inserted or deleted element orei’s declaration signature was modified in some way,

and ifej is modified to contain a newly inserted or deleted reference to ei. In these cases, we

assume that changes toej cannot be independent fromei because of these direct adaptations

involving both elements.

3.3.5 Combining Connections

We have implemented our connection heuristics by extendingthe SEMDIFF framework.

Our prototype implementation takes as input the old and new files of a change set (rep-

resented as resolved ASTs) and all the essential differences (diffs) between those files, as

detected by DIFFCAT. We then compute four weighted connections between each pair of

elementsei, ej using our heuristics and combine these weighted connections into a single

weighted connection using the following linear combination:

W (ei, ej) =
1

4
W (ei, ej)hi +

1

4
W (ei, ej)con +

1

4
W (ei, ej)key +

1

4
W (ei, ej)df (3.3)

58

3.4. Evaluation

Next, we remove all connections that do not satisfy our selected threshold ofW (ei, ej) ≥
1

4
.

The combined effect of our linear combination and selected threshold is that we eliminate

all connections between pairs of updated elements thati) do not share any contextual or hi-

erarchical connections andii) have at most very low combinations of keyword and dataflow

similarity. We selected the specific threshold ofW (ei, ej) ≥
1

4
based on experience gained

while prototyping the approach. Finally, we use the remaining connections to construct a

graphG, where each vertex represents an updated element and edges denote connections

between elements. We then say that each connected componentwithin G represents an

isolated subtask. For example, ifG consists of two connected componentsS1 andS2, then

we say that all the elements withinS1 constitute one subtask and all those withinS2 consti-

tute another subtask. Conceptually, this means that every updated element withinS1 does

not share a connection withany element withinS2, and vice versa. We interpret this as

constituting strong evidence that changes withinS1 are conceptually separate from those

in S2, and likely to embody the kind of subtasks that might be mentioned separately within

the change set’s commit comment.

Finally, we note that we always remove non-essential differences when processing the

diffs associated with a given updated element. We do this to avoid processing non-essential

method updates and isolated changes that are less likely to be associated with documented

tasks/subtasks. For example, a trivialthis keyword insertion is less likely to be part

of a documented task/subtask than, say, an update to anif-statement. We assume that

processing statements that were updated by such a trivial insertion would only pollute our

results in most cases.

3.4 Evaluation

We sought to evaluate whether our approach can accurately split change sets containing

changes related to multiple subtasks. To do so, we retrieved1 805 change sets from the

change histories of seven of the ten target systems introduced in Section 2.5.1 and used

the commit comments of the selected change sets to manually split them into subtasks.7

7We did not analyze HIBERNATE and JDT-UI because we were unable to download some of the requisite
files from their repositories. We did not analyze STRUTS because we had not yet selected it for analysis in

59

3.4. Evaluation

Table 3.1: Characteristics of the Benchmark

Total N-Task N-Task 1-Task N-Task N-Task N-Task

System Ch Sets Ch Sets Authors Avg Size Avg Size Avg #Sub Ambig

Ant 274 13 8 11 17 5 17

Azureus 264 10 1 8 4 2 10

JDT-Core 92 0 - - 20 - - - - 0

JEdit 309 19 7 13 19 2 20

Nutch 308 18 5 21 18 2 9

Spring 284 10 3 13 9 2 11

Xerces 274 25 15 11 8 2 4

Total 1 805 95 39 13 13 2.5 71

We then applied our approach to each change set and compared the results of its analysis

against the manually-inferred subtasks in our benchmark. We have released our benchmark,

details of our experimental setup, and all data on our website: http://www.cs.mcgill.ca/˜d-

kawry/thesis.

3.4.1 Creating the Benchmark

We randomly selected 500 change sets from each of the transaction histories of the seven

selected benchmark systems.8 We then used DIFFCAT to identify the essential element

updates within each change set and removed all change sets modifying less than two ele-

ments. To avoid ambiguities, we also removed all those change sets for which there was no

commit message because we could not easily estimate the number of subtasks within such

change sets. This left us with 1 805 candidate change sets, all of which had a non-empty

commit comment and two or more updated elements.

We next read the commit message for each selected change set to determine which of

Chapter 2.
8Given the relatively short history of NUTCH, we selected 500 consecutive change sets from its change

history, starting with the 100th.

60

3.4. Evaluation

these included updates related to two or more subtasks. Whenever a commit message did

not clearly indicate the presence of multiple subtasks, we assumed that all updated ele-

ments for that change set belonged to a single task. Whenver achange set’s commit mes-

sage did clearly outline at least two subtasks, we used the DIFFCAT viewer to investigate

the elements that were updated as part of the change set, as well as the actual fine-grained

structural changes that modified each element. During this step, we labelled each updated

element based on what concrete subtask(s) that element was modified as part of. To avoid

bias, and in keeping with our definition of subtasks, we always referred specifically to the

subtasks outlined in the change set’s commit comment when labelling updated elements.

We did not attempt to label element updates in change sets that had vague commit com-

ments or changes that were too complex; in these cases, we flagged the change sets as

being “ambiguous, ” and made no further attempt to classify updated elements therein.

Furthermore, whenever we found that an updated element was assigned to more than one

subtask, we fused those subtasks and all their updated elements into a single task. In total,

this process yielded 95 multi-task change sets for which we could collect clear evidence

that they represented more than one subtask. Furthermore, we identified 71 change sets as

having commit messages that suggested the presence of multiple subtasks, but for which

we were unable to clearly relate changes to those subtasks.

Table 3.1 summarizes properties of the benchmark. The tableshows the total number

of change sets included for each system (Total Ch Sets) and how many of these change

sets described clearly separable subtasks within their commit comments (N-Task Ch Sets).

The table also shows the total number of contributors (authors and any contributors of

patches) for the change sets featuring two or more subtasks (N-Task Authors), as well as

the average number of updated elements for both single- and multi-task change sets (1-Task

and N-Task Avg Size, respectively). The benchmark includeschanges by 39 contributors,

thus limiting any bias that may arise from studying changes made by only a small number

of authors. The average number of elements updated as part ofthe multi-task change

sets in the benchmark (N-Task Average Size) is roughly equivalent to the average number

of elements updated as part of the single-task change sets (1-Task Average Size). The

multi-task change sets also contained about 2.5 subtasks onaverage, with most change sets

featuring two subtasks (N-Task Avg #Sub). Finally, the table displays the number of change

61

3.4. Evaluation

sets that feature commit messages implying the presence of multiple subtasks, but for which

we were unable to produce unambiguous element classifications (N-Task Ambig). We also

note that the benchmark features numerous combinations of subtasks, including change

sets featuring multiple isolated bug fixes or enhancements,as well as change sets featuring

both a fix and an enhancement, a fix and a code cleanup, an enhancement and a cleanup, or

a combination of all three.

We note that the average multi-task change set size recordedin the table is not likely

to be an estimate of the true size of general multi-task change sets because we found at

least 71 change sets with commit comments that suggested thepresence of multiple sub-

tasks, but which we were unable to disentangle. Furthermore, given the restrictions of our

definition of a subtask, the benchmark does not include multi-task change sets containing

conceptually isolated, albeit undocumented changes. Consequently, the benchmark does

not allow us to measure the overall recall of our approach, instead giving us insight into

how well the approach can identify the kind of smaller, more concise multi-task change

sets for which we were able to manually split their updated elements. We also note that

since we did not attempt to process change sets for which there was no commit message,

our evaluation cannot reveal how well our approach performson these kinds of change

sets. However, we prefer these limitations to avoid ambiguities in the element assignments

within our benchmark.

3.4.2 Quantitative Results

We applied our approach to the change sets within the benchmark. Whenever the approach

split a change set into subtasks, we compared the inferred subtasks against those in the

benchmark to categorize the result into one of five categories, which are shown in Table 3.2.

For each system, the table records how often our approachi) incorrectly split a single-task

change set into several subtasks (1-Task Incorr),ii) correctly split a multi-task change set

into its subtasks (n-Task Corr),iii) identified at least one correct subtask within a multi-task

change set, but fused others into a single subtask (n-Task Part), iv) incorrectly separated the

updated elements of a multi-task change set into subtasks different than those defined in

our benchmark (n-Task Err), orv) split elements into more than one subtask for one of the

62

3.4. Evaluation

Table 3.2: Split Change Sets

1-Task n-Task n-Task n-Task

System Incorr Corr Part Err Ambig

Ant 35/244 (14%) 2/13 (15%) 1/13 (8%) 3/13 (23%) 1/17 (6%)

Azureus 35/244 (14%) 1/10 (10%) 0/10 (0%) 1/10 (10%) 1/10 (10%)

JDT-Core 15/92 (16%) - - - - - - - -

JEdit 69/270 (26%) 5/19 (26%) 1/19 (5%) 1/19 (5%) 7/20 (35%)

Nutch 42/281 (15%) 4/18 (22%) 0/18 (0%) 1/18 (6%) 4/9 (44%)

Spring 44/263 (17%) 1/10 (10%) 1/10 (10%) 1/10 (10%) 2/11 (18%)

Xerces 30/245 (12%) 6/25 (24%) 1/25 (4%) 1/25 (4%) 2/4 (50%)

Total 270/1639 (16.5%) 19/95 (20%) 4/95 (4%) 8/95 (8%) 17/71(24%)

71 “ambiguous” change sets (Ambig).

As shown in Table 3.2, our approach split (270+19+4+8+17=) 318 of the 1805 change

sets in the benchmark. Of those, 270 were found to be single-task change sets, so that

overall, the aproach correctly classified (1639-270) = 1369of the 1639 single-task change

sets in the benchmark (83.5%). The approach produced fully or partially correct splits for

(19+4=) 23 of the 95 multi-task change sets (24%), and incorrectly split eight of the 95

multi-task change sets (8%); the remaining (95-23-8=) 64 multi-task change sets were not

split and thus incorrectly classified as single-task changesets (67%). Finally, we found that

the approach splits 17 of the 71 “ambiguous” change sets (24%).

Precision and Recall

We define theprecisionof our approach as the overall proportion of unambiguous change

sets for which the approach produces correct or partially correct subtasks. We define its

recall to be the proportion of correct or partially split multi-task change sets. Based on these

definitions and the values in Table 3.2, we see that our approach has an overall precision

of (1369+19+4=1392/1734≈) 80% and a recall of 24%. In contrast, the current “default

strategy” of splitting no change sets would have a precisionof (1639/1734≈) 95% and a

63

3.4. Evaluation

recall of 0%.

Properties of Inferred Subtasks

Whenever our approach split change sets, it typically splitupdated elements into exactly

two subtasks (75% of the 318 split change sets). In almost allcases (96%), the approach

split change sets into no more than five subtasks. The approach also typically grouped most

elements into one large subtask, with the remaining elements being divided into addtional

and typically very small subtasks. Specifically, 59% of all inferred subtasks consisted of

a single “breakaway” element and 83% of all inferred subtasks consisted of no more than

five elements.

Correctly Split Multi-Task Change Sets

We found that the 23 multi-task change sets that were correctly or at least partially split by

our approach tended to contain fewer subtasks and elements per subtask, on average, than

the 72 multi-task change sets that were not split or only incorrectly split by our approach.

Specifically, when we combined these two measures to define the “size” of a change set as

size = #Subtasks+
#Elements
#Subtasks

(3.4)

we found that the 23 change sets in the former group had an average size of approximately

5, whereas the average size of the 72 change sets in the lattergroup was around 8.5. If we

then say that a “small” multi-task change set is one whose size was less than the average

size of all multi-task change sets (≈ 7.7), then our approach correctly classified 20 of 43

small change sets (47%), versus just 3 of 52 large change sets(6%). A Fischer’s Exact

Test showed this relationship to be statistically significant, with p < 0.0001. From this

result, we infer that our approach is more likely to correctly split a multi-task change set if

it features both few subtasks and few elements per subtask. We add that we also noted a

similar relationship when we defined “size” to be only the average number of elements per

subtask (p = 0.0057). However, we noted no similar statistically significant relationship

when considering only the number of subtasks for each changeset.

64

3.4. Evaluation

Table 3.3: Split Change Sets by Category

Change Undoc Unused Limit Unusable Other

Group Atomic Elements Approach Changes Indirect

Single-Task 116 (43%) 17 (6%) 13 (5%) 64 (24%) 60 (22%)

Multi-Task 3 (38%) 0 (0%) 1 (13%) 2 (25%) 2 (25%)

Ambig 7 (41%) 0 (0%) 1 (6%) 6 (35%) 3 (18%)

Total 126 (43%) 17 (6%) 15 (5%) 72 (24%) 65 (22%)

3.4.3 Qualitative Analysis

We manually investigated the results of our approach for those (270+8=) 278 cases where

the approach incorrectly split the updated elements of a single- or multi-task change set,

and for those 17 cases where the approach split an ambiguous change set. To do this,

we used the DIFFCAT viewer to study the updated elements for the change set and to

identify reasons why some of those updated elements were notlinked to the appropriate

subtask. The following is a discussion of the different causes we identified, which are also

summarized in Table 3.3. The table displays, for each of the three groups of split change

sets (rows), the number and proportion of change sets that were split for a given reason

(columns).

Undocumented Atomic Changes

In (126/295=) 43% of the change sets, our approach identifiedwhat we call “undocumented

atomic changes,” or changes that, although not explicitly described in the change set’s com-

mit comment as separate subtasks, are nevertheless completely isolated from the change

set’s other changes. Changes in this category include isolated updates to logging- or debug-

related outputs, updates to methods describing the currentbuild version, isolated insertions

or deletions offinal keywords, reductions in an element’s accessibility, code-cleanups in-

volving generics or other minor rewrites, checkstyle concessions, isolated micro-bug fixes,

insertions of separate utility methods, and other clearly isolated changes. This category

65

3.4. Evaluation

included 116 single-task change sets, seven ambiguous change sets, and three incorrectly

classified multi-task change sets.

Deletions of Unused or Unusable Elements

In (17/295=) 6% of the change sets, our approach isolated deletions of unused elements or

null-returning methods. In these cases, change sets deleted isolated code elements but were

not adapted in any other way to deal with the deletion. In somecases, the deleted elements

were either private, deprecated, stub implementations, orsimple delegates to methods de-

clared in a parent class. In other cases, the elements were visible outside of their class

scope, but no other code changes were committed as part of their deletion, making it diffi-

cult to determine whether these elements were truly unused or whether the change ended

up breaking the build. This category consisted entirely of single-task change sets.

Limitations in our Approach

In (15/295=) 5% of the change sets, element updates were split due to limitations in our

approach. In most of these cases, our approach failed to linkupdated elements that were

updated via similar changes. For example, in several changesets, we could have linked an

updated field to a related updated method because both the declared type of the field and

the formal return type of the method were replaced by the samenew type. In other cases,

incomplete bindings returned by PPA or bugs in CHANGEDISTILLER caused us to miss

information that would have helped us link udated elements.In this category, 13 change

sets were single-task, one was ambiguous, and one was an incorrectly classified multi-task

change set.

Unusable Changes

In (72/295=) 24% of the change sets, our approach could not link elements that were mod-

ified only via changes involving either not enough or too muchtext. For example, in many

cases, elements were updated only via an increase in their accessibility, e.g., by changing a

private keyword topublic. In other cases, elements were updated only via insertions or

deletions ofreturn or break statements, additional exceptions in their signature, updates

66

3.4. Evaluation

to catch clauses, insertions ofthis() constructors, updates to large natural-language

string messages featuring too many keywords, updates involving ints orbooleans, up-

dates to fields with very small names, and other changes featuring no or only very little

reusable textual keywords or variables. In these cases, theprecision of our approach could

be improved by automatically linking elements updated onlyvia very small changes to

all other elements. This category consisted of 64 single-task change sets, six ambiguous

change sets, and two incorrectly classified multi-task change sets.

Other Indirect Changes

In the remaining (65/295=) 22% of the change sets, our approach failed to link updated

elements because the keywords and variables associated with some updated elements sim-

ply did not overlap with those of other updated elements. Such changes can arise because

of indirect dependencies between updated elements, for example, when they are are con-

trolled by third-party GUI frameworks. This category included 60 single-task change sets,

three ambiguous change sets, and two multi-task change sets.

3.4.4 Discussion

Precision of the Approach

Our assessments show that our approach incorrectly splits 16.5% of all single-task change

sets, 8% of all multi-task change sets, and 24% of all ambiguous change sets (295/1805≈

16% overall). In the worst case, erroneously splitting change sets can induce clients of our

approach to miss potentially valuable associations between co-committed elements. How-

ever, we found that in many cases (43% of 295), our approach identifiedatomic changes,

or changes which did not appear to be related to the other changes in the change set. In

these cases, we hypothesize that any lost associations between co-updated elements are less

likely to have a negative impact on client results and might in fact improve those results.

In other cases, our approach split change sets because some updated elements featured too

few or too many keywords (24%) or because the deletions of those elements were not di-

rectly linked to other changes (6%). To avoid lost element associations, our approach can

67

3.4. Evaluation

be modified to automatically categorize change sets featuring such changes as single-task.

Similarly, in a few cases (5%), future improvements to our heuristics or reused components

could avoid any lost associations altogether. Hence, giventhe qualitative breakdown of our

results, we found that our general linking strategy was completely inappropriate for only

16% of the 295 change sets we considered, or (65/1805=) 4% of all the change sets in the

benchmark. Consequently, although the overall precision of our approach was only 80%,

we find that our general heuristics are not unreasonably imprecise in about 96% of all cases.

Comparison Against the Default Strategy

Our approach incorrectly classified about two thirds of all unambiguous multi-task change

sets as single-task. In these cases, the outcome of our approach is identical to the current

“default strategy,” which assumes all change sets are single-task. Consequently, given

that our approach also correctly splits 24% of all unambiguous multi-task change sets, we

say that our approach performs better or no worse than the “default strategy” on 92% of

all unambiguous multi-task change sets. However, it performs worse than the “default

strategy” on the remaining multi-task change sets (8%).

Identifying Small Subtasks

Our assessments suggest that our heuristics are more likelyto correctly (or at least partially)

split multi-task change sets if those change sets contain both a small number of subtasks and

few elements per subtask. Whether an identification of such small subtasks in change sets

can actually help client analyses will depend partly on the relative frequency of such change

sets in change history. Our benchmark contained only very few small and unambiguous

multi-task change sets (46 out of 1805, based on our proposeddefinition of “smallness”),

which suggests our approach is unlikely to have a strong impact on the results of change-

based approaches in the general case. However, our approachalso managed to identify

many small and undocumented atomic changes in an additional(126/1805≈) 7% of all

change sets. Hence, if we expand our definition of “subtask” to include such small multi-

task change sets, our identification ofsmall subtaskscould be relevant for approximately

(126+46=172/1805≈) 10% of all change sets in the benchmark.

68

3.4. Evaluation

Further Improvements to the Approach

Our current linking strategy does not use artefacts in the change set’s commit comment,

possibly linked bug database entries, or any other data except for the raw structural changes

themselves. This allows us to perform equally well given potentially confusing commit

comments or missing bug entries. However, our approach could also be improved by in-

corporating such additional knowledge when available and reliable. For example, in the

case of our motivating example in Section 3.2, our approach could have found the appro-

priate (and separate) patches for the two bug fixes on the XERCESbug repository website.

Or, in the case of lengthy commit messages, text-based analyses could be used to identify

those messages featuring no textually separated sub-regions of any kind.

One additional limitation of our use of structural changes is that our approach does

not namethe subtasks it infers, i.e., we provide no links between ourinferred subtasks

and identifiable entities such as bug ids, named features, orconcrete development activity.

Consequently, approaches that wish to operate on the subtasks we infer would not know the

relevant portions of the commit comment describing those subtasks. Consequently, naming

our inferred subtasks remains as interesting future work.

Threats to Validity

Possible misinterpretations of commit comments or individual changes during the construc-

tion of our benchmark could have influenced our quantitativeresults. We tried to minimize

possible misinterpretations by using very strict criteriafor what constitutes a separate sub-

task and by separately labelling those classifications thatwe aborted due to ambiguities

about a change set’s changes. We thus emphasize that the 95 multi-task change sets within

our benchmark are likely to be less complex than general multi-task change sets.

An additional threat to validity is a possible selection bias arising from our choice of

target systems. We tried to minimize this bias by selecting long-lived projects that have

been previously studied and that are distributed by different vendors. However, as all of

our projects are medium-sized, open-source, and developedby small- to medium-sized core

development teams, we cannot generalize our results to larger projects or those following

propietary development models. For example, several of ourstudied projects regularly

69

3.4. Evaluation

include patches by other contributors, which, when reviewed and committed together by

a core developer, might be more easily disentangled than changes that are unrelated but

committed as part of a regular commit. The overall proportion and characterizations of

multi-task change sets might thus not hold for systems that are not updated through patches

from external contributors.

70

Chapter 4

Related Work

Our investigation of non-essential differences and multi-task change sets in change his-

tory complements existing research that seeks to increase the precision with which software

changes can be abstracted and incorporated into software engineering tools.

4.1 Change Descriptions

There exist numerous techniques for summarizing the differences (or changes) between

two software elements. Our work is similar to these prior techniques in that we also seek

to summarize changes in terms of their essentiality to change-based approaches, as well as

their relatedness to each other.

4.1.1 Basic Differencing Tools

There exist many general-purpose differencing tools that operate on various program rep-

resentations (e.g., text or Abstract Syntax Trees) and at different levels of granularity (e.g.,

lines or element references) to compute edit scripts summarizing the changes between pro-

gram versions. Many of these techniques have been summarized in an existing survey by

M. Kim et al. [26]. Similar to these differencing tools, our goal is to identify and describe

changes that occur within a change set. However, our overallgoal is to also classify these

71

4.1. Change Descriptions

changes in terms of their relevance to higher-level representations of development effort

and to discover what changes are related to each other.

Most existing differencing tools partially focus on eliminating the effects of spurious

textual differences from their computed edit scripts. For example, similar to our work,

Neamtiu et al. developed an AST-based differencing technique that compares program

snapshots and detects rename refactorings and rename-induced statement updates [35]. In

contrast, we describe a more general category of change thatincludes rename-induced

updates and other non-essential differences.

Our own differencing tool builds specifically on CHANGEDISTILLER, Fluri et al.’s

tool-supported differencing technique that identifies statement-level differences between

Abstract Syntax Trees [11,12]. Like other tools, CHANGEDISTILLER ignores whitespace-

related differences and identifies documentation-relatedupdates. Our approach extends its

technique by using PPA-inferred bindings to further categorize these changes.

Our use of Dagenais and Hendren’s partial program analysis [7] to infer type bindings

and support program differencing at the granularity of referenced program elements echoes

previous work by Dagenais and Robillard on framework evolution [8], in which the authors

identify differences between the call graphs of the old and new files within a change set

to identify call-change relations. In contrast, we work with fine-grained modifications to

detect non-essential differences occurring at the sub-statement level and to group these

differences into subtasks.

4.1.2 Tools Detecting Basic High-Level Changes

Our research complements existing approaches that aim to summarize groups of low-level

changes mined from version history in terms of higher-levelchange patterns. Such ap-

proaches include tools detecting refactorings [43], ad-hoc method splits and merges [15,

28], or moves of arbitrary lines of code between methods [5, 6]. Our work could benefit

from such approaches when detecting rename-refactorings and other kinds of changes at

or above the element level. For example, although we currently detect rename refactor-

ings using CHANGEDISTILLER and our own custom analyses, we could also validate these

detected refactorings using any of the techniques outlinedabove.

72

4.1. Change Descriptions

4.1.3 Tools Detecting Systematic Changes

Several techniques detect what can be referred to as systematic changes between program

versions. Work in this area include techniques that mine change history to find aspects or

cross-cutting concerns in source code [1, 4, 36]. Results inferred by these aspect-mining

approaches could help our technique link changes whenever they modify the same aspect.

However, in keeping with their goal to identify aspects, thetechniques used by these aspect-

mining approaches usually require changes to exhibit certain pre-defined patterns, so that

they naturally fail to link arbitrary groups of changes. Forexample, Breu and Zimmer-

mann’s technique links changes to a common aspect if those changes delete or insert similar

method invocations [4]. Similarly, Nguyen et al.’s aspect-mining technique links changes if

they modify similar code snippets [36]. In keeping with our goal of finding subtasks within

a change set, our change-linking heuristics are more lenient in that they cluster all changes

as long as there exist certain loose and transitive relations between them.

One additional approach in this area is M. Kim and Notkin’s LSDIFF, which compares

program snapshot pairs to detect groups of coarse-grained low-level changes exhibiting

logical high-level structural patterns [27]. For example,LSDIFF detects cases where all

sub-types of a given type added calls to a new methodfoo, or where all methods of a certain

name no longer callbar. In our work, we use similar ideas to link changes. For example, in

the two cases outlined above, our keyword heuristic would link the changes based on their

references to a commonfoo or bar keyword. However, as our goal is to discover more

basic links between all kinds of changes, we process more kinds of fine-grained structural

changes than LSDIFF and also use more lenient linking criteria to cluster these changes

together. Furthermore, we also apply our analysis on changesets, not program snapshots.

4.1.4 Similarity Detection Tools

Our work complements existing tools identifying similar ornearly-identical code elements.

Tools in this area include dozens of code clone detection tools, many of which have been

outlined in an existing survey by Bellon et al. [2]. Similar to clone detection, our aim is

to detect pairs of code fragments (e.g., methods) that are identical except for non-essential

differences. In particular, all of the non-essential differences currently detected by our

73

4.1. Change Descriptions

approach are or could be used by existing code clone detectors to detect similar program

fragments [2]. However, the converse is not true, i.e., clone detectors generally ignore ad-

ditional kinds of differences that we consider to be essential. For example, a clone detector

might detect code fragments that differ only by the insertion of an additional method invo-

cation or updated variable assignment, whereas we considersuch updates to be essential.

Furthermore, unlike our approach, clone detectors do not typically label the differences

between fragments, preventing potential clients of these approaches from operating on the

differences themselves.

H. Kim et al.’s MECC detects what they refer to assemantic clones, or small code

snippets that may not be syntactically similar, but which implement the same or similar

functionality [24]. Their approach compares pairs of code snippets by modelling how

those snippets access memory; snippets with similar memoryaccesses are then deemed

to be semantic clones. H. Kim et al. show that this approach can detect numerous kinds

of non-essential differences, such as generalif-statement reorderings and various kinds

of redundant statement reorganizations. However, like other clone detection tools, MECC

only requiressimilar memory usage in its detection of clones, whereas we search specific

for a restricted number of particular fine-grained changes.Similarly, unlike our approach,

MECC does not describe the exact differences between clones.

Other approaches in this area include our previous work on detecting API method imita-

tions [22], in which we compare element references (field access and method invocations)

to detect similar code snippets, and work by Long et al. [32],which attempts to cluster

related API functions into modules based on their use of shared program state and com-

mon private functions. Our keyword and dataflow heuristics are similar to these similarity

heuristics in that they link updated elements sharing similar dataflow and using similar

keywords (e.g., calling similarly named methods, referencing similarly named fields, etc.).

However, in keeping with our desire to link changes to changetasks, our heuristics operate

primarily on the changes affecting updated elements, and not their entire content.

74

4.2. Change Interpretations

4.2 Change Interpretations

Previous techniques have sought to assess the general meaning of a change, either in terms

of its impact on the underlying system, or the kind of development activity that it embod-

ies. Our work complements these techniques in that we seek tocharacterize the overall

essentiality of fine-grained changes and to identify changesets that are likely to feature

development effort related to multiple subtasks.

4.2.1 Significance of Low-Level Change Types

Our investigation of non-essential differences is relatedto a previous case study by Fluri

and Gall, which showed that an interpretation of a change set’s “significance” is tied to the

particular representation with which its low-level deltasare represented [10]. Similarly, we

also measured how higher-level change representations canbe impacted by different low-

level change characterizations. In their work, Fluri and Gall specifically contrasted a purely

line-based representation of change significance against one based on their taxonomy of

fine-grained structural differences. In contrast, we compared non-essentialmodifications

against fine-grained structural differences and by evaluating impact in the more concrete

terms of a method level representation, as opposed to a general notion of significance.

Furthermore, Fluri and Gall’s proposed significance measure of individual change types

is partly based on their likelihood of inducing changes in other entities. In contrast, our

notion of non-essentiality imposes stricter conditions onindividual changes that is based

partly on resolved element references and on the likelihoodthat the change is relevant

to higher-level representations of software development effort. We also implemented a

novel differencing technique to detect non-essential differences, which we used to further

characterize their impact in an empirical investigation ofa large number of change sets

retrieved from multiple open-source systems.

Our work also complements a more recent investigation by Giger et al. [14], which

showed that bug prediction techniques based on fine-grainedstructural changes can be

more precise than those based only on line-based changes. Our work is similar in that

we showed that eliminating non-essential differences fromthe input data used by a simple

75

4.2. Change Interpretations

association rule miner improved the precision of that miner.

4.2.2 Classifications of Development Activity

Our investigation of non-essential differences is relatedto existing approaches character-

izing the development activity behind changes. These include an approach by Robbes

and Lanza for eliciting higher-level properties of changesmade during development ses-

sions [39]. As part of this approach, all development activity is directly monitored, a

strategy that could also be adapted to identify non-essential differences as they happen.

Other approaches include the use of machine learning on commit metadata (e.g., commit

comments) to classify large commits into different maintenance categories, such as code

cleanups [18], or the use of pattern matching on commit comments to identify changes

introducing or fixing a bug [42]. A detection of non-essential differences and multi-task

change sets could help these approaches produce more precise labels of the specific devel-

opment activity behind each change.

4.2.3 Impact of Code Changes

Our detection of non-essential differences is related to approaches that measure the pos-

sible impact of changes on the underlying system. These approaches can warn develop-

ers about changes that are likely to introduce bugs [29], affect program behavior [37], or

introduce unexpected dynamic behavior at runtime [20]. Ourwork complements these

approaches by identifying non-essential changes that are extremely unlikely to introduce

bugs, require re-testing, or introduce unexpected dynamicbehavior. In addition, unlike

these approaches, our discovery of non-essential differences requires only the files within a

change set, whereas most impact-assessment tools require additional input data. For exam-

ple, S. Kim et al.’s detection of buggy changes uses machine learning to discover patterns

from previous buggy changes; the approach is less effectivein cases where such data is

not yet available [29]. Similarly, although differential symbolic execution by Person et

al. discovers non-essential method updates by identifyingbehaviour-preserving changes,

76

4.2. Change Interpretations

their approach requires a complete and compileable snapshot of each version being ana-

lyzed [37].

4.2.4 The Quality of Mined Data Sets

Our attempts to improve the quality of data mined from version repositories is motivated,

in part, by previous work highlighting impurities that might exist in various archives and

datasets that are frequently mined by software engineeringtechniques. For example, in

2009, Bird et al. showed that bug-fixing change sets with explicit links to the bugs they

fix contain disproportionate amounts of simple fixes when compared to all the bugs that

are found in a system’s bug database [3]; the bias in these labeled bug-fixing changes may

then affect default-prediction techniques that learn features from such changes, such as, for

example, S. Kim et al.’s BUGCACHE approach [30]. Our work is similar in that we seek to

detect non-essential differences and multi-task change sets and thereby improve the quality

of data that can be mined from version histories.

77

Chapter 5

Final Discussion

Numerous techniques involve mining change data stored in software archives. Many

of these techniques work with change sets under the assumption that the changes within

change sets are all equally meaningful and all related to a single, well-defined development

task. In this dissertation we provide empirical evidence suggesting that this may not always

be true. For example, in Chapter 2, we found that between 3% to26% of all modified lines

of code and 2% to 16% of all method updates are due entirely to non-essential changes –

minor cosmetic changes that are less likely to represent thekind of meaningful software

development effort that is most interesting to change-based approaches. Furthermore, we

found that over 80% of all non-essential differences were actually induced entirely by re-

name refactorings, which are typically entirely automatedby modern IDEs such as Eclipse.

These kinds of automated changes are less likely to provide meaningful or non-obvious in-

formation than other kinds of changes, such as those modifying the system’s structure or

control flow. Based on the qualitative assessments in Chapter 3, we also found that, among

those commented change sets modifying two or more program elements, approximately

10% contain work related to either multiple documented subtasks or one or more undocu-

mentedatomic changesthat are unrelated to the main task outlined in the change set’s com-

mit comment. These subtasks may then induce false associations between co-committed

code elements. We believe these ratios should motivate change-based approaches to more

precisely categorize the kind of data that they mine from version histories.

We have developed a general framework for detecting non-essential differences and

78

subtasks within change sets. Our framework makes use of element resolution provided by

PPA [7] to precisely label individual changes and detect non-essential differences, and to

link changes based on shared structural properties and thereby detect subtasks. Although

we do not yet identify all possible kinds of non-essential differences and although we were

not perfectly successful in identifying all the subtasks within our benchmark, we believe

that future approaches can incorporate the ideas we presentin this dissertation to reason

more precisely about the changes they process in their analyses. For example, in Chap-

ter 2, we showed that an elimination of non-essential differences can lead to a general

improvement in the precision of a simple association rule miner.

We emphasize that the use of PPA limits the usefulness of our general strategy in sev-

eral ways. First, our current techniques are limited specifically to the Java language. Ex-

tending our work to cover other popular programming languages will also require new

implementations of PPA for those languages. Second, by being tied to specific program-

ming languages, rather than more general text- or tree-based program representations, tech-

niques using PPA must also adapt to the specific properties ofthe languages they process.

Specifically, as programming languages evolve, steps must be taken to ensure that different

regions of a system’s change history are appropriately processed using the proper version

of that language. In the case of PPA, clients must select under which version of Java they

would like to compile the code they are analyzing, because different versions of Java sup-

port non-overlapping Java constructs. Failure to determine the appropriate version of Java

for a specific system snapshot can lead to imprecisions in theASTs inferred by PPA. Fi-

nally, although PPA allows very precise analysis of a changeset’s element references, the

use of PPA significantly slows down the rate at which change sets can be processed. In-

formally, we noted that, for some systems, DIFFCAT processed less than 100 change sets

per hour, with most of DIFFCAT ’s processing time spent using PPA. Furthermore, in some

cases, PPA required many minutes to process a single change set. Although specific pro-

cessing speeds are less relevant when conducting moderate empirical evaluations such as

ours (30 000 change sets), they do matter in other contexts, for example, when processing

millions of change sets. However, as we showed in Chapter 2, change-based approaches

can also reduce the amount of PPA required for their analysesby consideringi) that the

79

effects of non-essential differences are most noticeable in large change sets (those modi-

fying 20 or more methods), which we estimated to constitute less than 3% of all change

sets, andii) that bug-fixing change sets are less likely to contain non-essential differences

than other kinds of change sets. Consequently, change-based approaches that specifically

process only very small or non bug-fixing change sets might should consider the tradeoff

between PPA’s (and hence DIFFCAT ’s) limitations and the potential gains from detecting

non-essential differences and subtasks.

So far, we have loosely defined non-essential differences interms of their possible rel-

evance to certain forms of development activity, e.g., bug-fixing or work related to feature

enhancements. However, informally, we have also noted thatnon-essential differences are

also conceptually similar to the kind of undocumented atomic changes we describe in Sec-

tion 3.4.3. Specifically, like undocumented atomic changes, we found that non-essential

differences are often not documented as part of a change set’s commit comment. It might

thus be reasonable to redefine a “non-essential” differenceas being a minor or automated

modification that is both independent from other changes andalso unlikely to be explicitly

documented. Given such a modified definition, it would then bepossible to reformulate the

fairly separate problem statements of Chapters 2 and 3 as a single, more concise problem

statement: Namely, that, rather than identify non-essential differences and split multi-task

change sets, an approach could simply seek to identifyatomic changeswithin change sets,

or changes that are not in any way mentioned by a change set’s commit message. Eliminat-

ing such undocumented atomic changes from a change set couldthen provide change-based

approaches with a more concise mapping between a change set’s described task(s) and the

actual changes related to those tasks.

80

Bibliography

[1] B. Adams, Z. M. Jiang, and A. E. Hassan. Identifying crosscutting concerns using

historical code changes. InProceedings of the 32nd ACM/IEEE International Con-

ference on Software Engineering, pages 305–314, 2010.

[2] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. Comparison and evalua-

tion of clone detection tools.IEEE Transactions on Software Engineering, 33(9):577–

591, 2007.

[3] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and P. Devanbu.

Fair and balanced?: bias in bug-fix datasets. InProceedings of the the 7th joint meet-

ing of the European Software Engineering Conference and theACM SIGSOFT Sym-

posium on the Foundations of Software Engineering, pages 121–130. ACM, 2009.

[4] S. Breu and T. Zimmermann. Mining aspects from version history. InProceedings of

the 21st IEEE/ACM International Conference on Automated Software Engineering,

pages 221–230, 2006.

[5] G. Canfora, L. Cerulo, and M. Di Penta. Identifying changed source code lines from

version repositories. InProceedings of the 4th International Workshop on Mining

Software Repositories, page 14, 2007.

[6] G. Canfora, L. Cerulo, and M. Di Penta. Ldiff: An enhancedline differencing tool.

In Proceedings of the 31st IEEE International Conference on Software Engineering,

pages 595–598, 2009.

81

Bibliography

[7] B. Dagenais and L. Hendren. Enabling static analysis forpartial Java programs. In

Proceedings of the 23rd ACM SIGPLAN Conference on Object-Oriented Program-

ming Systems Languages and Applications, pages 313–328, 2008.

[8] B. Dagenais and M. P. Robillard. Recommending adaptive changes for framework

evolution. InProceedings of the 30th ACM International Conference on Software

Engineering, pages 481–490, 2008.

[9] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus. Does code de-

cay? assessing the evidence from change management data.IEEE Transactions on

Software Engineering, 27(1):1–12, 2001.

[10] B. Fluri and H. C. Gall. Classifying change types for qualifying change couplings. In

Proceedings of the 14th IEEE International Conference on Program Comprehension,

pages 35–45, 2006.

[11] B. Fluri, M. Wursch, M. Pinzger, and H. C. Gall. Change distilling: Tree differenc-

ing for fine-grained source code change extraction.IEEE Transactions on Software

Engineering, 33(11):725–743, 2007.

[12] H. C. Gall, B. Fluri, and M. Pinzger. Change analysis with Evolizer and ChangeDis-

tiller. IEEE Software, 26(1):26–33, 2009.

[13] H. C. Gall, M. Jazayeri, and J. Krajewski. CVS release history data for detecting

logical couplings. InProceedings of the 6th International Workshop on Principles of

Software Evolution, pages 13–23, 2003.

[14] E. Giger, M. Pinzger, and H. Gall. Comparing fine-grained source code changes

and code churn for bug prediction. InProceeding of the 8th Working Conference on

Mining Software Repositories, pages 83–92, 2011.

[15] M. W. Godfrey and L. Zou. Using origin analysis to detectmerging and splitting of

source code entities.IEEE Transactions on Software Engineering, 31(2):166–181,

2005.

82

Bibliography

[16] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting fault incidence using

software change history.IEEE Transactions on Software Engineering, 26(7):653–

661, 2000.

[17] M. Hashimoto and A. Mori. Diff/TS: A tool for fine-grained structural change anal-

ysis. InProceedings of the 15th Working Conference on Reverse Engineering, pages

279–288, 2008.

[18] A. Hindle, D. M. German, M. W. Godfrey, and R. C. Holt. Automatic classifica-

tion of large changes into maintenance categories. InProceedings of the 17th IEEE

International Conference on Program Comprehension, pages 30–39, 2009.

[19] R. Holmes, R.J. Walker, and G.C. Murphy. Approximate structural context match-

ing: An approach to recommend relevant examples.IEEE Transactions on Software

Engineering, pages 952–970, 2006.

[20] Reid Holmes and David Notkin. Identifying program, test, and environmental

changes that affect behaviour. InProceedings of the 33rd ACM/IEEE International

Conference on Software Engineering, pages 371–380, 2011.

[21] J. W. Hunt and T. G. Szymanski. A fast algorithm for computing longest common

subsequences.Communications of the ACM, 20(5):350–353, 1977.

[22] D. Kawrykow and M. P. Robillard. Improving API usage through automatic detection

of redundant code. InProceedings of the 24th IEEE/ACM International Conference

on Automated Software Engineering, page 111–122, 2009.

[23] D. Kawrykow and M. P. Robillard. Non-essential changesin version histories. In

Proceedings of 33rd ACM/IEEE International Conference on Software Engineering,

pages 351–360, 2011.

[24] H. Kim, Y. Jung, S. Kim, and K. Yi. MeCC: Memory comparison-based clone de-

tector. InProceeding of the 33rd ACM/IEEE International Conference on Software

Engineering, pages 301–310, 2011.

83

Bibliography

[25] M. Kim, D. Cai, and S. Kim. An empirical investigation into the role of API-level

refactorings during software evolution. InProceedings of the 33rd ACM/IEEE Inter-

national Conference on Software Engineering, pages 151–160, 2011.

[26] M. Kim and D. Notkin. Program element matching for multi-version program analy-

ses. InProceedings of the 3rd International Workshop on Mining Software Reposito-

ries, pages 64–71, 2006.

[27] M. Kim and D. Notkin. Discovering and representing systematic code changes. In

Proceedings of the 31st IEEE International Conference on Software Engineering,

pages 309–319, 2009.

[28] S. Kim, K. Pan, and E. J. Whitehead Jr. When functions change their names: Auto-

matic detection of origin relationships. InProceedings of the 12th Working Confer-

ence on Reverse Engineering, pages 143–152, 2005.

[29] S. Kim, E.J. Whitehead Jr, and Y. Zhang. Classifying software changes: Clean or

buggy?IEEE Transactions on Software Engineering, 34(2):181–196, 2008.

[30] S. Kim, T. Zimmermann, E.J. Whitehead Jr, and A. Zeller.Predicting faults from

cached history. InProceedings of the 29th International Conference on Software

Engineering, pages 489–498, 2007.

[31] V.I. Levenshtein. Binary codes capable of correcting deletions, insertions, and rever-

sals. InSoviet Physics Doklady, volume 10, pages 707–710, 1966.

[32] F. Long, X. Wang, and Y. Cai. Api hyperlinking via structural overlap. InProceed-

ings of the 7th joint meeting of the European Software Engineering Conference and

the ACM SIGSOFT Symposium on the Foundations of Software Engineering, page

203–212, 2009.

[33] E. Murphy-Hill, C. Parnin, and A. P. Black. How we refactor, and how we know it.

In Proceedings of the 31st IEEE International Conference on Software Engineering,

pages 287–297, 2009.

84

Bibliography

[34] N. Nagappan and T. Ball. Use of relative code churn measures to predict system

defect density. InProceedings of the 27th ACM International Conference on Software

Engineering, pages 292–301, 2005.

[35] I. Neamtiu, J.S. Foster, and M. Hicks. Understanding source code evolution using

abstract syntax tree matching. InProceedings of the 1st International Workshop on

Mining Software Repositories, pages 1–5, 2005.

[36] T. T. Nguyen, H. V. Nguyen, H. A. Nguyen, and T. N. Nguyen.Aspect recommen-

dation for evolving software. InProceeding of the 33rd ACM/IEEE International

Conference on Software Engineering, pages 361–370, 2011.

[37] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pǎsǎreanu.Differential symbolic

execution. InProceedings of the 16th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, pages 226–237, 2008.

[38] C. M. Pilato, B. Collins-Sussman, and B. W. Fitzpatrick. Version Control with Sub-

version. O’Reilly Media, 2008.

[39] R. Robbes and M. Lanza. Characterizing and understanding development sessions. In

Proceedings of the 15th IEEE International Conference on Program Comprehension,

pages 155–166, 2007.

[40] R. Robbes and M. Lanza. Spyware: A change-aware development toolset. InPro-

ceedings of the 30th ACM International Conference on Software Engineering, pages

847–850, 2008.

[41] M. P. Robillard and B. Dagenais. Recommending change clusters to support software

investigation: an empirical study.Journal of Software Maintenance and Evolution:

Research and Practice, 22(3):143–164, 2010.

[42] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes induce fixes? InPro-

ceedings of the 1st International Workshop on Mining Software Repositories, pages

1–5, 2005.

85

Bibliography

[43] P. Weissgerber and S. Diehl. Identifying refactoringsfrom source-code changes. In

Proceedings of the 21st IEEE/ACM International Conferenceon Automated Software

Engineering, pages 231–240. IEEE, 2006.

[44] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll. Predicting source code

changes by mining change history.IEEE Transactions on Software Engineering,

30:574–586, 2004.

[45] T. Zimmermann and P. Weißgerber. Preprocessing CVS data for fine-grained analysis.

In Proceedings of the 1st International Workshop on Mining Software Repositories,

pages 2–6, 2005.

[46] T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller.Mining version histories to

guide software changes.IEEE Transactions on Software Engineering, 31(6):429–445,

2005.

86

