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ABSTRACT 

Repeated changes to a software system can introduce small 

weaknesses such as unplanned dependencies between different parts 

of the system. While such problems usually go undetected, their 

cumulative effect can result in a noticeable decrease in the quality of a 

system.  We present an approach to warn developers about increased 

coupling between the (potentially scattered) implementation of different 

features. Our automated approach can detect sections of the source 

code contributing to the increased coupling as soon as software 

changes are tested. Developers can then inspect the results to assess 

whether the quality of their changes is adequate.  We have 

implemented our approach for C++ and integrated it with the 

development process of proprietary 3D graphics software. Our field 

study showed that, for files in the target system, causing increases in 

feature coupling is a significant predictor of future modifications due to 

bug fixes. 
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RÉSUMÉ 

Chaque modification appliquée à un système logiciel peut y 

introduire de nouvelles failles telles que des dépendances structurelles 

entre ses éléments unitaires.  Il peut être difficile de percevoir ce 

processus de dégradation de la qualité puisque qu’il n’implique pas 

nécessairement une dégradation fonctionnelle.  Nous présentons ici 

une nouvelle technique permettant à l’ingénieur logiciel de comprendre 

l’impact de ses modifications sur les dépendances structurelles dans le 

contexte des fonctionnalités du système.  Notre approche automatisée 

identifie les éléments logiciels ainsi potentiellement dégradés dès que 

le logiciel est soumis à sa procédure de vérification habituelle.  

L’ingénieur peut alors inspecter les résultats de notre analyse pour 

déterminer si la qualité de la modification appliquée est adéquate.  

Nous avons déployés notre système dans un environnement logiciel 

graphique 3D privé sous C++.  Notre étude démontre que, pour ce 

système, l’addition de dépendances structurelles est un précurseur de 

modifications rectificatrices dans le futur. 
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Chapter 1  
Introduction 

Successful software requires a maintenance investment that can 

dwarf that of its initial development. The long life and large install base 

that come with success typically combine to expose flaws and impose 

unforeseen requirements on a software system.  For example, the early 

success of Internet browsers in the late 1990’s revealed how poorly 

their original design accounted for security and pushed the issue to the 

forefront of user concerns [7]. 

These factors put pressure on software development organizations 

to keep up with customers' changing expectations, resulting in continual 

modifications to a software code base.  As evidence of this situation, 

the issue tracking systems for large open-source software projects 

typically include thousands of completed modifications.  Conversely, the 

discontinuation of regular modifications to a software system is a sign of 

abandonment [26]. 

Many factors influence the quality of changes to a system, including 

developer experience, familiarity with the system, time constraints, and 

the quality of the system's design.  In general, these practical 

considerations often lead to suboptimal changes that slightly deteriorate 

the quality of a code base [5, 12, 26], a phenomenon referred to as 

code decay [12]. 

Software modifications that do not cause any regression faults, may 

instead expose some subtle implementation details that were previously 

hidden.  Later versions of the system may come to depend on the 

details, thus making the previously-encapsulated code more difficult to 

change [25].  In other words, in a well-encapsulated system a wide 
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variety of changes can be made to one module without affecting 

another, whereas in a system with poor encapsulation one must 

understand the impact of each change across all modules that may 

depend on components affected by the change. 

This dependency relationship, called coupling [29], is a likely agent 

of code decay because it can make it harder to further modify the 

system. 

1.1 Example of code decay via coupling 

Modifications to a system exhibiting low coupling tend to be simple 

because the developer needs only consider the impact on a few 

modules to understand the scope of his modification (Figure 1, left).  In 

this example, a change made to a module of the system may impact 

two more modules due to coupling, but existing encapsulation prevents 

more modules from being directly impacted. 

 

 

Figure 1: Coupling and Impact Sets 

Software module   Changed module 
Dependency (coupling)   Impacted modules 
New dependency 

Version N Version N+Δ 

Δ 
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With the introduction of new coupling dependencies in the system, 

the number of modules potentially impacted by any change increases 

(Figure 1, right).  In order to perform a correct modification to the new 

system, a developer would now need to consider the impact of the 

change on a larger set of related modules, resulting in both a higher 

change cost and higher risk of introducing functional regressions. 

Any system must exhibit some amount of coupling, or the system’s 

modules cannot communicate with one another.  However, the 

introduction of unplanned coupling further increases the burden on 

developers in many ways: 

1. The system as a whole becomes more difficult to understand 

because new unplanned behavior can emerge from inter-

dependencies, including new defects. 

2. Each module is more difficult to understand because other 

modules must also be understood together, resulting from the 

breakdown of encapsulation, while certain module compositions 

may become unworkable. 

3. It is more difficult to verify and test the behavior of the new 

system, lowering the effectiveness of unit testing, and possibly 

relying heavily on more expensive integration testing to protect 

from defects. 

Finally, not all developers may be aware when additional coupling is 

introduced in the system.  Eventually, developers may each view the 

same system differently and will be more at risk of introducing 

inconsistencies leading to defects.  Even the system’s original 

architects may no longer understand the system as a whole. 
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1.2 Beyond functional verification 

It is not easy to define code decay operationally because it is, at its 

core, a human problem.  A simple formulation of code decay could 

follow a “black box” approach, combining both human and technological 

aspects of the problem by asking three high-level questions about the 

evolution of a software project: 

1. Is the cost of making changes to the system increasing over 

time? 

2. Is the time required to complete changes inflating? 

3. Is the quality of the software deteriorating? 

An affirmative answer to any of these questions could be evidence 

of code decay, but each may be difficult to assert by engineers and 

managers in the field.  Belady and Lehman analyzed empirical data 

gathered during the development of OS/360 at IBM [5] with the goal to 

build a model of software development that accounted for these factors.  

The data they presented suggests that the three signs of decay above 

were present throughout the long evolution of OS/360. 

Unfortunately, once the effects of code decay become readily 

apparent, it may prove more expensive to remedy the situation than to 

abandon the system and start anew.  However it may be possible to 

detect potential symptoms, or risk factors of code decay.  If assessed 

by developers early enough, the decay may be corrected at a lower 

cost. 

The intuition that guided the research described in this thesis is that 

an increase in the amount of overlap in the implementation of different 

features (functional requirements) can be a symptom of code decay 

(i.e., if it is unplanned), and that such situations should be automatically 

detected and reported to developers for closer inspection.  
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Unfortunately, the implementation of features is not always neatly 

encapsulated in a single module [17, 24], a situation which precludes 

the trivial use of standard automated coupling metrics to detect this 

symptom. 

1.3 Our focus 

This dissertation shows that the execution of test suites may be 

used to detect signs of increased overlap between the implementation 

of features as a sign of code decay.  To compute the overlap we look 

for the implementation of features in code using Feature Location 

techniques.  Feature location is a form of reverse engineering whereby 

high-level concerns (features) are mapped to low-level components 

(code) through either an interactive or variably automated process, 

based on mining or instrumentation data.  Existing automated feature 

location techniques (see Chapter 2) serve as the foundation of our 

work. 

We believe that if feature location tools help developers understand 

aspects of software architecture in practice, the evidence used to 

document the architecture should be a relative invariant of the system.  

That is to say that software architecture is expected to be highly inertial 

in a software system undergoing maintenance.  Insofar as the 

abstractions and inter-dependency of feature implementations are 

elements of the software architecture, they too should be relatively 

invariant in that phase of the software lifecycle. 

By automatically determining feature locations across changes to 

the system as they are applied on the source repository, we can inform 

developers of violations to the invariance.  Our technique computes 

Feature Associations, the degree of codependence between the 

implementations of separate features, and reports on potentially 
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harmful variations between versions of the system.  When increased 

associations between the implementation of different features are 

detected, the parts of the code contributing to the evidence obtained 

are retrieved and reported to the developer. 

We present the novel concept of feature coupling, as well as a 

feature coupling detection technique.  Our approach is based on a 

dynamic analysis of a software system as it undergoes regression 

testing.  It can be completely automated and fully integrated in the 

software development process of an organization.  With our technique, 

developers work as usual but when their changes are committed and 

tested, the execution of the test suite is monitored, analyzed, and 

compared with information obtained from the regression testing of a 

previous version of the code. 

We have implemented our technique and applied it to a real-world 

code base consisting of more than 100 000 lines of C++ source code 

exercised by thousands of tests.  Our experience with this technique 

showed that its computational overhead is low enough to integrate it in 

the build and test cycle of the organization and that it produces reports 

that are easy to understand and convenient to use by developers.  A 

study of the target system using our technique also demonstrated that 

files contributing to increases in feature coupling were significantly more 

likely to be modified by future bug fixes, hence reinforcing the 

assumptions forming the basis for our technique.  Our contributions 

include a description of our automatic technique for the detection of 

increases in feature coupling and a detailed account of our experience 

with this technique in the field. 
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1.4 Structure of this dissertation 

In Chapter 2, we describe foundational work.  In Chapter 3, we 

provide the details of our technique for detecting increases in feature 

coupling.  We then describe our application of the technique in Chapter 

4 and our initial experience with the technique along with a validation 

study in Chapter 5.  We present a qualitative analysis in Chapter 6 and 

finally conclude in Chapter 7. 



 16

 

Chapter 2  
Background 

The seminal work that motivated this research is the investigation of 

code decay in a large-scale phone switching system conducted by Eick 

et al. [12].  In their study of the 15-year history of the system, Eick et al. 

analyzed a number of decay indices such as the span of changes 

(number of files touched), which is shown to increase as the software 

evolves.  Although this study motivated our research by providing 

evidence of code decay, our decay assessment strategy differs from 

Eick et al.'s code decay indices in that we do not analyze the history of 

the code, but rather immediate differences between versions.  This 

difference in strategy is mainly due to different research goals. While 

Eick et al. sought to provide evidence of long term decay, we were 

interested in preventing such decay by providing an early warning 

system. 

When the architecture of a system can be stated explicitly, the effect 

of code decay on software architectures can also be construed as the 

introduction of differences between an intended and an actual 

architectural design.  A number of approaches have been proposed to 

detect inconsistencies between intended and actual designs.  For 

example, Murphy et al. proposed software reflexion models, a 

technique allowing developers to easily model the architecture of a 

system and to automatically verify the conformance of the actual 

system to the posited architecture based on a static analysis of the 

system [23].  Sefika et al. proposed to establish the conformance of a 

system to design-level rules (e.g., an implementation of the Mediator 

design pattern [15]) using a combination of static analysis and dynamic 
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analysis [27].  More recent developments in this area include 

ArchJava [1], an extension to Java allowing developers to specify the 

architecture of a system directly in the code (and to automatically verify 

the conformance of the code to the architecture), and the IntensiVE 

environment [20], which allows developers to document regularities 

(patterns) in the structure of a system, check whether the patterns hold 

as the system evolves, and report discrepancies between documented 

and observed patterns to developers.  Although the motivation behind 

our approach (to mitigate code decay) is the same as the one pursued 

with the work describe above, our strategy was different.  While the 

conformance verification approaches rely on a precise, coarse-grained, 

and explicitly-specified architectural model, our present approach relies 

on an approximate, fine-grained model that can be (partly or 

completely) inferred automatically from the test suite. 

2.1 Coupling 

The coining of the term “coupling” is attributed to Stevens [29], who 

defines it as “inter-relations between modules” that make the system 

more difficult to understand, change and correct, increasing the 

complexity of the whole.  Stevens’ definition was focused on the 

dominant paradigm of his time, but was later ported to Object-Oriented 

Programming by Coad and Yourdon [10], who added class inheritance 

and friendship as evidence of coupling. 

Chidamber and Kemerer further extended the object-oriented 

definition of coupling with the popular Coupling Between Objects (CBO) 

metrics [8, 9], which influenced many recent works on coupling.  CBOs 

form the basis for work on static [4] and dynamic [22] coupling.  The 

CBOs have also been independently related to change-proneness in 

many publications [4, 6, 11, 32]. 
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2.2 Analysis Techniques 

A large number of approaches have been proposed that involve the 

analysis of a running program for purposes that range from the broad 

(e.g., program understanding [3]) to the very specific (e.g., impact 

analysis [18]). In this space, a few approaches relate more closely to 

our work through either their relationship to coupling analysis or their 

reliance on the concept of feature. 

2.2.1 Coupling detection techniques 

Arisholm et al. investigated how dynamic coupling measures can 

help assess various properties of a software system [2].  The dynamic 

measures studied by Arisholm et al. include characterizations such as 

the number of messages sent by each object, the number of distinct 

methods invoked by each method, etc.  This work does not take into 

account the notion of feature as a separate entity that can span multiple 

modules.  Nevertheless, the results of this study are consistent with 

ours (as reported in Chapter 5), in that "dynamic export coupling 

measures were shown to be significantly related to change 

proneness" [2, p. 505]. 

Mitchell and Power later contrasted the predictions of static coupling 

metrics such as CBOs with Arisholm’s dynamic inter-relation metrics 

between objects instances [21].  They found that dynamic metrics 

reveal a different picture than static metrics.  As a result they propose 

that the results are best interpreted in the context of coverage 

information. 

2.2.2 Feature location techniques 

Although the main focus of this research is not specifically the 

location of features in source code, the technical foundations for this 

work have benefited from a number of dynamic analysis-based feature 
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location techniques. We conclude this survey of related work with a 

description of feature location techniques that have inspired the design 

and implementation of our approach. 

The Software Reconnaissance technique developed by Wilde et al. 

identifies features in source code based on an analysis of the execution 

of a program [31, 32]. Software Reconnaissance determines the code 

implementing a feature by comparing a trace of the execution of a 

program in which a certain feature was activated to one where the 

feature was not activated.  Wilde at al. also proposed a second 

formulation of Software Reconnaissance where components are 

attributed implementation scores based on the frequency of their 

occurrence in a test suite, and the frequency of their occurrence 

together with the feature to locate [31].  This definition is the basis for 

our feature association calculations. 

Eisenberg and De Volder extended Software Reconnaissance by 

devising more sophisticated heuristics for determining component 

implementation scores [14]. They combine both of Software 

Reconnaissance's formulations by requiring the user to provide sets of 

exhibiting and non-exhibiting tests, and then performing multiple 

probabilistic analyses on them. They combine the result of the analyses 

into a final implementation score which is used to assign components to 

a feature. 

Eisenbarth et al. [13] proposed a different extension to the ideas of 

Wilde et al., by producing the mapping between components and test 

cases using mathematical concept analysis. Their approach, however, 

requires more human intervention than would be practical for our 

application. 
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The approach developed by Licata et al. [19] finds “Feature 

Signatures” by comparing execution traces of tests over consecutive 

versions of a program.  A feature signature is a group of tests, assumed 

to correlate well with features, that exercised a given portion of the 

changed code.  Feature signatures account for the features affected by 

the changes spanning two program versions, and serve both as a 

feature-location and a change-characterization mechanism.  By 

summarizing feature signatures into impact size histograms, Licata et 

al. show that feature signatures are able to distinguish between 

localized and infrastructure changes.  By clustering changed code 

blocks with similar signatures, they also show that feature signatures 

can locate cross-cutting feature code over the entire span of the 

modified program. 

A final use of feature signatures draws more analogy to our work.  

Feature signatures may be used to investigate the structure of tests: 

they can describe the relationship between tests as a concept 

lattice [28].  Licata et al. assume that tests map directly to features, 

hence their lattice simultaneously expresses feature relationships and 

resembles our concept of feature associations.  Although both locate 

features in the source code by matching code blocks exercised by 

similar features through dynamic analysis, the essential distinction is 

that feature signatures rely on code differences between program 

versions to reveal features, whereas feature associations rely on the 

differences between tests. 
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Chapter 3  
Feature Coupling Detection Technique 

Measures of coupling in software have traditionally been used to 

diagnose different conditions in software systems, such as the need for 

refactoring for more thorough validation activities [2].  In a similar 

perspective, we base our coupling detection technique on the following 

hypothesis: Given that a system implements a number of features, any 

increase in the association between the implementation of two features 

may indicate locations where unplanned dependencies have been 

introduced.  This technique was first described in a paper presented at 

the 14th ACM SIGSOFT International Symposium on the Foundations 

of Software Engineering [16]. 

In this work, we use the term “feature” to refer to a cohesive set of 

the observable properties of a software system (e.g., as would 

correspond to the functional requirements).  For example, a word 

processing software would typically include features such as “spell 

checker”, ”auto save”, and “undo”. For a number of practical reasons, 

the implementation of features does not always align with module 

boundaries, and is instead scattered throughout the basic 

decomposition of the system [17, 24].  For example, the functionality to 

“undo” commands typically involves code that is scattered throughout 

the implementation of each undoable command in the system. 

Although the idea of detecting increases in the coupling between 

features is conceptually simple, its practical realization must account for 

the numerous and complex ways in which different (and potentially 

scattered) sections of a software system can interact.  For example, 

statically establishing data dependencies between sections of code 
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requires complex, computationally expensive, and potentially imprecise 

calculations. 

To investigate a technique that would apply to large, deployed 

software systems, we chose to estimate feature interactions using a 

probabilistic model based on test coverage information.  Our technique 

associates features with tests, and tests with implementation 

components. By recording whether the overlap between components 

implementing different features increases as a regression test suite is 

applied to a new version of a system, we can determine which sections 

of the code cause the increases.  We hypothesize that such sections 

may contribute to code decay and should be inspected by developers to 

ensure that the changes do not introduce undesirable weaknesses in 

the code.  In the rest of this section, we present the details of our 

technique. 

3.1 Basic Concepts 

The following concepts are important to our analysis algorithm.  The 

most basic concepts are that of a program version, a component, a 

feature, and a test. 

Definition 1 (Program Version).  A program version P=(C,F,T)  is 

the combination of a set C  of components, a set F of features, and a 

set T of tests.  

Definition 2 (Component).  Given a program version P=(C, F, T), a 

component c ∈ C is an entity of the program represented by P whose 

execution can be detected as part of the execution of a test t ∈ T. 

Components can be defined to represent different constructs, such 

as lines of code, procedures, basic blocks, etc…  Although practical 

considerations influence the selection of a component granularity, our 
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approach is technically independent from the specific choice 

component types. 

Definition 3 (Feature).  Given a program version P=(C, F, T), a 

feature f ∈ F is a functionality of the program expressed such that it is 

possible to unambiguously determine whether a test t∈ T exercises f. 

Definition 4 (Test).  Given a program version P=(C, F, T), a test t ∈ 

T is an execution of a subset of the program represented by P that 

exercises a set of features Ft and covers a set of components Ct, where 

Ft ⊆ F and Ct ⊆ C.  We have exercises(t,f) if t exercises f, and 

covers(t,c) if c is executed as part of t. 

It follows from the last two definitions that the association between 

features and tests is many-to-many.  In other words, it is not necessary 

for a feature to be uniquely associated with a test. 

In practice, the binary relation exercises can be obtained in a 

number of ways, including through manual inspection, feature location 

techniques, or others.  In the context of our approach we assume that 

this relation exists and that the information is available as part of a 

software project.  Section 3.2 describes one way to automatically 

generate the exercises relation.  As for the covers relation, the 

components covered by individual tests can be determined from the 

execution of a test using straightforward instrumentation techniques 

(see Section 3.1). 

3.2 Feature Implementation 

We estimate the association between different features in two steps.  

First, we estimate how strongly each component is associated with the 

implementation of a feature.  We call this estimate the feature 

implementation. Second, and based on the feature implementation, we 
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estimate the strength of the association between the implementation of 

different features.  We call this last estimate the feature association.   

The calculations of the feature implementations and associations 

are based on linear algebra.  Given a program version P = (C,F,T), we 

model the exercises relation as a matrix of size |T| × |F| where the 

row/column tuple (t,f) is 1 if t exercises f and 0 otherwise.  Similarly, we 

model the covers relation as a matrix of size |T| × |C| where the 

row/column tuple (t,c) is 1 if t covers c and 0 otherwise. 

The intuitions behind our definition of a feature implementation are 

that a) a component implements a feature if it is covered by all tests 

exercising the feature, and b) the strength of the implementation 

relation is determined by the ratio of tests covering the component that 

are associated with the feature over the ratio of all tests covering the 

component.  For example, if a component c1 is covered by 20 tests, and 

all 5 tests for feature f1 cover c1, then we will say that that c1 

implements f1 with a degree of 0.25.  At the other end of the spectrum, 

if c1 is covered by 20 tests, and all 20 tests for feature f1 cover c1, then 

we will say that c1 implement f1 with a degree of 1.0.  In order to 

operationalize these intuitions, we define a vector operation we call the 

implementation product.  The implementation product is similar to a 

standard dot product but makes provisions for intuitions a) and b) 

above. 

Definition 5 (Implementation Product). Given two vectors of size 

n, a = (a1, a2, … an) and b = (b1, b2, …, bn), the implementation product 

a ⊗ b is defined as  
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Figure 2: Implementation Product 

 

With our definition of the implementation product, we can define a 

matrix implementation product that works just like the standard matrix 

multiplication except that the implementation product is used instead of 

the dot product to multiply component vectors. 

Definition 6 (Matrix Implementation Product). Let A = A[aik] be an 

m × n matrix, and let B = B[bkj] be an n × s matrix.  The matrix 

implementation product A ⊗ B is the m × s matrix C = C[cij],where cij is 

the implementation product of the ith row vector of A and the jth column 

vector of B. 

With the above definitions, we can now define a feature 

implementation. 

Definition 7 (Feature Implementation). Let exercises and 

covers be the matrices corresponding to the exercises and covers 

relations for a program version, respectively. Let exercisesT be the 

transpose of exercises. We define a feature implementation FI as FI = 

exercisesT ⊗ covers. 

3.2.1 Example 

We illustrate the calculation of a feature implementation with a small 

example.  Consider a simple program comprising four tests and seven 

components.  Table 1 shows the covers matrix for a program version 

(for clarity we do not show the 0 values).  We can assume that this 
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information is obtained by running test programs with execution 

instrumentation. 

 

 C1 C2 C3 C4 C5 C6 C7 
T1 1 1  1  1  
T2 1 1 1    1 
T3  1 1 1 1   
T4  1  1  1  

Table 1: Covers matrix for the example program 

 

Additionally, individual tests exercise only a subset of the features of 

the program.  Table 2 shows the transpose of the exercises matrix.  

This information can be provided along with  the test suite, for example. 

 

 T1 T2 T3 T4

F1 1    
F2 1 1   
F3  1   
F4 1   1 
F5   1  

Table 2: ExercisesT matrix for the example program 

 

Taking the implementation product of exercisesT and covers 

produces the FI matrix, as shown in Table 3. 

 

 C1 C2 C3 C4 C5 C6 C7 
F1 0.5 0.25 0 0.33 0 0.5 0 
F2 1 0.5 0 0 0 0 0 
F3 0.5 0.25 0.5 0 0 0 1 
F4 0 0.5 0 0.67 0 1 0 
F5 0 0.25 0.5 0.33 1 0 0 

Table 3: Feature implementation for the example program 
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For example, taking the implementation product of row F1 in 

exercisesT and column C1 in covers produces the value (F1, C1) = 

1×1/(1+1) = 0.5 in FI.  This value estimates that C1 implements F1 with 

a degree of 0.5 since one other test not associated with F1 covers C1. 

3.3 Feature Association 

A feature association is a square matrix representing the degree of 

association between the implementation of different features. 

Definition 8 (Feature Association). Given a program version P = 

(C,F,T) and its corresponding feature implementation FI, a feature 

association FA is the square matrix of size |F| × |F| defined as the (true) 

matrix product FA = FI •FIT. 

The dot product between two feature implementation vectors 

represents the cosine of the angle between them (multiplied by the 

magnitude of each vector).  Hence, the feature association matrix 

models how strongly any two features “align” in a space of components 

(Figure 3) where the components are the dimensions. 

 

Figure 3: Conceptual alignment of features in a feature space 
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The higher the association value for a pair of features, the larger the 

number of components they share in their implementation or the more 

important the shared components are to both features.  In our 

approach, we do not take into account the absolute value of feature 

associations.  Instead, we simply detect whether such values increase 

as a system evolves. 

3.3.1 Example 

To complete our example, Table 4 shows the final feature 

association for our example. 

 

 F1 F2 F3 F4 F5 
F1 0.67 0.63 0.31 0.85 0.17 
F2 0.63 1.25 0.63 0.25 0.13 
F3 0.31 0.63 1.56 0.13 0.31 
F4 0.85 0.25 0.13 1.70 0.35 
F5 0.17 0.13 0.31 0.35 1.42 

Table 4: Feature association for the example program 

 

From Table 4 we see that, for example, feature F1 is more strongly 

associated with feature F2 than with feature F5.  There are two things to 

note from this table.  First, a feature association matrix is in fact a 

triangular matrix as the association relation is symmetrical.  Second, the 

values representing the association of a feature with itself vary between 

features.  This is simply a consequence of the fact that, for simplicity, 

we have not normalized the feature implementation vectors (the row 

vectors of the feature implementation matrix). 

If we normalize the feature implementation vectors in Table 3, the 

diagonal of the feature association matrix will contain only values of 1.  

This operation is not a requirement for our technique however, and we 

recommend that it be avoided in production environments where 
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performance is a concern.  Although normalization would not become 

the bottleneck of the analysis, its cost remains significant and should be 

avoided whenever possible. 

3.4 Coupling-Increasing Components (CIC) 

Coupling-Increasing Components (CIC) are the components that 

contribute to an increase in the level of association between two 

features.  We obtain the set of CICs by comparing the feature 

implementations and feature associations of two different program 

versions. 

To identify CICs, we first locate feature pairs whose association has 

increased between two versions.  We define an association to have 

increased if the association between two features in a (more recent) 

program version is greater than the association between the same 

features in a previous program version by a certain multiplicative factor 

α.  The α factor is a parameter of our approach that can take values in 

the interval [1..∞) (see Chapter 5). 

Definition 9 (Coupling-increasing feature pairs). Given two 

program versions P = (C,F,T) and P*=(C*,F*,T*), and their corresponding 

feature association FA[faij] and FA*[faij
*], the coupling-increasing feature 

pairs CIF[cifij] is a matrix of the same size as FA* where: 

⎩
⎨
⎧ >

=
otherwise,0

 * if,1 ijij
ij

fafa
cif

α

 

Figure 4: Coupling-Increasing Condition 

 

Definition 10 (Coupling-increasing components). Given two 

feature implementations FI and FI* and a matrix of coupling-increasing 
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features CIF, we define the set of coupling-increasing components of a 

modified program P*=(C*, F*, T*) as the set of components contributing 

to values in CIF.  The set of CIC can be calculated with the following 

algorithm: 

 

 1: param: P*=(C*, F*, T*): Modified Program 

 2: param: FI[fij] & FI*[fij*]: Feature  

Implementations 

 3: param: CIF[cifij]: Coupling-Increasing Features 

 4: var: CIC={}: Coupling-Increasing Components 

 5: for i = 1..|fi| (where fi is a row of FI) 

 6:   for j = 1..|fi|, i ≠ j 

 7:     if cifij = 1 

 8:       for k = 1..|fi| 

 9:         if fik* • fjk* > fik • fjk 

10:           CIC  CIC ∪ c | c is the component 

                   corresponding to column k in FI 

11:         end if 

12:       end for 

13:     end if 

14:   end for 

15: end for 

16: return CIC 

Figure 5: Coupling-Increasing Component Algorithm 

 

Once the analysis is complete, we present the CIC set to the 

developers, who will determine if the components are in fact 

contributing to code decay. 
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3.5 Discussion 

The quality of the results produced by our algorithm is dependent on 

the stability of feature associations in the absence of code decay.  For 

example, if changes that do not cause code decay in practice introduce 

variations in associations, then our algorithm could produce false 

positives.  In general, the role of the parameter α is to stabilize the 

algorithm, by making it more resilient to small variations in feature 

associations.  However, if α is set too high then important symptoms of 

code decay could go unnoticed, and so the effective range of α is also 

limited. 

Essentially, variations in feature association are a factor of two main 

phenomena: a) relevant variations due to an increase in feature 

coupling (and potentially indicative of code decay), and b) irrelevant 

variations due to imprecision in the computation of feature 

implementations.  The primary source of imprecision in the computation 

of feature implementations is an insufficient number of tests exercising 

certain features to obtain reasonable estimates of the components that 

implement them.  The importance of this imprecision will typically 

diminish as the number of tests increases and the focus of tests 

narrows to fewer features. 

Finally, the inclusion of components in the CIC set implies the 

existence of a mapping of components between system versions 

(c ∈ C  c* ∈ C*).  In other words, given two feature implementation 

matrices representing two different program versions, it is assumed that 

a column in the matrix for one version represents the same component 

as the corresponding column in the matrix for the other version.  In 

practice, this assumption requires special treatment when components 

are added or removed between versions.  Additionally, if using lines of 
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code as components (commonly identified by file/line information), even 

unchanged components may require remapping because of the 

addition and removal of other components above them in the same file.  

This bidirectional mapping between components of different program 

versions is assumed to exist in the CIC algorithm, but the details are left 

to the implementation (see Section 4.4.2). 
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Chapter 4  
Case Study 

To investigate the feasibility and usefulness of our approach, we 

implemented our technique and applied it to a proprietary 3D graphics 

program developed at NVidia Corporation.  The target system consists 

of more than 100 000 lines of C++ code exercised by thousands of 

tests, and each change is tested for regression before it is submitted to 

the source repository.  Although many parts of the implementation built 

for this case study are generic enough to apply to a wide range of 

software systems, practical considerations required us to tailor the 

overall implementation to the environment of our target system.  

 

Figure 6 : Implementation Diagram 

 

Our current implementation (depicted in Figure 6) is designed to be 

applied to all new changes made to our target system before they are 

submitted to the source repository.  To this end, our implementation 

extends existing proprietary regression-testing infrastructure and 
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practices without interfering with the normal activities of software 

developers.  For our analyses, we defined components as the lines of 

code of the system, as an approximation for C++ statements.  

However, for practical reasons we aggregate the results by source files 

for the final presentation to developers. 

Our implementation works as follows.  First, we obtain the test suite 

from the source repository and compile the locally-modified program 

with code instrumentation to produce statement coverage information 

when executed.  The test suite is then executed as usual, producing the 

covers relation matrix that relates tests with components (see 

Section 4.1).  Executing the test suite on our target system also 

produces the exercises relation matrix that relates tests with features 

thanks to a different type of instrumentation that forms an integral part 

of our specific target system (see Section 4.2). 

As described in the previous section, the covers and exercises 

matrices serve as input to the computation of feature implementations 

and association analyses (see Section 4.3).  Feature implementations 

and associations are then marked for storage in the source repository 

together with the current changes so that they can be versioned along 

with the software and used in future analyses.  To perform feature 

coupling analysis (see Section 4.4), we recover the version of the 

feature implementations and associations that match the previous 

version of the program.  The old and new associations are then 

compared for increased associations and the CIC set is constructed 

from the lines of code that caused the differences, as described in 

Section 3.4.  Finally, the lines of code are aggregated by files and the 

set of coupling-increasing files is presented to the developer. 
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In the rest of this section, we discuss key implementation issues 

specific to each step of our approach. 

4.1 The Covers Relation 

We obtain the covers relation by instrumenting the program code to 

automatically detect each line of code covered by each test.  Inspired 

by the work of Tikir and Hollingsworth [30], we designed our 

instrumentation such that it removes itself once triggered, leaving the 

original subroutines.  This strategy greatly reduces the cost of 

instrumentation, especially for code containing loops.  This 

characteristic of our implementation is in fact critical given the size and 

heavy computational nature of the target system.  We observed, as 

also noted by Tikir and Hollingsworth, that the performance impact of 

this type of instrumentation is low, increasing the run time by only 

5~10% (see Section 5.3 for the details of the performance evaluation). 

The covers matrix produced by our coverage instrumentation can be 

very large.  Thousands of tests executing over hundreds of thousands 

of lines of code will produce hundreds of millions of entries in this 

matrix.  Fortunately, covers matrices are naturally sparse and contain 

some simple patterns, such as groups of components that are always 

covered together.  We reduced the effective size of the stored data by 

indexing, storing, and analyzing these groups of components as a 

single entity.  The core implementation of this technique is described in 

Section 4.3, with C++ source provided in Appendix A (the “Aggregate” 

class). 

4.2 The Exercises Relation 

Ideally, the features exercised by individual tests in the test suite 

would be documented alongside and versioned with the test suite.  In 

practice, we found that this information was not consistently available.  
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In our target system, each test is relatively complex and exercises 

many features, often leaving only vague and informal references to the 

dominant feature to be encoded in the test name.  In some cases, even 

the names were misleading, due to the test’s ultimate purpose changing 

over time. 

To recover the exercises relations, we relied on execution logs 

produced by our target system as it executes (Figure 7: Excerpt from a 

system log).  These execution logs form an integral part of the target 

system and are different from our instrumentation system.  The primary 

purpose of the execution logs is to assist in the analysis of inputs given 

to the system, both manually by developers and through automated 

tools.  Built by the developers alongside the system’s functionality, the 

logs provide extensive details about the execution of the system, 

including a fine-grained description of the functionalities exercised in 

the program during its execution.  For example, the logs produced by 

our target system are analogous to a trace of user interactions that 

could be generated by a word processor, logging the commands 

invoked by the users through menus and buttons (e.g., spellchecking, 

justification, etc…). 

 

PRIMITIVE_TYPE = TRIANGLE_STRIP 
BLEND_MODE = WRITE_SRC_ONLY 
USING_FMAD = TRUE 
USING_TEX2 = TRUE 
ENABLE_L1_WRITE_THROUGH = FALSE 
... 

Figure 7: Excerpt from a system log 
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Since the exact details of the logging feature are proprietary, for the 

purpose of this thesis we abstract the logging feature as a module that 

produces a list of the commands called on the graphics software.  We 

collected these logs for each test and matched the functionality they 

referenced to features, hence reconstructing the exercises relations 

between tests and features.  The main consequence of this strategy is 

that it produces a very fine-grained definition for features, yielding more 

than ten thousand features for our target system.  However, this 

strategy supports a completely automatic recovery of the exercises 

matrix, which is a critical element of the feasibility of our approach.  This 

strategy for mapping features to tests is a parameter of our approach 

that may not be directly realizable for all target systems (see 

Section 4.5).  

Although the number of features detected remains much less than 

the number of lines of code in the system, our feature identifier tokens 

are much larger than a simple integer and their analysis produces 

physical data sets of similar size when stored uncompressed.  Like the 

covers matrices, exercises matrices are also naturally sparse and their 

cost can be made manageable using the same grouping strategy (see 

Section 4.3). 

4.3 Sparse Matrix Strategy 

We implemented our sparse compression strategy in an abstracted 

module in order to reuse it for both covers and exercises matrices.  The 

“Aggregate” class implementation is provided in Appendix A and 

deserves an expanded commentary because it is essential to our 

implementation.  Two concerns influenced its design: efficiency of final 

storage in space (exploiting sparseness) and run-time performance of 

the compression algorithm.   In order to share a core implementation 
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we abstracted the matrix’s major index (tests), dubbed “key” in the 

sources, and the minor index (line of code, or feature), dubbed “name”. 

The output of the compression operation is a pair of data structures, 

a set of sets of keys and a map of names to [pointers to] sets of keys.  

The first is the set of unique groups of keys (tests) to which names 

(lines of code, or features) are associated, hence unique compressed 

(sparse) columns, while the second is the transpose of the association 

(covers, exercises) table. 

Two additional indirections were later added to improve run-time 

performance significantly: space-inefficient temporary working sets and 

unique name/key tables. 

Firstly, in order to accelerate operations on the data structure, an 

additional map of names to sets of keys is used to accumulate many 

small operations into larger transactions.  When a change is applied to 

a named entry, this map is first populated with a copy of its associated 

key set, and subsequent changes are applied there rather than in the 

final data structure.  This allows changes localized around a name to be 

performed on a smaller, faster structure.  At the end of the process, the 

Aggregate (Aggregate::compressKeySets) folds all the copies in this 

map back into the main data structure by searching for and assigning 

matching sets, creating new sets or destroying unused sets. 

Secondly, a pair of string tables alters the actual data structures to 

use pointers to names (dubbed name handles) and pointers to keys 

(key handles) instead of names and keys proper (both strings).  This 

change is functionally transparent for operations that only require 

names and keys to be equality-comparable, which dominate the 

compression aspects of the technique.  Not surprisingly, we observed 

the difference in performance between using string comparisons and 
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pointer comparisons to be very significant (around two orders of 

magnitude).  The reduction in storage size also achieved with this 

optimization was not as significant. 

4.4 Feature Implementations 

The implementation of the computational support for feature 

implementations as described in Section 4.2 gives rise to a matrix 

product of staggering size if the sparseness is not exploited.  To 

compute the implementation of a feature, the associated exercises test 

group1 for the feature is used as the reference test set.  All test groups 

from the covers relations are then compared to the reference test set.  

If all tests from the reference test set are found in the covers test group, 

then all components associated to it are added to the implementation of 

the feature.  The implementation value of each of these components is 

then calculated as the size of the reference test set over the size of the 

test group (see Definition 5).  This process produces as output a set of 

tuples of components and implementation values, representing the non-

zero values of the feature implementation vectors. 

Even in their compact form, the feature implementation vectors 

remain large and dominated by components with very low 

implementation scores (e.g., components that are covered by all tests).  

To increase the performance of our feature coupling analysis, we limit 

the size of feature implementation vectors to 200 components, and 

truncate the less significant components.  The components truncated in 

this manner vary from feature to feature, leaving a selection of the 200 

                                            

 
1 The groups are seen in the sparse matrix, as mentioned in 4.1. 
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highest-degree components for each individual feature, and resulting in 

a sparser (but not smaller) feature implementation matrix. 

The choice of 200 as the length of implementation vectors is based 

on experience with applying feature location techniques on our target 

system.  Manual inspection of the most important features of the target 

system showed that implementation vectors typically had a clear signal 

contained in the first 50-100 components (see Section 5.1).  This 

measurement is likely a property of our target system and should be 

evaluated again for each different system. 

The tradeoff of this optimization strategy is that the components 

removed in this manner will also vary from program version to program 

version.  As a result, features insufficiently exercised by the test suite 

will appear to make significant feature implementation losses and gains 

between versions.  Although in principle the low implementation values 

of the truncated components means that they should not affect the end 

result  (the computation of CICs), in practice we have found that this 

process introduces noise that warrants additional filtering during 

coupling analysis (see Section 4.5). 

Finally, even though it is not required by our algorithm, we normalize 

our implementation vectors after truncation.  As a result the 

implementation products are themselves normalized and provide useful 

meaning to associations when debugging the implementation of 

coupling analysis. 

4.5 Feature Coupling Analysis 

Our implementation of feature coupling analysis is faithful to the 

algorithm described in Section 3.4.  However, use of the technique in 

the field required the development of an additional noise filtering 
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support, and support for the mapping of components and features 

across program versions. 

4.5.1 Eliminating Noise 

The set of tests used to validate changes made to our target system 

varied greatly depending on the scope of the changes performed.  

Current practices for our target system call for executing a “sanity” test 

suite instead of the much larger “full” test suite when changes are 

deemed at low risk of causing functional regressions.  As a result, we 

encountered many cases where some features were insufficiently 

exercised to reliably identify the components implementing them (in 

other words, resulted in significant noise in the feature implementation 

matrix).  We solved this problem by adding a filtering pass to the 

algorithm described in Section 3.4. 

We employ two different filtering methods to reduce the effect of 

noise at the feature coupling analysis phase.  First, the algorithm’s 

sensitivity threshold α eliminates insignificant variations in associations.  

For our target system, values as small as α=1.1 provided an 

appropriate baseline for noise reduction.   We determined this value 

heuristically by estimating how much a feature association should 

increase  before being considered significant. This initial estimate was 

assessed empirically and found to be adequate for our initial 

investigation of the approach (see Section 5.2).   

Second, we defined an analysis on individual feature 

implementations to discard variations resulting from noisy feature 

implementation vectors that do not appear to reliably associate a 

feature to its implementation.  Specifically, we define a noisy 

implementation vector as one whose components are all more or less 

equally relevant, such that no component is significantly more important 
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than any other.  As in Section 3.4, we parameterized the significance 

detected with a sensitivity threshold β, such that a feature 

implementation vector (of components) [ci] is noisy if the following 

predicate holds (the overbar denotes the mean and σ the standard 

deviation):  

 

( )ccci βσ<−
 

Figure 8: Sensitivity Threshold 

Implementation vectors that show clear features locations in the 

source code share a characteristic shape where components vary 

significantly in implementation values (see Section 5.1).  The sensitivity 

threshold uses the standard deviation to select only implementation 

vectors that contain significant differences in implementation values. 

4.5.2 Mapping Components with Program Versions 

We identify our components (lines of source code) with unique 

indices in the covers and feature implementation matrices.  The indices 

are derived from file names (indexed in a file name table) and line 

numbers.  This choice is convenient when gathering covers relations, 

but problematic during feature coupling analysis because changes to 

the source code cause source lines to move (potentially including 

unchanged source lines).  To allow the comparison of feature 

implementation matrices during feature coupling analysis, we build a 

(line number line number) map for each file of the system between 

program versions, by applying the UNIX diff utility to the different 

versions of the files and accumulating the additions and subtractions of 

lines to find the mapping of old line numbers to new line numbers. 
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Our implementation uses this mapping to link components in the 

new version to those of the old version, ignoring removed components 

and assuming that new components previously held implementation 

scores of zero (i.e., that they were never covered).  This assumption is 

reasonable, since it shows new components with nonzero feature 

implementation values as implementation gains, and allows them to 

contribute correctly to feature coupling analysis. 

4.5.3 Mapping Features with Program Versions 

Features can also vary between program versions, though they are 

far more stable than components.  In all cases where algorithms 

manipulate features we refer to them by an index in a table of feature 

names, for instance when referring to features in the exercises or 

feature implementation matrices.  Because features change over time, 

the table of features that we build for our analysis (see Section 4.2) also 

changes over time and indices in the exercises and feature 

implementation matrices of different program versions are incompatible.  

To enable the comparison of features of different program versions, we 

search for the names of features from one program version’s feature 

table in the other program version’s feature table.  We note the pair of 

indices in a one-way mapping from new to old indices and use the 

mapping during feature coupling analysis whenever we compare new 

features with old features. 

4.6 Discussion 

The most sensitive aspects of the implementation of our approach 

revolve around the definition of components and features.  Selecting 

components as functions instead of source code lines, and coarse- 

rather than fine-grained features, would simplify the feature coupling 

analysis significantly.  With fewer, larger features, the noise elimination 
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process may not be necessary, since each feature is more likely to 

have been sufficiently exercised by the test suite.  Using functions as 

components would simplify the mapping of components between 

versions.  However, for our application, our choice of definitions for 

components and features was influenced mostly by the concern that the 

implementation of features may be scattered across different functions. 

Lines of code were a natural fit for comparison and integration of the 

results of coupling analysis with other tools of the existing infrastructure 

surrounding the target system.  The data we collect subsumes the data 

function-level instrumentation produces:  we have the flexibility to 

recover function coverage from our data through very simple analysis of 

the source code to support functions as components in the coupling 

analysis. 

The granularity of features was also dictated by the existing 

infrastructure, through the level of detail of the existing execution logs.  

For our definition of features, alternatives consisted mostly of the 

manual mapping of tests to features, a choice that was simply not 

practical, requiring too much human intervention to scale up to the size 

of the test suite.  In practice, execution logs are not uncommon in the 

field, and we expect that our approach can be replicated for systems 

with logging features, although the quality of the results will necessarily 

vary depending on the details of the logging data produced. In the 

cases where it is not feasible to instrument the program in this manner, 

then the mapping of tests to features must be provided by some other 

means, such as formal documentation or as an integral part of the test 

suite.  However, for some software systems that are under active 

development it may be reasonable to install instrumentation that 

produces execution logs detailing the features in use. 
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A final sensitive choice is the granularity in time at which our 

technique is applied.  The comparison of very distant versions of the 

target system can produce large differences, while the comparison of 

very close versions, very few.  In order to pinpoint specific changes as 

causes of decay, our preference is for the comparison of close 

versions.  In turn this increases the risk of failing to recognize very slow 

increases in coupling.  A simple attempt to mitigate this effect could 

involve multiple comparisons against variably-distant versions in the 

repository – this is a viable option for a future implementation. 
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Chapter 5  
Empirical Results 

The applicability of our feature coupling detection technique is 

based on a number of assumptions that can only be validated 

empirically.  Specifically, we rely on the fact that, in practice: 

1. Feature implementation vectors meaningfully associate components 

with features; 

2. The CIC sets produced are usable by developers; 

3. The computational cost of the approach is acceptable; 

4. The symptoms detected by the approach have value. 

To help determine whether these assumptions held in the case of 

our target system, we applied our approach to 13 different versions of 

our target system distributed over a three-month period, to simulate the 

analysis of weekly development releases.  Because of practical 

constraints on the computational resources available for this research 

project, we limited the number of tests executed on the 13 versions of 

the system to the “sanity” subset of the tests.  This subset was 

previously selected using the execution logs to identify the smallest 

subset of tests from the “full” test suite that exercised 95% of the same 

features. 

5.1 Feature Implementation Vectors 

To be able to determine coupling-increasing components, we need 

to be able to reliably associate components with features.  In our 

approach, the association between a feature and its components is 

modeled with a feature implementation vector (a row in the feature 

implementation matrix).  For the purpose of our approach, we consider 
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that a feature implementation vector is useful if it clearly identifies 

certain components as associated with a feature.  In our approach the 

parameter β determines if a feature implementation vector is "good 

enough" to be used in the computation of CICs (see Section 4.5.1).  

As an initial investigation we measured the relative number of 

significant versus noisy implementation vectors in our feature 

implementation matrix, given different values of β.  We consider an 

implementation vector to be noisy if the predicate of Section 4.5.1 holds 

and significant otherwise.  Figure 9 shows the relative number of 

significant vectors in the matrix for different values of β.  For each value 

of β, each bar represents the value for one of the 13 versions of the 

program we analyzed.  
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Figure 9: Effect of the β parameter on noise detection 

 

The results of significance testing vary smoothly as β changes.  

However, groups of features that exhibit similar implementation vector 

distributions cause local discontinuities as they pass or fail the 

significance test together.  This grouping effect can be caused equally 

by similarity at the source level or by using poorly differentiated tests. 
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We selected β=1.5 for our system because we felt it provided 

adequate protection from noise without eliminating weaker evidence in 

feature implementation vectors. For this value of β, we observed that 

(on average) 56% of feature implementation vectors were rejected 

when executing the “sanity” test suite.  Executing the “full” test suite 

reduces this number to 25%, strengthening our intuition that more 

thorough testing of features reduces noise in the feature 

implementation matrix. 

In the process of selecting a value for β, we manually looked at the 

value distributions in feature implementation vectors.  To illustrate this 

phenomenon, Figure 10 shows the value distribution of both a 

significant (solid line) and noisy feature implementation (dotted line), 

sorted by decreasing degree values. 
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Figure 10: Sample feature implementations 

 

For the significant feature implementation, the figure shows a few 

very relevant components that stand out from a long tail of less relevant 

components.  For the noisy feature implementation vector, we see 
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instead an almost straight line, with no component being more or less 

associated with a feature than others. In general, we find that noisy 

vectors usually correspond to features that are insufficiently exercised 

by tests.  

5.2 CIC Sets 

The characteristics of CIC sets matter in our approach since this is 

the information directly reported to developers.  If CIC sets contain 

large numbers of source locations scattered throughout the system, the 

developers will be overwhelmed with information.  The size of CIC sets 

is affected by the parameters α and β, which determine whether 

association changes constitute valid symptoms to be reported, and the 

usefulness of feature implementation vectors, respectively.  To assess 

their sensitivity to α and β for our system, we measured the CIC sets 

produced from 13 target revisions of the system (yielding 12 CIC sets).  

Since our approach automatically aggregates CIC sets by source file, 

we present our results at this level of granularity. 
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Figure 11: Effect of β on the size of CIC sets 
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Figure 11 shows the impact of the β parameter on the size of CICs 

(number of files) for a fixed value of α.  Note that in general increasing 

the value of β decreases the number of CICs.   
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Figure 12: Effect of α on the size of CIC sets 

 

Figure 12 shows the effect of α on the size of CIC sets for a fixed 

value of β=1.5.  We observed that the number of coupling-increasing 

files produced remains largely stable for changing values of α.  We 

surmise that the spikes in the graph represent versions exhibiting 

significant increases in some feature associations. 
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Figure 13: Number of file changes between revisions 

 

Except for two versions of the system, we find that the number of 

files reported as coupling-increasing to be manageable (often under five 

files).  This observation makes it reasonable to expect that a developer 

could inspect the complete list of files reported to evaluate whether the 

last changes to each file could have been suboptimal.  To provide a 

better context for this interpretation, Figure 13 shows the number of 

files changed between each version considered.  As can be seen from 

this last figure, feature coupling analysis can help narrow the focus of 

the developer to a number of files about ten times lower than the overall 

number of changed files. 

5.3 Performance 

Our approach is only feasible if it can be applied without incurring 

overhead that would severely disrupt the normal activities of 

developers.  In general, thanks to the various optimizations described in 

Section 4, we found that our implementation of the approach exhibited 

acceptable performance characteristics for its intended use.  In the rest 
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of this section, we discuss the performance characteristics and 

tradeoffs corresponding to the different steps of our approach.  Unless 

otherwise noted, the experimental machine for our performance 

assessments was an IBM T42 Thinkpad laptop computer with a 1.86 

GHz Pentium-M processor and 2 GB of physical memory.  The analysis 

implementation was written in C++, compiled using Visual Studio 2005 

(with optimizations enabled) and executed on Windows XP SP2. 

For our target system, using the “sanity” test suite comprising 70 

tests, the entire analysis process requires about 2 minutes.  For larger 

test suites, comprising several thousand tests, the process completes in 

less than 2 hours. 

5.3.1 Executing the Test Suite 

In our environment, tests execute on dedicated computer nodes that 

exploit parallelism between tests and reduce testing latency by sharing 

nodes between all developers.  This system allows developers to test 

their changes for regression within minutes or hours, depending on the 

size of the test suite used. 

The only part of our approach that affects the testing phase is the 

line coverage instrumentation, which increases the execution time by 

5~10% and requires additional storage requirements to store line 

coverage information.  Roughly 300KB of disk space per test is 

required, with the data compressed with zlib2 as it is written. 

5.3.2 Recovering the Exhibits & Covers Relations 

We merged the recovery of the exhibits and covers matrices into a 

single process, centered on the recovery of test-related information 

                                            

 
2 http://www.zlib.net/ 
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from the file system where it is written during the execution of the 

regression test suite.  The computational cost of this operation grows 

linearly with the number of tests, components and features. 

On the experimental machine, this phase represents about 1.5 

second of computation per test, which is mostly due to file system 

management (seeking and opening files), I/O (reading), decompression 

(zlib), decoding the file format, and memory management.  This 

process is the most time-consuming because it is performed serially.  

This entire process completed after less than 3 minutes for all versions 

of the program, using the “sanity” test suite, but typically took more than 

one hour on larger test suites. 

When this process has completed, the output is written to a single 

file, roughly 20MB in size for our target system, containing both the 

exhibits and covers matrices in their compressed form. 

5.3.3 Computing Feature Implementations 

The time required to compute feature implementations is solely 

bounded by the processor speed.  The computational cost of this 

operation in our implementation grows linearly with the number of 

features, components and tests.  Although the algorithm does not take 

tests into account, our implementation compresses the covers and 

exhibits matrices using test groups.  The computational cost introduced 

by test groups grows linearly with the number of tests in the worst case.  

However, the practical compression of data (and data processing) we 

get from working with test groups more than makes up for any added 

performance cost. 

For our target system this processing step executes at a rate of 

about 50 features per second.  The output is an in-memory feature 

implementation matrix that requires about 2KB per feature of memory. 
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5.3.4 Feature Associations and Coupling Analysis 

The computational time required for calculating feature associations 

and to perform feature coupling analysis grows quadratically with the 

number of features, but is positively impacted by the truncation of 

implementation vectors to constant lengths.  This decouples both 

operations from the specific number of components, resulting in a 

constant-time operation.  Furthermore, the small size of the vectors 

means that the processor can process almost 100 000 of our 

implementation products every second.  The entire coupling analysis 

phase takes just 10 seconds on the experimental machine. 

5.3.5 Summary 

All analyses were performed on an IBM T42 Thinkpad laptop 

computer with a 1.86 GHz Pentium-M processor and 2 GB of physical 

memory.  The following table summarizes the resource requirements of 

applying our technique: 

 

 Overhead 
Time 

Overhead 
Memory 

Overhead 
Storage 

Testing 5~10% - 300Kb/Test 
Aggregation 1.5s/Test 2Kb/Component ~20Mb 

Location 0.02s/Feature 2Kb/Feature - 
Association 10s 2Kb/Feature - 

Table 5: Resource Requirements 

 

In our environment, the total time required to run the test suite itself 

dominated the cost of applying our approach thereafter. 

5.4 Validation Study 

For our initial assessment of our approach, the final question we 

wanted to answer was whether the files identified with our approach 
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were actually responsible for code decay.  This question is a difficult 

one given that code decay is an abstract concept that is difficult to 

operationalize [6].  As a starting point, we decided to work with the 

weaker hypothesis that files identified with our approach correlate with 

files touched by future bug fixes.  To determine whether this hypothesis 

held in our case, we built contingency tables recording, for each file in 

our target system and each version of the system, whether the file was 

flagged as coupling-increasing or not, and whether the file was touched 

by bug fixes afterwards or not.  This strategy is similar to previous 

studies of dynamic coupling, which have also used future changes as 

the dependent variable for empirical evaluation [2].  With this data, a 

standard statistical procedure (the chi-square test of independence) can 

determine whether increased feature coupling is a predictor of future 

bug fixes. 

For this experiment, we considered all the source files of the system 

for the 12 revisions used in the rest of our investigation.  A file was 

considered to be "coupling increasing" at a given version of the 

program if it appeared in the CIC set produced by the application of our 

technique to that version, using α=1.1 and β=1.5.  To determine 

whether a file was associated with future bug fixes or not, we searched 

the issue tracking database.  A file was considered "buggy in the future" 

for a version of the program if it was involved in at least one bug fix in 

the following 4 months. 
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Versio
n 

Coupling 
Buggy 

Coupling 
Not Buggy 

Not Coupling 
Buggy 

Not Coupling 
Not Buggy 

1 2 0 302 837 
2 7 0 299 835 
3 4 0 292 845 
4 1 0 295 845 
5 14 8 274 845 
6 0 0 257 884 
7 2 3 240 896 
8 11 6 227 897 
9 5 3 227 906 
10 0 0 235 906 
11 0 0 234 907 
12 0 0 234 907 

Table 6: Feature coupling increase as a Predictor of Bugs 

 

Table 6 shows our aggregated contingency tables.  Each row 

corresponds to one versions of the system.  Columns 2 to 5 present, for 

each version, the number of files with the characteristics listed in the 

header.  For example, version 5 of the system comprised 14 files 

identified as both coupling-increasing and buggy in the future. 

To ascertain whether there is some truth in our hypothesis, that 

feature coupling is a predictor of bugs in a software system, we 

performed a chi-quare test of validity.  This test is used to reject a null-

hypothesis, in this case that feature coupling has nothing to do with 

bugs in software systems, by computing the probability (“p-value”) that 

the results would be purely due to chance. 

Because of low values in the first two columns3, we could only 

perform a chi-square test of independence for versions 5 and 8.  

                                            

 
3 The chi-square test is generally considered invalid (but not necessarily failed) if a cell value is 

lower than 5. 
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However, for both versions 5 and 8 the chi-square test indicates a 

statistically significant relation between the "coupling increasing" and 

"buggy in the future" variables (p ≤ 0.001, or 0.1%).  In other words, our 

feature coupling increase metric is possibly a good predictor that a file 

will be touched by a bug fix in the future. 

Manual inspection of the files identified as coupling-increasing 

showed that these files did correspond to code units judged by the 

developers of the system to be in need of preventative maintenance.  

Although not surprising, these initial results can already serve to 

confirm informal observations about the perceived deteriorated state of 

the coupling-increasing files. Additional research should help improve 

the precision with which our technique can identify problematic code 

locations. 

5.5 Discussion 

Our experience with the current implementation of our feature 

coupling increase detection technique has allowed us to answer many 

practical questions regarding the assumptions stated at the beginning 

of this section. 

First, we were able to determine that our approach could clearly 

identify feature implementation vectors that strongly associate features 

with components.  Empirical evidence shows a "natural" distinction 

between significant and noisy feature implementations.  By being able 

to select and use only "good" feature implementations, we can increase 

the overall quality of the results produced.  However, due to the filtering 

of noisy feature implementation vectors, some significant feature 

coupling increases might go undetected simply because the test suite is 

not able to accurately factor out a feature.  When combined with a test 
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selection strategy, it might be advisable to favor or simply add tests that 

improve feature coverage. 

Second, our experience showed that, when aggregated into files, 

the size of CIC sets constitutes a manageable amount of information for 

developers.  Although we found the size of CIC sets to vary depending 

on the values of the α and β parameters, the main factor determining 

the size of CIC sets is the nature of the actual program versions 

analyzed. 

Third, our implementation of the proposed approach demonstrated 

that it can be used at a reasonable cost (10% slowdown for the 

execution of the test suite plus a few minutes of additional 

computation).  As such, the total cost will vary greatly based on the size 

of the test suite executed.  However, as in the case of testing, the 

quality of the results will increase with the number of tests.  More 

experience should help determine in which situations the benefits of the 

approach are worth the cost. 

Finally, we were able to obtain evidence that files identified as 

coupling-increasing with our approach are more likely to be touched by 

bug fixes than randomly-selected files.  Although we construe this initial 

result as confirming evidence of the assumptions underlying our 

approach, our interpretation is subject to the usual threats to validity 

that must be considered for quantitative studies of this type.  In our 

case, an important consideration is that the phenomenon of code decay 

might not be adequately measured by the single occurrence of bugs in 

a file. 
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Chapter 6  
Qualitative Analysis 

We present a qualitative analysis using the results of the empirical 

study described in Chapter 5.  We manually inspected the report of our 

tool for one of the studied revisions, and comment on our findings 

based on our 4-year experience with the system. 

Through this analysis we sought to qualify the strengths and 

weaknesses of our approach, and determine if the approach is helpful 

at finding recently-modified code that needs the attention of 

programmers.  Also, in keeping with our initial motivation, we looked for 

concrete signs of code decay in the coupling-increasing components 

identified by our tool.  These signs would consist primarily of new or 

modified components that make the system more complex to 

understand, hence making further changes more difficult, based on our 

experience with the system. 

6.1 Initial observations from the case study 

Over the three-month period analyzed, four out of five result sets 

returned by our tool pointed at the same module, the implementation of 

one of the key execution kernels that make up the system.  This kernel 

decodes and executes instructions that are part of the input to the 

system, and thus directs the overall system’s operation.  The results 

showed that certain instructions and independent features of the kernel 

itself became more tightly coupled than before.  Figure 14 shows the 
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complete report4 resulting from the application of our analysis between 

versions #4 and #5, separated by 6 days and 99 file modifications. 

The report includes the names of coupled feature pairs whose 

association scores have increased due to a change in the system, and 

the association score prior to and after the change.  The report ends 

with the names of the components (source files of the target system’s 

code base) that form the body of evidence for the increased association 

scores.  These are components whose contributions to the association 

score have themselves increased for at least one of the feature pairs 

mentioned in the report. 

 

C2R & RAM  association INCREASED: 10.1% -> 22.8% 

C2R & SAM  association INCREASED: 10.1% -> 22.8% 

R2C & RAM  association INCREASED: 10.1% -> 22.8% 

R2C & SAM  association INCREASED: 10.1% -> 22.8% 

SM & ATE  association INCREASED: 43.2% -> 92.9% 

SM & BCA  association INCREASED: 36.7% -> 85.2% 

SM & BCB  association INCREASED: 36.7% -> 85.2% 

SM & BCG  association INCREASED: 36.7% -> 85.2% 

SM & BCR  association INCREASED: 36.7% -> 85.2% 

SM & R2A  association INCREASED: 35.8% -> 77.4% 

TEX & RAM association INCREASED:  9.3% -> 20.2% 

TEX & SAM  association INCREASED:  9.3% -> 20.2% 

VSIII & ATE  association INCREASED: 43.5% -> 93.2% 

VSIII & SM  association INCREASED: 38.0% -> 96.2% 

VSIII & GE  association INCREASED: 38.5% -> 81.6% 

VSIII & GMOVC  association INCREASED: 38.5% -> 81.6% 

VSIII & GORC00 association INCREASED: 38.5% -> 81.6% 

VSIII & GORC01 association INCREASED: 38.5% -> 81.6% 

                                            

 
4 Note that the names of features and components (files) presented in this chapter have been 

changed (shortened) to bear resemblance to their real names without revealing them. 
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VSIII & GORC02 association INCREASED: 38.5% -> 81.6% 

VSIII & GORC03 association INCREASED: 38.5% -> 81.6% 

VSIII & GOT  association INCREASED: 38.5% -> 81.6% 

VSIII & BCA  association INCREASED: 36.7% -> 85.5% 

VSIII & BCB  association INCREASED: 36.7% -> 85.5% 

VSIII & BCG  association INCREASED: 36.7% -> 85.5% 

VSIII & BCR  association INCREASED: 36.7% -> 85.5% 

VSIII & RAM  association INCREASED:  9.0% -> 21.2% 

VSIII & SAM  association INCREASED:  9.0% -> 21.2% 

VSF & ATE  association INCREASED: 43.5% -> 93.2% 

VSF & SM  association INCREASED: 38.0% -> 96.2% 

VSF & GE  association INCREASED: 38.5% -> 81.6% 

VSF & GMOVC  association INCREASED: 38.5% -> 81.6% 

VSF & GORC00  association INCREASED: 38.5% -> 81.6% 

VSF & GORC01  association INCREASED: 38.5% -> 81.6% 

VSF & GORC02  association INCREASED: 38.5% -> 81.6% 

VSF & GORC03  association INCREASED: 38.5% -> 81.6% 

VSF & GOT  association INCREASED: 38.5% -> 81.6% 

VSF & BCA  association INCREASED: 36.7% -> 85.5% 

VSF & BCB  association INCREASED: 36.7% -> 85.5% 

VSF & BCG  association INCREASED: 36.7% -> 85.5% 

VSF & BCR  association INCREASED: 36.7% -> 85.5% 

VSF & RAM  association INCREASED:  9.0% -> 21.2% 

VSF & SAM  association INCREASED:  9.0% -> 21.2% 

vcf.cpp v.cpp  c.h  rec.cpp rec.h 

cbr.h  ls.h  ct.cpp ct.h  cs.cpp 

cp.cpp ccf.cpp tfco.cpp cbr.cpp b2o.cpp 

cs2o.cpp ps.h  tvt.cpp tvst.cpp tvsh.cpp 

tt.cpp tarf.h 

Figure 14: Complete tool report showing coupled features 

 

The features VSF, VSIII, BCA, BCB, BCG, BCR, GORC00-03, GE, 

GMOVC, GOT, SM and ATE are features of the execution kernel itself.  

They control its behavior at the beginning and end of the program 

execution, and affect how input data is processed.  The features TEX, 

RAM, SAM, C2R, R2C and R2A are instructions that the execution 
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kernel interprets as commands when found in the inputs to the system.  

The analysis report thus reveals the addition of coupling between 

various features of the kernel and its instruction set. 

6.2 Evaluation of the evidence 

The report contained some surprising results, both in terms of the 

feature associations, and the components presented. 

From experience, we could discount a number of components 

because they were not meaningfully related to the features listed in the 

report. 

 

Component Useful Related Features in Set 
vcf.cpp 
v.cpp 

rec.cpp 
c.h 

No None 

rec.h Yes R2C, C2R 
cba.h 
ls.h No None 

ct.cpp 
ct.h Yes R2C, C2R 

tarf.h Yes TEX, R2A, RAM, SAM 
cs.cpp Yes R2C, C2R 
cbr.cpp No None 
cp.cpp 
ccf.cpp Yes R2C, C2R 

tfco.cpp 
b2o.cpp 
cs2o.cpp 

Yes TEX 

ps.h No None 
tvt.cpp 
tvst.cpp 
tvsh.cpp 

Yes VSF, VSIII, GE, GMOVC, GOT, GORC00-
03 

tt.cpp Yes VSF, VSIII, GE, GMOVC, GOT, GORC00-
03, R2C, C2R, R2A, TEX, RAM, SAM 



 63

Table 7: Usefulness of reported components 

 

Table 7 lists the components from the report of Figure 14, and 

denotes for each component whether we believe (from experience) it 

was useful to reason about the reported coupling, and which features 

are related to it. 

Similarly the ATE, BCA, BCB, BCG and BCR features are not 

related the components listed in the report.  Overall, 8 out of 22 

components and 5 out of 20 features in the report appear uncorrelated 

to the rest of the evidence presented.  We believe both types of errors 

are due to testing with a test suite of insufficient size (the “sanity” set 

described in Section 4.5.1). 

In Sections 3.4, 4.3, 4.5.1 and 5.1 we discussed the effects of 

insufficient testing of features, and described mechanisms we put in 

place to minimize the effect of noisy data.  The sensitive portion of our 

approach centers on our application of a modern feature location 

technique, which produces relatively inaccurate results when applied on 

indiscriminate inputs.  Together, the α (Section 3.4) and β factors 

(Section 4.5.1) form a tunable heuristic that diminishes the impact of 

noise in the feature-location data, but cannot truly eliminate it.  The best 

way to control noise is to better condition the inputs to feature location, 

such using larger suites of tests that are more closely focused on 

features. 

We attribute two types of errors in the report to noisy feature-

location data: 

1. Incorrect components were attributed some of these features 

(which ones is not specified in the report) because other features 

that are implemented by these components are also present in 
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the tests that were run.  This is also why VSF and VSIII report 

the same coupling gains with the same features.  These two 

features must be used together to function properly, so the 

feature location technique assigns the same components to both 

(there is no exclusivity between features, only between tests). 

2. Incorrect coupling is attributed to the features ATE, BCA, BCB, 

BCG and BCR because they are always exercised in the “sanity” 

tests where SM, VSF and VSIII are also exercised, preventing 

our feature location technique from properly separating them.  

The association score is not 100% because the reverse is not 

true (ATE, BCA, BCB, BCG and BCR are also tested without 

SM, VSF and VSIII).  The change in association which ultimately 

caused the report to include this data was due to a change in the 

test suite, not the system, causing them to be tested together. 

Both of these types of errors call for using the full test suite with our 

approach, rather than the “sanity” subset used in our empirical study.  

However, our experience with the target system allowed us to quickly 

identify these artifacts and ignore them. 

6.3 Coupling detected in the target system 

The report’s findings on TEX, RAM, SAM, R2C and C2R were 

correct.  Upon closer inspection of the system code, the TEX, RAM, 

SAM, R2C and C2R features form a group of associated features that 

share some of their implementations: the TEX feature requires special 

information to operate which the RAM, SAM, R2C and C2R features 

provide in the input to the target system.  This association was always 

present (formerly 9~10%), but changes made between versions #4 and 

#5 increased the proportion of shared code (~20%). 
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A survey of changes made to the target system’s architectural 

specification over the same period of time showed that the design of 

these features (TEX, RAM, SAM, R2C, C2R) was altered to meet 

constraints external to the target system, coming from other groups in 

the enterprise.  These changes increased the co-dependence of these 

features by design, but our approach nonetheless recovered this 

information and hence validates the changed implementation of the 

features.  This shows that a tool reporting on feature coupling can be 

used to validate the architecture via both positive and negative results. 

6.4 Discussion 

The technique we have presented here cannot discern between 

features coupled at the implementation level and features coupled by 

the tests that exercise them.  This is to say that if two features are 

always exercised in the same tests, our feature location step will 

produce the same set of implementation components for both.  If one 

feature must always be tested with another, but the opposite is not 

required, one of the sets will be a subset of the other and the 

association score will not be 100%. 

While this can be the result of insufficiently-discriminated testing of 

the features of the system, it can also result from inter-dependencies at 

a higher-level than features: use-cases.  While two features could be 

used separately, it may simply make no sense to do so: a resource 

acquisition (e.g. opening a file) should always be followed by a release 

of the resource (e.g. closing the file). 

This type of tight inter-dependency between features that may not 

share much code would be very difficult to find without a dynamic test-

driven analysis such as ours.  Architects of the system would still be 

able to predict the coupling, but only when factoring-in extensive 
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experience with the nature of the inputs of the system in the field.  

These were found to naturally emerge in the results of our study 

(surrounding VSF/VSIII), providing additional insight into the system 

and its use-cases. 
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Chapter 7  
Conclusion 

One important challenge for organizations involved in software 

maintenance is to ensure that the repeated modifications applied to a 

software system do not result in a gradual decay of the system's code 

base.  Unfortunately, symptoms of code decay can be difficult to detect 

in the short term, and clear evidence may only appear once it is too late 

to easily remedy the situation. 

In an attempt to mitigate this problem, we proposed to analyze a 

system for symptoms of potential decay with every execution of a 

regression test suite. Our technique is based on the assumption that an 

increase in the level of association between the implementation of two 

features may indicate the introduction of unplanned dependencies, and 

constitutes a symptom of potential code decay.  By analyzing the 

execution of regression tests, we automatically determine the degree of 

coupling between features based on the sections of code they execute 

in common.  With this information, we can then identify any section of 

code that contributes to an increase in feature coupling between two 

different versions of a system. 

We assessed the feasibility of our approach by implementing it and 

integrating it with the development environment of a proprietary 3D 

graphics software comprising over 100 000 lines of C++ source code. 

This experience provided us with valuable insights about the 

engineering tradeoffs required to integrate feature coupling increase 

detection with regression testing in practice.  For example, we were 

able to measure the tradeoff between the size of the test suite used 
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(which impacts execution time) and the proportion of features that can 

be located with enough accuracy to be analyzed for coupling increases. 

Our experiments helped confirm that source files identified with our 

approach may be in need of preventative maintenance.  A small 

experiment showed that files identified by our approach were 

significantly more likely to be affected by change requests in the future.  

Based on our experience with the target system, we were able to find 

significant results in coupling reports. 

We will soon be deploying a new implementation of this approach in 

a larger production environment.  With this new system we hope to 

achieve a higher level of confidence in the reports by leveraging the full 

test suite and applying the analysis at a finer change granularity (daily).  

This new implementation added little extra cost to an ongoing effort to 

implement test-case selection techniques by sharing much of the same 

input data. 

Intermediate results generated by our approach are also valuable on 

their own merits, and will deserve further attention.  For example, the 

feature location data generated by our approach could be used to 

accelerate the progress of programmers new to the group.  Navigation 

aids centered on the source code could allow them to quickly learn 

where features are implemented, and which tests exercise them.  The 

feature information collected on the test suite can be also used help the 

system’s architects reason about functional coverage of tests.  As an 

added benefit, the regular application of our technique will automatically 

refresh this information, preventing it from ever becoming stale. 

Although we expect that additional experimentation will help us 

better understand the link between increased feature associations and 

code decay, we conclude that detecting increases in feature coupling 
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as part of regression testing is a feasible and promising approach for 

maintaining the quality of software systems. 
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Appendix A 
Exercises and Covers Aggregation implementation 

A.1 Dependencies not included here 

This code depends on one support library developed within NVIDIA, and many libraries that are either 

standardized (ISO+IEC-14882/STL) or are available in the public domain (www.boost.org)(www.zlib.net). 

Of those libraries that are freely available, the following are required: 

• STL <iostream> 
• STL <fstream> 
• STL <algorithm> 
• STL <numeric> 
• STL <memory> 
• STL <string> 
• STL <map> 
• STL <set> 
• Boost File System 
• Zlib 

Finally, for the sake of understanding the implementation code, the NVIDIA library can be assumed to 
be a standard iostream-compatible implementation of binary streams exposing the following prototypes: 

namespace stdext { 
 
    class binary_ostream; 
    class binary_ofstream; //: public binary_ostream 
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    class binary_istream; 
    class binary_ifstream; //: public binary_istream 
 
    template < class Type > 
    inline binary_ostream & operator<<( binary_ostream & s , Type const & b ); 
 
    template < class Type > 
    inline binary_istream & operator>>( binary_istream & s , Type & b ); 
} 

 

A.2 Aggregate.hpp 
#ifndef NVTESTHUB_AGGREGATE_HPP_INCLUDED 
#define NVTESTHUB_AGGREGATE_HPP_INCLUDED 
 
namespace NvTestHub { 
 
    typedef bool Value; 
 
    typedef std::string             Name; 
    typedef std::set< std::string > Names; 
 
    struct NameHandle { 
        Name const& operator*( ) const { 
            return *m_name; 
        } 
        Name const* operator->( ) const { 
            return m_name; 
        } 
        bool operator<( NameHandle const& other ) const { 
            return m_name <  other.m_name; 
        } 
        NameHandle & operator=( NameHandle const& other ) { 
            m_name = other.m_name; 
            return *this; 
        } 
        NameHandle( ) : m_name( NULL ) { 
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        } 
    protected : 
        NameHandle( Name const* name ) : m_name( name ) { 
        } 
        friend struct Aggregate; 
    private : 
        Name const* m_name; 
        friend inline stdext::binary_ostream & output( stdext::binary_ostream & s , 
NameHandle const& b ) { 
            return output( s , b.m_name ); 
        } 
        friend inline stdext::binary_istream & input( stdext::binary_istream & s , NameHandle 
& b ) { 
            return input( s , b.m_name ); 
        } 
    }; 
 
    typedef std::pair< NameHandle , Value > Atom; 
    typedef std::deque< Atom >              AtomGroup; 
 
    typedef std::string             Key; 
    typedef std::set< std::string > Keys; 
 
    struct KeyHandle { 
        Key const& operator*( ) const { 
            return *m_key; 
        } 
        Key const* operator->( ) const { 
            return m_key; 
        } 
        bool operator<( KeyHandle const& other ) const { 
            return m_key <  other.m_key; 
        } 
        KeyHandle & operator=( KeyHandle const& other ) { 
            m_key = other.m_key; 
            return *this; 
        } 
        KeyHandle( ) : m_key( NULL ) { 
        } 
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    protected : 
        KeyHandle( Key const* key ) : m_key( key ) { 
        } 
        friend struct Aggregate; 
    private : 
        Key const* m_key; 
        friend inline stdext::binary_ostream & output( stdext::binary_ostream & s ,  
                                                       KeyHandle const& b ) { 
            return output( s , b.m_key ); 
        } 
        friend inline stdext::binary_istream & input( stdext::binary_istream & s ,  
                                                      KeyHandle & b ) { 
            return input( s , b.m_key ); 
        } 
    }; 
 
    typedef std::set< KeyHandle > KeySet; 
    typedef std::set< KeySet >    KeySets; 
 
    struct KeySetHandle { 
        KeySet const& operator*( ) const { 
            return *m_keySet; 
        } 
        KeySet const* operator->( ) const { 
            return m_keySet; 
        } 
        bool operator<( KeySetHandle const& other ) const { 
            return m_keySet <  other.m_keySet; 
        } 
        KeySetHandle & operator=( KeySetHandle const& other ) { 
            m_keySet = other.m_keySet; 
            return *this; 
        } 
        KeySetHandle( ) : m_keySet( NULL ) { 
        } 
    protected : 
        KeySetHandle( KeySet const* keySet ) : m_keySet( keySet ) { 
        } 
        friend struct Aggregate; 
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    private : 
        KeySet const* m_keySet; 
        friend inline stdext::binary_ostream & output( stdext::binary_ostream & s ,  
                                                       KeySetHandle const& b ){ 
            return output( s , b.m_keySet ); 
        } 
        friend inline stdext::binary_istream & input( stdext::binary_istream & s ,  
                                                      KeySetHandle & b ) { 
            return input( s , b.m_keySet ); 
        } 
    }; 
 
    typedef std::map< NameHandle , KeySetHandle > Coverage; 
 
    struct Aggregate { 
 
        typedef ::boost::shared_ptr< Aggregate > Pointer; 
 
        typedef std::map< ::boost::filesystem::path , Pointer > Map; 
 
        static Map const& aggregates( ); 
        static Aggregate::Pointer const& load( ::boost::filesystem::path const& ); 
 
        KeyHandle exchangeKey( Key const& ); 
 
        NameHandle exchangeName( Name const& ); 
 
        bool getValue( KeyHandle , NameHandle ) const; 
        void setValue( KeyHandle , NameHandle , bool ); 
         
        void merge( KeyHandle key , AtomGroup const& group ); 
        AtomGroup extractKey( KeyHandle , bool setNames = true ) const; 
        void erase( KeyHandle ); 
 
        KeySet const& extractName( NameHandle ) const; 
 
        Keys const& keys( ) const { 
            return m_keys; 
        } 
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        Names const& names( ) const { 
            return m_names; 
        } 
        KeySets const& keySets( ) const { 
            return m_keySets; 
        } 
 
        void compressKeySets( ); 
 
        void commit( ) const; 
 
    private : 
        static Map & aggregates_internal( ); 
 
        void commitKeySets( ); 
 
        Aggregate( ::boost::filesystem::path const& ); 
 
        KeySetHandle exchangeKeySet( KeySet const& ); 
 
        ::boost::filesystem::path       m_path; 
 
        bool                            m_changed; 
 
        Keys                            m_keys; 
        Names                           m_names; 
        KeySets                         m_keySets; 
 
        std::map< NameHandle , KeySet > m_temporaryKeySets; 
        Coverage                        m_coverage; 
    }; 
 
} 
 
#endif //NVTESTHUB_AGGREGATE_HPP_INCLUDED 
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A.2 Aggregate.cpp 
#include "stdafx.hpp" 
#include "Aggregate.hpp" 
 
namespace NvTestHub { 
 
    Aggregate::Map const& Aggregate::aggregates( ) { 
        return aggregates_internal( ); 
    } 
 
    Aggregate::Map & Aggregate::aggregates_internal( ) { 
        static Map aggregates; 
        return aggregates; 
    } 
 
    Aggregate::Pointer const& Aggregate::load( ::boost::filesystem::path const& path ) { 
 
        Pointer & aggregate = aggregates_internal( )[ path ]; 
        if( aggregate == NULL ) 
            aggregate = Pointer( new Aggregate( path ) ); 
 
        return aggregate; 
    } 
 
    typedef std::map< KeyHandle , Key > RemapKeys; 
    typedef std::map< NameHandle , Name > RemapNames; 
    typedef std::map< KeySetHandle , KeySet > RemapKeySets; 
 
    Aggregate::Aggregate( ::boost::filesystem::path const& path ) : m_path( path ) ,  
                                                                    m_changed( false ) { 
 
        if( !::boost::filesystem::exists( m_path ) ) { 
            std::cerr << "File not found [" << m_path.string( )  
                      << "], will create a new database.\n"; 
            return; 
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        } 
 
        RemapKeys remapKeys; 
        RemapNames remapNames; 
        RemapKeySets remapKeySets; 
 
        stdext::binary_ifstream f( m_path.string( ).c_str( ) , 9 ); 
        f >> remapKeys; 
        f >> remapNames; 
        f >> remapKeySets; 
        f >> m_coverage; 
 
        std::map< KeySetHandle , KeySet > remappedRemapKeySets; 
        for( RemapKeySets::const_iterator it = remapKeySets.begin( );  
                                          it != remapKeySets.end( ); ++it ) { 
            KeySet keySet; 
            for( KeySet::const_iterator kit = it->second.begin( );  
                                        kit != it->second.end( ); ++kit ) 
                keySet.insert( exchangeKey( remapKeys[ *kit ] ) ); 
            remappedRemapKeySets[ it->first ] = keySet; 
        } 
 
        Coverage remappedCoverage; 
        for( Coverage::const_iterator it = m_coverage.begin( );  
                                      it != m_coverage.end( ); ++it ) 
            remappedCoverage.insert( std::make_pair(  
                                      exchangeName( remapNames[ it->first ] ) ,  
                                      exchangeKeySet( remappedRemapKeySets[ it->second ] ))); 
 
        swap( remappedCoverage , m_coverage ); 
    } 
 
    void Aggregate::commit( ) const { 
 
        if( !m_changed ) 
            return; 
 
        RemapKeys remapKeys; 
        RemapNames remapNames; 
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        RemapKeySets remapKeySets; 
        { 
            size_t i = 0; 
            for( Keys::const_iterator it = m_keys.begin( ); it != m_keys.end( ); ++it , ++i ) 
                remapKeys[ &( *it ) ] = *it; 
        } 
        { 
            size_t i = 0; 
            for( Names::const_iterator it = m_names.begin( );  
                                       it != m_names.end( ); ++it , ++i ) 
                remapNames[ &( *it ) ] = *it; 
        } 
        { 
            size_t i = 0; 
            for( KeySets::const_iterator it = m_keySets.begin( );  
                                         it != m_keySets.end( ); ++it , ++i ) 
                remapKeySets[ &( *it ) ] = *it; 
        } 
 
        stdext::binary_ofstream f( m_path.string( ).c_str( ) , 9 ); 
        f << remapKeys; 
        f << remapNames; 
        f << remapKeySets; 
        f << m_coverage; 
    } 
 
    KeyHandle Aggregate::exchangeKey( Key const& key ) { 
        Keys::iterator it = m_keys.find( key ); 
        if( it == m_keys.end( ) ) 
            it = m_keys.insert( it , key ); 
        return &( *it ); 
    } 
 
    NameHandle Aggregate::exchangeName( Name const& name ) { 
        Names::iterator it = m_names.find( name ); 
        if( it == m_names.end( ) ) 
            it = m_names.insert( it , name ); 
        return &( *it ); 
    } 
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    KeySetHandle Aggregate::exchangeKeySet( KeySet const& keySet ) { 
        KeySets::iterator it = m_keySets.find( keySet ); 
        if( it == m_keySets.end( ) ) 
            it = m_keySets.insert( it , keySet ); 
        return &( *it ); 
    } 
 
    bool Aggregate::getValue( KeyHandle key , NameHandle name ) const { 
 
        //Get the name in the coverage database and its associated keyset 
        Coverage::const_iterator it = m_coverage.find( name ); 
        if( it == m_coverage.end( ) ) 
            return false; 
 
        //If name exists then coverage value is simply the existence of the key in its set 
        return it->second->find( key ) != it->second->end( ); 
    } 
 
    void Aggregate::setValue( KeyHandle key , NameHandle name , bool value ) { 
         
        //Get the working set for this name 
        std::map< NameHandle,KeySet >::iterator temporary = m_temporaryKeySets.find( name ); 
        if( temporary == m_temporaryKeySets.end( ) ) { 
 
            //Get the name in the coverage database and its associated keyset 
            Coverage::iterator it = m_coverage.find( name ); 
            if( it == m_coverage.end( ) ) 
                it = m_coverage.insert( it , std::make_pair( name ,  
                                                             exchangeKeySet( KeySet( ) ) ) ); 
 
            //Create a new working set, copied from the original set 
            temporary = m_temporaryKeySets.insert( temporary , std::make_pair( it->first ,  
                                                                            *it->second ) ); 
 
            //Assign the working set as this name's set 
            it->second = &( temporary->second ); 
        } 
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        //Modify the working set 
        if( value ) 
            temporary->second.insert( key ); 
        else 
            temporary->second.erase( key ); 
 
        m_changed = true; 
    } 
     
    void Aggregate::merge( KeyHandle key , AtomGroup const& group ) { 
 
        //Simply merge every entry into the database 
        for( size_t i = 0; i < group.size( ); ++i ) 
            setValue( key , group[ i ].first , group[ i ].second ); 
    } 
 
    AtomGroup Aggregate::extractKey( KeyHandle key , bool setNames ) const { 
 
        AtomGroup g; 
        for( Names::const_iterator it = m_names.begin( ); it != m_names.end( ); ++it ) { 
            Coverage::const_iterator cit = m_coverage.find( &( *it ) ); 
            if( cit == m_coverage.end( ) ) 
                g.push_back( std::make_pair( setNames ? NameHandle( &( *it ) ) :  
                                                        NameHandle( ) , false ) ); 
            else 
                g.push_back( std::make_pair( setNames ? NameHandle( &( *it ) ) :  
                                                        NameHandle( ) ,  
                                     cit->second->find( key ) != cit->second->end( ) ) ); 
        } 
        return g; 
    } 
 
    void Aggregate::erase( KeyHandle key ) { 
 
        //First commit pending keyset changes 
        commitKeySets( ); 
 
        //Erase the key from all keysets that reference it 
        while( 1 ) { 
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         bool erased = false; 
            for( KeySets::iterator it = m_keySets.begin( ); it != m_keySets.end( ); ++it ) { 
 
                if( it->find( key ) == it->end( ) ) 
             continue; 
 
                KeySet k = *it; 
                k.erase( key ); 
                m_keySets.erase( it ); 
                m_keySets.insert( k ); 
 
                erased = true; 
                break; 
            } 
         if( !erased ) 
             break; 
     } 
 
        //Erase the key from the key index 
        m_keys.erase( *key ); 
 
        m_changed = true; 
    } 
 
    KeySet const& Aggregate::extractName( NameHandle name ) const { 
        static KeySet ks; 
        Coverage::const_iterator cit = m_coverage.find( name ); 
        if( cit == m_coverage.end( ) ) 
            return ks; 
        return *cit->second; 
    } 
 
    void Aggregate::commitKeySets( ) { 
 
        //Roll the temporary key sets into the main pool 
        for( std::map< NameHandle,KeySet >::const_iterator it = m_temporaryKeySets.begin( );  
                                                     it != m_temporaryKeySets.end( ); ++it ) 
            m_coverage[ it->first ] = exchangeKeySet( it->second ); 
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        m_temporaryKeySets.clear( ); 
 
         m_changed = true; 
    } 
 
    void Aggregate::compressKeySets( ) { 
 
        //First commit pending keyset changes 
        commitKeySets( ); 
 
        KeySets keySets = m_keySets; 
        for( Names::const_iterator it = m_names.begin( ); it != m_names.end( ); ++it ) { 
            Coverage::const_iterator cit = m_coverage.find( &( *it ) ); 
            if( cit == m_coverage.end( ) ) 
                continue; 
            keySets.erase( *cit->second ); 
        } 
        for( KeySets::const_iterator it = keySets.begin( ); it != keySets.end( ); ++it ) 
            m_keySets.erase( *it ); 
 
        m_changed = true; 
    } 
 
} 


