
Exploring the Correspondence Between
Types of Documentation for

Application Programming Interfaces

Deeksha Arya

School of Computer Science
McGill University

Montreal, Quebec, Canada

November 2019

A thesis submitted to McGill University in partial
fulfillment of the requirements of the degree of

Master of Science

c© Deeksha Arya, 2019

Abstract

Documentation of software programming languages and their APIs exist in many forms,
whether as official reference documentation, user-created blog posts or other textual and
visual mediums. Prior research has suggested that developers often switch between differ-
ent types of documentation while learning a new API, with a tendency to alternate between
reference and tutorial-like documentation. Further, documentation creation is an effort-
intensive process that often leads to repeated information across different documentation
types, generating a risk of information inconsistency. This thesis explores the relationship
between instructional and API reference documentation of three libraries on the topics: reg-
ular expressions, URL connectivity and file input/output in two programming languages,
Java and Python. Our investigation discovers that about half the sentences in the instruc-
tional documentations studied describe API-related information, such as syntax, behaviour,
usage and performance of the API, that is expected to be found in the reference docu-
mentation. We also study the extent of information reuse across the documentation types,
focusing on sentences in instructional documentation that are exact, manipulated and re-

placeable matches of those in reference documentation. We elicit four information reuse
patterns based on our observations and discover a total of 38 instances of these patterns in
the studied instructional documentations. We propose techniques to assist automation of
each reuse pattern to reduce documentation creation efforts, inform documentation design
and promote information consistency. We assess the impact of automation of these reuse
patterns on the current documentation and determine that 15 instances of these patterns
will not result in any information loss, the remaining affected with varying levels of mod-
ification. This work is a first step towards understanding the nature of information reuse

i

across different documentation types. Future work can use our observations to improve
documentation artifacts and automate the instructional documentation creation process.

ii

Resumé

La documentation des langages de programmation et de leurs interfaces de programmation
(API, de l’anglais Application Programming Interface) existe sous plusieurs formes, qu’il
s’agisse de références officielles, d’articles de blogs crées par les utilisateurs, ou d’autres
supports textuels et visuels. Des recherches antérieures ont suggéré que les développeurs
apprenant une nouvelle API passent souvent d’un type de documentation à l’autre, avec
une tendance à alterner entre les références officielles et la documentation de type tutoriel.
De plus, la création de documentation est un processus exigeant beaucoup d’efforts qui
mène souvent à une répétition de l’information entre différents types de documentation,
ce qui crée le risque d’insérer de l’information contradictoire. Cette thèse explore la rela-
tion entre la documentation instructive et la documentation de référence des API de trois
bibliothèques de domaines différents, les expressions régulières, les connections URL et
les entrées-sorties du système de fichiers, dans deux langages de programmation, Java et
Python. Notre étude a révélé qu’environ la moitié des phrases de la documentation instruc-
tive étudiée décrivent des renseignements relatifs à l’API que l’on s’attendrait à retrouver
dans la documentation de référence. Nous étudions également l’étendue de la réutilisation
de l’information entre les types de documentation, en nous concentrant sur les phrases de
la documentation instructive qui sont des copies exactes, manipulées ou remplaçables par
rapport à celles de la documentation de référence. Nous obtenons quatre modèles de réutili-
sation de l’information basés sur nos observations et découvrons un total de 38 réalisations
de ces modèles dans la documentation instructive étudiée. Nous proposons des techniques
aidant l’automatisation de chaque modèle de réutilisation pour réduire les efforts liés à la
création de documentation, informer la conception de la documentation et promouvoir la

iii

cohérence de l’information. Nous évaluons l’impact de l’automatisation de ces modèles de
réutilisation sur la documentation actuelle et déterminons que 15 des 38 réalisations de ces
modèles n’entraîneront pas de perte d’information, les autres étant modifiées à différents
niveaux. Cette thèse est une première étape vers la compréhension de la nature de la réu-
tilisation de l’information à travers différents types de documentation. Les travaux futurs
peuvent utiliser nos observations pour améliorer les artefacts documentaires, et automatiser
le processus de création de documentation instructive.

iv

Acknowledgements

A number of people have contributed either directly or indirectly towards the completion
of this thesis, and I express my deepest gratitude to them.

First and foremost, I am extremely thankful to my supervisors, Prof. Jin Guo and Prof.
Martin P. Robillard for their continuous support and guidance. Prof. Guo has been a source
of ever-present encouragement since I stepped into research. An inspiration in the academic
field and otherwise, I only hope that some day I am able to emulate the mentorship she
provided me, to help another hopeful student truly enjoy their work and research like I
did. I consider myself fortunate to have had the privilege of working with Prof. Robillard,
whose patient guidance and excellent advice has sculpted my academic work and writing.
Every meeting with him challenged me to work hard and smart, and so in every step, I saw
myself improving and learning. I hope, through this work, I have been able to live up to the
expectations of both my wonderful supervisors.

I would like to thank Prof. Jörg Kienzle for reviewing and providing constructive feed-
back on this work. I would also like to thank Prof. Jinghui Cheng, one of my first collabo-
rators, for his insight and advice which has greatly helped in honing my research skills. My
peers in the Knowledge Enhanced Software Connectivity (KESEC) and Software Evolution
and Research Group (SWEVO) have become more friends than labmates. I am truly grate-
ful to Mathieu for his help in editing the French abstract of this thesis and his useful inputs.
I always turn to him for a fresh perspective, be it on work or otherwise, and he never fails
to provide thought-provoking comments. Thank you to Alex and Cheryl for all their help
and valuable feedback. Our brain-storming, idea-generating discussions, deep thoughts on

v

what research is and random every day banter made the lab a great place to learn and enjoy.
Thank you to my friends here at McGill (special shout out to Anand, Lalita, Arushi and
Ayush) with whom hard work days ended in relaxed evenings, and whose motivation kept
me persistent in this thesis journey.

My heartfelt thanks to my now-husband, Vignesh, who would drop everything to take
over my other responsibilities, so I could focus and dedicate my entire time and effort on
this thesis. He always provides the encouragement I need, and reminds me to keep my chin
up even through difficult times. To receive such support is the greatest thing I could ask for.

Most important of all, thanks are simply insufficient for my mother and father. Their
unconditional support and steadfast belief in me and my abilities is what keeps me going.
As my first and foremost teachers and my sources of inspiration, I hope I have made them
proud. My sister, Maitri, has been, is and will always be my pillar of strength, and for that
I will be ever-grateful. As always, she is my friend, my mom, my dad, my sister and my
brother all in one. To all three of them and my loving grandparents, lots of love.

vi

Copyright

This work focuses on the documentation of APIs in Java and Python. All screenshots of the
documentation are protected by the following copyrights and are not owned by the author
of this work. Further, neither of the corporations are affiliated or associated with this work.

Java 8: Copyright c© 1995, 2019, Oracle and/or its affiliates.

Python 3.7.2: Copyright c© 2001-2019 Python Software Foundation. All rights re-
served.

We do not reiterate these copyrights for each reference made, however we state here
that they are implied for these references in the entirety of this thesis.

vii

Contents

1 Introduction 1
1.1 Contributions . 2
1.2 Thesis Organization . 3

2 Background and Related Work 4
2.1 Background . 4

2.2 Related Work . 8
2.2.1 Types of Documentation . 8

2.2.2 Evaluation of Documentation . 9
2.2.3 User Needs and Wants of Documentation 10
2.2.4 Assisting Developers and Improving Documentation 11

2.2.5 Patterns for Documentation . 12

3 Overview of Research Method 14

4 Dataset Preparation 17
4.1 Data Collection . 17
4.2 Data Preprocessing . 18

4.3 Sentence Extraction . 19

5 Data Analysis 21
5.1 Analysis of Sentence Matches . 22

5.2 Characterization of Matches . 29
5.3 Elicitation of Reuse Patterns . 30
5.4 Characterization of Pattern Instances . 32
5.5 Automatability of Patterns . 33

viii

6 Results and Observations 34
6.1 Matched Sentences in Documentation Types 34

6.2 Characteristics of Matches . 36
6.2.1 Replaceable and Non-replaceable Rephrased Sentences 36

6.2.2 Positional Distribution of Different Match Types 40

6.2.3 Redundancies . 42
6.2.4 Information Inconsistencies . 43
6.2.5 Reasoning for No Matches . 45

6.3 Elicitation of Reuse Patterns . 50
6.3.1 Instances of Reuse Patterns . 55
6.3.2 Discussion on Reuse Patterns . 58

6.4 Characterization of Pattern Instances . 59
6.5 Automatability of Patterns . 60

7 Conclusion 63

References 65

Bibliography 72

Appendix 73
A Issues in Preprocessing . 73

B Preprocessing Steps . 73

C List of Unique Source and Destination Contexts 74

C.1 Contexts for API Reference Documentation Sentences 74
C.2 Contexts for Instructional Documentation Sentences 75

ix

List of Figures

2.1 Java Documentation Index 1: (a) Table of contents for the Java Platform
Standard Edition 8 Documentation (b) Conceptual diagram provided by
Java describing the different products provided by the Standard Edition.
Each text in the picture is a link to the documentation of the product. Copy-
right c©1995, 2019, Oracle and/or its affiliates. 5

2.2 Python Documentation Index . 6

3.1 Case Study Approach . 15

5.1 Hierarchy of Annotations of Sentences in Instructional Documentation . . . 29

6.1 Distribution of sentences related to API in each of the documentations in
the form of absolute count, percentage. 35

6.2 Comparison of match types between REGEX, URL and I/O in Java and
Python. 35

6.3 Distribution of rephrased matched sentences in instructional documenta-
tion that are replaceable by their matched counterparts in API reference
documentation in the form of absolute count, percentage. 37

6.4 Position of match types in Java and Python in the instructional documenta-
tion of REGEX, URL and I/O . 42

x

List of Tables

4.1 Documentation Dataset . 18

4.2 Number of sentences extracted from the documents 20

6.1 Distribution of information themes for sentences in instructional documen-
tation having no match in percentage. For each document (i.e. each col-
umn), the most dominant theme is highlighted in bold. 46

6.2 Instances of Information Reuse Patterns Observed 57

6.3 Distribution of sentences in instructional documentation not belonging to
any instances of any information reuse patterns. Each cell contains the the
percentage with respect to the total sentences with that match type in that
documentation and in parentheses, the absolute count. Hyphens (-) indicate
there are no sentences at all for the match in the documentation. 58

6.4 Impact on Automation of Information Reuse Patterns for Existing Instances. 62

xi

1
Introduction

Imagine having to build a sofa from different available parts, without having the exact
instructions on how to go about it. The time and effort it would take, (not to mention
the frustration), is the reason that a user manual has become an integral part of assembly,
from furniture to machinery, to make the construction as smooth and easy as possible for a
potential user. This is the case in software development as well.

With the innumerable software development toolkits and the ever-increasing set of pro-
gramming languages available, these technologies must be accompanied by appropriate
documentation for developers and users to understand the functionalities the system pro-
vides and how to use them efficiently during software development and maintenance. Based
on its target users and its end goal, documentation may be presented in many forms, from
requirements documentation to user guides, from design documents to white papers. For
example, comments in function headers generally inform users of accepted parameters and
return types, whereas tutorials describe available functionality of a language component
and how to use it correctly to achieve optimal performance. It is important that the state-
ments made about a software component are consistent and when applicable, complemen-
tary, despite being presented with different perspectives and intentions.

Despite the availability of documentation, there exist gaps between the information that
it provides and that which users seek [33, 40]. Previous research has discovered that some
of the issues developers have with documentation include insufficient examples or a lack
of how-to-use descriptions. User studies have shown that scenario-based instruction is an

1

1.1 Contributions

integral resource for developers, who often switch between reference documentation and
cook-book like documentation during software development [25, 26].

This thesis work is motivated by the fact that content in different documentation types
about the same application programming interface (API) are related and developers tend
to switch between them based on their information needs during the development process.
We explored the relationship between API reference documentation and instructional doc-
umentation of two programming languages and their APIs, namely Java and Python.
Specifically, we performed a case study on the reuse of information from API reference
documentation to instructional documentation, where instructional documentation com-
prises of either general tutorials or in-depth How-Tos on specific concepts and libraries.

We performed an inter-document correlation exploration by beginning with sentences
in instructional documentation and attempting to trace them back to the corresponding API
reference. We chose to do this in order to assess the reusability of API reference documen-
tation in supplementary instructional documentation. Further, we explored the extent of
automatability of instructional documentation generation based on this reuse. We followed
an inductive technique, formalizing characteristics and patterns and deriving conclusions
based on the observations of our study.

This thesis work is intended to inform future documentation creation efforts. Insight
into content correlation between different documentation types would be useful in deter-
mining what kind of information is required in documentation enrichment tasks that use
information in external resources to improve documentation. Further, our proposal for in-
formation reuse automation would reduce the time spent by authors in the creation process,
with the by-product of promoting consistency in content between different documentation
types.

1.1 Contributions

The contributions of this work are:

1. The identification and characterization of the different match types of sentences in
instructional documentation with respect to those in API reference documentation. A

2

1.2 Thesis Organization

sentence in instructional documentation is considered to have a match in the API ref-
erence documentation if there exists a sentence in the reference documentation which
is semantically and/or syntactically similar. For example, an instructional documen-
tation sentence may be exactly matched to a reference documentation sentence if
both texts are the same.

2. The elicitation of information reuse patterns observable in instructional documenta-
tion. A reuse pattern describes the construction and intention by which information
from the API reference documentation has been used in instructional documentation.
For example, Method Description is a pattern in which sentences from the method
description in the reference documentation are embedded in the instructional docu-
mentation.

3. The proposal for automation of these reuse patterns to support instructional docu-
mentation creation. We propose parameters by which creation of reuse pattern in-
stances can be automated while providing flexibility to the documentation writers.

4. An assessment of the impact of automation of the reuse patterns. We describe the
extent of variance of the current pattern instances, had they been automatically gen-
erated.

1.2 Thesis Organization

The remaining thesis is structured as follows. Chapter 2 describes the software documen-
tation environment, i.e. the structure of documentation as provided by Java and Python.
We provide the context for the dataset and discuss its availability and characteristics. This
chapter then discusses previous related research work. Chapter 3 presents an overview of
our research method that includes dataset preparation and data analysis. Chapter 4 intro-
duces the target documentation used in our case study as well as the procedure to collect
and make ready the corpora for this work. Chapter 5 describes our data analysis procedure
in detail. Chapter 6 presents the results and observations of our analysis. Chapter 7 presents
the conclusion and discusses future directions of work.

3

2
Background and Related Work

This chapter introduces the context for documentation related research (Section 2.1). It then
describes previous research work that is related to the study done in this thesis (Section 2.2).

2.1 Background

Forward and Lethbride describe a software document as any artifact whose purpose is to

communicate information about the software system to which it belongs [13]. This means
that it is a source for users to learn and understand the capabilities and usage of the software
to which it refers. However, the presentation of information in a software document varies
based on its target user and intent. Further, documentation can also be categorized based
on the association of the author to the software. Documentation written by the software
developer or the owning organization is considered official documentation, whereas that
written by enthusiasts and users are unofficial. As a result, a number of different types of
documentation exist. In this work, we focus on the official instructional and API reference
documentation of Java and Python.

Java is a programming language, released also as a development toolkit, which is well
known to be extensively documented. Java’s developer corporation, Oracle, provides API
documentation, tutorials, training documentation as well as additional references like the
Java Development Kit (JDK) Adoption Guide and installation instructions 1 (all footnotes
are presented in References). Figure 2.1a displays the table of contents for the Java Platform

4

2.1 Background

(a) (b)

Figure 2.1: Java Documentation Index 1: (a) Table of contents for the Java Platform Stan-
dard Edition 8 Documentation (b) Conceptual diagram provided by Java describing the
different products provided by the Standard Edition. Each text in the picture is a link to the
documentation of the product. Copyright c© 1995, 2019, Oracle and/or its affiliates.

Standard Edition 8 Documentation, and is accompanied by a conceptual diagram shown in
Figure 2.1b of the products provided, in which each text is a link to its corresponding
documentation. As can be seen in the figure, Java provides a number of documentation
types, from white papers to version notes, and from API reference documentation (on-click
of Java SE API in Figure 2.1b) to tutorials and training material. Since these documents are
provided by the developer corporation, they are official documentation.

Python documentation, as can be seen in Figure 2.2, provides a similar, but different
set of documents 2. Library Reference is analogous to the Java SE API documentation, and
tutorials and installation manuals are provided in both cases. Unlike Java, however, Python
does not provide documentation on known issues, but does contain a set of HowTos that

5

2.1 Background

Figure 2.2: Python Documentation Index

go in depth into certain topics. Python, being open source, receives the documentation
available on the official webpage from developer contributors and hence can be considered
official in nature.

Previous work by Watson [42], Garousi et al. [15] and Angelini [7] have all indicated
the existence of different documentation types to support software and have studied their
occurrences for software and their usage during development and maintenance tasks. How-
ever, these too, vary across the software being studied. While standards exist for documen-
tation of computer software [30] [32], there is no set standard for structuring documentation
sets, or collections of different documents, across languages and their APIs.

Application Programming Interfaces (APIs) are functions and procedures that perform
specific tasks. These tasks can vary from creating and accessing services to functional-
ity for building applications like calendars, to more complicated machine learning algo-
rithm implementations that allow developers to, at the very least, simply feed in data and

6

2.1 Background

perform learning tasks. Usually these methods are organized into classes, packages and
modules based on the functionality they provide. An example of an API in Java is the
java.util.regex 3 package which provides a set of classes to match text against reg-
ular expression patterns.

API reference documentation describes the structure and behaviour of API elements
such as classes, methods, fields etc. along with information about input and output of these
services that a user must be aware of when applying the API. In general, API documenta-
tion tends to follow the structure of the API itself - first describing overall components and
then sub-components within them.

We use the term instructional documentation, consistently with Fourney and Terry [14],
to describe documents that present how functionality provided by the language can be used,
usually using specific applications as examples. Code fragments which perform certain
tasks accompany explanations, to demonstrate how to use different components such as
APIs or language syntax for different scenarios. The structure of such tutorials is generally
narrative and interactive in nature and structured according to the preferences of the docu-
mentation writer. Instructional documentation in our study is comprised of tutorials in Java
and tutorials and How-Tos in Python. While Java tutorials about a single API span multi-
ple pages and are separated as individual sections, Python instructional documentation are
structured in a single web-page. This type of documentation can be seen as analogous to
user manuals from the work by Garousi et al. [15] and cook book-like documentation from
Meng et al’s work [26].

While API reference documentation has been the focus of most prior work (see Sec-
tion 2.2), instructional documentation has been far less explored. Fourney and Terry, in
2014, focused on extraction of tutorial data for automatic processing and concluded that
the research community needs a well-defined coding system to categorize information in
tutorials [14]. To this day however, little work has been done in this area, likely because,
as they describe, a number of language processing challenges arise in the investigation of
such documentation.

7

2.2 Related Work

2.2 Related Work

This section reviews previous research that is most related to that done in this work. Prior
work has attempted to categorize the different types of documentation (Section 2.2.1), eval-
uate their quality (Section 2.2.2), assess the needs and wants of users (Section 2.2.3), im-
prove their quality (Section 2.2.4) and study and propose patterns for documentation reuse
(Section 2.2.5). Here, we also describe how this thesis augments and differs from related
research work in the field of software documentation.

2.2.1 Types of Documentation

There exists little known prior work dedicated to categorizing and differentiating documen-
tation types. Sommerville describes the different types of documentation that complement
the software process [37]. He also makes suggestions for effective writing of these docu-
ments. His textbook distinguishes between five types of software product documentation
based on the types of users to which they must cater and their relative experience lev-
els, namely, functional description, installation document, introductory manual, reference

manual, and system administrators guide. We focus on introductory manuals and reference
manuals which Sommerville’s work describes as targeting end users. Other prior work
simply recognizes that different documentations exist. Garousi et al. state that there are
two types of software documentation - technical documentation and user manuals [15].
Intuitively, technical documentation for languages would elicit facts of the programming
language in question and could be in the form of embedded comments in code and API
documentation. User manuals on the other hand, are tuned towards usage of the language
data structures and libraries, in general or for specific use-cases. User guides, example
documentation and tutorials may be considered as this type of documentation.

Developers often draw upon multiple different resources while learning a new language.
Parnin and Treude studied the type of information sources of the top 10 web search results
for JQuery API methods [29]. They identified 10 frequent kinds of resources: code snippet

site, Q&A, forum, official bug tracker, mailing list entry, official documentation, official fo-

rum, unofficial documentation, stackoverflow 4, blog post and official API. While for 99.4%
of methods tested, the official API documentation was in the top ten, other official docu-

8

2.2 Related Work

mentation appeared only for 30.1% of methods. Blog posts were the next most frequently
occurring at 87.9%. Deeper investigations discovered that among blog posts, about 49% of
them were tutorials. Prior work has not provided a comparison between these documenta-
tion types. While this thesis focuses on official documentation, our analysis method can be
extrapolated to unofficial ones as well.

2.2.2 Evaluation of Documentation

Watson developed a heuristic to evaluate whether API reference documentation contains
important elements that help developers learn [42]. This work specifies its application to
new and returning developers who have sufficient knowledge about how to code their task
but only want to learn the features of the new API. At a broad level, Watson et al. evalu-
ated documentation sets, i.e. collection of different types of documentation for a software,
based on initial impression, experience provided to a reader and any additional data that
exists [41]. One of the emergent observations of the study was that documentation compo-
nents that developers prefer such as tutorials and sample applications were found in less
than half of the 35 libraries studied [33, 34].

Angelini studied the API documentation of eight web applications with the intention
of better understanding technical writing patterns [7]. While the work focused primarily
on API documentation, one of the subsequent findings was that all the web applications
studied contained at least one among an Overview/Introduction, a Get Started, a Best prac-

tices/Usage guidelines and a Tutorial, collectively referred to as additional documentation.
However, no one web application comprised the full set of supplementary additional docu-
mentation. This confirms Watson’s previous study of the presence of incomplete documen-
tation sets.

Most recently, Aghajani et al. performed a large-scale empirical analysis of 878 discus-
sions across 4 sources (mailing lists, Stack Overflow 4, issue repositories and pull requests)
of users describing issues in documentation [2]. The outcome was the development of a
taxonomy of documentation issues, classified into four main categories related to what in-
formation content is written, how it is written, issues related to the documentation process
and documentation tool issues.

9

2.2 Related Work

2.2.3 User Needs and Wants of Documentation

The study of developer needs has been a continuous one. Early work by Robillard discov-
ered that despite the existence of multiple resources, developers need good instructional
materials, with code examples and sample applications [33]. Robillard and Deline per-
formed a combination of surveys and interviews to ultimately establish five integral factors
to be considered during the API documentation creation process - documentation of intent,
code examples, matching APIs with scenarios, penetrability of the API, and format and

presentation [34]. Uddin and Robillard conducted an exploratory study to determine the
shortcomings of API documentation and presented that 74% of documentation problems
reported by 323 IBM software developers were caused by its content, including but not lim-
ited to incompleteness and ambiguity of API elements [40]. These pieces of work elicited
that among other preferences, developers would like more explained examples, which are
usually found in instructional documentation.

Garousi et al. further analyzed the usage and quality of “technical documentation” dur-
ing the development and maintenance of products at a company [15]. Based on surveys
of 25 participants, they concluded that, in industry, technical documentation (including
but not limited to requirement specifications, design documents, source-code comments),
source-code, communication with teammates and developers’ existing knowledge are all
approximately equally used during the development process. This confirms developers’
multi-resource use, and calls for an analysis into the complementary nature between differ-
ent types of documentation.

The thesis work performed by Josyula and Panamgipalli involved conducting inter-
views to determine a fixed set of information needs and information sources [31]. Upon
which, an online survey was created to ask even more developers details about these iden-
tified needs and sources. They discovered that for designing product architecture, learning
new programming skills and clarifying requirements, API reference documentation and
online tutorials were frequently used information sources.

Meng et al. performed an extensive interview and questionnaire to determine developers
needs, wants and experiences during the learning of a new API [25]. They discovered that
most people when looking at a new API, ask “What can I do with this API" as their first

10

2.2 Related Work

question. This is also analogous to specific scenarios that tutorials and user guides can
support. Meng et al.’s work discovered that most people prefer using a getting started guide
or working through code examples rather than looking at official documentation. Another
finding from this work is that a majority of people perform Google searches instead of
going straight to official documentation when they face an issue using an API. In general,
it seems that developers learning a new API look through its reference documentation but
would like more code and scenario-based examples. In addition, Meng et al. discovered
that participants spent 49% of their development time looking at the documentation [26].
They also observed that API reference documentation and cook book-like documentation
were used nearly equally frequently during the development process.

2.2.4 Assisting Developers and Improving Documentation

Rupakheti in his PhD thesis, addressed the resource switching of developers [36]. He ex-
plained that new developers find it difficult to formalize their requirements into an effective
search query that can be used to browse online documentation resources. For this com-
mon, yet broad problem, he created a critic system called CriticAL (A Critic for APIs and

Libraries) that provides recommendations and descriptions for client code using the API.
CriticAL is based on API usage rules derived from patterns identified in common problems
faced by developers while using the Swing framework.

To aide developers during the development process, Treude et al. developed an extrac-
tion mechanism to retrieve passages in documentation that describe how to perform a cer-
tain task using part-of-speech tagging and grammatical dependencies between words [39].
To realize the application of their work, they built TaskNavigator, an interface tool for users
to refer to these compiled list of tasks. Two developers rated the extracted tasks, resulting in
70% of them being meaningful to at least one of the two developers. Hence previous work
shows that scenario-based instruction is an integral resource for developers, in addition to
reference documentation.

From early on, research has been motivated to improve documentation, including work
done to augment information from other resources including source code [20] and Stack-

Overflow, making inferences from documentation that are less explicit [44], highlighting

11

2.2 Related Work

directives in documentation based on previously identified directives and user-input [11].
Treude and Robillard took advantage of content similarity between software artifacts to use
supervised machine learning techniques to identify and recommend insight sentences from
StackOverflow in documentation [38]. They used the value of the cosine similarity between
a potentially informative StackOverflow sentence and sentences in the API documentation
as a part of their feature set. Similarly, Jiang et al. built a model to identify fragments from
tutorials that are relevant to the corresponding APIs [16].

The most in line with the goals of our work, is that of Oumaziz et al. who studied the
reuse of documentation tags in source code used to generate reference documentation [28].
They created a duplication detector to identify the duplicate documentation tags in seven
Java APIs that use JavaDoc and report that the most commonly duplicated tags are param
and throws where 20% to 40% of these tags are duplicated. They performed a qualitative
content analysis to determine if these duplications are intended or not and discovered that at
least 57% were unintended “copy-pastes”. They further proposed a simple documentation
tag reuse mechanism to avoid duplicate information in documentation.

2.2.5 Patterns for Documentation

The earliest, most well-known work for patterns in documentation is that of Alexander who
created a pattern language for common people to be able to design their own homes with-
out the technical skills of an architect [6]. This work has become a foundation for patterns
in fields beyond home construction. Johnson incorporated and modified Alexander’s pat-
terns to the domain of software engineering, specifically software frameworks [17]. Aguiar
and David have also taken inspiration from Alexander’s pattern language and performed
in-depth research on patterns to document frameworks, releasing their work in multiple
parts [3, 4, 5]. Other work on documentation patterns for software frameworks includes
that done by Butler et al. which provides suggestions by which a framework’s use and
reuse in other applications can be documented [8, 9].

With respect to reuse of documentation, prior work has attempted to bridge the gap
between software clone detection and software documentation to identify and extract du-
plicate textual information in documents. These are useful in indicating to documentation

12

2.2 Related Work

creators the existence of redundancies or inconsistencies as well as in documenting other
software elements which are similar to ones already documented. Luciv et al. and Koznov
et al. created tools based on their proposed processes to automate the detection of repeated
fragments of text in technical documentation [22, 18]. They also proposed methods by
which the document can be modified and refactored based on the texts identified, to im-
prove the quality of documentation. Koznov et al. also proposed a mechanism by which
duplicates can be managed in documentation and efficiently taken advantage of, in docu-
mentation creation and maintenance [19]. Luciv et al. present an algorithm to detect “near-
duplicates” in all documentation types from design specifications to user guides and discuss
the strengths and weaknesses of the approach after a rigorous evaluation and manual anal-
ysis [23]. All these works perform duplicate detection within a single documentation type
and propose changes and refactoring on individual documents. On the other hand, we an-
alyzed the reuse of textual information across two documentation types and in our work,
propose patterns to reuse this information to aid documentation generation and promote
consistency across documentation of APIs.

Previous related work has mainly focused on content and structure of API reference docu-
mentation. Fourney and Terry described the challenges presented when attempting to dis-
sect instructional material for automated understanding and processing [14]. They found
the need to develop a formalization of the content present in a tutorial with the purpose of
templating online tutorials. While a number of work has focused on doing this in API doc-
umentation [24] [27], tutorials seem to be far less explored, possibly because, as Fourney
and Terry point out, even something as seemingly simple as determining what a step in the
tutorial is, is a difficult problem.

In this thesis, we analyzed the information in instructional documentation with respect
to the API reference documentation. This would help better understand programming lan-
guage documentation practices and the trend of commonly occurring API documentation
and lack of sufficient instructional documentation, despite developers having voiced their
needs for such materials.

13

3
Overview of Research Method

We conducted a case study on similar API libraries in Java and Python. We performed a
qualitative content analysis [21], to study the existing documentation, its characteristics and
elicit emergent observations. Specifically, the complete procedure includes the following
steps (as in Figure 3.1):

1. We first determined the API library topics for our case study (see Section 4.1).

2. We retrieved the documentations of these topics and performed a number of prepro-
cessing steps in order to make the text usable for our study (see Section 4.2).

3. We then extracted individual sentences from each of these instructional documenta-
tions (see Section 4.3).

4. We manually analyzed each of the sentences extracted to determine if they contain
information related to APIs or not, and classified them according to the relative re-
latedness to sentences in reference documentation (see Section 5.1).

5. We characterized these matches based on their relative position in the documentation
(See Section 5.2).

6. Based on our observations of information reuse from API reference to instructional
documentation, we identified some common information reuse patterns and discuss
here their instances in the documentation studied (see Section 5.3).

7. We characterized instances of these patterns in each documentation based on the
strictness with which they adhere to the patterns associated. With the intention of

14

Overview of Research Method

Characterization
of Matches

Elicitation of
Reuse Patterns

Characterization of
Pattern Instances

Automatability of
Patterns

Analysis of
Sentence
Matches

Data Analysis

Dataset Preparation

Data
Preprocessing

Data Collection Sentence
Extraction

Figure 3.1: Case Study Approach

mitigating documentation creation efforts, we formalized transformations in order to
accommodate these patterns automatically (see Section 5.4).

8. We assessed the impact of automation of these patterns on the existing documentation
(see Section 5.5).

We chose to analyze documentation in Java and Python because of the vast difference
in both programming languages. Both were initially developed with different programming
paradigm support. While Java began as an object oriented programming language, and has
now grown to accommodate the functional paradigm, Python supports object-orientation,
functional, imperative and procedural programming styles. The difference in syntax be-
tween the two languages provides for insights on whether documentation patterns can be
seen across languages with different APIs and code syntax. Further, Java developers are re-
quired to adhere to a certain format to make their code documentation-ready. The javadoc

tool that is bundled with the Java development kit is responsible for generating API ref-
erence documentation based on this format. As a result, Java reference documentation is
standardized in its structure. Tutorial-like instructional documentation does not follow any
explicit documentation structure or standard. Python, on the other hand, does not enforce

15

Overview of Research Method

documentation structure standards, though they do specify the style that should be fol-
lowed 47.

The only known prior work of direct comparison between documentation in Python
and Java is that of Wildermann [43] who reproduced and expanded on the work by Maalej
and Robillard [24] which identified knowledge types in Java API documentation. Our work
on applicability of documentation reuse patterns observed in instructional documentation
based on corresponding reference documentation augments to previous cross programming
language observations, providing insight into the extent of generalizability of relationships
between documentation types in terms of their information content.

16

4
Dataset Preparation

We describe the dataset for our study and the data collection procedure (Section 4.1), steps
taken to preprocess the data (Section 4.2) and the means by which individual sentences
were extracted for analysis (Section 4.3) below.

4.1 Data Collection

In this thesis, we focus on textual official documentation of APIs in the Java Platform
Standard Edition version 8 and Python version 3.7.2. We focus on three commonly used
libraries: Regular Expressions (henceforth REGEX), URL connectivity and content pro-
cessing (henceforth URL) and Input/Output (henceforth I/O) primarily because of the ex-
istence of the library APIs and their documentations in both languages under study. These
libraries are based on deep-rooted concepts, such as regular expressions in the case of
REGEX, as the foundation and motivation for their implementation. As a result, the docu-
mentation of these APIs is expected to not only address the API but also the foundational
concepts behind them.

We studied instructional and API reference documentation (see Section 2.1) for these
API topics, all of which are available as HTML files from the official websites of Java and
Python. It is important to note that the actual implementations of APIs and the functionality
they provide are likely to differ in Java and Python, even though they may be on the same
topic. For example, the URL packages in Java do not directly correspond to those in Python.
Connection via sockets is provided within the java.net package 5. Whereas, in Python,

17

4.2 Data Preprocessing

socket 6 is a separate module, outside the urllib package. For this work, we focus on
the information reuse from API reference to instructional documentation and do not dwell
upon the details of implementation of the APIs.

The details of all instructional documentation files studied and their mapped API ref-
erence documentation are available in Table 4.1. We used data triangulation, i.e. multiple
data sources, in terms of programming language and API topic to strengthen the validity of
our work [35].

Language Doc. Type Concept Package or Module

Java Platform SE v8 API REGEX java.util.regex 7

URL java.net 8

I/O java.nio.file 9

Instructional REGEX Lesson: Regular Expressions 10

URL Lesson: Working with URLs 11

I/O File I/O (Featuring NIO.2) 12

Python v3.7.2 API REGEX re 13

URL urllib 14

I/O Built-in Functions 15

Instructional REGEX Regular Expression HOWTO 16

URL
HOWTO Fetch Internet Resources

Using The urllib Package 17

I/O Input and Output 18

Table 4.1: Documentation Dataset

4.2 Data Preprocessing

We decided to perform our analysis at sentence level granularity because a sentence is a
cohesive unit of information that can be reused. To enable the case study at the sentence
level, it was necessary to divide the instructional documentation into individual sentences.
However, this process was not trivial due to the varying HTML structure across Java and
Python. Difficulties arose because sentences were sometimes punctuated incorrectly at the
end of a sentence, usually in the case of list items, or contained ending-like format mid-
sentence, such as a period followed by a space as in ‘e.g. X’. The issues faced are described
in greater detail in Appendix A.

18

4.3 Sentence Extraction

These issues were overcome by performing a number of preprocessing steps; the ex-
haustive list can be found in Appendix B. In order to accommodate for the varied structure
of documentation, we parsed the HTML for both Java and Python differently. We also per-
formed a number of preprocessing steps including removing content inside HTML table,
script and style tags, replacing code snippets with a single token and treating words like
‘e.g.’ and ‘etc.’ specially.

4.3 Sentence Extraction

After all the preprocessing steps, we split individual sentences using a period or an excla-
mation followed by a space (‘. ’ or ‘! ’) automatically. Because of the heavy use of most
other characters to indicate regular expression tokens, we avoided splitting sentences on
other punctuation. For example the question mark (?) refers to 0 or 1 occurrence of the pre-
vious character in regular expressions and is described in the REGEX API and instructional
documentation. Many examples and definitions would then be unnecessarily split. This
was also the case when using popular sentence splitting from natural language processing
libraries like nltk 44 and SpaCy 45, motivating us to perform the splitting ourselves. The
documentation of I/O in Java, too, describes glob string matching syntax, which is very
similar to regular expressions. As a result, we chose to follow our extraction mechanism
for all the documentations to maintain consistency. The restraining of question marks as
a sentence divider resulted in few texts comprising of a question followed by a statement.
For these cases, we manually separated them into two individual sentences. Similarly, when
extracted texts were found to have multiple individual statements, these were also manu-
ally separated into distinct sentences. Further, in three scenarios in REGEX, two sentences
divided because of an unfavorable split were manually merged to form a single, coher-
ent sentence. An example is the following sentence in REGEX in Python instructional
documentation,

You can make this fact explicit by using a non-capturing group: (?:...),
where you can replace the . with any other regular expression. 16

which was previously split on the ‘. ’ occurring before the word ‘with’. It is important to
note that our goal was not to design an efficient sentence splitter, as this is out of the scope

19

4.3 Sentence Extraction

Java Python

REGEX 403 401
URL 183 135
I/O 1200 123

Table 4.2: Number of sentences extracted from the documents

of our case study, but instead to split sentences coherently for further analysis. As a result,
manual intervention is both acceptable and desirable to obtain maximum accuracy.

Occasionally, leading sentences under highly nested subheadings were found to have
been prepended with the subheading during the automatic sentence extraction. Similarly,
the first sentence of a “note” in the documentation would be prepended with the word
“Note”. In such cases, we simply ignored the subheading or leading word while performing
our analysis on the sentence. For example, the first sentence under the subheading Basic
File Attributes of the REGEX instructional documentation in Java was extracted as:

Basic File Attributes As mentioned previously, to read the basic at-
tributes of a file, you can use one of the Files.readAttributes methods,
which reads all the basic attributes in one bulk operation. 19

In this case, we simply ignored the leading Basic File Attributes during our analysis.

As a result of preprocessing and subsequent sentence extraction, we extracted 403 sen-
tences in Java and 401 sentences in Python for REGEX instructional documentation, 183
sentences in Java and 135 sentences in Python from the URL instructional documentation
and 1200 sentences in Java and 123 sentences in Python for I/O. Table 4.2 summarizes
these values.

20

5
Data Analysis

We performed qualitative content analysis to assess instructional documentation sentences
and map them to those that provide the same information in API reference documentation.
Dagenais and Robillard studied the evolution of software documentation via user inter-
views and analysis of document revisions [10]. One of the results was that developers and
contributors of open source software projects typically begin by creating one type of docu-
mentation, and as the project evolves, work on other documentation types. They described
that some contributors write getting started documentation first, which is analogous to in-
structional documentation in our work, while others begin with reference documentation.
For this thesis, we focus on the latter scenario in which the API reference documentation
was written first, and hence treat it as the source while instructional documentation is the
destination for information reuse. Specifically, we hypothesize that certain sentences from
instructional documentation could be or have been reused from sentences in the API refer-
ence documentation.

We performed our case study across two dimensions - programming language and their

APIs, i.e. Java and Python and topic, formalized by the three popular API libraries - REGEX,
URL and I/O. We do this to incorporate diversity in our corpora in terms of writing style
and information content. Further, as can be seen in Table 4.2, each of these documentations
are of varying length.

We used a largely inductive approach, collecting observations based on our analysis.
We identified four information reuse patterns for instructional documentation based on our

21

5.1 Analysis of Sentence Matches

observations. We believe that our methodology can be extrapolated to documentations of
other topics with similar as well as possible new, interesting observations. We intend to
pursue this expansion to other programming languages and API topics in future work.

For clarity, henceforth, we use the format of [programming language]-[topic]
to refer to both the reference and the instructional documentations. For example Java-REGEX
refers to the documentation of regular expressions API in Java.

5.1 Analysis of Sentence Matches

We began our analysis by looking at each of the sentences in the instructional documenta-
tion and manually annotating whether the sentence is related to API or not. Here, related

to API refers to any piece of information that describes syntax, functioning, behaviour, us-
age and/or quality of the API under consideration, but excludes information about specific
examples, way-pointing and segways. For example, we annotated the following sentence
as related to API:

By default, case-insensitive matching assumes that only characters in
the US-ASCII charset are being matched. 20

This sentence from Java-REGEX describes the behaviour of the API. On the other hand,
the following sentence in the same documentation describing what is expected of a user
learning the API is not related to API:

You must learn a specific syntax to create regular expressions - one that
goes beyond the normal syntax of the Java programming language. 21

Specific examples provided in the instructional documentation are also marked as not re-

lated to API. The reasoning is because an example is a very specific scenario of API use,
and hence is not be expected to be in the reference documentation. In many cases, these ex-
amples accompany or refer to code snippets in their explanations. The following sentence
from Python-I/O demonstrates this:

So if f is a text file object opened for writing, we can do this: CODE. 18

22

5.1 Analysis of Sentence Matches

where CODE replaces a code fragment in the original documentation as a part of our
preprocessing (see Appendix B).

To ensure robustness of the manual annotation and to mitigate the threat of bias, we
performed an iterative process with multiple annotators when coding the sentences. This
also ensures observer triangulation, wherein more than one observer performs the study
to increase precision of the work [35]. First, three annotators (the thesis author and her
supervisors) individually coded a subset of 97 sentences in Java-REGEX and 98 sentences
in Python-REGEX as related to API or not. These sentences were selected as ones in
the instructional documentation that match the syntactic patterns identified in the work
done by [27], as an initial simple filtering mechanism. Of these 195 sentences, 180 were
completed by all three annotators, decisively as one of the two classes or as incomplete, i.e.
lacking sufficient context to be annotated accurately. The Fleiss agreement score of these
annotations is 0.82 [12]. The remaining fifteen sentences were identified as ambiguous or
confusing by at least one of the annotators.

Among the sentences marked as unrelated to API, we marked the sentences that de-
scribe an overview of API content. Such sentences provide vague or high-level information
regarding what the API component comprises of. Hence, though they may seem as API-
related, they in fact are not highly informative. One such example is the following sentence
in Python-REGEX:

Pattern objects have several methods and attributes. 16

We also identified those sentences that describe what the documentation offers, or docu-

ment content such as

Much of this document is devoted to discussing various metacharacters
and what they do. 16

from the same documentation file.

A second round of annotation involved all three annotators together discussing a set of
32 ambiguous sentences or those with disagreements in order to collectively conclude the

23

5.1 Analysis of Sentence Matches

correct annotation for such sentences. Additionally, we made the decision to incorporate
context of the sentence to ensure that incomplete sentences could be classified as either
related to API or not. After this, a single annotator proceeded to completely annotate the
entire corpora of sentences from all three topics under study.

For those sentences that are marked as related to API, the annotator then identified
equivalent information-providing sentences in API reference documentation. Based on the
sentence found, this annotator also assessed the extent to which the sentences in the two
documentation types were semantically similar. As a result, we identified six types of
matches between sentences in instructional documentation and their corresponding API
reference sentence sources:

Exact match

The sentence in the instructional documentation is exactly the same as a sentence in the
API documentation. For example, in Java-REGEX:

Instructional documentation: API documentation:
By default, matching does not
take canonical equivalence into ac-
count. 20

By default, matching does not
take canonical equivalence into ac-
count. 22

Manipulated match

The sentences in both documentation types seem to be exactly the same except for non-
functional words such as usually or but. For example, in Python-REGEX:

Instructional documentation: API documentation:
Usually ^ matches only at the be-
ginning of the string, and $ matches
only at the end of the string and
immediately before the newline (if
any) at the end of the string. 16

By default, ‘^’ matches only at the
beginning of the string, and ‘$’ only
at the end of the string and imme-
diately before the newline (if any) at
the end of the string. 13

24

5.1 Analysis of Sentence Matches

As in the above example, the only difference in the two sentences are the words in ital-
ics. These words, usually in the instructional documentation sentence and by default in the
API documentation sentence, though can be interpreted differently, are intended to mean
the same. Hence, it seems as though the sentence from the reference has been copied and
then slightly manipulated. Generally, a manipulated match occurs around other manipu-
lated and exact matches, and only rarely occurs in solitude (see Section 6.1). However, this
does not mean that manipulated matches can never occur around other match types.

Rephrased match

Here, the sentence presented in the instructional documentation is semantically equivalent
with one in the API reference but is phrased in a different way, for example made from
active to passive voice or vice versa. In Python-URL, the following sentences describe
default behaviour of the Request method in urllib.request:

Instructional documentation: API documentation:
If you do not pass the data argu-
ment, urllib uses a GET request. 17

The default is ‘GET’ if data is None
or ‘POST’ otherwise. 23

Partial match

Such matches are ones in which only some of the information in the instructional docu-
mentation sentence is presented in the API reference. The Java-REGEX documentation
contains the following sentences:

Instructional documentation: API documentation:
Both methods [lookingAt() and
matcher()] always start at the be-
ginning of the input string. 24

public boolean lookingAt() Attempts
to match the input sequence, start-
ing at the beginning of the region,
against the pattern. 25

Here, the reference documentation explicitly states that the lookingAt() method
begins at the beginning of the input string, however does not describe anywhere that the
matcher() method does too. Hence only some of the information provided in the in-
structional documentation sentence can be sourced from the API reference.

25

5.1 Analysis of Sentence Matches

Inferred match

These occur when an instructional documentation sentence is implied from information
provided in the reference documentation, provided the reader has some domain knowledge.
This type of match can be subjective as it greatly depends on the experience and expertise
of a reader. The following sentences are from Java-I/O:

Instructional documentation: API documentation:
The varargs argument currently
supports the LinkOption enum, NO-
FOLLOW_LINKS. 19

If the option NOFOLLOW_LINKS is
present then symbolic links are not
followed. 26

Here, the instructional documentation states that the varargs argument of the
Files.readAttributes methods accept the constant NOFOLLOW_LINKS. The API
reference documentation makes no explicit statement. However, the readAttributes
method description describes its behaviour if this constant was to be passed as an argument.
An experienced user would likely be able to infer that NOFOLLOW_LINKS is an acceptable
input and should be passed in the varargs argument.

No match

In this case, no match for the instructional documentation sentence is found in the API
documentation. The following example is from Python-I/O, and introduces the concept
of serializing:

Instructional documentation: API documentation:
The standard module called json
can take Python data hierarchies,
and convert them to string repre-
sentations; this process is called
serializing. 18

-

There is no sentence in the API reference documentation that describes what serializing
is and hence this sentence has no match.

26

5.1 Analysis of Sentence Matches

During this process of identifying matches, it was critical that the annotator take into con-
sideration the context of the sentence being matched. For example, the following fragment
highlights a sentence in the Python-REGEX instructional documentation 16.

There is a sentence nearly syntactically the same in the API reference documentation 13.

While both sentences, when looked at individually seem like manipulated matches with
an inconsistency in information between the two documentations, this is in fact not the case.
From the surrounding sentences and the example, it is evident the instructional documen-
tation sentence refers to the method group() in which the index of the results begin at
zero. On the other hand, the API reference documentation sentence refers to groups within
the regular expression syntax. And so, instead of identifying this as an inconsistency, we
determined this case as no match.

To minimize the presence of false negatives and false positives for exact and manipulated

matches, we performed syntactic similarity between sentences in instructional documenta-
tion and API documentation for one topic, namely REGEX. A false positive is a sentence
that does not have a match in the API reference documentation but is annotated as having

27

5.1 Analysis of Sentence Matches

a match. A false negative is a sentence that is matched to an API reference documentation
but was annotated as no match. After our first round of complete annotation of REGEX
documentation, we used Jaccard similarity with a low threshold of 0.5 and extracted all the
sentence pairs of the type <instructional documentation sentence, API

reference documentation sentence>, that had a similarity above this thresh-
old [1]. We found that sentence pairs identified by this threshold but not matched during
our analysis (two in Python-REGEX, one in Java-REGEX) were justifiably not among
the exact, manipulated and rephrased matches. For example, the following sentence in
Python-REGEX instructional documentation:

To match a literal ‘$’, use \$, or enclose it inside a character class, as
in [$]. 16

has a high Jaccard similarity of 0.86 with the following sentence in the API reference
documentation:

To match a literal ‘|’, use \|, or enclose it inside a character class, as in
[|]. 13

However, both sentences talk about different characters: ‘$’ and ‘|’ respectively, and hence
can not be considered exact, manipulated or rephrased matches for our work. Sentence
pairs that were manually identified as matched but were not identified by Jaccard Similar-
ity were also justifiable, usually due to the need of manual intervention during sentence
extraction or because the instructional documentation is matched to a sentence in the ref-
erence documentation of a different API. Such cases were two in number in Python and
sixteen in Java. These results justify that the manual matching done in our case study is
reliable.

A visualization of the annotation hierarchy of instructional documentation sentences can
be seen in Figure 5.1.

28

5.2 Characterization of Matches

Match Type

Relation to API

Sentences Instructional
Documentation

Related to API

Exact Manipulated Rephrased

Replaceable by
Source

Not Replaceable by
Source

Partial Inferred No
Match

Not Related
to API

Document
Content

API
Content

Figure 5.1: Hierarchy of Annotations of Sentences in Instructional Documentation

5.2 Characterization of Matches

We studied the instances of the different matches found and assessed the extent to which
rephrased matches are necessary. We also performed an analysis on the sentences and their
matches at the document level. We describe our analysis below.

We intended to understand the extent to which rephrasing sentences from API refer-
ence documentation in instructional documentation was necessary. To do so, we marked
rephrased matched sentences in instructional documentation that are replaceable by their
matched API documentation sentences without impacting the meaning of or removing in-
formation from the instructional documentation sentence (see Figure 5.1). For example in
the Java-URL instructional documentation, the author writes

A relative URL contains only enough information to reach the resource
relative to (or in the context of) another URL. 27

The original text in the reference documentation of which the above sentence is a rephrased
match is:

An application can also specify a “relative URL", which contains only
enough information to reach the resource relative to another URL. 28

Here, it seems as though this rephrasing was unnecessary as the source sentence provides

29

5.3 Elicitation of Reuse Patterns

the same information as the sentence in the instructional documentation.

A manipulated match indicates that the difference in the instructional documentation
sentence from the corresponding API reference sentence is minute and their semantics
remain the same. Hence, all manipulated matched sentences in instructional documentation
can be replaced by their matched counterparts without an impact on the meaning of the
sentence.

As a result of this analysis, we categorized the match types that have a corresponding
source into two major types:

‚ Equivalent - indicating the matched sentence provides the same information as its
source. Such sentences in the instructional documentation can be replaced by their
sources without altering the meaning of the text or disrupting its coherency. This
includes exact, manipulated and replaceable matches.

‚ Nonequivalent - the matched sentence provides slightly less or more than its source
or is written in a manner which would result in incoherency of the instructional docu-
mentation if replaced by its source. This includes non-replaceable rephrased, partial

and inferred matches.

In the remainder of the text, we refer to these two categories, as well as no match and not

related to API and specify lower level match types as required.

While our previous analysis focused on individual sentences, we also assessed the con-
text and relative location of the sentence in the documentation. We studied the neighbour-
ing sentences of each target sentence in order to better understand practices in instructional
documentation information flow, and the relative position of occurrence of matches within
each documentation. The emergent observations of match characteristics from this study
are described in Section 6.2.

5.3 Elicitation of Reuse Patterns

The existence of equivalent matches implies information reuse from API reference docu-
mentation to the instructional documentation. We analyzed the instructional documentation

30

5.3 Elicitation of Reuse Patterns

to identify possible patterns of this information reuse, with the intention of assisting docu-
mentation creation efforts by automating this reuse.

To determine the purpose, structure and variations of information reuse, we open-coded
the “context” of all matched sentences in the respective instructional and API reference
documentation, wherein there did not exist a pre-defined set of labels to choose from. For
example the bullet points in the following text block from Java-I/O instructional docu-
mentation 29 are each considered as individual sentences and are each annotated with the
context catalog of class methods.

The sentence at the first bullet point describing the method position has a manipulated

match in the API reference documentation, which is shown below.

long position()
throws IOException

Returns this channel’s position. 30

This sentence from the reference documentation is annotated as entire method descrip-

tion because it forms the entire description of the method position. The contexts were
formalized via an annotation session with the three annotators analyzing a random subset
of sentences that are either exact or manipulated matches.

We then extrapolated these contexts to the remaining exact, manipulated and rephrased

matched sentences in both Java and Python. We chose to omit inferred matches in this
study of context because of the possibility of subjectivity and bias in inferring information
as a result of the researcher’s expertise in the domain. Partial matches were also omitted
because we aim to assess information reuse information from API reference documenta-
tion and such matches contain information not found in the reference, as is the case with

31

5.4 Characterization of Pattern Instances

no matches. We revisit inferred, partial and no matches while assessing the impact of au-
tomation of the patterns in Section 5.5. The list of unique contexts annotated can be found
in Appendix C.

Based on the type of reuse and the contexts of matched sentences, we elicited infor-
mation reuse patterns. We define a reuse pattern as a descriptive template for organizing
sentences from API reference documentation in instructional documentation. These pat-
terns are useful in supporting automation of documentation reuse and reducing the effort
taken by authors to reproduce information presented in API reference documentation in
instructional documentation. Each pattern is characterized by four properties:

‚ the name of the pattern,

‚ the intent for when the pattern is generally applied,

‚ the structure which indicates the template for organizing sentences from the API
reference documentation in the instructional documentation,

‚ and a list of parameters to support automation of information reuse via this pattern.
For example, for a pattern that extracts the leading sentence of a class, a parameter
would be class_list, i.e. the list of classes for which this pattern is to be applied.

We then measured the number of instances of each of the reuse patterns, i.e. the number
of occurrences of the pattern in each documentation. We further measured the total number
of sentences in all instances of this pattern. We describe the patterns elicited as well as
their occurrences in Section 6.3.

5.4 Characterization of Pattern Instances

To formalize the extent of reuse of a pattern, we characterize the instances of occurrence of
a pattern in each instructional documentation with pattern use type as either systematic or
opportunistic.

Systematic indicates a pattern that is followed consistently and it is clear which sentences in
the structure of the API documentation are being chosen for reuse in the instructional docu-
mentation. In such instances, the pattern is usually at least semi-automatable and could sup-
port the generation of instructional documentation templates. Largely, systematic instances

32

5.5 Automatability of Patterns

are comprised of sentences that have exact and manipulated matches, though occurrences
of other match types may occur in small quantities.

Opportunistic are ones where a reuse pattern could be abstractly present, but is cluttered
with sentences not following the pattern and hence prone to be noisy in terms of reuse.
These instances are comparatively more difficult to use for automated templating, because
of the greater number of changes that would be made between current text and that post-
automation.

If a documentation has multiple instances of a single pattern, some of which are system-

atic and some opportunistic, we default to the less-strict use: opportunistic to categorize
the pattern use in the documentation. Hence, we define a pattern use type for each docu-
mentation studied.

5.5 Automatability of Patterns

Patterns in the reuse of documentation can support a degree of automation if these can be
used to create documentation text from pre-defined templates. We studied to what extent
this would have been possible in our six documentation cases.

The parameters property of each pattern can be used to support automation of usage of
the reuse pattern in instructional documentation. As required by a documentation creator,
the input values to these parameters can be varied in order to achieve the required output
from the reuse pattern.

We assessed the impact of automation of implementing the reuse patterns based on
these elicited parameters. That is, we simulated documentation reuse automation using
the proposed patterns and analyzed the extent of difference between current reuse pattern
occurrence and that which was produced in the simulation. Intuitively, systematic reuse
instances would not be impacted drastically, whereas opportunistic instances could be sig-
nificantly impacted. Further, equivalent matches would be maintained and the information
in non-equivalent matches would be lost. To assess the possibility of a bloating factor upon
automation, we also report the number of sentences that would be added from the API
documentation into the automated pattern instance.

33

6
Results and Observations

In this chapter, we describe the instances of matched sentences identified in the documen-
tation (Section 6.1) and their observable characteristics (Section 6.2). We then present the
information reuse patterns observed, their instances (Section 6.3) and their emergent char-
acteristics (Section 6.4). We also discuss the extent of automatability of these patterns in
the documentations studied (Section 6.5).

6.1 Matched Sentences in Documentation Types

We found that in the Java instructional documentation of the three API topics under study,
between 45% and 58% of the sentences are related to API. Python instructional documenta-
tion contains between 49% and 76% of such sentences. As shown in Figure 6.1, around half
of the content in instructional documentation is expected to be present in the corresponding
API reference documentation.

Figure 6.2 decomposes the occurrence of different match types with respect to all the
sentences related to API in the respective instructional documentation of the three top-
ics. In Java-REGEX, 37% of these sentences are exact matches of sentences from API
documentation. Whereas in Python-REGEX, only 7% of the API-related sentences are
exact matches. The number of manipulated matches in these documentations are relatively
fewer, with 8% in Java and 5% in Python. The most frequently occurring match type in
Python-REGEX is rephrased match, with 38% of sentences being characterized in this

34

6.1 Matched Sentences in Documentation Types

Java Python

REGEX

URL

I/O

182,
45%221,

55%
198,
49%

203,
51%

107,
58%

76,
42%

102,
76%

33,
24%

76,
62%

47,
38%619,

52%
579,
48%

Related to
API

Not related to
API

Figure 6.1: Distribution of sentences related to API in each of the documentations in the
form of absolute count, percentage.

0

100

200

300

400

500

600

Co
un
t

Java Python

REGEX URL I/O REGEX URL I/O
Exact 37% (67) 0% (0) 0% (1) 7% (14) 1% (1) 0% (0)
Manipulated 8% (15) 2% (2) 4% (27) 5% (10) 0% (0) 0% (0)

Rephrased 21% (39) 40% (43) 39% (244) 38% (75) 32% (33) 53% (40)
Partial 0% (1) 1% (1) 3% (16) 3% (6) 5% (5) 2% (2)
Inferred 19% (34) 15% (16) 11% (65) 18% (36) 17% (17) 12% (9)
No Match 15% (27) 42% (45) 43% (266) 29% (57) 45% (46) 33% (25)

Figure 6.2: Comparison of match types between REGEX, URL and I/O in Java and Python.

35

6.2 Characteristics of Matches

way.

URL instructional documentation paints a different picture. No exact matches are found
in Java, and only one was discovered in the Python documentation. Further, in Java, only
two manipulated matches arose, while none can be found in Python. We found that 40%
of sentences in Java and 32% of those in Python are rephrased matches. Surprisingly the
majority of API-related sentences in URL in both programming languages have no match

in the URL reference documentation with this case comprising 42% sentences in Java and
45% in Python.

The observations in I/O seem more comparable to URL than REGEX. In the documen-
tation of this API in Java, only one exact match exists and 4% of API-related sentences have
manipulated matches. Python, on the other hand has no exact or manipulated matches and
has a majority of rephrased matches with 53% of sentences identified as this match type.
In Java, rephrased matches are the second most frequent at 39% frequency. No matches

tend to be the most frequently occurring with 43% such sentences, whereas in Python, no

matches lie in-between that in REGEX and URL, at 33% frequency.

In all six documentations, partial matches are very infrequent (5% or lesser). It is diffi-
cult to conclude that a certain match type is the most prevalent or most frequently used, as
this varies highly irregularly across the two dimensions of analysis.

6.2 Characteristics of Matches

Below, we present our results regarding the number of sentences that are unnecessarily
rephrased, and a characterization of these rephrasings. We also discuss the cases in which a
rephrased sentence cannot be replaced by its source sentence in the reference documenta-
tion. We then present other emerging characteristics of the matches that we observed during
our inductive analysis.

6.2.1 Replaceable and Non-replaceable Rephrased Sentences

In REGEX, 51% of rephrased matches in Java and 43% in Python were found to be replace-
able by their original counterparts. This scenario occurs in 47% of Java-URL sentences,

36

6.2 Characteristics of Matches

and 30% of Python-URL sentences. I/O shows similar numbers with 43% of rephrased

sentences in Java and 30% in Python being replaceable. Figure 6.3 visualizes these distri-
butions.

Java Python

REGEX

URL

I/O

20,
51%

19,
49%

32,
43%43,

57%

20,
47%

23,
53%

10,
30%

23,
70%

12,
30%

28,
70%

106,
43%138,

57%

Replaceable

Non-
replaceable

Figure 6.3: Distribution of rephrased matched sentences in instructional documentation
that are replaceable by their matched counterparts in API reference documentation in the
form of absolute count, percentage.

The large number of replaceable sentences could be attributed to the freedom of cre-
ativity of instructional documentation writers, giving them the opportunity to rephrase sen-
tences if and when they wish, as no set standard for instructional documentation exists. This
observation motivates automation of reuse patterns, as this would help maintain consis-
tency across the documentation types and reduce the time spent by authors in unnecessary
sentence modifications.

In all documentations, the percentage of sentences that cannot be replaced by their
matched sentences is greater than half. The reason for the non-replaceable rephrased

matches could be one of the following:

‚ The sentence is a rephrased version of two non-neighbouring API reference docu-
mentation sentences. As a result, these sentences cannot necessarily be systemati-

37

6.2 Characteristics of Matches

cally identified and merged without advanced mechanisms to merge the sentences
coherently, efficiently and favorably for the reader in a human-like writing style. For
example, the highlighted sentence in the following snippet from Java-I/O instruc-
tional documentation 31.

The description in the reference documentation of newByteChannel method to
which it refers mentions this information in two separate non-consecutive sentences,
as highlighted in the screenshot below 26.

Combining these sentences to generate a coherent sentence as in the instructional
documentation is beyond the scope of our work.

‚ The sentence references or is in conjunction with a specific example. We would
like to point out here, that sentences that provide example-specific information are
marked as not related to API. However, sentences that provide general information
about the API in the context of an example are considered as rephrased matches.
Python-I/O instructional documentation 18 contains one such instance:

38

6.2 Characteristics of Matches

Our preprocessing steps result in the sentence extracted in the following format:

If you have an object x, you can view its JSON string representation
with a simple line of code: CODE.

The code snippet within this sentence as seen from the screenshot informs that the
JSON string representation of an object x can be viewed using the dumps method.
The description for the method in the API reference documentation 32 states:

Hence, replacing this instructional documentation sentence by its match will result
in a loss of the example.

‚ It introduces a use-case for the reference API documentation. For example, in Java-URL
instructional documentation, the following sentence exists:

After you’ve successfully created a URL, you can call the URL’s
openStream() method to get a stream from which you can read the
contents of the URL. 33

Here, the bold part describes when the openStream method can and should be
used as opposed to the corresponding reference documentation that simply says:

Opens a connection to this URL and returns an InputStream for
reading from that connection. 28

describing what the method performs.

39

6.2 Characteristics of Matches

‚ The matched API sentence may be providing excessive technical information. For
example, the Java-REGEX instructional documentation states

The regular expression syntax in the java.util.regex API is most sim-
ilar to that found in Perl. 21

On the other hand, the API reference documentation goes into deeper details:

The Pattern engine performs traditional NFA-based matching with
ordered alternation as occurs in Perl 5. 22

In this case, the tutorial author might decide to rephrase this sentence to omit tech-
nical details from which a reader referring to instructional documentation would not
be expected to benefit.

6.2.2 Positional Distribution of Different Match Types

In general, we found that the existence of the match types follow no specific pattern of
occurrence in the chronology of the instructional documentation itself. Equivalent matches
tend to be adjacent to one another, especially in Java-REGEX. Intuitively, this may be
thought of as portions of inter-related text such as an entire method description that is
copied from the reference documentation to the instructional documentation. This is more
difficult to observe in the other cases because of the overall fewer exact and manipulated

matches.

We also observed that the practice in Python-REGEX involves reordering, manipulat-
ing and rephrasing blocks of texts copied, in addition to expansion of these texts with ex-
amples. As a result, a mix of exact, manipulated and replaceable matches where seemingly
the original source text could have simply been used, as is, and then augmented with exam-
ples is a commonly observed phenomena. The following screenshot shows the embedded
description of the method sub. The left column contains text about the Pattern.sub
method in instructional documentation 16 and the right contains a snippet from the API
reference documentation 13 describing re.sub.

40

6.2 Characteristics of Matches

These two methods are comparable as the method definition for Pattern.sub in the
reference documentation states that it is:

Identical to the sub() function, using the compiled pattern. 13

where sub() is a hyperlink reference to the documentation of re.sub. We can observe
that, firstly, two arguments of the method have been described in a different order than
in the original reference. However, this reordering seems unnecessary, as the change in
order of description of the arguments does not hold significance in the instructional doc-
umentation. Secondly, the reference documentation contains all paragraphs (with exam-
ples) indented under the method definition. However, the same information provided in
the instructional documentation, has indented only the first and second paragraph, while

41

6.2 Characteristics of Matches

the rest align under the parent section (not shown here). Python-REGEX contains two
such method description embeddings, both of which display this indentation inconsistency.
Whether this is intended or unintended is difficult to assess. This observation is unique to
Python-REGEX, however, as no other documentation contains such method descriptions
explicitly embedded in the content.

Figure 6.4 visualizes the position of equivalent matches, nonequivalent matches, no

matches and not related to API sentences in the instructional documentation of the three
API topics in both Java and Python. As it can be seen, the positional distribution is largely
scattered. Often sentences with no match follow equivalent matches. As described in Sec-
tion 6.2.5, this is usually because no matched sentences describe underlying topic informa-

tion, internal working, behaviour or usage of the API. Since most equivalent matches are
class, method or constant descriptions (see Section 6.3), the observation of this ordering of
match types is well-founded.

Java Python

REGEX

URL

I/O

Equivalent
Nonequivalent

No Match
Not Related to API

Figure 6.4: Position of match types in Java and Python in the instructional documentation
of REGEX, URL and I/O

6.2.3 Redundancies

We discovered redundancies in instructional documentation, usually as a result of certain
sentences being copied from the source and then slightly modified. This was then nor-
mally followed by another sentence that provides the same information, but likely written
free-hand by the instructional document writer. For example, in Java-I/O, a section de-
scribing how to convert a Path object as required contains a modified excerpt from the

42

6.2 Characteristics of Matches

API reference documentation of the toAbsolutePath method:

The toAbsolutePath method converts a path to an absolute path. If the
passed-in path is already absolute, it returns the same Path object. 34

However, what follows this method description is an example, after which the input,
functionality and return of the method is reiterated:

The toAbsolutePath method converts the user input and returns a Path
that returns useful values when queried. 34

This is also noticeable in the Splitting Strings subheading in Python-REGEX, where
the behaviour of the argument maxsplit, when it is nonzero, is described twice, one
sentence apart 16.

A justification for why such redundancies exist is difficult to conclude. If they are as-
sumed to be intentional, it would likely be a reminder for the benefit of the reader. However,
usually reminders in both Java and Python are specifically highlighted as notes. If these are
accidental, then it would be useful to inform authors during creation of this redundancy. Re-
gardless of the case, we intend for automation of information reuse to assist in informing
authors of the redundancy, so they are made aware of its existence and can make corrections
appropriately, to improve the instructional documentation.

6.2.4 Information Inconsistencies

Additionally, we discovered that in each of Python-REGEX and Java-URL instructional
documentations, one sentence provided information inconsistent with that in API reference
documentation or was incorrect due to lack of complete information.

The Python-REGEX documentation describes that inside a regular expression,

... ‘^’ outside a character class will simply match the ‘^’ character. 16

43

6.2 Characteristics of Matches

This is not the case; outside a character class, if ‘^’ is at the beginning of a regular ex-
pression, then it would indicate start of a string, and in MULTILINE mode, would match
immediately after each newline, and would not match the ‘^’ character.

Java-URL poses an interesting case. Consider the sentence in the instructional docu-
mentation 27:

The API documentation 28, instead states:

Here, baseURL is the same as context and relativeURL is the same as spec.
In both cases, the resultant URL would be the same according to the highlighted sentences.
However, both sets of sentences describe the internal working of the API differently. To
illustrate an example, we use the terminology of the API reference documentation here for
clarity. Consider a context:

44

6.2 Characteristics of Matches

https://www.context.com

and spec:

https://www.spec.com

Here, the scheme is https. According to the API reference documentation, when the
scheme of the specmatches that of the context, then the scheme component is inher-
ited from the context. That is, the API extracts the scheme component from context,
removes the spec’s scheme and concatenates the former and latter as shown below:

https://www.context.com

https ://www.context.com

https://www.spec.com

https ://www.spec.com

https://www.spec.com

context spec

Whereas, the instructional documentation states that if the spec is absolute (contains
the scheme component) then the context is entirely ignored. So while the result in both
scenarios would be the same because scheme is the same for both context and spec,
the method by which the API performs this resolution differs in both descriptions. For that
reason, we annotated this case as a no match for our work.

6.2.5 Reasoning for No Matches

As can be seen from Figure 6.2, the proportion of instructional documentation sentences
that contain no match in reference documentation varies between 15% to 45% across the
programming language and topic. The existence of a no match indicates a sentence that pro-
vides information about an API is newly introduced in instructional documentation and is

45

6.2 Characteristics of Matches

% REGEX URL I/O

Theme Java Python Java Python Java Python

Underlying Topic 69 23 29 22 19 12
Usage 15 12.5 36 39 25 24
Internal Working 0 30 2 4.5 16 0
Behaviour 0 2 11 26 9 52
Use-case 8 18 22 4.5 13 8
Performance 4 12.5 0 2 3 4
Version Info 4 2 0 2 4 0
Environment 0 0 0 0 7 0
API support 0 0 0 0 1 0
Input Configuration Details 0 0 0 0 3 0

Table 6.1: Distribution of information themes for sentences in instructional documentation
having no match in percentage. For each document (i.e. each column), the most dominant
theme is highlighted in bold.

lacking in the reference documentation. To better understand the reason behind the cases of
no matches, we open coded the type of information that the sentences provide. We grouped
the annotations into ten major themes: underlying topic information, usage, internal work-

ing, behaviour, use-case, performance, version information and backward compatibility,
environment and platform specific information, API support and input configuration de-

tails. Table 6.1 summarizes the sentence distributions among these themes. We discuss
each theme in detail below.

The majority of no match sentences in Java-REGEX provide information about the
underlying topic, usually describing the general behaviour of the fundamental concept be-
hind the API. The definition and description of a regular expression, its syntax, the be-
haviour of special characters or definitions of related terminology are examples of this
theme that we found in instructional documentation but not in the API reference. For ex-
ample, the following sentence defines a set of methods having similar functionality:

Capturing groups are a way to treat multiple characters as a single
unit. 46

We discovered that usage, i.e. general information on how an API is expected or in-

46

6.2 Characteristics of Matches

tended to be used, is the most popular theme for no matches in Java-URL, Python-URL,
and Java-I/O. The Java-URL instructional documentation recommends how to handle
a MalformedURLException:

Typically, you want to catch and handle this exception by embedding
your URL constructor statements in a try/catch pair, like this: CODE. 27

In Python-REGEX, the most commonly unmatched sentence theme is that of internal

working with 30% of the sentences describing such information. For example, the follow-
ing sentence was found in the instructional, but not reference, documentation:

Regular expression patterns are compiled into a series of bytecodes
which are then executed by a matching engine written in C. 16

A surprising 52% of sentences describe API behaviour in Python-I/O. It can be
expected that descriptions of the way in which an API component performs is presented in
the reference documentation, and so this finding is of interest. For example, the following
sentence describes a particular behaviour of the read method on a file object:

If the end of the file has been reached, f.read() will return an empty
string (‘’). 18

We found that sentences describing specific use-cases in which the API could be or is
intended to be used, usually with the intention of motivating and justifying the usefulness
of the API were also not matched with API reference documentation. This sentence from
Java-REGEX is one such example:

The split method is a great tool for gathering the text that lies on either
side of the pattern that’s been matched. 20

Sentences regarding performance of the API in terms of efficiency and scalability can
also be observed in the instructional documentation, but not in the API reference documen-
tation. The following sentence from Python-I/O is an example:

47

6.2 Characteristics of Matches

This is memory efficient, fast, and leads to simple code: CODE. 18

We observed that some sentences providing version information and backward com-

patibility were not matched in the API reference documentation. One example of a sen-
tence providing information regarding content of a particular version is this sentence in
Java-REGEX:

As of the JDK 7 release, Regular Expression pattern matching has ex-
panded functionality to support Unicode 6.0. 35

This is a surprising finding because deprecation and enhancement information are gener-
ally specified in the API reference documentation, in order to caution developers about no
longer supported API components, or introduce them to new ones. We expect that this kind
of information can be found in the version release notes and we leave the exploration of
this documentation type to future work.

Some of our observations are unique to Java-I/O documentation. This, we theorize,
is likely due to its large length and diverse range of sub-topics, providing greater scope for
writing style variation. We found non-matched sentences providing environment and plat-

form specific information, API support and input configuration details information only in
this documentation. While describing the typical syntax of a file location, the documenta-
tion provides the following platform specific information:

In the Solaris OS, a Path uses the Solaris syntax (/home/joe/foo) and in
Microsoft Windows, a Path uses the Windows syntax (C:\home\joe\foo). 36

Another sentence describes whether a file system may be able to support the API compo-
nents provided:

A specific file system implementation might support only the basic file
attribute view, or it may support several of these file attribute views. 19

Sentences containing input configuration details information are ones which describe the
structure of the input to an API. For example, in the JAVA-IO instructional documentation,

48

6.2 Characteristics of Matches

the width is an element of the format specifier in the formatAPI. The sentence provides
the following information about width:

By default the value is left-padded with blanks. 48

The default behaviour of this element of the format specifier is not mentioned in the API
reference documentation.

We also identified one sentence describing a method for which the corresponding de-
scription in the API documentation was not descriptive enough to consider it as a match.
While the instructional documentation states:

visitFile - Invoked on the file being visited. 37

The description of the visitFile method in the reference documentation is simply:

Invoked for a file in a directory. 38

While the sentences provide little explanation, the instructional documentation clarifies
that this method is invoked when a file is visited as opposed to the reference documen-
tation. Further, we found two more instances of descriptions in reference documentations
that could have been matches for an instructional documentation sentence but were either
incomplete or not clear in explanation. We consider both cases as inferred matches because
their meanings can be deduced given familiarity with the API. One example is shown be-
low:

Instructional documentation: API documentation:
CONTINUE - Indicates that the file
walking should continue. 37

public static final FileVisitResult CONTINUE
Continue. 49

It is important to note that these themes are not exclusive for no match sentences. How-
ever, there are sentences which are matched to API reference documentation also providing
information on these themes. We leave the detailed comparison of documentation on the
theme level to future work.

49

6.3 Elicitation of Reuse Patterns

6.3 Elicitation of Reuse Patterns

During our analysis, we characterized the forms of reuse that occurred across multiple sen-
tences, and sometimes multiple times. We call these recurring trends, documentation reuse
patterns (as introduced in Section 5.3). For example, reused sentences in Java-REGEX

often appear in lists of related methods in the instructional documentation to provide brief
descriptions of those methods. We describe four elicited patterns based on our observa-
tions of information reuse from API documentation in the instructional documentation of
REGEX, URL and I/O.

Class Description

Intent: Introduce classes in a package either as a sentence in a paragraph or as a list of
classes in the package.
Structure: Extract the definition fragment, i.e. the leading sentence of the class description
for each class and prepend the subject, which is the class name.
Parameters:

1. class_list: list of class names for which this structure is to be applied

The above screenshot shows an example of this pattern in Java-I/O. On the left is
the instructional documentation 19 containing a list of interfaces of a particular functional-
ity that are supported by this package. (An interface is a specific instance of a class.) The
right column contains snippets from two of the interface descriptions 39 40. In this case, the

50

6.3 Elicitation of Reuse Patterns

highlighted instructional documentation sentences match the corresponding sentences in
the API reference documentation, which are the leading sentences of the interface descrip-
tion.

Method Description

Intent: To describe a collection of methods. Typical use of this pattern is to list methods
in a class with similar functionality or based on the same topic, or simply to list all the
relevant methods in a class, providing a short description for each method in the list. This
is also used to list methods from a different API which provide similar functionality with
the API being discussed primarily in the tutorial.
Structure: Extract method description of each method in the list.
Parameters:

1. method_list: list of methods to be included in this structure. Defaults to * (all methods
in file).

2. extractions: sentences to be extracted from the method description in the form of
(paragraph, sentence) where ‘*’ defines ‘all’ and ‘[]’ defines an inclusive range. For
e.g.:

‚ 1st sentence in 1st paragraph: (1,1)

‚ 1st sentence in every paragraph: (*,1)

‚ 2nd to 4th and 6th and 7th sentences in 1st paragraph: (1, [2-4,6,7])

Defaults to (1,1).

51

6.3 Elicitation of Reuse Patterns

The above screenshot is from Java-URL describing the list of accessor methods avail-
able for a URL object. The left column shows the instructional documentation 41, and the
right has two snippets of the API reference documentation 28 with descriptions correspond-
ing to the enlisted methods.

Constant Description

Intent: To provide a description for the constants passed as parameters to API methods or
returned from a method call.
Structure: If within a method description, then extract the description of each constant in
list from within the method description, else extract description from the generic constant
description.
Parameters:

1. constant_list: list of constants to describe. Defaults to * (all constants in file).

2. extractions: set of sentences to be extracted from the constant description in the form
of (paragraph, sentence) where ‘*’ defines ‘all’ and ‘[]’ defines an inclusive range.
For e.g.:

‚ 1st sentence in 1st paragraph: (1,1)

52

6.3 Elicitation of Reuse Patterns

‚ 1st sentence in every paragraph: (*,1)

‚ 2nd to 4th and 6th and 7th sentences in 1st paragraph: (1, [2-4,6,7])

Defaults to (1,1).

The instructional document of Java-I/O 42 hosts an example in which the constants
accepted by the move method are listed as follows:

Though these constants can be used for multiple methods, and have their own descrip-
tions in the class in which they are defined 43, they are listed in the move method descrip-
tion 26 with details describing their behaviour specific to the method. The screenshot of this
list is shown below:

An instance in Python-REGEX instructional documentation contains a list of con-
stants and their descriptions, which are sourced from a list of constants presented in the

53

6.3 Elicitation of Reuse Patterns

reference documentation. The screenshot below has, on the left, a snippet from the list of
constants presented in the HowTo 16, and on the right, the constant description in the library
reference 13.

Input Configuration Options

Intent: To list and briefly describe the input configuration options. For example, structure
of the regular expression language in REGEX, or structure of URLs.
Structure: Extract description of input configuration options from list in API reference
documentation.
Parameters:

1. input_list: list of input configurations for which this structure is to be applied. De-
faults to * (all input configurations in file).

2. extractions: set of sentences to be extracted from the constant description in the form
of (paragraph, sentence) where ‘*’ defines ‘all’ and ‘[]’ defines an inclusive range.
For e.g.:

‚ 1st sentence in 1st paragraph: (1,1)

‚ 1st sentence in every paragraph: (*,1)

‚ 2nd to 4th and 6th and 7th sentences in 1st paragraph: (1, ([2-4],6,7))

Defaults to (1,1).

54

6.3 Elicitation of Reuse Patterns

The following figure contains, on the left, the list of input configuration options in
Python-REGEX instructional documentation 16, of which the description of one option
is highlighted. On the right, the source API reference documentation 13 from which the
sentence can be reused has been highlighted.

6.3.1 Instances of Reuse Patterns

The instances of occurrence of the reuse patterns are summarized in Table 6.2. Java
-REGEX and Java-I/O instructional documentation are the only two documentations
which contain at least one instance of each pattern. Our characterizations of the pattern
provide flexibility to accommodate instances which vary only slightly in terms of intention
and content in the structure. To illustrate this tolerance, we take an example of variation
in the instances of Method Description below, however this is applicable to all the four
patterns elicited.

We noticed that five instances of the Method Description pattern in Java-I/O are not
accompanied by descriptions. This phenomenon is common for other instances of Method

Description in the same document as well as other documents. In fact, three of these in-
stances describe the functionality of these methods in a sentence following the list. This is
done especially in cases where the listed methods have similar functionality, differing only
by the input parameters. The screenshot below shows one such instance 31.

55

6.3 Elicitation of Reuse Patterns

On the other hand, the instructional documentation of Python seems a lot less influ-
enced by the original API reference documentation. Python-URL and Python-I/O

show no instances of any of the patterns. Python-REGEX is an exception where there
exist clear indications of reference API being explicitly embedded into the instructional
documentation 16, like below:

In the other two topics, references to methods are more often made in-line as follows:

56

6.3 Elicitation of Reuse Patterns

Table 6.2: Instances of Information Reuse Patterns Observed

Pattern Topic Language Cases Found

Instances Sentences

Class Description REGEX Java 2 4
Python 0 0

URL Java 0 0
Python 0 0

I/O Java 1 11
Python 0 0

Method Description REGEX Java 8 41
Python 2 7

URL Java 1 11
Python 0 0

I/O Java 10 35
Python 0 0

Constant Description REGEX Java 1 35
Python 1 24

URL Java 0 0
Python 0 0

I/O Java 5 39
Python 0 0

Input Configuration Options REGEX Java 2 6
Python 3 42

URL Java 0 0
Python 0 0

I/O Java 2 6
Python 0 0

57

6.3 Elicitation of Reuse Patterns

6.3.2 Discussion on Reuse Patterns

Some equivalent sentences in the instructional documentation are not covered by our pro-
posed reuse patterns as listed in Table 6.3. In such cases, the individual sentences exist
in sections regarding API sub-topics, usage or use-cases with examples. Such sections are
generally narrative in style, and therefore difficult to break into fine-grained text structures
(e.g. lists and tables). The matched sentences in the API reference documentation, too, are
at arbitrary locations. This makes it difficult to formalize intent and a structure, and thereby
generalize the sentence reuse as patterns.

% (#) REGEX URL I/O

Match Type Java Python Java Python Java Python

Exact 0% (0) 0% (0) - 100% (1) 100% (1) -
Manipulated 13% (2) 22% (2) 100% (2) - 22% (6) -
Replaceable 75% (15) 37% (12) 45% (9) 100% (10) 62% (66) 100% (12)

Table 6.3: Distribution of sentences in instructional documentation not belonging to any
instances of any information reuse patterns. Each cell contains the the percentage with
respect to the total sentences with that match type in that documentation and in parentheses,
the absolute count. Hyphens (-) indicate there are no sentences at all for the match in the
documentation.

We observed similarity to the pattern Input Configuration Options in Java-URL in-
structional documentation, however the structure is slightly different than other instances
of this pattern. The API documentation of REGEX, in both Java and Python, summarizes
input configuration options (comprising of REGEX language syntax), but the URL API doc-
umentation does not describe web URL syntax. Instead, for this instance, the configuration
information is present within the class description. Similarly, a list of input configuration
options describing the glob syntax in Java-IO can be sourced from the method descrip-
tion of getPathMatcher. However this source is simply a bullet point list and is difficult
to extract particular configuration options from. Therefore, applying the Input Configura-

tion Options in these scenarios would be unsuccessful because of the lack of a structured
source.

Similarly, Python-URL contains another potential pattern instance. We observed fif-
teen sentences in instructional documentation related to API contained within a list of

58

6.4 Characterization of Pattern Instances

classes in a module and their descriptions. Though it may seem that this could be an in-
stance of the Class Description pattern, we discovered that most of these instructional doc-
umentation sentences describe the behaviour or usage of the class and do not have matches
in the API documentation. Sentences that have matches are mainly regarding methods or
attributes of the class and are rephrased. As a result, proposing a reuse pattern is difficult
for these set of sentences. Further, the sections describing the purpose and functionality of
API components (for e.g., Openers and Handlers 17) are riddled with no matches as well
as rephrased and inferred matches based on leading sentences of class and method de-
scriptions. Given that these matches are largely unsystematic and inconsistent, developing
a reuse pattern would be challenging in this case.

6.4 Characterization of Pattern Instances

We analysed the extent to which each instance of each pattern could be automated using
the pattern parameters. We found that instances in Java-REGEX are systematic in nature,
whereas in Python-REGEX, they are all opportunistic. URL and I/O, contain oppor-

tunistic instances, irrespective of the programming language.

An interesting observation regarding the pattern instances in the instructional docu-
mentation is that the intentions vary greatly even within a documentation. For example,
Java-REGEX contains eight instances of the pattern Method Description, but the inten-
tions vary including a catalog of methods in a class, catalog of methods with comparable
behavior to those in a different class and catalog of methods with the same input type, to
name a few. As a result, the decision of which methods compose the catalog require human
involvement. The one instance of Constant Description in this documentation introduces
the catalog of constants accepted by a method with the following two sentences:

The Pattern class defines an alternate compile method that accepts a
set of flags affecting the way the pattern is matched. The flags param-
eter is a bit mask that may include any of the following public static
fields: 20

However, upon inspection, we discovered that this list is missing the

59

6.5 Automatability of Patterns

UNICODE_CHARACTER_CLASS field which was added in Java 7. All the other fields,
were available before this version as well. We can not assume that this exclusion is inten-
tional or unintentional.

To assist authors in the instructional documentation creation process, we propose using
the provided parameters to support the automated implementation of the reuse patterns.
Having the parameters as input to our patterns gives the authors the freedom to decide
which class, method, constant or input configurations to extract. We expect to build a tool
that allows writers to choose a pattern and simply fill in the desired values for the parame-
ters to ultimately generate a desired template for the instructional documentation as a base
for the document. This would greatly reduce the amount of time and effort spent by authors
to discover and retrieve the information they need from API reference documentation, and
then copy and paste this to the instructional documentation. In addition, such a tool would
ensure consistency between the information provided in both documentation types during
their creation. Further, this would promote the development of standards for documentation
reuse across software programming languages and different API topics, aiding readability
for users as they learn new languages.

6.5 Automatability of Patterns

Table 6.4 describes the impact upon automation of information reuse using the patterns on
the current pattern instances. Generally, equivalent matches are retained and non-equivalent,
no matches and sentences not related to API are lost upon automation. However, two ex-
ceptions to this case arise. One method description instance in Java-I/O contains a no

match sentence because the API reference description is inadequate (see Section 6.2.5).
Upon automation, it would be replaced by this inadequate sentence. Similarly, in the same
documentation, an instance of Constant Description contains the following sentence anno-
tated as not related to API because it describes a specific example:

The expression “a\u030A”, for example, will match the string “\u00E5”
when this flag is specified. 20

The description of the constant referred to, CANON_EQ, in the API reference documenta-

60

6.5 Automatability of Patterns

tion contains this exact sentence. Hence, upon automation, this sentence will be reproduced
from its source in the reference documentation.

In general, the documentations containing systematic use of the patterns are least ef-
fected by the automation. For instances of all patterns except Constant Description in
Java-REGEX, there would be no loss of information. For the instances of Constant De-

scription, only one sentence not related to API would be lost.

Opportunistic instances, however, are prone to greater modification. For example, au-
tomation of the instance of the Constant Description pattern in Python-REGEX, would
result in the loss of ten sentences. The instances of Input Configuration Options in Python
-REGEX instructional documentation will be the most impacted, with 28 sentences being
lost in total.

Our proposed automation does not mean to replace the role of a human documentation
writer, but to provide them the organized content as a starting point in instructional doc-
umentation creation. The “lost” sentences can be incorporated back into the instructional
documentation by the writers after the automatic application of the patterns.

Bloating, i.e., the increase of instructional documentation size, is a potential concern if a
proportionally large number of sentences are added to the documentation upon automation.
However apart from the instances of Method Description in Java-REGEX, the proportion
of sentences added to sentences lost is lesser than one. This means that for most pattern
instances, the number of sentences will not increase drastically upon automation.

61

6.5 Automatability of Patterns

Table 6.4: Impact on Automation of Information Reuse Patterns for Existing Instances.

Pattern Topic Language Use Type Retained Lost Added

Equivalent
Sentences

Non-equivalent
Sentences No Match Not API

related
#

Sentences

Class REGEX Java Systematic 4 0 0 0 0
Description Python - - - - - -

URL Java - - - - - -
Python - - - - - -

I/O Java Opportunistic 9 1 0 1 0
Python - - - - - -

Method REGEX Java Systematic 41 0 0 0 11
Description Python Opportunistic 7 0 0 0 5

URL Java Opportunistic 11 0 0 0 2
Python - - - - - -

I/O Java Opportunistic 24 6 2 1 1
Python - - - - - -

Constant REGEX Java Systematic 34 0 0 1 0
Description Python Opportunistic 15 1 3 7 10

URL Java - - - - - -
Python - - - - - -

I/O Java Opportunistic 23 12 4 0 7
Python - - - - - -

Input REGEX Java Systematic 6 0 0 0 0
Configuration Python Opportunistic 14 13 3 12 -
Options

URL Java - - - - - -
Python - - - - - -

I/O Java Opportunistic 4 2 0 0 2
Python - - - - - -

62

7
Conclusion

Our case study on the instructional documentation of REGEX, URL and I/O in Java and
Python revealed that there exists patterns of reusing information from reference documen-
tation. We found that between 45-76% of instructional documentation was related to API.
We further mapped sentences in the instructional documentation to their possible source,
i.e. the API reference documentation. As a result of this process, we identified six types of
sentence matches, namely exact, manipulated, rephrased, partial, inferred and no match.
The percentage of occurrence of these match types varies between Java and Python as
well as among the API topics, but reveal interesting observations such as the existence of
redundancies and inconsistencies in information. We also discovered that the most com-
mon reasons for no matches are because they describe the underlying topic, usage, internal

working, or behaviour information. We found a total of 38 instances of documentation
reuse that follow certain patterns. We categorized these patterns into four types based on
their purpose and structure, i.e. sentences from the Class Description, Method Description,
Constant Description or Input Configuration Options. We also measured the impact on
the existing instructional documentation if these patterns were to be applied automatically
using a set of proposed parameters. In general, the automation of the systematic pattern
instances, i.e. ones in which the pattern is consistently used, tends to involve less change in
documentation as opposed to opportunistic, less consistent instances.

This work provides insight into how information is and can be reused across docu-
mentation types. It is inclined towards promoting consistent information across different

63

Conclusion

documentation types of software development tools. Additionally, it intends to support the
automation of documentation reuse to reduce the time and effort taken by documentation
authors. We performed our exploratory study on Java and Python to campaign towards gen-
eralizability across different software programming languages and their APIs. This would
allow both readers and authors to move between different languages and their documenta-
tions with greater ease. While prior work has focused on different aspects of documenta-
tion duplication detection and its removal, we hope to instead provide the foundation for a
deeper understanding of documentation reuse and its support.

As the first step towards a better understanding of current documentation and the rela-
tionship between different documentation types in terms of information reuse, a number of
future avenues unfold.

Wider exploratory analysis into the different match types could reveal further interest-
ing and useful characteristics. Some characteristics like redundancies and inconsistencies
could be used to alert documentation creators of the unintentional properties that arise,
as well as to point out favorable text structures. This could help bridge the gap between
documentation and the information needs of readers. Further, we leave the analysis of the
inferred matches to future work with the intention of involving multiple annotators of dif-
ferent expertise levels in order to annotate the inferential ability of instructional documen-
tation sentences from API reference sentences.

Our work studied the number of sentences impacted in the instructional documenta-
tion if the reuse patterns were to be incorporated automatically. However understanding
the outcome of automation at the document level, such as the impact on the size and co-
herence of the documentation as a whole, would provide greater insight and motivation for
automation.

We aim to pursue a documentation creation aide tool to formalize the reuse patterns
elicited in this work as well as new patterns that may be observed. Such a tool would miti-
gate the effort put in by authors in the documentation creation process, potentially improve
the quality of the documentation and provide familiarity when reading documentation of
different APIs in different programming languages.

64

References

Below is the list of web URLs referenced in this thesis. In the case of snippets of docu-
mentation used as examples, the corresponding URL defines the particular file in which the
example text can be found.

1 docs.oracle.com/javase/8/docs/

2 docs.python.org/3/

3 docs.oracle.com/javase/8/docs/api/java/util/regex/package-summary.html

4 www.stackoverflow.com

5 docs.oracle.com/javase/8/docs/api/java/net/ServerSocket.html

6 docs.python.org/3/library/socket.html

7 docs.oracle.com/javase/8/docs/api/java/util/regex/package-summary.html

8 docs.oracle.com/javase/8/docs/api/java/net/package-summary.html

9 docs.oracle.com/javase/8/docs/api/java/nio/file/package-summary.html

10 docs.oracle.com/javase/tutorial/essential/regex/

11 docs.oracle.com/javase/tutorial/networking/urls/index.html

12 docs.oracle.com/javase/tutorial/essential/io/fileio.html

13 docs.python.org/3/library/re.html

14 docs.python.org/3/library/urllib.html

15 docs.python.org/3/library/functions.html

16 docs.python.org/3/howto/regex.html

17 docs.python.org/3/howto/urllib2.html

18 docs.python.org/3/tutorial/inputoutput.html

65

https://docs.oracle.com/javase/8/docs/
https://docs.python.org/3/
https://docs.oracle.com/javase/8/docs/api/java/util/regex/package-summary.html
https://www.stackoverflow.com
https://docs.oracle.com/javase/8/docs/api/java/net/ServerSocket.html
https://docs.python.org/3/library/socket.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/net/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/package-summary.html
https://docs.oracle.com/javase/tutorial/essential/regex/
https://docs.oracle.com/javase/tutorial/networking/urls/index.html
https://docs.oracle.com/javase/tutorial/essential/io/fileio.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/urllib.html
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/howto/regex.html
https://docs.python.org/3/howto/urllib2.html
https://docs.python.org/3/tutorial/inputoutput.html

REFERENCES

19 docs.oracle.com/javase/tutorial/essential/io/fileAttr.html

20 docs.oracle.com/javase/tutorial/essential/regex/pattern.html

21 docs.oracle.com/javase/tutorial/essential/regex/intro.html

22 docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

23 docs.python.org/3/library/urllib.request.html

24 docs.oracle.com/javase/tutorial/essential/regex/matcher.html

25 docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html

26 docs.oracle.com/javase/8/docs/api/java/nio/file/Files.html

27 docs.oracle.com/javase/tutorial/networking/urls/creatingUrls.html

28 docs.oracle.com/javase/8/docs/api/java/net/URL.html

29 docs.oracle.com/javase/tutorial/essential/io/rafs.html

30 docs.oracle.com/javase/8/docs/api/java/nio/channels/SeekableByteChannel.html

31 docs.oracle.com/javase/tutorial/essential/io/file.html

32 docs.python.org/3/library/json.html

33 docs.oracle.com/javase/tutorial/networking/urls/readingURL.html

34 docs.oracle.com/javase/tutorial/essential/io/pathOps.html

35 docs.oracle.com/javase/tutorial/essential/regex/unicode.html

36 docs.oracle.com/javase/tutorial/essential/io/pathClass.html

37 docs.oracle.com/javase/tutorial/essential/io/walk.html

38 docs.oracle.com/javase/8/docs/api/java/nio/file/FileVisitor.html

39 docs.oracle.com/javase/8/docs/api/java/nio/file/attribute/BasicFileAttributeView.html

40 docs.oracle.com/javase/8/docs/api/java/nio/file/attribute/AclFileAttributeView.html

41 docs.oracle.com/javase/tutorial/networking/urls/urlInfo.html

42 docs.oracle.com/javase/tutorial/essential/io/move.html

43 docs.oracle.com/javase/8/docs/api/java/nio/file/StandardCopyOption.html

44 nltk.org

66

https://docs.oracle.com/javase/tutorial/essential/io/fileAttr.html
https://docs.oracle.com/javase/tutorial/essential/regex/pattern.html
https://docs.oracle.com/javase/tutorial/essential/regex/intro.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
https://docs.python.org/3/library/urllib.request.html
https://docs.oracle.com/javase/tutorial/essential/regex/matcher.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Files.html
https://docs.oracle.com/javase/tutorial/networking/urls/creatingUrls.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/tutorial/essential/io/rafs.html
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/SeekableByteChannel.html
https://docs.oracle.com/javase/tutorial/essential/io/file.html
https://docs.python.org/3/library/json.html
https://docs.oracle.com/javase/tutorial/networking/urls/readingURL.html
https://docs.oracle.com/javase/tutorial/essential/io/pathOps.html
https://docs.oracle.com/javase/tutorial/essential/regex/unicode.html
https://docs.oracle.com/javase/tutorial/essential/io/pathClass.html
https://docs.oracle.com/javase/tutorial/essential/io/walk.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/FileVisitor.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/attribute/BasicFileAttributeView.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/attribute/AclFileAttributeView.html
https://docs.oracle.com/javase/tutorial/networking/urls/urlInfo.html
https://docs.oracle.com/javase/tutorial/essential/io/move.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/StandardCopyOption.html
https://www.nltk.org/

REFERENCES

45 spacy.io

46 docs.oracle.com/javase/tutorial/essential/regex/groups.html

47 devguide.python.org/documenting

48 docs.oracle.com/javase/tutorial/essential/io/formatting.html

49 docs.oracle.com/javase/8/docs/api/java/nio/file/FileVisitResult.html

67

https://spacy.io/
https://docs.oracle.com/javase/tutorial/essential/regex/groups.html
https://devguide.python.org/documenting/
https://docs.oracle.com/javase/tutorial/essential/io/formatting.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/FileVisitResult.html

Bibliography

[1] Palakorn Achananuparp, Xiaohua Hu, and Xiajiong Shen. The Evaluation of Sen-
tence Similarity Measures. In Proceedings of the International Conference on Data

Warehousing and Knowledge Discovery, pages 305–316, 2008.

[2] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez,
Laura Moreno, Gabriele Bavota, and Michele Lanza. Software Documentation Issues
Unveiled. In Proceedings of the 41st International Conference on Software Engineer-

ing, pages 1199–1210, 2019.

[3] Ademar Aguiar and Gabriel David. Patterns for Documenting Frameworks–Part I.
Proceedings of VikingPLoP, 2005.

[4] Ademar Aguiar and Gabriel David. Patterns for Documenting Frameworks: Cus-
tomization. In Proceedings of the Conference on Pattern Languages of Programs,
page 16, 2006.

[5] Ademar Aguiar and Gabriel David. Patterns for Effectively Documenting Frame-
works. In Transactions on Pattern Languages of Programming II, pages 79–124.
2011.

[6] Christopher Alexander. A Pattern Language: Towns, Buildings, Construction. Oxford
University Press, 1977.

[7] Gianni Angelini. Current Practices in Web API Documentation. In European Aca-

demic Colloquium on Technical Communication, page 70, 2018.

[8] Greg Butler, Peter Grogono, and Ferhat Khendek. A Reuse Case Perspective on Doc-
umenting Frameworks. In Proceedings of Asia Pacific Software Engineering Confer-

ence, pages 94–101, 1998.

68

BIBLIOGRAPHY

[9] Gregory Butler, Rudolf K. Keller, and Hafedh Mili. A Framework for Framework
Documentation. ACM Computing Surveys, 2000.

[10] Barthélémy Dagenais and Martin P. Robillard. Creating and Evolving Developer Doc-
umentation: Understanding the Decisions of Open Source Contributors. In Proceed-

ings of the 18th ACM SIGSOFT International Symposium on Foundations of Software

Engineering, pages 127–136, 2010.

[11] Uri Dekel and James D Herbsleb. Improving API Documentation Usability with
Knowledge Pushing. In Proceedings of the 31st International Conference on Software

Engineering, pages 320–330, 2009.

[12] Joseph L Fleiss. Measuring Nominal Scale Agreement Among Many Raters. In
Psychological Bulletin, volume 76, page 378, 1971.

[13] Andrew Forward and Timothy C Lethbridge. The Relevance of Software Documen-
tation, Tools and Technologies: A Survey. In Proceedings of the ACM Symposium on

Document Engineering, pages 26–33, 2002.

[14] Adam Fourney and Michael Terry. Mining Online Software Tutorials: Challenges
and Open Problems. In Proceedings of Extended Abstracts on Human Factors in

Computing Systems, pages 653–664, 2014.

[15] Golara Garousi, Vahid Garousi, Mahmoud Moussavi, Guenther Ruhe, and Brian
Smith. Evaluating Usage and Quality of Technical Software Documentation: An Em-
pirical Study. In Proceedings of the 17th International Conference on Evaluation and

Assessment in Software Engineering, pages 24–35, 2013.

[16] He Jiang, Jingxuan Zhang, Zhilei Ren, and Tao Zhang. An Unsupervised Approach
for Discovering Relevant Tutorial Fragments for APIs. In Proceedings of the 39th

International Conference on Software Engineering, pages 38–48, 2017.

[17] Ralph E Johnson. Documenting Frameworks Using Patterns. In Proceedings of

Object-oriented Programming, Systems, Languages, and Applications, volume 92,
pages 63–76, 1992.

69

BIBLIOGRAPHY

[18] Dmitrij Koznov, Dmitry Luciv, Hamid Abdul Basit, Ouh Eng Lieh, and Mikhail
Smirnov. Clone Detection in Reuse of Software Technical Documentation. In Pro-

ceedings of International Andrei Ershov Memorial Conference on Perspectives of Sys-

tem Informatics, pages 170–185, 2015.

[19] D.V. Koznov, D.V. Luciv, and G.A. Chernishev. Duplicate Management in Software
Documentation Maintenance. In Proceedings of the 5th International Conference on

Actual Problems of System and Software Engineering. CEUR Workshops proceedings,
volume 1989, pages 195–201, 2017.

[20] Douglas Kramer. API Documentation from Source Code Comments: A Case Study
of Javadoc. In Proceedings of the 17th Annual International Conference on Computer

Documentation, pages 147–153, 1999.

[21] Klaus Krippendorff. Content Analysis: An Introduction to its Methodology. Sage
Publications, 2018.

[22] D.V. Luciv, D.V. Koznov, H.A. Basit, and A.N. Terekhov. On Fuzzy Repetitions
Detection in Documentation Reuse. In Programming and Computer Software, vol-
ume 42, pages 216–224, 2016.

[23] D.V. Luciv, D.V. Koznov, G.A. Chernishev, A.N. Terekhov, K. Yu. Romanovsky, and
D.A. Grigoriev. Detecting Near Duplicates in Software Documentation. In Program-

ming and Computer Software, volume 44, pages 335–343, 2018.

[24] Walid Maalej and Martin P. Robillard. Patterns of Knowledge in API Reference
Documentation. In IEEE Transactions on Software Engineering, volume 39, pages
1264–1282, 2013.

[25] Michael Meng, Stephanie Steinhardt, and Andreas Schubert. Application Program-
ming Interface Documentation: What do Software Developers Want? In Journal of

Technical Writing and Communication, volume 48, pages 295–330, 2018.

[26] Michael Meng, Stephanie Steinhardt, and Andreas Schubert. How Developers use
API Documentation: An Observation Study. In Communication Design Quarterly

Review, volume 7, pages 40–49, 2019.

70

BIBLIOGRAPHY

[27] Martin Monperrus, Michael Eichberg, Elif Tekes, and Mira Mezini. What Should De-
velopers be Aware of? An Empirical Study on the Directives of API Documentation.
In Empirical Software Engineering, volume 17, pages 703–737, 2012.

[28] Mohamed A Oumaziz, Alan Charpentier, Jean-Rémy Falleri, and Xavier Blanc. Doc-
umentation Reuse: Hot or Not? An Empirical Study. In Proceedings of International

Conference on Software Reuse, pages 12–27, 2017.

[29] Chris Parnin and Christoph Treude. Measuring API Documentation on the Web. In
Proceedings of the 2nd International Workshop on Web 2.0 for Software Engineering,
pages 25–30, 2011.

[30] Vir Phoha. A Standard for Software Documentation. In Computer, volume 30, pages
97–98, 1997.

[31] Jitendra Rama Aswadh Josyula and Soma Sekhara Sarat Chandra Panamgipalli. Iden-

tifying the Information Needs and Sources of Software Practitioners: A Mixed Method

Approach. Master’s thesis, 2016.

[32] R. Ries. IEEE Standard for Software User Documentation. In International Confer-

ence on Professional Communication, Communication Across the Sea: North Ameri-

can and European Practices, pages 66–68, 1990.

[33] Martin P. Robillard. What Makes APIs Hard to Learn? Answers from Developers. In
IEEE software, volume 26, pages 27–34, 2009.

[34] Martin P. Robillard and Robert Deline. A Field Study of API Learning Obstacles. In
Empirical Software Engineering, volume 16, pages 703–732, 2011.

[35] Per Runeson, Martin Host, Austen Rainer, and Bjorn Regnell. Case Study Research

in Software Engineering: Guidelines and Examples. John Wiley & Sons, 2012.

[36] Chandan R Rupakheti. A Critic for API Client Code using Symbolic Execution. PhD
thesis, Clarkson University, 2012.

[37] Ian Sommerville. Software Documentation. In Software Engineering, volume 2,
pages 143–154, 2001.

71

BIBLIOGRAPHY

[38] Christoph Treude and Martin P. Robillard. Augmenting API Documentation with
Insights from Stack Overflow. In Proceedings of 38th International Conference on

Software Engineering, pages 392–403, 2016.

[39] Christoph Treude, Martin P. Robillard, and Barthélémy Dagenais. Extracting De-
velopment Tasks to Navigate Software Documentation. In IEEE Transactions on

Software Engineering, volume 41, pages 565–581, 2014.

[40] Gias Uddin and Martin P. Robillard. How API Documentation Fails. In IEEE Soft-

ware, volume 32, pages 68–75, 2015.

[41] Robert Watson, Mark Stamnes, Jacob Jeannot-Schroeder, and Jan H Spyridakis. API
Documentation and Software Community Values: A Survey of Open-source API Doc-
umentation. In Proceedings of the 31st ACM International Conference on Design of

Communication, pages 165–174, 2013.

[42] Robert B Watson. Development and Application of a Heuristic to Assess Trends in
API Documentation. In Proceedings of the 30th ACM International Conference on

Design of Communication, pages 295–302, 2012.

[43] Sven Wildermann. Messung der Informationstypen-Häufigkeiten in der Python-

Dokumentation. Bachelor’s thesis, 2014.

[44] Hao Zhong, Lu Zhang, Tao Xie, and Hong Mei. Inferring Resource Specifications
from Natural Language API Documentation. In Proceedings of the International

Conference on Automated Software Engineering, pages 307–318, 2009.

72

Appendix

A Issues in Preprocessing

A few of the issues faced during preprocessing of the data are presented below:

‚ Though all the files are in HTML format, the structure of the HTML vary across the
two development tools.

‚ Items in unordered and ordered lists do not always contain punctuation to indicate the
end of a sentence. In some scenarios, list items remain incomplete, with the following
item continuing the previous item with connectors such as or ... or and Hence,
it was difficult to decide whether list items were to be merged or to be treated as
individual sentences.

‚ When sentences contain ‘For e.g. X’, if split on typical punctuation such as . (a period
followed by a space), this would be split into two sentences: ‘For e.g.’ and ‘X’.

‚ Sentence tokenizers from natural language libraries such as SpaCy and nltk would
often perform unfavorable sentence splits such as splitting ‘Pattern.CANON_EQ’
into ‘Pattern’, ‘.’ and ‘CANON_EQ’ or splitting .˚r.sp?!bat$qr.s˚$ into .˚r.sp?!bat$qr.

and s˚$ respectively. This was problematic as key characters, such as those in regular
expressions, would be treated as natural language punctuation, incorrectly.

B Preprocessing Steps

In general, the following rules and preprocessing techniques for sentence extraction were
adhered to:

‚ Remove HTML tags script, style, table

‚ Insert a comma after the tokens ‘e.g.’ and ‘i.e.’

73

APPENDIX

‚ Insert a comma after the token ‘etc.’ if the word following this one began with a
lower case alphabet.

‚ Replace multiple adjacent commas (occurring as a result of previous preprocessing
steps) with a single comma.

‚ Replace newlines with spaces

‚ Replace multiple adjacent spaces with a single space

‚ Replace multiple adjacent periods (...) with a single period (.)

‚ In general, blockquotes, code blocks, images and the equivalents across the files were
replaced by a single token BLOCKQUOTE, CODE and IMAGE respectively. These
blocks were identified as being of a specific HTML tag type or having a specific
HTML class.

‚ If a list item did not end in a period, the following item would be concatenated to the
previous, separated by a semicolon.

‚ Finally, split on on a period followed by a space (‘. ’) and an exclamation followed
by a space (‘! ’) to produce individual sentences

It is important to note here that inline HTML code tags in the sentence (inline and hence,
did not involve line breaks) were maintained as is. Usually such pieces were names of the
library or method being described. For example, ’The java.util.regex package primarily
consists of three classes: Pattern, Matcher, and PatternSyntaxException.‘.

C List of Unique Source and Destination Contexts

Below is the lists of source and destination contexts annotated using open-coding as the
structure in which a sentence lies in the source API reference documentation or the desti-
nation instructional documentation.

C.1 Contexts for API Reference Documentation Sentences

These context values refer to the sentence context largely in terms of position in the API
reference documentation and the extent that has been copied to the instructional documen-
tation. The following are the unique contexts annotated for matched sentences in the API

74

APPENDIX

reference documentation of REGEX, URL and I/O in Java and Python.

‚ Sentence in language guide

‚ Definition fragment from leading sentence in class

‚ Topic/Concept description

‚ Catalog of input configuration options

‚ Leading sentence in module/package description

‚ Sentence in module/package description

‚ Leading sentence in class description

‚ Sentence in class description

‚ Leading sentence in constant description

‚ Sentence in constant description

‚ Entire constant description

‚ Method definition

‚ Leading sentence in method description

‚ Sentence in method description

‚ Leading paragraph of method description

‚ 2nd paragraph of method description

‚ Parameters: in method description

‚ Returns: in method description

‚ Entire method description

‚ Elaboration of examples of two methods with similar functionality

‚ Comparison with other language

‚ Notes and Warnings

C.2 Contexts for Instructional Documentation Sentences

These context values refer to the sentence context largely in terms of the structure in which
the sentence lies in the instructional documentation. The following are the unique contexts

75

APPENDIX

annotated for matched sentences in the instructional documentation of the REGEX, URL
and I/O in Java and Python.

‚ Introduction

‚ API topic representation

‚ Input configuration options

‚ Class introduction and description

‚ Catalog of classes in package/module

‚ Inline/embedded method reference documentation

‚ Catalog of class methods

‚ Catalog with methods of related functionality

‚ Catalog with methods of different API related to this one

‚ Catalog with methods with same parameters (based on same concept)

‚ Catalog of “other useful” methods

‚ Catalog of constants

‚ Topic with examples

‚ Usage with examples

‚ Use-case and solution

‚ Limitations and deprecation information

‚ Notes and Warnings

76

	Introduction
	Contributions
	Thesis Organization

	Background and Related Work
	Background
	Related Work
	Types of Documentation
	Evaluation of Documentation
	User Needs and Wants of Documentation
	Assisting Developers and Improving Documentation
	Patterns for Documentation

	Overview of Research Method
	Dataset Preparation
	Data Collection
	Data Preprocessing
	Sentence Extraction

	Data Analysis
	Analysis of Sentence Matches
	Characterization of Matches
	Elicitation of Reuse Patterns
	Characterization of Pattern Instances
	Automatability of Patterns

	Results and Observations
	Matched Sentences in Documentation Types
	Characteristics of Matches
	Replaceable and Non-replaceable Rephrased Sentences
	Positional Distribution of Different Match Types
	Redundancies
	Information Inconsistencies
	Reasoning for No Matches

	Elicitation of Reuse Patterns
	Instances of Reuse Patterns
	Discussion on Reuse Patterns

	Characterization of Pattern Instances
	Automatability of Patterns

	Conclusion
	References
	Bibliography
	Appendix
	Issues in Preprocessing
	Preprocessing Steps
	List of Unique Source and Destination Contexts
	Contexts for API Reference Documentation Sentences
	Contexts for Instructional Documentation Sentences

