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Abstract

Developers invest a large portion of their development time exploring program
source code to find task-related code elements and to understand the context of their
task. The task context is usually not recorded at the end of the task and is forgotten
over time. Similarly, it is not possible to share the task context with other developers
working on related tasks. Proposed solutions to automatically record the summary of
the code investigation suffer from methodological limitations related to the techniques
and the data sources used to generate the summary as well as the granularity at which
it is generated.

To overcome these limitations, we investigate the use of machine learning tech-
niques, in particular decision tree learning, to predict automatically the task context
from session navigation transcripts obtained from developers performing tasks on the
source code. We conducted a user study to collect navigation transcripts from de-
velopers engaged in source code exploration tasks. We used the data from the user
study to train and test decision tree classifiers. We compared the decision tree algo-
rithm with two existing approaches, and found that it compares positively in most
cases. Additionally, we developed an Eclipse plug-in that generates automatically a
developer session summary using the decision tree classifier learned from the data
collected during the user study. We provide qualitative analysis of the effectiveness

of this plug-in.



Résumé

Les développeurs de logiciels investissent une grande partie de leur temps a ex-
plorer le code source pour trouver des éléments du code reliés a leurs taches, et aussi
pour mieux comprendre le contexte de leur tache. Le contexte de leur tache n’est
généralement pas enregistrée a la fin de leur séance d’exploration de code et est oublié
au fil du temps. De méme, il n’est pas possible de partager le contexte de leur tache
avec d’autres développeurs travaillant sur des taches reliées. Les solutions proposées
pour enregistrer automatiquement le résumé de leur exploration du code souffrent de
limitations méthodologiques liées aux techniques et aux sources de données utilisées
pour générer le résumé, ainsi qu’a la granularité a laquelle il est généré.

Pour surmonter ces limitations, nous étudions I'emploi de techniques d’appren-
tissage machine, en particulier 'arbre de décision d’apprentissage, pour prévoir au-
tomatiquement le contexte de la tache a partir des transcriptes de navigation d’une
session d’exploration de code du développeur. Nous avons effectué une étude de cas
afin de recueillir des transcriptions de navigation générés par des développeurs lors de
I’exploration du code source. Nous avons utilisé les données de cette étude pour tester
les classifications de I'arbre de décision. Nous avons comparé 1'algorithme a arbre a
décision avec deux approches existantes, et avons démontré que cette nouvelle ap-
proche se compare favorablement dans la plupart des cas. Additionnellement, nous
avons développé un plug-in Eclipse qui génere automatiquement un résumé d’une
session d’exploration de code par le développeur. Ce plug-in utilise un “classificateur
arbre de décision” généré a partir des données collectées au cours de 1'étude de cas.

Nous fournissons une analyse qualitative de 'efficacité de ce plug-in.
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Chapter 1

Introduction

1.1 Motivation

During the development and maintenance of software projects, developers are respon-
sible for making changes to the source code. These changes are typically to add new
features, enhance existing features, re-factor code, or fix bugs. Making changes in
the software requires knowledge of the code layout, modularization and the interac-
tions between the different program elements implementing a feature or a concern
(e.g., “undo” feature in text editors, a logging facility in web servers, etc.). Hence-
forth, we use the terms features and concerns interchangeably. Often the source code
changes required for a task are themselves spread across program element boundaries
(methods, classes and even packages) affecting a cross-section of the code [6].

If developers are unfamiliar with the program source code, they have to learn its
layout and structure before the changes can be made. Developers typically search
through the source code, using their intuition and experience to locate the code
elements relevant to the change task and understand their interactions [22]. This
set of elements relevant to the change task is called the task context [12]. The task
context includes the program elements which do not necessarily change but whose
understanding is important to performing the task. Developers continue exploring

the code until they are satisfied with their understanding of the context.



After completing the task, developers typically commit the changes to a source
code repository, and move on to the next task. Only a subset of the task context, i.e.,
the changed code elements, are recorded in the repository and can be retrieved later.
The knowledge gained about the related but unchanged elements in the task context
is not tracked. Over time, the developers’ understanding of the context decays as the
specifics of the relevant code elements and their interactions are forgotten.

In the future, when developers are required to work on the same or related concern,
they have to go again through the process of code exploration to recall the task
context. Similarly, if a different developer is assigned to perform a related change
task, they will have to spend time to discover the relevant code elements all over
again. This repetitive exploration of code for discovering the same elements is a
waste of valuable developer resources. A study by Ko et al. found that developers
engaged in maintenance tasks spent on average 35% of time navigating dependencies
in source code [9].

In order to alleviate the problem of repetitive exploration of source code to discover
the task context, it would help if there was a way to automatically discover not only
the changed elements but also the unchanged elements belonging to the task context.
The task context, when persisted, can help the developers refresh their knowledge
about the task when revisiting it later. The task context can also be used to familiarize
new developers with the code associated with the same or related programming tasks.

Since the developer navigates through the elements belonging to the task context
while performing the task, we believe that the data necessary to find the task context
is encoded in the developer’s interaction with the source code, as well as the latent
structure of the source code. By observing the developer navigation traces and the
source code itself, it should be possible to discover the subset of navigated elements
that are the essence of the source code exploration, i.e., the task context. A developer
navigation trace is the list of all the program elements touched by the developer in
the course of performing a task. The navigation trace is henceforth referred to as the
navigation transcript or transcript.

Developers vary in their approach to code exploration and performing change

tasks. This introduces variance in the composition of task context. But a technique



using navigation transcripts for task context inference should be able to perform
well under these conditions since developer variances will also be reflected in the
transcripts.

It is usually easy for a developer to examine a program element and determine its
membership in the task context. But there is no simple characterization of elements
that belong to the task context. A developer will not be able to provide concise
criteria to determine task context membership of program elements. In addition, any
such criteria will vary between different developers and tasks.

Without a well defined characterization, it is difficult to develop algorithms for
inferring the task context from the navigation transcript that perform well across
different use case scenarios. Proposed solutions to infer task context from the tran-
script [4, 8, 17, 21] use ad-hoc algorithms developed based on the researcher’s intuition
and experience and also on gathered empirical data [15]. In addition, techniques us-
ing indirect artifacts other than navigation traces, such as source version history [27],
developer communication via mailing lists [3], structure of the source code [7, 14, 18],
etc., have also been proposed to help developers find the relevant program elements.

We believe that a developer’s navigation transcript is the primary source of in-
formation about elements belonging to the task context since it contains the subset
of elements in the program source code that the developer has encountered during
the task execution. But the proposed solutions which use navigation transcripts face
certain methodological limitations such as needing large data sets from multiple indi-
viduals [4], using ad-hoc, intuition-based algorithms that require manual fine-tuning
for different usage scenarios [8, 17|, providing information at coarse granularity [21],
etc. We believe that an ideal solution should be able to use the information available
in a developer’s navigation transcript to generate a summary of the session using
automated techniques that do not require manual tuning and provide information at
a granularity that helps developers in tracking and communicating contexts of de-
velopment tasks. In this thesis, we propose an alternative solution with the goal of

satisfying these criteria.



1.2 Contribution

We propose to use machine learning algorithms to summarize the essence of a devel-
oper’s source code exploration. Machine learning is often considered the technique of
choice when solving problems in poorly understood domains, in which there is lack
of knowledge required to develop effective algorithms [11]. Machine learning algo-
rithms strive to learn the characteristics of the solution and can dynamically adapt
to changing conditions. These algorithms analyze the data to find a good solution.
Advantages of using learning algorithms include resistance to noise and variance in
the input data.

In particular, we propose to use a decision tree learning algorithm [13] for inferring
the task context by analyzing developer interactions with the source code, i.e., the
navigation transcript. Decision tree learning is a supervised classification algorithm;
it uses labeled training data, consisting of a set of attributes and a classification label
as input. The outcome of the learning process is a decision tree classifier which tries
to mimic the characteristics of the training data. The decision tree is then used to
classify program elements in the transcript, as belonging or not to the task context.

In order to obtain training data for the learning algorithm, we conducted a user
study in which we asked developers to identify the program elements in an object
oriented system that are related to the implementation of a high level concern, for
example, the ‘undo’ feature in a text editor. We recorded the developer interactions
with the source code, i.e., the transcript, while they were performing the identification
task.

We used the labelled data to train a decision tree classifier. For the learning
process, we used the state-of-art C4.5 decision tree algorithm as implemented in
Weka [23], a toolkit for machine learning and data mining. The learned decision
tree classifier is evaluated using cross-validation. We also compared the precision and
recall of the classifier to that of an algorithm based purely on the frequency of element
visits, as well as to that of the Nacin algorithm proposed by Robillard et al. [17], which
infers concerns from a program navigation trace. When compared to the frequency

algorithm, the decision tree classifier has better or comparable performance in most



instances. In a few instances, it performed worse. The tree classifier performs better
than all the configurations of the Nacin algorithm.

We developed an Eclipse plug-in to automate the summarization of the task con-
text and integrate it into the developer work-flow. The plug-in uses the classifier
learned from the training data to classify program elements visited by the developer
in the course of a program exploration or change task. The developer can modify the
list of recommended program elements and save it for future retrieval. We conducted
a qualitative user study to obtain feedback on the plug-in recommendations.

The remaining part of this thesis describes in greater detail the contributions,
methodology, and results of the use of decision tree learning for the analysis of program
navigation data. In Chapter 2, we describe related prior work in navigation analysis,
source code recommendation systems, and a few tools which aid developers in program
navigation. The details of the user study from which we obtained training data are
presented in Chapter 3. In Chapter 4, we describe the processing of the source code
and transcript to derive attributes, and the evaluation of the learned classifier. The
Eclipse plug-in, its usage, and the user feedback from a qualitative study of this tool
are presented in Chapter 5. We conclude with the lessons learned and possible future

directions to explore in Chapter 6.



Chapter 2
Related Work

This thesis is based on the premise that repetitive program exploration to discover
the same set of elements is a waste of developers’ time and that analyzing navigation
traces can provide the necessary insight to eliminate this waste. Here we provide
a brief overview of the research in areas related to our work - empirical studies in
software engineering, analysis of program navigation traces, code browsing tools, and

the use of machine learning techniques in software engineering.

2.1 Empirical Studies

Before building tools for software development, it is important to understand devel-
opers’ behavior, their thought processes while building programs and the patterns
in their work-flow. This understanding will provide insight into how tools can be
integrated with the developers’” work-flow to make them more effective and reduce
resistance to their adoption. Understanding developer behaviour is important to
developing all but the most basic and simple tools. In what follows, we highlight
previous work in the area of empirical studies aimed at understanding of developer
behavior.

In order to understand the factors that generate an effective program investigation
behavior, Robillard et. al conducted an exploratory study of developers engaged in

performing a change task [15]. They performed a qualitative analysis of the source
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code exploration behavior of successful and unsuccessful developers. Developers were
asked to perform a multi-part change task, with time alloted for source code in-
vestigation prior to the actual study. The resulting solution from each developer
was evaluated for success or failure and the developer behavior was analyzed to un-
derstand what methods are used in effective program investigations. Based on the
observation of differences between successful and unsuccessful developers, they con-
clude that a methodical investigation of program source code is more effective than
random browsing in search of the parts related to the change task.

In another study [10], Ko et al. investigated the effect that differences between
individual developers have on the source code investigation of unfamiliar systems.
The subjects involved in the study were subjected to an initial battery of psycholog-
ical tests, given a short introduction to a statistical programming environment and
then required to perform a debugging task. The findings indicate that there were
differences in the strategies of program comprehension among developers of differing
skill levels. In contrast to the findings of the study conducted by Robillard et al. [15],
none of the observed strategies were more effective than the others, and the subjects
with the most domain knowledge were more successful in accomplishing the task. We
believe the findings may be related to the beginner level of the developers involved in
the task and their lack of programming expertise.

Ko et al., in a study of code improvement tasks, set out to discover the types of
tools required by developers engaged in maintenance tasks [9]. Towards this end, they
studied expert Java programmers while performing five maintenance tasks using the
Eclipse IDE. Their findings suggest that the developers’ activities during maintenance
tasks can be grouped into: collecting code elements relevant to the task, navigating
among these code elements and performing the changes required for the task. The
findings of the study indicate that programmers spent 35% of their time navigating
between the dependencies of the elements relevant to the task. Additionally, in their
study they also found that developers spent on average 46% of the time navigating
code elements not related to the task. If the results of the study are representative of
practices at large, then it is necessary to provide developers with tools that support

quick retrieval of task-relevant code.



2.2 Program Navigation Analysis

Researchers have proposed various techniques to analyze developer navigation traces.

Navtracks [21], an Eclipse plug-in, tracks the navigation history of a software
developer. The navigation history is used to form associations between files visited
by the developer, based on the heuristic that files that are part of a navigation cycle
(i.e., a sequence of file navigations which start and end at the same file) are related.
When detecting a cycle, the tool forms an association between the starting file and all
the other files in the cycle. A parameter is used to control the size of the contiguous
window in the navigation history that is examined to detect cycles. Similarly, a
parameter controls the minimum length of the detected cycles. The values of the
parameters are selected in an ad-hoc manner. The developer is presented with a
list of files associated with the currently active file. Although useful in discovering
associations between files other than those imposed by the hierarchy of the source
code organization, the granularity of associations discovered by Navtracks, which is
at the level of files, is too coarse. It leaves to the developer the task of searching
within the suggested files for the related cross-cutting code elements.

Using a more fine grained approach, Robillard et al. present an automatic tech-
nique to infer the important elements (fields and methods) from a program investi-
gation session [17]. Using the developer navigation transcript as input, the algorithm
considers factors such as the order of the elements, their method of access (in editor,
by scrolling, cross-reference, etc.), and the structural relationships between the ex-
amined elements to calculate a suggestion set consisting of methods and fields. The
algorithm uses a set of nine configurable parameters. The parameters provide con-
trol over: 1) the importance of the ordering of the elements in the transcript, 2) the
weights of the elements based on their method of access and, 3) the importance that
two transcript elements are actually related in the program source code. The algo-
rithm calculates a correlation metric which is then used to generate the suggestion
set. The values of the parameters are chosen based on intuition and experimentation.
The authors remark that parameter values need further optimization for different

usage patterns to obtain better results.



Instead of using the developer navigation transcript to discover the task struc-
ture, Zou et al. use the transcript to detect interaction couplings between program
elements [28]. Their approach is based on the hypothesis that if two elements are
frequently examined together while performing a task, then the latent relationship
between them is relevant to the task. The couplings are then mined to detect pat-
terns that help in understanding program maintenance tasks. Zou et al. propose
two patterns that they infer from the interaction couplings, 1) detecting changes to
cloned copy of a source code file, and, 2) changes to interface which subsequently lead
to changes in implementing classes. Based on their analysis of navigation transcripts
and the resulting interaction couplings, Zou et al. suggest that restructuring code is
more costly than any other maintenance task.

Kersten et al., in their tool Mylar [8] (now Mylyn), an Eclipse plug-in, use a
different approach to model the task context. Each program element is assigned
a weight or degree-of-interest, representing the current relative importance of the
element. The degree-of-interest associated with a program element increases every
time the user selects or edits the element. The degree-of-interest associated with an
element decays over time if there is no user interaction with that element. The tool
does not make use of any structural relations between the elements. The degree-
of-interest is used to filter the elements visible to the user. The visible elements
represent the context for the current task, because only the elements with active
interaction maintain their degree-of-interest due to the gradual decay. The value of
the parameters used to increase the degree-of-interest as well as those associated with
the decay function are determined by experimentation.

Rather than relying on the navigation traces of a single developer, Team Tracks [4],
leverages the navigation traces of a team of developers working on a common code
base. By analyzing team navigation traces, Team Tracks infers two very different
relations among program elements. Using the frequency of visits to particular ele-
ments, Team Tracks filters the hierarchical Class View to only show elements with
visits above a certain threshold. The other elements are available too, but are shown
as a collapsed list near the bottom. Secondly, the tool calculates the correlation be-

tween visits to elements. This correlation is used to suggest related elements to the



developer based on the currently active code element. The technique of using team
navigation traces provides useful insights into the importance of code elements on a
larger scale than an individual. But this may not necessarily be useful to a developer

working on a task requiring access to infrequently accessed code.

2.3 Other Techniques

In their quest for better tools to help developers to find code related to their tasks, re-
searchers have not restricted their work to the analysis of program navigation traces.
Although it is beyond the scope of this document to survey all the different informa-
tion sources and techniques of analyzing them proposed in the literature, we would
like to highlight a few of these tools, because they share the end-goal of helping devel-
opers find the code they need. The tools presented below were selected to show the
diversity of the techniques and information sources being investigated by researchers
in the quest to ease a developer’s burden. A more complete and thorough overview of
the various tools and techniques is presented by Zeller in his comments on the future
of programming environments [24].

Tools developed by directly searching the program source code - ranging from lex-
ical analysis of text to exploiting structural relationships to find related code elements
- form a baseline for comparing the rest of the tools highlighted below. A commonly
used search tool, Grep [1], uses lexical search to find text. The search string can be
specified as a regular expression, allowing for flexible searches. It is commonly used
by developers to perform identifier-based searches in source code.

eROSE (previously ROSE), an Eclipse plug-in, developed by Zimmerman et al.,
mines version archives of software projects to recommend a set of program elements
which are change-coupled to the currently active code element [27]. eROSE is based
on the premise that fields and methods which have changed together in the past, as
observed in the version archive, have a high likelihood of being related. Although
able to discover elements related by changes, this technique fails to keep track of or

discover unchanged important elements belonging to the task context.
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In a more encompassing approach towards gathering information, Hipikat, mines
multiple artifacts, to form an implicit group memory of the project [3]. The artifacts
analyzed by Hipikat include the bugs database for the project, its version archive,
messages from project mailing lists, and other project documentation. The Hipikat
tool is provided as an Eclipse plug-in, which can query the central server for developer-
driven queries.

A more advanced tool, FEAT [16] [18], facilitates the search and discovery of
high level features or concerns in program source code. The discovered concerns are
represented as concern graphs, in which the vertices are the program elements (classes,
fields and methods) and the directed edges represent the different relationships (calls,
reads, writes, superclass, etc) between these elements. A concern graph can be built
by adding code elements to the concern and analyzing them for dependencies. The
relationships between the elements in the concern can be documented. Using FEAT
and the concern graph representation therein it is possible to document the high
level knowledge about the source code as well as share this knowledge with other
developers.

Another tool, JQuery [7], also implemented as an Eclipse plug-in, allows devel-
opers to browse code by combining the advantages of a hierarchical code browser
with the flexibility of a query tool. As a code browser, JQuery provides an explicit
representation of the exploration path taken by the developer. In addition, at every
step of the exploration, it allows for searching on a range of relationships and queries
to find an interesting subset of related elements. The rich set of relationship and
query search options makes it easy to find the relevant elements. The explicit rep-
resentation of the search path allows the developers to retrace their exploration and

also facilitates back-tracing, in case they are following an uninteresting path.

2.4 Machine Learning in Software Engineering

In recent years, machine learning algorithms have gained increasing popularity in the

field of software engineering. Zhang et al. provide an introduction and overview of
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the uses of machine learning techniques in software engineering [25, 26] . They also
survey the state of the art in the use of machine learning techniques to solve software
engineering problems.

In their earlier work, Zhang and Tsai present a balanced view of the state of ma-
chine learning use in different areas of software engineering [25]. The authors classify
software engineering entities into processes (a collection of activities), products (arti-
facts produced as a result of the processes), and resources (entities that are required
by the processes). They classify software engineering problems into seven categories
of tasks related to software engineering entities and provide references to the use of
machine learning to solve problems in these categories. Here are some examples of

problems in the seven categories:

e Attribute prediction - Software quality prediction, size estimation, cost predic-

tion, defect prediction, etc.

e Attribute discovery - Discovering loop invariants, generating formal models of

software system behavior by capturing data from live systems, etc.

e Product transformation - Transforming serial programs into parallel ones while

preserving functional behavior, improving modularity of large programs, etc.

e Product synthesis - Test case and test data generation, learning software project

management rules, generating project schedules, etc.

e Product and process reuse - Software library reuse suggestions based on source
and target feature/term comparison, cost of rework, generalizing program ab-

stractions to increase reuse potential, etc.

e Requirement acquisition - Methods to infer specifications from interaction sce-

narios, extracting specifications from software, etc.

e Development knowledge extraction - methods for capturing and preserving de-

velopment knowledge, domain analysis methods, etc.

12



Similarly, in their later publication, Zhang et al. provide an overview of references
to machine learning applications in software engineering data analysis and refinement,
applications in software development, developing predictive models for software qual-
ity, they describes the state of the art as well as areas of future work [26].

Although, the machine learning applications presented in this section are in the
area of software engineering, they are not related to the domain or the particular
problem area addressed in this thesis. In light of this fact, we do not present further

details of these applications.
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Chapter 3
User Study

We performed a user study to observe developers’ interactions with the source
code while engaged in directed software exploration tasks. More specifically, we asked
the developers to map high-level concepts or concerns (e.g., shuffle mode in a mu-
sic player) to program elements (methods and fields) in the source code, and these
mappings were recorded. For each instance of the mapping study, we also recorded
the developer’s navigation through the program source code. This recording of the
navigation elements is called the transcript.

In this chapter, we describe the details of the study as well as the post-processing
done on the navigation transcripts in order to obtain a data set to which machine
learning algorithms can be applied. The study was performed in the scope of a larger
empirical study of the concept assignment problem being pursued by Robillard et
al. [19].

3.1 Methodology

As a part of the study, the subjects were required to identify program elements
contributing to the implementation of a concern using the Eclipse IDE! for Java

development.

'http://www.eclipse.org
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At the start of the study, subjects were provided with a brief description of the
system to be investigated, a description of the feature to be identified in source code
and instructions on using the tools (ConcernMapper and the transcript recorder plug-
in) for the study. The subjects were given as much time as they needed to familiarize
themselves with the tools and their usage. Afterwards, they were required to complete
the program investigation task in no more than ninety minutes.

While selecting the program elements implementing a concern, the subjects were

instructed to use the following criterion as a guideline[19]:

“it would be useful to know that the element is associated with the concern
if I had to modify the implementation of the concern in the future, or if

another developer had to modify the implementation of the concern”.

The subjects were provided with an Eclipse workspace setup with a working copy
of the target system to perform their investigation activities. To encourage the sub-
jects to select the most representative elements implementing a concern, they were
instructed to restrict the number of elements to not much more than twenty, although
this restriction was not strictly enforced. The rationale for the restriction of concern-
mapping size was to prevent the indiscriminate inclusion of all elements related to a
concern in favor of only the important ones.

We instructed the subjects to record the elements belonging to the concern using
the ConcernMapper plug-in [20]. ConcernMapper is an Eclipse plug-in that allows
developers to associate class fields and methods to high level concerns by dragging
and dropping them into the ConcernMapper View. The concern mapping is stored
and can be retrieved later. Furthermore, the ConcernMapper plug-in provides a
programming interface to access the code elements belonging to a concern mapping.
We use this interface to obtain information about the elements belonging to a mapping
and perform further processing to derive attributes of the transcript elements.

In addition to collecting the explicit mapping produced by the subjects, their
interactions with the source code while performing the identification task were also
recorded in a transcript. The transcript consists of a sequence of program elements

explored by the developer during the program investigation. Additional attributes
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Figure 3.1: ConcernMapper View

such as timestamp, unique element identifier, etc. were also recorded with each
program element. We provide more details about the structure of the transcript and
additional attributes in Section 3.4.

The subjects chosen for the study, were experienced Java developers and experi-
enced in using the Eclipse IDE. However, they were unfamiliar with the source code of
the projects used for the study. The lack of familiarity with the source code was inten-
tional, because we wanted to simulate the scenario of developers exploring unfamiliar
source code in search of program elements implementing a particular feature.

Data was collected for 14 investigation sessions spread over 8 different program

investigation tasks carried out by 7 different developers.

3.2 Target System

For the purpose of the study, the subjects investigated select features in three medium-

sized open-source projects developed using the Java programming language. Each
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Project Version LOC Classes Methods
Gantt Project  2.0.2 43,246 555 3,991
Jajuk 1.2 30,676 227 1,867
JBidWatcher 1.0 22,997 183 1,812

Table 3.1: Target Project Characteristics

system selected for the study consisted of over 20,000 lines of code (LOC) and over
150 type declarations. In addition, the systems have more than 150 reported bugs,
more than 70,000 downloads and have been developed for more than 2 years. The
systems were selected via the search and filtering interface of Sourceforge?, an online
portal for hosting open-source software projects. The system selection process was
carried out as a part of another study [19] and is described in greater detail there.

We used the following systems:
e GanttProject.? An Eclipse application for project-planning using gantt charts.

e Jajuk.® A music player and organizer supporting a variety of audio file formats
such as MP3 and OGG.

e JBidWatcher.® A tool for tracking, sniping and bidding on auction sites (like
eBay, or Yahoo).

Table 3.1 provides the main characteristics of the target systems gathered using
the Metrics® plug-in for Eclipse and Sourceforge.

3.3 Target Concerns

The concerns used in this study were created by Robillard et. al. [19] manually by

searching for high-level concepts in the bugs database, user manual and graphical

’http://sourceforge.net
3http://gantproject.biz/
‘http://jajuk.info/
Shttp://www.jbidwatcher.com/
Smetrics. sourceforge.net
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user interfaces of the system. The authors specifically looked for concerns in the
application domain that had a high possibility of being familiar to developers and
which would be non-trivial to investigate. An excerpt of the concern descriptions used
in this study is presented below [19]. Concerns C1-C4 are defined on the GanttProject,
C6-C8 on Jajuk and concern C9 is defined on JBidWatcher. We follow the same

numbering schema as used in the original study.

e C1: Relationships. The feature allowing users to add a relationship between

two tasks.

e C2: Non-working days. The feature allowing users to specify the non-
working days of the calendar (holidays and weekends) and taking these days

into account when scheduling tasks.

e C3: Completion. The task completion feature allowing users to specify how

much of a task is completed.
e C4: Undo. The mechanism allowing users to undo their actions.

e C6: Shuffle Mode. The feature allowing users to toggle between listening to

tracks in sequential order or in random order.

e C7: Add Song. The feature allowing users to add a song to the playlist by
dragging and dropping.

e C8: Sort Collection. The mechanism allowing users to sort their entire music

collection according to different parameters (e.g., genre, artist, etc.).

e C9: Updating Auctions. The mechanism that constantly updates the infor-

mation about auctions of interest (e.g., time left).

3.4 Transcript Description

The transcript is a sequential list of program elements touched by the developer during

a program investigation session. The transcript is recorded as a series of interaction
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events, with each event representing an interaction with a program element. We
consider any selection of the program element with the cursor, keyboard or mouse,
in the editor as well as in any of the Eclipse-provided views, as an interaction. The
program elements were recorded at the level of the closest enclosing class member;
e.g., when the cursor is positioned inside a method body, the enclosing method is
recorded. To record the session transcripts, we developed an Eclipse plug-in for the
generation and capture of interaction events.

At the beginning of an investigation session, the subjects were required to activate
the transcript recorder plug-in by either pressing an icon in the toolbar or selecting
the option from the menu. The end of an investigation session was similarly indicated.
All the elements touched by the subject during the session are recorded by the plug-
in. The plug-in provides an option to store the recorded transcript in the form of a
comma-separated-value (CSV) file.

For every interaction event, the plug-in records the following attributes about the

event:

e Handle - a unique string representation of the Java program element in the

Eclipse workspace.

e Type - the type of the Java element associated with the event (for example

package, type, method, etc.).
e Timestamp - the time at which the event occurred.

e Partld - a string identifier for the part in which the event was selected (for

example Outline view, editor etc).

Upon starting a development session, the plug-in registers with the Eclipse selec-
tion mechanism and listens to all the generated selection events. For every selection
in the Eclipse IDE workbench, the selection mechanism generates a call-back with
the selected object as argument. The plug-in filters all events except those orig-
inating from Java program element interactions and records them along with the

above-entioned attributes. At the end of the session, the plug-in stops listening to
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the selection events and presents the developer with the option to save the transcript

to a file.

3.5 Data Transformation

The transcript does not contain any information about the structure and semantics of
the program elements within the program (both of which are available to the developer
while navigating through the source code). The developer uses the program structure
and semantics to relate a particular program element to the implementation of a high
level concern. Similarly, within a set of concern-implementing elements, the program
structure guides the selection of the important elements.

We wanted to use a developer’s navigation transcript in conjunction with the
information available in the source code to generate a summary of the important
elements in the transcript. In order to capture some of the information to which
the developer has access during program exploration, we transform a transcript from
a sequence of interaction events to a list of distinct program elements with derived
attributes; these attributes encode information related to the program structure and
semantics. They are computed by analyzing the transcript and the program source
code.

The derived attributes summarize the transcript (repetition of program elements,
time spent with a particular element, etc.) and encode structural information (e.g.,
fan-in for methods and fields) extracted from the source code of the target system.
Table 3.2 lists the attributes and their description. An additional binary attribute
called the ‘class’, corresponding to the inclusion of the element in the developer-
created concern, is also appended. Thus, if an element belongs to the concern this
attribute is set to ‘true’, and it is ‘false’ otherwise. The ‘class’ attribute assignment
is based on the hypothesis that the concern mapping produced during the session is
the summary of the development session as evaluated by the subject engaged in the

discovery of the concern-mapping.
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Attribute

Type

Description

handle

type
totalDuration

noOfSiblings

noOfCalledMethods

noOfTCalledMethods

noOfField Accesses

noOfKeywordsInHandle

noOfKeywordsInName

class

nominal
nominal

numeric

numeric

numeric

numeric

numeric

numeric

numeric

nominal

Unique identifier for a Java program element.
Type of the program element (field or method).
Total time spent (in milliseconds) examining a
program element.

The number of siblings of the program element
that appear in the transcript.

Number of methods in the transcript called by
the current program element. This attribute is
‘0" for field elements.

Number of methods in the transcript calling the
current method. This attribute is ‘0’ for field
elements.

Number of times a field is accessed by methods
within the transcript. This attribute is ‘0’ for
methods.

The number of the keywords that appear in the
handle of the program element. The list of key-
words to look for is specified by the user. It is
expected that the user enters keywords related to
the task.

The number of keywords that appear in the name
identifier of the program element. The keyword
list is the same as for the previous attribute.

A binary attribute indicating whether the pro-
gram element has been labelled as part of the

concern by the user.

Table 3.2: List of Attributes
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The transformed transcript is saved as an ARFF7(Attribute-Relation File Format)
file. ARFF is an ASCII text file format that is the default input format for Weka® -
a library of machine learning algorithms.

An ARFTF file has two sections - header and data. The header contains information
about the name of the dataset, the list of attributes and their type. The data section
contains the actual data, with each instance on one line. The attributes of an instance
are separated by a comma. We use two types of ARFF attributes: numeric - which
can be real or integer numbers, and nominal - which can take one of a specified list of
values (e.g., the attribute ‘class’ can be one of ‘true’ or ‘false’). Further details about

Weka and the machine learning analysis are presented in Chapter 4.

"http://weka.sourceforge.net/wekadoc/index.php/en:ARFF_(3.5.1)
Shttp://wuw.cs.waikato.ac.nz/ml/weka/
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Chapter 4
Experiment Methodology and Results

We wanted to investigate the effectiveness of machine learning techniques for the
classification of program elements to summarize a programmer’s development ses-
sion. In particular, we used decision trees, a supervised learning algorithm, for the
classification task. We used precision and recall to evaluate the performance of the
algorithm. Furthermore, we compared the performance of the decision tree algorithm
with two other algorithms. This chapter introduces the machine learning algorithm

used, describes the tools used for the analysis, and explains the results obtained.

4.1 Machine Learning

Machine learning, a sub-field of artificial intelligence, is concerned with the design
and development of algorithms and techniques that allow a software program to
extract knowledge from input data and learn from experience [11]. Machine learning
techniques are well suited to problem domains which are difficult to model. Most
relevant to our problem domain are supervised learning algorithms, which work by
summarizing a labelled data set into a model. This model is supposed to capture
the most important characteristics of the data. The learned model can then be used
to predict labels for new problem instances. In many cases the model also provides
insight into the nature of the process generating the problem instances. This insight

can be further used to develop more specialized algorithms.
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Typically, the development of a supervised machine learning solution for a problem

contains the following steps:

1. Attributes Selection - In supervised learning, an instance consists of a set of
attribute-value pairs. Examples of attributes could be the in-degree of a method
in a call-graph, the number of accessors of a field, etc. They describe facts
about program elements. The choice of attributes used to describe a problem
instance reflects the domain expert’s belief that the attributes are correlated to
the desired label that will be predicted by the learned model. Conversely, the
learned model can also provide insight into the relative importance of various
attributes used to describe a problem instance. Attribute selection has a very

important influence on the performance of the learned model.

In the case of supervised learning, an instance, in addition to attribute-value
pairs, also consists of an assigned label. The label assignment for the training
data is typically done by experts or obtained from real world data and represents

reliable knowledge available about the problem instances.

For example, for the classification of fruits, attributes such as size (big, medium,
small), shape (round, elongated), color (yellow, red, green), texture (smooth,
rough), weight (heavy, light), etc. can be used. The expert chooses the at-
tributes that provide higher benefits than the cost of obtaining the attribute
values, e.g., (color, shape, and texture). An instance of training data for the
fruit classification problem could then be made of tuples such as (red, round,
smooth; apple), (yellow, elongated, smooth; banana) wherein the last term is

the label assignment for the particular instance of attribute values.

2. Model and Algorithm Selection - Researchers have proposed various mod-
els to represent the solution to a machine learning problem, e.g., classification
rules, neural networks [11], support vector machines [5], decision trees [13], etc.
The models vary in the complexity of their representation, complexity of the
learning algorithm and the computation required to compute the output label

assignment from the attribute values. Depending on the representation power
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and the learning algorithms, different models and algorithms are suited to differ-
ent problem domains. The choice of an appropriate model (in conjunction with
an appropriate set of attributes) determines to a large extent the performance

of the machine learning application.

A model in machine learning consists of parameters and an evaluation algorithm
which computes the output labels based on the attribute values. The model
parameters control the behavior of the evaluation algorithm. An evaluation
algorithm specifies the steps needed to transform the input attributes of the

problem instance to a value or a set of values representing the output.

A supervised learning algorithm analyzes the input training data to learn pat-
terns useful in the mapping between the attribute values and the associated
label. The algorithm tries to capture the statistical relations between the val-
ues of the attributes and the corresponding label assignment. The outcome
of the learning process is a value for the parameters that, together with the

evaluation algorithm, form a solution to the machine learning problem.

For our fruit classification example, we want to select a model which is easy to
interpret, and provides a simple representation. We will use classification rules
to represnt the learned model. Classification rules are composed of tests of
attribute values combined together with logical operators. There are different
learning algorithms used to learn classification rules such as conjunctive rule
learner (which learns a conjunction of clauses), propositional rule learner [2],
etc. To keep things simple we will demonstrate a classification rule based model
by using the conjunctive rule learner as an example. A conjunctive rule to
identify apples could look like: (color = “red”) A (shape = “round”) A (texture
= “smooth”) = “apple”.

. Model Testing and Tuning - The learned model needs to be evaluated in
order to test its effectiveness for the machine learning task. Typically, a large
portion of the available labeled data is used for training, with a small fraction left

over for testing. Labels for the test data are computed using the learned model
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and the predicted output is then compared with the original labels associated

with the training instances.

Two commonly used criteria for measuring the effectiveness of machine learn-
ing algorithms are precision and recall. Precision is defined as the ratio of the
number of correct predictions to the total number of predictions in the output.
It is a measure of the accuracy of an algorithm in assigning the correct labels.
Recall, for a particular label, is defined as the ratio of the correct label assign-
ments to the total number of test instances belonging to that class in the input.
Intuitively, recall measures the ability of the algorithm to find the instances of

the target class in a large pool of data.

More precisely, let X be the set of test instances having label A and let Y be
the set of instances predicted to have the label A. Then precision and recall for

class A are calculated as follows:

XnYy

precision = |]Y]’ (4.1)
XNy

recall = |LX|| (42)

In an ideal situation, an algorithm has high precision and recall. But, in prac-
tice, precision and recall tend to be inversely related. In developing machine
learning applications, precision and recall are typically measured across a range
of settings for the learning algorithm, for a given set of training and test data.
The settings which offers the best trade-off between precision and recall for the

given application is used.

Using our choice of attributes (color, shape, texture), the representation model
(classification rules) and the learning algorithm (conjunctive rule) for the clas-
sification of fruits, we train a model and then evaluate the learned model on
the test data. The evaluation will provide quantitative data to compare the
performance between different attribute, model and algorithm selection. We

can choose to tweak the attributes that we use in the training data by adding
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“weight” or dropping “textures”. This will allow us to evaluate the relative
benefits of the different attributes. If changing the attribute selection does not
provide the necessary accuracy, we could choose to adopt a different learning
algorithm or even change the model (e.g., decision trees) use to represent the

outcome of the learning process.

The development process for a machine learning application iterates over the above
stages to fine tune the solution until the required performance characteristics are

obtained.

4.2 Machine Learning for Navigation Analysis

In this section we describe the use of a machine learning algorithm for the analysis
of developer navigation traces. The description reflects the stages described in the
previous section and outlines the choices we made with respect to the input, the
model, and the algorithm.

In Chapter 3 we presented a user study from which we obtained mappings from
program elements to high-level concerns. We also collected developer navigation
traces during the task of discovering these mappings. The data collected in the study
consisted of the following artifacts: the concern mappings, the navigation traces, and
the program source code. In its original form, this data was unsuitable for use with
machine learning algorithms. We processed the artifacts collected in the user study to
transform the raw data into a fixed number of attribute-value pairs. In the course of
this transformation, we computed attributes from navigation traces, with additional
information extracted from the program source code. The label assignment, using
the concern mappings as reference, simply indicated whether the element belonged

to the concern or not according to the developer.
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count <= 1.0: false (196.0/27.0)

count>1.0

noOfKeywordsinName <= 0.0

noOfSiblings <= 2.0: false (84.0/22.0)
noOfSiblings > 2.0

| count<=3.0

| | noOfSiblings <= 6.0: true (56.0/26.0)

| | noOfSiblings > 6.0: false (70.0/24.0)

| count> 3.0: true (112.0/29.0)
noOfKeywordsIinName > 0.0: true (91.0/18.0)

Figure 4.1: Decision Tree (example)

4.2.1 Decision Trees

Due to its advantages, we use decision trees as the machine learning model for the
classification of program elements [13]. In a decision tree, each internal node rep-
resents a comparison test on the value of an attribute. The branches are directed
and are labeled with the outcome of the test. The leaf nodes of the tree are marked
with the classification label to be assigned to problem instances associated with the
leaf. In a decision tree, the classification label assigned to an instance is based on the
outcome of the attribute tests at the internal nodes leading from the root of the tree
to a particular leaf node.

For classifying problem instances, their attribute values are tested starting at the
root of the tree. Based on the outcome of a test, a particular branch is followed, which
may in turn lead to further tests. This process of testing and following a branch is
repeated until a leaf node is reached. On reaching a leaf node, the problem instance is
assigned its label. The comparison tests at internal nodes are exhaustive on the range
of the attributes being tested and the branches leaving the node represent mutually
exclusive outcomes of the test. Due to mutual exclusion, there is no ambiguity in
the outcome of tests. Although decision trees can have different branching factors
for internal nodes, usually binary decision trees are used. A general decision tree can

always be converted to a binary decision tree.
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Figure 4.1 shows an example of a decision tree learned from a subset of the training
data gathered during the user study described in Chapter 3. The attributes and their
meaning are described in Table 3.2.

In the representation used in Figure 4.1, the root of the tree is at the outermost
level of indentation, with nodes at subsequent levels having progressively more inden-
tation. Each node is represented by two conditions on an attribute, representing the
branch to be followed based on the outcome of the test on the attribute value. Note
that the attribute tests at a node are mutually exclusive and exhaustive on the range
of the attribute. The label assigned to a leaf node is represented by the text after ‘:’.
In this tree, there are two labels - ‘true’ and ‘false’. A true label assignment represents
the outcome that a particular program element belongs to the concern. For example,
a program element which has been visited 4 times in a development session (count =
4), which does not have any keywords in its string literal (noOfKeywordsInName =
0), and no other sibling elements being visited (noOfSiblings = 0), will be assigned
the label ‘false’. The numbers at the leaf nodes represent the ratio of the number of
training instances which reached a particular leaf and agree with the leaf label, as
opposed to those that do not. E.g., the numbers on the right branch of the root node
indicate that 196 of the training instances having ‘count’ less than or equal to ‘1’ had
the label false and 27 had the label ‘true’.

We highlight some of the advantages of using decision trees for classification [11]:

e Each path from the root of a decision tree to a leaf represents a conjunction of
constraints on attribute values. The decision tree as a whole is a disjunction of
conjunctive clauses represented by the paths. As such, decision trees provide a

concise and general representation for the rules of classification.

e Decision trees are easy to interpret. Simply examining a decision tree can
provide insight into the characteristics of the problem. For example, a quick
observation of the decision tree in Figure 4.1 informs us that for the particular
training dataset used to train this decision tree, an element that has been visited
only once has a high likelihood of being unimportant to the development session

summary.
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Figure 4.2: Weka Explorer

e Decision tree learning algorithms are fast and can quickly process large datasets.

e Decision tree learning algorithms are to a large extent immune to noise. The
tree learning algorithm performs well in the presence of noise in attribute and
classifier values in the training data as well as when there are missing values in

the attributes and classifier.

e The number of training instances reaching a particular leaf provides a confi-
dence measure to the label assignment for a problem instance. This provides

an indicator to the quality of label prediction.

e Compared to most other machine learning techniques, decision trees provide

the flexibility of working well with numerical as well as categorical data.

Decision trees have been successfully used in wide ranging applications from clas-

sification of stars to medical diagnosis and industrial applications.

30



To construct the decision trees, we used tools provided by the Weka! [23] project.
Figure 4.2 shows a screen capture of the Weka application. Weka is an open-source
machine learning toolkit that provides implementations of various learning algo-
rithms. Weka tools make it easy to perform various activities associated with the
development of machine learning applications. They facilitate data preprocessing
and the application of different learning algorithms to the data, support various test
strategies and offer the ability to save the learned model. Additionally, Weka also
provides an interface to access the learning algorithms from programs written in Java.

For decision tree learning, we used J48 - an implementation of the state-of-art
C4.5 [13] decision tree learning algorithm in Weka. The algorithm accepts a set of
already classified instances of training data as input and builds a decision tree.

The algorithm uses the concept of information gain to select an attribute to test at
a node. It starts with the complete set of training instances and selects an attribute
and an associated test that maximizes the information gain. The test splits the input
data into two disjoint sets. In each subsequent iteration, the algorithm is called
recursively on the resulting subsets from the previous iteration to build a decision
tree. The algorithm terminates when all the instances in a subset have the same
label, in which case the leaf is assigned that label. Alternate criteria, such as the
ratio of the number of instances of a label to the total instances at a leaf node, may
also be used to prevent further splitting of the tree nodes. Such criteria can be used

to restrict the growth of the decision tree and also, indirectly, the height of the tree.

4.3 Experimental Methodology

Using the pre-processed data derived from the concern mappings and the developer
navigation traces described in Chapter 3 and the Weka provided J48 algorithm, we
performed a series of experiments in which we built decision tree classifiers and eval-
uated their performance. We also compared the performance of the decision tree

algorithm to that of Nacin [17], and an approach using frequency of program element

http://www.cs.waikato.ac.nz/ml/weka/
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occurrence in the transcript, henceforth referred to as the count metric, - techniques
suggested in the literature for summarizing a developer navigation session.

Corresponding to each of the 14 experiments performed as part of the user study,
we created a dataset consisting of training and test instances. The training data for
each set was built by concatenating the transformed transcripts of thirteen experi-
ments with the fourteenth experiment being the test set. The training instances were
used to train a decision tree using the J48 algorithm.

The J48 implementation of the C4.5 decision tree learning algorithm provides a
configurable parameter that indirectly controls the size of the learned decision tree.
The numerical parameter, called “minNumObj”, is used by the algorithm before it
proceeds to split a set of training instances into smaller subsets. The algorithm does
not split any set whose cardinality is less than the value of “minNumObj”. Thus
higher values of “minNumObj” will lead to reduced splitting of the training data set
and subsequently fewer levels in the learned decision tree. By controlling the value
of the parameter, we can search for the best trade-off between the size of the learned
tree and the precision and recall of the tree on test data.

For each run of the learning algorithm, we measured the precision and recall of the
learned decision tree on the test data. The test procedure provides a label assignment
for each of the program elements belonging to the test data. The assigned label
represents a prediction about the inclusion of the program element in the summary
of the development session. For all the elements predicted to be part of the session
summary, we considered a prediction to be correct if the program element was also
part of the concern-mapping produced by the developer for that particular user-study
experiment.

Based on the definition of a correct prediction, precision and recall were calculated
for each run of the learning algorithm. We used the following formulae to calculate

precision and recall:

precision =
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|Pc N Ac|

recall =
|Ac|

(4.4)

where P is the set of elements predicted to be in the concern and, A is the set
of elements belonging to the concern.

For the task of program element classification, precision is the ratio of program
elements belonging to the concern-mapping to the total number of program elements
predicted to belong to the concern-mapping by the decision tree. Similarly, recall
was defined as the ratio of the program elements with correct predictions to the total

number of elements belonging to the original concern-mapping.

4.4 Results

Tables 4.1 and 4.2 present the precision and recall calculated using the above formulas
for different values of the parameter “minNumODbj”. In both of the tables, the first
column is the value of “minNumODbj” passed to the J48 algorithm. As explained
above, the value is inversely related to the size of the learned decision tree. This
inverse relationship can also be observed from the last column which shows the average
number of leaves of the decision tree over the fourteen experiments for each of the
values of “minNumObj”. The last two rows in Table 4.1 and 4.2 present a comparison
of the precision and recall of the decision tree algorithm with those obtained using

two variants of the ‘Count’ metric.

count <= 3.0: false (503.0/136.0)
count > 3.0: true (234.0/85.0)

Figure 4.3: Decision Tree (Count)

In the first variant, ‘CD’, we continued to use the J48 decision tree algorithm
but modified the input training data. The new training data consisted of only one
attribute, ‘count’. The decision tree algorithm, during its training, proceeded to find
the value of the attribute which achieves the best split of the input data. The output

decision tree contains only one decision node that partitioned the input elements on
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the basis of the associated value of ‘count” which maximized prediction accuracy. The
precision and recall obtained using this variant highlighted the gain in accuracy by
using a combination of attributes encoding the program structure as opposed to just
the ‘count’ attribute. Figure 4.3 shows a decision tree learned from training data
consisting of only the ‘count’ attribute.

To obtain the precision and recall by using the ‘CN’ variant, the predicted elements
were selected based on their frequency of occurrence in the transcript. The frequency
is the number of times the developer explored a particular code element during the
course of their investigation. This variant is based on the hypothesis that the more
often the developer encountered a particular element during their investigation, the
higher the likelihood of the element belonging to the concern. Using this method
we selected a set of elements having the same cardinality as the reference concern-
mapping created by the subject for that user-study experiment. This set of predicted
elements was then compared with the reference concern-mapping to calculate the
precision and recall. It should be noted that it is not possible to know the exact size
of the concern set a priori, but for analysis purposes it is still relevant to compare the
performance of this technique to that obtained using the decision tree algorithm.

As seen from Table 4.1, the precision varies for different values of the parameter
“minNumODbj”. The best results of 69% average precision are obtained with “min-
NumObj” set to 5 which has lower average tree size (less than half the leaf nodes)
compared to when “minNumObj” is set to one. We attribute this behavior to over-
fitting, a commonly observed phenomenon in machine learning. Overfitting occurs
when the representational power of the machine learning model is larger than the
information contained in the training data, e.g., a decision tree that has a leaf node
corresponding to every instance of the training data. Instead of learning the patterns
in the training data, the machine learning algorithm memorizes the training data.
Due to overfitting, machine learning models can perform very well on training data
but poorly on new inputs. By comparing different model sizes we are able to discover
the model size (minNumObj = 5) which performs well not only on training data but
also on test data. In further discussion related to precision we restrict ourselves to

this particular parameter value, unless otherwise specified.
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Experiment No.
minNumObj 1 2134|567 |89 101112 |13]14 | Avg| AvgL
1 100 | 45 | 55 | 45 |52 |36 | 67 |47 |69 | 17|80 | 74 |92 |66 | 60 o8
) 100 | 58 | 75 | 56 | 60 [ 40 [ 55 | 61 | 92|22 |80 | 87 |91 |91 | 69 21
10 100 | 55 | 67 |60 | 62 | 32 |50 |61 | 73|29 |80 | 92 |87 | 68| 65 13
20 100 | 42 | 80 [ 44 | 56 | 47 |55 |54 | 75|29 | 78 | 8 |82 | 68 | 64 9
30 100 | 45 [ 60 | 44 | 56 | 33 | 55 | 56 | 75 | 29 | 67 | 100 | 83 | 67 | 62 7
40 83 |45 | 7344 |44 |37 |55 |63 |86 | 33|67 | 100 |83 |67 | 63 6
20 83 |45 | 73|56 |52 |37 |58 |61 |86 | 33|67 (100 |83 | 68| 65 6
CD 89 |42 | T8 | 47 |46 |24 |44 |50 | 67 | 33| 73| 100 |92 |94 | 63
CN 90 |45 |73 (50|40 |44 55506229 |79 | 73 |81 | 76| 61

Table 4.1: minNumObj vs Precision (%)
Avg = Average; Avgl, = Average number of leaves; CD = Count (Decision Tree with 3

nodes); CN = Count (Number of elements = concern size)

Compared to a count variant using decision trees, ‘CD’, the learned classifier with
minNumODbj parameter value of five, has better precision in nine instances and is lower
by 3% or less in three of the remaining five instances. Only in two instances does the
decision tree classifier perform significantly worse than the ‘CD’ variant. These results
indicate that the presence of additional attributes along with a decision tree classifier
does indeed lead to comparable or better precision for our task. Additionally, the
decision tree classifier has equivalent or better precision than the ‘CN’ variant in 12
of the 14 instances.

In Table 4.1 there are a few instances that need further investigation. The preci-
sion results for Experiment 10 are the lowest among all the different instances. On
further investigation, we discovered that this experiment was performed by an expert
developer with high level of proficiency in using the development environment. An-
other example of poor performance by the classifier can be observed for experiment

6. The subject’s comments indicated that the program source code (JBidWatch) was
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badly written and hence a majority of the time alloted to the task was spent in ex-
ploring random navigation paths in the hope of discovering the concern implementing
elements. It was only towards the end of the task that the concern implementing ele-
ments were encountered. The poor code quality was corroborated by another subject
who performed the same task in Experiment 5. But this subject got a lead early on
and hence did not spend a large portion of the time alloted to the task in random
explorations.

Based on these observations we hypothesize that the use of decision tree classifier
for development task summarization performs poorly in situations in which the de-
veloper does not have a clue regarding the elements related to the concern, such as
when randomly exploring program code. We believe that the decision tree extracts
information from the navigation transcripts by observing patterns which are not im-
mediately obvious. In the above case, due to random code exploration, the attributes
for Experiment 6 do not fit the patterns exhibited in the training data leading to
poor performance. Similarly, the classifier is unable to recognize the patterns in the
transcripts for Experiment 10, but for a very different reason. In this case, the session
transcript exhibits patterns of an expert developer comfortable with the tools, while
the training data consists of transcripts of less advanced developers. Both of the
above cases confirm the findings of Robillard et al. that code exploration patterns
vary between developers of different skill level [15]. The differences in exploration
patters requires us to develop more specific classifier models based on groupings of
developers’ expertise to obtain better results. Unfortunately, due to lack of sufficient
training data for developers of different skill level we were unable to follow this in-
vestigation further. To some extent, similar behavior is observed also in the results
of the evaluation study that we present in Chapter 5.

In the recall results presented in Table 4.2, among decision tree classifiers the
classifier with minNumObj values of 20 and 30 have amont the highest average recall
of 56% and 55.6% respectively. Note that the parameter value which achieves the
highest average precision (minNumObj = 5) does not have the best recall. In com-
parison, the ‘CN’ technique has the highest average recall of 60.5%. Though it must

be noted that this technique is not practical as it assumes that the size of the concern
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Experiment No.

minNumObj || 1 | 2 | 3|4 |5 |6 | 7|89 |10[11]12|13 |14 | Avg
1 70 145 |55 |28 |60 (44 |55 |83 |44 | 24|33 |47 |52 |63 | 502
) 40 | 64 | 55|50 | 60 | 67 | 55 |94 |48 |29 | 33| 43 | 48 | 61 | 534
10 20155553365 (78459444129 |33|37|62]|68]51.3
20 6045|7339 |70 |78 558348 |29 |29 |40 |67 |68 56.0
30 6045|8239 |70 |78 558348 |29 |25|27|71|66|55.6
40 50 |45 | 73139 55|78 |55 |83 48129 |25|33|71|65]5H3.5
50 50 | 45 | 73 |50 [ 55 |78 | 64 | 78 | 48 129 | 25|30 | 71|69 | 54.6
CD 80| 73|64 |44 |55|44 3656|3235 |33 10|52 |44 1|47.0
CN 90 | 45| 73|50 |40 |44 [ 5550|6229 |79 |73 |81 |76 60.5

Table 4.2: minNumODbj vs Recall (%)
CD = Count (Decision Tree with 3 nodes)

CN = Count (Number of elements = concern size)

is known in advance and using a default constant size will affect the recall across
different experiments. Commonly, when using statistical classification techniques, a
trade-off between precision and recall is observed. Efforts to achieve higher precision
by being more selective in the classification process usually lead to lower recall due
to the increased possibility of boundary cases being labeled negative. Similarly, the
increase in recall by lowering selectivity and allowing more boundary instances to be
labeled positive leads to lower precision.

Figure 4.4 compares the average precision and recall obtained when using different
techniques (decision trees, Nacin, and, ‘CD’ and ‘CN’ variants of count) to classify
code elements in a navigation transcript. Both decision trees and Nacin have multiple
data points as we tested them for multiple configurations. The points are labelled
with the respective identifiers (“minNumODbj” for decision trees and configuration
labels as in Table 4.5 for Nacin).

In Table 4.3 we present the cardinality of the predicted concern sets for the differ-

ent experiments for different values of “minNumODbj”, as well as that of the original
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Figure 4.4: Precision vs Recall (%)

reference concern. The size comparison between the predicted and the reference
concerns shows the effectiveness of the algorithm in predicting a concern set with
a cardinality which matches with the developers’ expectation. This comparison is
particularly important as the training set used for the decision tree learning did not
contain any information regarding the size of the reference concerns. The last row
contains the number of distinct elements (methods and fields) that are in the tran-
script. Comparing the size of the predicted set with the number of distinct transcript
elements demonstrates the selectivity of the classifiers.

Another view of the data in Table 4.3 is presented in Figure 4.5. The figure
presents a graph of the average concern size when varying the value of the control
parameter “minNumODbj”. For comparison, we also present the average number of
elements in the reference concerns as well as the average number of elements in the
concerns produced using the ‘CD’ variant of the count metric. Since the latter two are

constant with respect to “minNumObj” they appear as straight lines in the graph. As
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Experiment No.
minNumObj || 1 | 2 | 3 |4 |5 |6 | 7|89 |10]11]12|13| 14
1 71111 |11 {23119 (32|16 (23|10 |19]| 12| 68
5 4 (12 8 |16 |20 15|11 |28 |13 |23 |10 |15 |11 | 47
10 2 0111910212210 28 |15 |17 |10 12|15 | 71
20 6 |12 11016 |25 | 15|11 |28 |16 |17 | 9 |14 |17 | 71
30 6 |11 15|16 (25|21 11|27 16|17 9 | 8 | 18] 70
40 6 |11 1116|2519 |11 (24|14 (15| 9 | 10| 18| 69
50 6 |11 1116|2119 |12[23 |14 |15| 9 18| 72
CD 9 199 |17 |24 |17 9 |20 |12 18|11 | 3 |12 33
Reference 100111118120 9 | 11|18 2517243021 | 71
NDE 1514536 |67 |69 |43 22|79 |58 |85 |45 |51 |37 | 107

Table 4.3: minNumODbj vs Predicted Concern-Size
CD = Count (Decision Tree with 3 nodes)
NDE = Number of distinct elements (methods and fields only) in the transcript

can be seen from the graph, the size of the concerns using decision trees lies between
that of the reference concerns and those produced using the count metric.

From the results presented in Tables 4.1, 4.2, and 4.3, we observe that the classi-
fiers can identify a little more than half of the code elements in the original concerns.
Also, in the case of precision, the decision tree classifier predicts on average 7 out of
10 elements correctly. The choice of a particular parameter value to use in an applica-
tion depends on the preference of the relative trade-off between precision and recall.
Additionally, a tool that uses decision trees must allow developers the flexibility to
add and delete elements from the predicted concern set after it has been computed.
Developers can then further modify the predicted concern set as per their volition.
Thus, developers can focus on their development task and at the end of the session
make use of the predicted summary, modifying it where necessary, to save high level

concern knowledge.
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Figure 4.5: minNumODbj vs Predicted Concern-Size
4.4.1 Comparison with Nacin

In addition to evaluating the precision and recall of variants of the ‘Count’ algorithm,
we also evaluated the Nacin [17] algorithm using the navigation transcripts from the
study and compared its performance to that of the decision trees. The developer
navigation transcripts were transformed into a suitable input format. Nacin, using
a parameterized heuristic algorithm, ranks the elements in the transcripts in order
of importance. For the task of concern prediction, we restricted the output to a set
of the highest ranked elements having the same cardinality as the reference concerns
from the user study. This particular arrangement led to the precision and recall being
equal as the size of the predicted concern and the size of the reference concern was
the same. The algorithm uses a set of 9 parameters which influence the heuristic
to form different configurations of operation. We evaluated the performance of five
different configurations. A brief description of the configurations appears in Table
4.4. Robillard et al. provide additional details describing the configurations [17].

The precision-recall of Nacin for these five configurations is presented in Table 4.5.
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Configuration | Description

Basic Based on intuition of clues to important elements in program
navigation
Neighbors Taking into account only immediately succeeding elements in

program navigation

No Structure | Using developer action as sole basis, ignoring underlying

structure in source code

Structure Emphasizing navigation transitions based on program struc-
ture

Guesses Configuration which places more importance on guesses and
browsing

Table 4.4: Description of Nacin’s Configurations (from [17])

The last two rows of the table are precision and recall for decision tree classifier with
parameter value of five and are copied over from Table 4.1 and 4.2 for comparison.

Of the five Nacin configurations, the best average performance (precision as well
as recall) of 58% is achieved for the configuration which places higher importance
on guessing and browsing. In comparison, the average precision of the decision tree
classifier is significantly higher at 69% with a recall of 53% which is lower than the
‘Guesses’ configuration by 5%. Based on these results we can say that the decision
tree classifier is able to provide more accurate results compared to the Nacin algorithm
while having slightly lower recall.

The results in Table 4.5 demonstrate that a model based on machine learning
technique performs better than a more ad hoc algorithm based on intuition. We
further believe that it is possible to achieve even higher gains in performance by using
more complex machine learning algorithms, which model more closely developers’
thought processes in forming the task context. The intuition gained by observing
developers’ behavior will help in choosing the model to use as well as the values of

the model parameters.
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Experiment No.

Configuration || 1 | 2 | 3 | 4 |5 |6 |7 |89 1011|1213 ]| 14| Avg

BC 90 | 18 |64 | 28 |40 [ 20 [ 46 | 61 | 65|35 |71 |80 |86 |8 | 56

N 60 | 275513330 |11 |[55]61|38|35 |54 |70 |57 |56 46

NS 90 [ 27|64 |33 |35[22|55[61|65|35|71 |80 |81 |85 | 57

S 60 | 18 |46 | 11 |40 |22 |46 |61 | 65|35 |71 |70 |86 |85 | 51

G 90 |27 64|28 |40 |22 |55[61 65|35 |71 |80 |86 |85 | 58
DT5(p) 100 | 58 | 75 | 56 | 60 | 40 | 55| 61 |92 |22 |80 |87 |91 |91 | 69
DT5(r) 40 | 64 | 55|50 | 60 | 67 | 55|94 | 48 | 29 |33 |43 | 48 | 61 | 53

Table 4.5: Precision-Recall using Nacin Algorithm
BC: Basic Configuration N: Neighbors NS: No Structure S: Structure G: Guesses

DT5(p): Precision of Decision Tree Classifier (minNumObj = 5) DT5(r): Recall of

Decision Tree Classifier (minNumObj = 5)
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Chapter 5

Tool and Evaluation

In Chapter 3, we presented a user study to collect developer navigation traces
while engaged in mapping high-level program features to elements in the source code.
The data collected was used to train a decision tree classifier. We also reported
on the performance of the classifier and analyzed the results of using the decision
tree classifier on different training and test data sets. In this chapter we present
a tool developed to classify the program elements in a developer’s navigation trace
and form a summary of the development session. The plug-in uses the decision tree
classifier learned from the data collected in the user study to classify the elements.
Furthermore, we present a small study performed to evaluate the tool and get user

feedback on the generated summary.

5.1 Tool

We developed an Eclipse plug-in, TaCoML(Task Context using Machine Learning),
to automate the process of deriving a summary of the development session using the
navigation trace and integrate it into the developer’s work flow. The plug-in monitors
the developer’s source code navigation within the IDE and records the navigation
trace. It also makes note of source code elements modified by the developer. The
plug-in then transforms the navigation trace to a form suitable for use with a decision

tree classifier. In the transformation, the raw navigation traces are converted into the
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count <= 1.0: false (200.0/30.0)

count> 1.0

count<=5.0

noOfSiblings <= 17.0

totalDuration <= 2500.0: true (47.0/7.0)
totalDuration > 2500.0

| noOfKeywordsinHandle <= 1.0

| | count<=2.0: false (98.0/31.0)

| | count>2.0

| | | noOfCalledMethods <= 0.0: true (85.0/35.0)
| | | noOfCalledMethods > 0.0: false (48.0/13.0)
| noOfKeywordsinHandle > 1.0: true (24.0/4.0)
noOfSiblings > 17.0: false (20.0/1.0)

count > 5.0: true (94.0/19.0)

Figure 5.1: Decision Tree Classifier (minNumObj = 20)

tuple of attributes described in Table 3.2. The transcript elements are classified using
the decision tree classifier and the set of elements forming the summary are presented
to the user via the ConcernMapper plug-in. For each element in the summary, the
plug-in also associates a numerical value between 0 and 100 representing a confidence
measure. This value can be used as a filter to limit the list of visible elements in the
ConcernMapper view. The changed program elements are included in the summary
by default since elements that change during the session are by definition relevant to
the task. For the same reason, they are also assigned a confidence value of 100.

The default classifier used in the plug-in is learned from the data collected in the
user study described in the previous chapter. We used the transcripts from the four-
teen experiments to train the C4.5 decision tree learning algorithm as implemented
in the Weka machine learning toolkit. The decision tree was built with the parameter
“minNumODbj” value of 20. The particular parameter value was chosen because of the
higher recall (56%) as well as good precision (64%) obtained using the training data.
Of the ten attributes, the classifier uses five attributes, with the “count” attribute
being the root of the decision tree. The output decision tree is stored in a file which
is loaded at runtime by the plug-in and can be changed by updating the model stored

in the file. Figure 5.1 shows the learned decision tree classifier that is used in the
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Figure 5.2: TaCoML Plug-in: Toolbar and Predicted Concern

plug-in.

The plug-in integrates into the Eclipse IDE by contributing toolbar items and
menu items. For its functionality, the plug-in relies on two external plug-ins - JayFX!
and ConcernMapper [20].2 JayFX is used to query the project source code for program
element relationships while ConcernMapper is used to present the user with a list
of suggested program elements forming the task context. The plug-in toolbar and
the predicted concern in the ConcernMapper view are shown in Figure 5.2. The
developer indicates the start of a development session by clicking on the green “Start
Session” button contributed to the Eclipse toolbar by the plug-in. Pressing the red
“Stop Session” button signals the end of the session. These actions can also be

accessed through the “Tacoml” menu item. On activation, the plug-in monitors the

http://www.cs.mcgill.ca/~swevo/jayfx/
Zhttp://www.cs.mcgill.ca/~martin/cm/
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developer’s source code navigation and records the list of program elements touched
by the developer. When the developer signals the end of a development session, the
plug-in builds a transformed transcript containing the attributes described in Table
3.2 for each program element. The transcript is evaluated using the decision tree
and the set of elements labeled as belonging to the task context is added to the
ConcernMapper as “predicted” concern (see Fig. 5.2). The developer can modify the

predicted concern to add or delete elements from it.

5.2 Evaluation Study

We conducted a short user study to evaluate the plug-in and get user feedback on the
session summary generated using the decision tree classifier. The format of the indi-
vidual experiments of the study was structured similarly to the user study described
in Chapter 3. The difference in the two studies was in the nature of tasks; we required
the users to change the project source code to fix a bug, as opposed to discovering
the code of a concern by source code exploration in the previous study. The subjects
were unfamiliar with the project source code and hence needed to explore the code
to understand the implementation of the feature related to the bug before changes
could be made.

For this study we used Freemind®, a mind mapping software written in Java. A
mind map is a diagram used to represent words, ideas, tasks or other items linked
to and arranged radially around a central key word or idea. It is used to generate,
visualize, structure and classify ideas, and as an aid in study, organization, problem
solving, and decision making. We used version 0.8.0 of Freemind which has more than
70k lines of code distributed over 617 types and 5,388 methods. Users were required
to investigate, understand and fix a bug related to the “Undo child node creation”
feature. The task description is provided in Figure 5.3.

We performed four instances of the task with the first being a pilot. The sub-

jects of the study consisted of four developers experienced in Java development and

3http://freemind.sourceforge.net
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In Freemind, users create a new node that is a child of the selected
node by pressing the “insert” key and typing in the title of the
node. If this action is undone by pressing Ctrl-Z, only the text
of the node is removed, and the link remains, with a node with
no text. This node is displayed as only a link. We would like to
change this action so that both the node and the link are removed

as a single undo action.

Find the code responsible for undo of creation of text node and

setting of text. Make the changes necessary for both the actions

to be undone by a single undo command.

Figure 5.3: Undo Child Node Creation

comfortable with using the Eclipse IDE. The subjects were provided with an Eclipse
workspace setup with a copy of the Freemind project source code. The TaCoML plug-
in was installed in the workspace and the developers were asked to activate it before
beginning their task. There was no set time limit for the task but all the subjects
managed to complete the task within an hour and fifteen minutes. At the end of the
task the developers were asked to indicate the end of the task by signalling the end
of the develpment task. The plug-in then calculated the set of elements predicted to
belong to the task context and presented the results via the ConcernMapper view.

All four developers were successful in fixing the bug, though they differed in their
approach and the actual code changes. At the end of the task we asked the developers
to provide specific feedback on the elements in the suggested task context - whether
they were important to the understanding of the task being performed or not - as
well as highlight any important elements which were not included in the suggested
list. The feedback from the developers was recorded for future reference.

The results of the evaluation study is presented in Table 5.1. “Unique Elements” is
the number of unique methods and field visited by the developer while performing the
task. “Edited” elements are the elements that were changed by the subject during the
session. “Concern Size” is the size of the concern set predicted by the TaCoML plug-

in. The predicted concern automatically included all the edited elements from the
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Subject | Unique Elements | Edited | Concern Size Interesting
X E R | Total
A 32 2 8 4 1 0 5
B 62 14 17 1 10 0 11
C 36 4 7 3 4 1 8
D 69 15 26 7 11 0 18

Table 5.1: Results of Evaluation Study
X = Explored; E = Edited; R = Random

development session as they definitely belonged to the task context. The developers’
feedback on the number of elements of interest in the concern set is presented in the
column labelled “Interesting”. The interesting elements as indicated by the subject
are further split by whether they were explored elements (X), edited elements (E), or
were randomly added (R) by the tool for the purpose of the study.

In addition to the result presented in Table 5.1, except for pilot Subject ‘A’ we
had introduced two random elements, selected from the session transcript, in the
predicted concern set for each experiment. The addition of the random elements was
to verify that the developers understood the code under investigation. All but one of
the random elements was marked as not interesting by the subjects. The one random
element marked as interesting can be attributed to the method belonging to a class
which was core to the understanding and fixing of the bug.

As can be seen from Table 5.1, the edited elements form a large portion of the
predicted concern. On further investigation we learnt that the actual code change
to fix the bug was localized to one or two methods except in one case. Subject ‘D’
interpreted a much broader than intended scope for the task and designed a complex
fix which required many new methods to be written. Of the remaining developers,
subject ‘B’ chose to place debug prints to understand the code, which were later
reverted. There were also a couple of elements where the code change was due to
spurious key presses on the part of the developers. But the plug-in looked only at edits

to determine changed elements and so failed to detect reverted changes or spurious
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edits.

We had not anticipated the numerous edits performed by the developers. Many
of the elements targeted by the edits were important for the understanding of the
task context. In the plug-in implementation of the decision tree algorithm to predict
task context, the edited elements bypassed the decision tree classifier and were auto-
matically included in the predicted set of elements. Because of the implementation,
although quite a few elements of interest were present in the predicted concern, they
were included because of edit actions performed and not as the outcome of the de-
cision tree classification. Therefore, we cannot use the predicted concerns to draw
inferences on the performance of decision tree classifier for predicting concerns. How-
ever, we would like to point out the absence of irrelevant elements in the predicted
concerns. In future user studies involving code changes, care should be taken to factor
in the effects of user edits to the elements belonging to the concern.

In addition to the results presented above, we were also able to observe certain
trends in the utility of the prediction technique and its corelation to the expertise
of the developers using the tool. We noticed that the plug-in was most useful, i.e.,
it performed the best for developers who represented the average-case in terms of
developer skills. In other words, the predicted concerns were of significantly poor
quality for inexperienced as well as expert developers. This is in accordance with the
observations from the previous user study and the subsequent analysis of the resulting
navigation traces.

On the whole, we received positive feedback about the plug-in and its usage from
the developers taking part in the study. Two of the four subjects(‘A’ and ‘C’) were
very impressed with the high signal-to-noise ratio exhibited by the filter algorithm
in predicting the concern. The goal of the study, to evaluate the plug-in and get

feedback on the predicted concerns, was successfully achieved.
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Chapter 6

Conclusion and Future Work

Developers expend a lot of time to understand the context of a development task.
Due to lack of good automated tools to record the task context the resources devoted
towards understanding the task context are lost over time. Also, it is not easy to
share the task context among developers working on related tasks. To overcome
this problem, we trained a decision tree classifier, using the data collected during a
user study, to automatically generate a summary of the development session. The
training data consisted of attributes and a label computed from program navigation
transcripts and code-elements to feature mappings generated by the subjects of the
user study while engaged in source code exploration tasks. We developed TaCoML,
an Eclipse plug-in, to integrate the learned decision tree classifier into the developer’s
work flow. The plug-in facilitates the recording of the task context by generating a
summary of the important elements of the session.

To evaluate the decision tree learning algorithm, we compared its precision and
recall with the Nacin algorithm and two variants using the count metric. We found
that the decision tree classifiers have better precision than all the configurations of the
Nacin algorithm suggested by Robillard et al. [17]. When compared to the variants of
the count metric the decision trees have higher precision in most cases. In contrast,
when comparing recall, the decision trees performed slightly worse than both Nacin as
well as the variants using the count metric. We observed a trade-off between precision

and recall as we varied the parameter to control the size of the learned decision tree.
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Thus, depending on requirements it is possible to control whether more importance is
placed on generating a smaller but more precise summary set, or a larger but possibly
less accurate set of elements representing the task context.

We also conducted a small user study to evaluate the TaCoML plug-in. In this
study we asked developers to perform a software change task and at the end of
the task generated a summary of the elements representing the task context. The
developers rated the summary elements on the basis of their usefulness. Due to the
large number of edits performed by the subjects, which were automatically included
in the generated summary, it was difficult to ascertain the quality of the predicted
elements. But the feedback obtained on the tool and its utility were positive. In the
future, user study design involving development tasks should take into account the
developer behavior of modifying the program source code to understand it.

The learned decision trees also provided insight into the relative importance of the
different attributes. Although the structure of the trees varied with training data and
configuration parameters some of the attributes were more commonly encountered in
the learned tree than others. Particularly, the ‘count’ attribute was prominent in
most resulting trees. This validates the common notion that the more often the
developer accesses certain elements, the more important they are. But the presence
of additional attributes helped the learning algorithm to further refine the decision
tree and obtain better precision. The additional precision obtained suggests that the
count attribute alone is insufficient and better results can be obtained by including
additional information through other attributes.

We have successfully evaluated the utility of using machine learning algorithms
for the task of classification of navigation transcript elements to generate a summary
of the development session or the task context. Our results indicate that the decision
tree learning algorithm had better precision than other approaches we compared
with, but the recall for the machine learning algorithms needs further improvement.
It should be noted that machine learning methods (especially, classical supervised
learning, such as decision trees) are designed to optimize precision, and not recall.
As a result, the fact that we obtained very good precision and not that great recall

is not suprising and should be considered a good result.
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6.1 Future Work

Although, our initial attempt to use machine learning techniques for the task of
program navigation analysis have been successful, the results obtained so far suggest
further directions for future research. Decision trees are amongst the simpler models
that can be used to represent the outcome of a learning process. We believe that
a model that more closely represents the process of discovering the task context
that a developer follows will lead to improvements in the quality of the generated
summary. In the future, we would like to investigate the effectiveness of using more
complex machine learning models and algorithms to generate the summary. One
of the possibilities is the use of time-series learning methods which would treat the
navigation trace as a sequence rather than trying to summarize it in a fixed set of
attributes. Also, we would like to investigate additional attributes that better encode
the semantics and information considered important by the developers. In conjunction
with the work on learning models and attributes, we would like further improve the
Eclipse plug-in based on user feedback. Based on the outcome of the research, we
would like to further add support for other methods to generate the session summary.
Another finding of our investigations was the differences in the program investigation
styles and patterns between developers with varying skill levels. We would like to
investigate the differences and evaluate the effectiveness of using different classifiers
and models based on developer skills. This would allow developers to fine tune the

summary generating tool for their development style.
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