
A model of large  program  development 
by L. A. Belady  and M. M. Lehman 

As a need for  a discipline of software engineering has been 
recognized,  the  design, implementation, and  maintenance of 
computer  software has come  into  the  forefront. The formulation 
of concepts of programming methodology, exemplified by 
Dijkstra's  structured programming,' strikes  at  the roots of the 
problem. The realization is that  a program, much as  a mathe- 
matical theorem, should and can be provable. Recognition that 
a program can be proved correct  as it  is developed  and main- 
tained,' and before its results  are  used, may ultimately change 
the  nature of the programming task and the  face of the program- 
ming world. Clearly these  developments  are of fundamental 
importance.  They  appear to point to long-term solutions to prob- 
lems that will be encountered in creating  the  great  amount of 
program text  that  the world appears  to  require. But even though 
progress in mastering the  science of program creation, mainte- 
nance, and  expansion  has also been  made,  there is still a long 
way to go. 

Such progress as is currently being made stems primarily from the  system 
the personal involvement of researchers and developers in the approach 
programming process at a detailed level. Often they tackle  a sin- 
gle problem area: algorithm development, language, structure, 
correctness proving, code  generation,  documentation,  or testing. 
Others view the process as a whole, yet they are primarily con- 
cerned with the individual steps  that,  together,  take  one from 
concept  to  computation. Still this  type of study is essential if real 
insight is to be gained and  progress made. 
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Figure 1 Growth trends of system attribute counts with time 

Figure 2 Average  growth  trends 
of system attributes 
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The scientific method  has made progress in revealing the  nature 
of the physical world by pursuing courses  other than studying 
individual phenomena in exquisite detail. Similarly, a system, a 
process, or a phenomenon may be viewed from the  outside, by 
acts of observing; clarifying; and by measuring and modeling 
identifiable attributes,  patterns,  and  trends.  From such activities 
one  obtains increasing knowledge and understanding, based on 
the behavior of both the  system  and its subsystems,  the  process 
and its subprocesses. 

Starting with the initial release of os/360 as a base, we have 
studied the  interaction between management and the evolution 
of os/360 by using certain  independent  variables of the improve- 
ment and  enhancement (i. e., maintenance)  process.  We  cannot 
say  at  this time that  we  have used all the key independent vari- 
ables. There is undoubtedly much more to be learned about  the 
variables and the  data  that  characterize  the programming pro- 
cess.  Our method of study  has been that of regression-outside 
in-which  we  have  termed  “structured  analysis.”  Starting with 
the available data, we  have  attempted to  deduce  the  nature of 
consecutive  releases of os/360. We give examples of the  data 
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that  support this systematic study of the programming process. 
Again, however, we  wish to emphasize  that  this  study is but the 
beginning of a new approach to analyzing man-made  systems. 

The  authors have  studied  the programming process:’ as it per- 
tains  to  the  development of os/360, and now give a preliminary 
analysis of some project  statistics of this programming system, 
which had already survived a number of versions or releases 
when the study began. The data  for  each  release included mea- 
sures of the size of the  system,  the  number of modules added, 
deleted or changed,  the  release date, information on manpower 
and machine time used and  costs involved in each release. In 
general there were large,  apparently  stochastic,  variations in the 
individual data items from release to release. 

All in all, the  data indicated a general upward trend in the  size, 
complexity, and cost of the  system and the  maintenance pro- 
cess, as indicated by components,  modules,  statements,  instruc- 
tions, and modules handled in Figure 1.  The various  parameters 
were averaged  to  expose  trends. When the  averaged  data  were 
plotted as shown in Figure 2, the previously erratic  data had 
become strikingly smooth. 

Some time later, additional data were plotted as shown in Figure 
3 and confirmed suspicions of nonlinear-possibly exponential - 
growth and  complexity.  Extrapolation suggested further growth 
trends  that were significantly at  odds with the then current pro- 
ject plans. The  data were also highly erratic with major, but 
apparently serially correlated, fluctuations shown in Figure 4 by 
the  broken lines from release to release.  Nevertheless,  almost 
any form of averaging led to  the display of very  clear  trends as 
shown by the  dashed line in Figure 4. Thus it was natural to 
apply uni- and multivariate regression and autocorrelation  tech- 
niques to fit appropriate regression and time-series models to 
represent  the  process  for  purposes of planning, forecasting, and 
improving it  in part or as a whole. As the  study  progressed, evi- 
dence  accumulated  that  one might consider a software mainte- 
nance  and  enhancement project as  a self-regulating organism, 
subject to apparently random shocks,  but-overall -obeying its 
own specific conservation laws and internal dynamics. 

Thus these first observations  encouraged  the  search for models 
that  represented laws that  governed  the  dynamic  behavior of 
the  metasystem of organization, people, and program material 
involved in the  creation  and  maintenance  process, in the evolu- 
tion of programming systems. 

It is perhaps  necessary to explain here why  we allege continu- 
ous creation,  maintenance,  and  enhancement of programming 
systems.  It is the  actual  experience of  all who have been in- 
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volved in the utilization of computing  equipment  and  the  running 
of large  multiple-function  programs,  that  such  systems  demand 
continuous  repair  and  improvement.  Thus  we  may  postulate  the 
First  Law of  Program  Evolution  Dynamics.‘ 

1. L a w  of continuing  chunge. A system  that is used  undergoes 
continuing  change until it is judged  more  cost  effective  to  freeze 
and  recreate it. 

Software  does  not  face  the  physical  decay  problems  that  hard- 
ware  faces.  But  the  power  and logical flexibility of computing 
systems,  the  extending  technology of computer  applications,  the 
ever-evolving  hardware,  and  the  pressures  for  the  exploitation of 
new  business  opportunities all make  demands.  Manufacturers, 
therefore,  encourage  the  continuous  adaptation of  programs to 
keep in step with  increasing  skill,  insight,  ambition,  and  opportu- 
nity. In addition to such  external  pressures  for  change,  there  is 
the  constant need to  repair  system  faults,  whether  they  are  er- 
rors  that  stem  from  faulty  implementation or  defects  that  relate 
to  weaknesses in design or  behavior.  Thus  a  programming  system 
undergoes  continuous  maintenance  and  development,  driven by 
mutually  stimulating changes in system  capability  and  environ- 
mental  usage. In  fact,  the  evolution  pattern of a  large  program is 
similar to that of any  other  complex  system in that  it  stems  from 
the  closed-loop  cyclic  adaptation of environment  to  system 
changes  and  vice  versa. 

As a  system is changed,  its  structure  inevitably  degenerates. 
The resulting  system  complexity  and  reduction of manageability 
are  expressed by the  Second  Law of  Program  Evolution Dy- 
namics. 

11. Luw  qf’incrrusing  entropy. The  entropy of a  system  (its  un- 
structuredness)  increases with time,  unless  specific  work  is  exe- 
cuted  to  maintain  or  reduce  it. 

This law too  expresses  vast  experience, in part by data  to  be 
presented  later in this paper.  This, in turn,  leads  to  the  formula- 
tion  of the  Third  Law of Program  Evolution  Dynamics. 

111. Law of stmtistically smooth  growth. Growth  trend  measures 
of global system  attributes may appear  to  be  stochastic locally 
in time  and  space,  but,  statistically,  they  are  cyclically self- 
regulating,  with  well-defined  long-range  trends. 

The  system  and  the  metasystem-the  project  organization  that 
is developing  it-constitute  an  organism  that is constrained by 
conservation  laws.  These  laws may be locally  violated,  but  they 
direct,  constrain,  control, a n i  thereby  regulate  and  smooth,  the 
long-term  growth and  development  patterns  and  rates.  Observa- 
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tion,  measurement,  and  interpretation of the  latter can thus be 
used to  plan,  control,  and  forecast  better  the  product of an  exist- 
ing process  and to improve  the  process so as  to  obtain desired or 
desirable  characteristics. 

The “laws”  that  we  are expounding upon have gradually 
evolved as we have  pursued our study of the programming task. 
When we began our  studies,  observations led to the  concept  that 
we  termed “programming systems  growth  dynamics.”5 We have 
now renamed this subdiscipline “programming evolution dy- 
namics.” 

The remainder of this  paper  describes some of the statistical and 
formal models of the programming process  that we have been 
able  to  develop by pursuing the  consequences of the laws of 
programming evolution dynamics. It is our conviction that  the 
extension of these  studies  can lead to  an increasing understand- 
ing  of the  nature  and  dynamics of the programming process. 
Hence, studies  such as  these may  yield significant advances in 
the ability to engineer software,  i.e., to plan and  control program 
creation  and maintenance. 

The process observed-a statistical  model 

The basic assumptions of programming evolution dynamics 
spring from viewing the program being implemented,  enhanced, 
and maintained and its metasystem - the organization that gener- 
ated  and  undertook  the  development of 0~/360-as  interacting 
systems. The evolutionary process  and life cycle of a program 
are  at least partially governed by the  structural  and functional 
attributes of both the program and the human organization. 
Their  size,  complexity, and numerous internal interactions sug- 
gest the use of statistical  techniques  for  interpreting  observed 
behavior. 

Detailed  studies of available data in conjunction with the almost 
universal experience of the programming community indicate 
that a large programming project has many  of the  properties of a 
multiple loop, self-stabilizing feedback  system. The overall trend 
has been summarized in the previously discussed  three laws that 
underlie the  dynamics of evolution of large programs. The pres- 
ent  section  presents  some of the  accumulated numerical evi- 
dence  derived from experience with os/360  -one model of one 
system from one  environment. 

The project data  presented  here originate from Os/360, which is 
now some twelve years  old.  This  system has been made avail- 
able  to  an increasing number of users in a  series of over  twenty 
user-oriented  releases. These releases  have  extended  the  capa- 
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bility  of the operating system by correcting  faults, improving 
performance, supporting new hardware, and by adding newly 
conceived  functions. 

These and other  intermediate  releases were assigned names  or 
numbers  as identifiers. Each  release  may,  however,  also be iden- 
tified as a program that - with its documentation - forms  an iden- 
tifiable and  stable  text in an otherwise  continuously changing 
environment. Assigning Release Sequence Numbers (RSNs)  to 
versions receiving the same  degree of exposure, yields a se- 
quence of integers  that forms a pseudo time measure in the 
sense of Cox and Lewis6 that may be used to  describe  the time- 
dependent behavior of program evolution. 

Of the  releases  considered,  the first represents  the culmination 
of the basic design and build (i.e.  system  integration)  process. 
The iterative  process  that yields the specification, architecture, 
design, and the first implementation of a large program system 
differs significantly from subsequent  maintenance  and  enhance- 
ment activity. In particular,  there is at  this stage no feedback of 
fault  reporting or performance  assessment by independent  users. 
Hence  data relating to that first release are not included in this 
analysis. The build process itself may,  however, be studied by 
using data  obtained periodically during the  development  activity. 

Data from a second release  were  also  unused  because they were 
shown to represent  a  component  development  somewhat off the 
main stream.  In  the final analysis,  the model and the  plots to be 
presented are based on twenty-one  sets of observations.  This 
relatively small number of data points implies that  extreme  care 
must be exercised in interpreting  the  results of the statistical 
analysis.  Subsequent  data from the os/360 augmented by data 
from other  environments  have generally confirmed our observa- 
tions and  conclusions. 

observables The release  sequence  number ( R S N )  is taken as the first of the 
of system system evolution parameters. The second is the  age of the  sys- 
evolution tem D, at  release with R S N  = R. Equivalently, D, is the  inter- 

release interval I , ;  in other  words,  the interval in days between 
releases with R S N  = R-l and R ,  respectively. A third available 
parameter M ,  measures  the size of the  system in modules. We 
present  the  results of our  analysis in terms of modules, though 
other size measures- such as numbers of components  or  instruc- 
tions in the  system - could also  have been used. The suitability of 
the module stems from the  fact  that in Os/360 the  concept of 
module- though imprecisely defined- represents at one and the 
same time a functional and implementation entity and, for exe- 
cution, a unit of system generation and  storage  allocation. 
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A fourth  parameter M H ,  records  the  number of system modules 
that  have  received  attention,  i.e.,  those  that  have been handled 
during the  release interval and, more specifically, during the in- 
tegration process.  We  have used this as an initial estimator of 
the  amount of activity  undertaken in each release. The measure 
is imprecise, but represents  the  best available information over 
the  entire  sequence.  From M H ,  and I , ,  in turn, we determine  an 
estimate of the handle rate H R ,  for  the  activity  that produced 
the  release with RSN = R. 

From  the very first beginnings of this study of the programming 
process,’ it has been clear  that  the changing complexity of a  sys- 
tem,  as it  is modified, plays a vital role in the aging process. 
Unfortunately  there is no clear or unique understanding of what 
complexity is and how it can be defined and  measured. The 
choice of complexity definition cannot, in fact, be disassociated 
from the  use to which it is to be put. But complexity of the sys- 
tem, of the  organization,  and of each  particular  series of changes 
is fundamental to the  maintenance  and  to the resultant aging 
process. Hence some measures of complexity must be estab- 
lished. 

For the  purposes of the  present  analysis, complexity C ,  has 
been defined as the  fraction of the  released  system modules that 
were handled during the  course of the  release with R S N  = R. 
This definition is clearly inadequate. It does  not  separately mea- 
sure  the  various  independent complexity factors involved. It 
does  not discriminate between system organization and  the na- 
ture of the work undertaken. Nor does it measure the amount of 
activity involved. But at least it is a  measure  for which real data 
exist.  Moreover  the  data give interpretable  results.  Hence C ,  
= M H R / M R  will  suffice until better  measures  become available. 

We have just identified five observable and measurable  parame- 
ters of the programming process. Our hypothesis implies that 
these  parameters  do  not  vary  independently, at least when 
viewed over a relatively long period of time. In fact, we have 
been able to determine,  for  example,  four bivariate relationships 
among them. The complexity parameter,  however, is derived 
from two of the  others.  Hence, on the basis of present data, we 
are entitled to fit only three  independent  functions. The fourth 
relationship,  then,  must be derived from the  other  three  and  test- 
ed for fit. As in  all data fitting, the forms  selected must also  pass 
a  test of conceptual  reasonableness. 

We  stress  that, in general, any statistical  goodness of fit test is 
insufficient to  establish  any relationship as an element of the  to- 
tal model -as an  expression of causal  relationships-unless it 
can be convincingly interpreted in the light  of one’s insight into 
the  process.  Ultimately, it  is only  through  the interplay and 
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iteration of observation, modeling, and  interpretation  that real 
progress  can  be  made in understanding  and  mastering  the  large- 
scale  programming  process. 

The statistically  derived  relationships to be  presented  here  com- 
prise  a  model of the  programming  process with respect  to this 
system’s life cycle. The relationships  represent a simple,  but 
recognizably  incomplete,  model  of  what is happening. In prac- 
tice,  the  statistical  model  has  been  used  to  improve  the planning 
for  this  particular  system. With the insight  gained  from the mod- 
el’s development,  further  statistical  and  analytic  models  have 
been  and will continue  to  be  developed  that  may  explain  the 
process  and  eventually lead to  the insight that  permits  improve- 
ment  of  process  planning,  control,  and  cost/effectiveness. 

In the first instance,  we  must identify the global nature of the 
process  as  expressed in the  relationships  to  be,  or  that  have 
been,  developed.  The  previously  stated  Third  Law  suggests  that 
smooth long-term trends  can  be  seen in the  measures  even if 
short-term  behavior  tends  to  be  erratic.  This  is  supported by the 
fact  that  we  have  been  able  to  construct  statistically significant 
relationships  consisting of three  parts:  the first expresses  the 
long-term,  deterministic  trend;  the  second  describes  short-term 
cyclic  effects:  and  the  third  part  expresses  any  system-relative 
stochastic  influences  on  the  process. 

The  stochastic influences arise, in part,  from a certain  arbitrari- 
ness in the  selection of the  new  function  and,  therefore, new 
code  to  be included in any  given  release.  It is influenced to a 
significant degree by user  and  management  pressure,  the  availa- 
bility of new  hardware  devices,  and by business  considerations 
that  are not  directly  related to  the  internal  dynamics of the pro- 
cess.  Equally,  the  release  target  date,  and  hence  the  age of the 
system  at  the  release  point,  is  strongly influenced  by factors  ex- 
ternal to  the programming process. 

The cyclic  trends  that  we  have  observed in the  data,  and  that 
have long  been accepted  on a heuristic  basis by managers  and 
observers of  programming practice, may well contain  the  clue  to 
current limitations of the  process. In  part,  at  least,  inter-release 
effects  arise  from  the  interaction of repair  and  enhancement  ac- 
tivity,  particularly  when  they  share  common  resources  and  are 
undertaken in parallel. I t  is probably  the  interplay  between  the 
levels  and  rates of the  various  activities  and, in particular,  their 
divisions at  any given  time  between  repair,  functional  improve- 
ments,  and  new  capability  additions  that  charts  the  fate of a pro- 
gramming  system.  Long-term  trends,  however,  are  perhaps of 
greatest significance in understanding  the  process  and in foresee- 



Figure 5 shows the size of os/360 in modules plotted with re- 
spect to release  sequence  numbers. Relative to  the nonuniform 
time measure, growth in size is more or less linear. Indicated by 
arrows  around  the linear trend line is a visible ripple. This cyclic 
effect can be understood if the total organization is viewed as a 
self-stabilizing feedback system. That is, the design-programming- 
distribution-usage system has a  feedback-driven and controlled 
transfer function and  input-output relationship. 

Some feedback  results,  for  example, from constant  pressure to 
supplement  system capability and power. As  the growth rate 
and work pressures build up, thereby increasing the size and 
complexity of the  operating  system,  reduced quality of design, 
coding and  testing, lagging documentation,  and  other  factors 
emerge to counter  the increasing growth rate.  Sooner or later, as 
indicated by the  segments marked C ,  these  lead,  at  best,  to  a 
need for  a  system  consolidation,  a  release  that  contains little or 
no functional enhancement and in which correction,  restructur- 
ing, and rewriting activities  predominate.  As  a result the  system 
size does  not grow significantly during such a  release  and may 
even  shrink. At the  worst  a fission effect F may occur,  as  at 
R S N  = 20 to 21 where excessive prior growth has  apparently 
led to a break up of the  system. 

Figure  6  presents  the net growth of os/360 in each  release. 
Analysis confirms the cyclicity of the  growth  process as indicat- 
ed in the figure. A  second  observation  may,  however, be of even 
greater significance in estimating the limits of growth. With three 
exceptions,  the  net  growth  points may be seen  to lie in a band 
bounded at about the 400-module level,  a level that  does  not 
appear  to  have changed significantly in size during the lifetime of 
the  system.  Moreover, in the  three  instances where this growth 
level of oS/360 was exceeded,  the  record  shows  that, in the first 
case,  the  release was of such quality that it had to be followed 
by an unplanned clean-up release. The  later two  cases had 
equally unplanned consequences, significant schedule slippages, 
relatively disappointing performance,  and - in the  case of release 
20- the previously unplanned division of the  operating  system 
into at least  two  independent  systems.  Moreover,  note  that  re- 
leases with net  growth  near or in excess of the indicated bound 
tend  to be followed by one  or more releases with a much re- 
duced net growth. 

If  we may generalize our  conclusion, it  is that  as  a large system 
grows  through the addition of new and modified code,  the  sys- 
tem requires  the regular establishment of a unique base refer- 
ence  to both code  and  documentation,  such as is attained when 
the  system is to be released  for significant usage outside  the 
development  and  maintenance  group. 
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Also, in the  present  state of the  art, complete  and unambiguous 
specifications of changes  or  additions  to be made are not normally 
achieved or even  achievable. Nor is it possible to  continuously 
prove  the specifications to be consistent,  and  their  subsequent 
implementation to be correct with respect  to  the new program 
behavior desired (or even with respect  to  previous program be- 
havior).  Hence  the  code  and  the  system  are  tested. But tests  can 
reveal only deviations  from desired or expected b e h a ~ i o r , ~  they 
do not  demonstrate  absolutely  correct  behavior  or  the  absence of 
faults. Furthermore,  the  extent to which testing reveals devi- 
ations  or  faults is limited by both the  resources  that  can be con- 
sumed to  conduct  them  and by the view that  test  designers  and 
interpreters  have of the  total  program,  the  changes,  and  the 
intended behavior of both. 

Thus, a  further  intrinsic  consequence of system  release is that 
the program is suddenly exposed  to an environment in which 
both  the  expected  behavior  and  the  actual usage may - and  usu- 
ally do -differ from  that  to which the  system  was  exposed in the 
development,  maintenance,  and  test  environments.  Inevitably, 
therefore,  release of the  code  results in the discovery of new 
faults.  We  conclude  that sufficiently early release to  users of 
stabilized code  and  documentation  prevents a build-up of undis- 
covered  faults.  On  the  other  hand,  too  many  code  changes  that 
are undertaken  without  exposure to a wider usage pattern  than 
can be generated in any  test  shop  causes  an  accumulation of in- 
terrelated  faults  and  system  weaknesses,  such as poor perfor- 
mance,  that are  far more complex to unravel. The  data  on which 
Figure 6 is based suggest that  there  existed a nonlinear effect 
with a critical growth mass in the  operating  system we are dis- 
cussing of some  four  hundred modules. 

This critical growth  mass had been essentially  invariant in al- 
most a decade of os/360 project  and  system life, despite meth- 
odological and technological improvements: increasing use of 
high-level languages and programming support  tools;  and in- 
creasing  experience of designers,  implementers,  and manage- 
ment. Thus  the characteristic is likely to be an attribute of the 
entire organization that  relates  to  this  system. That is, we appear 
to  have identified a combined system  and  metasystem invari- 
ance.  In view of the posited multiloop feedback  nature of the 
process,  one  can  expect  to  change  and  improve  this  characteris- 
tic  growth  rate  only when one begins to  understand the  structure 
of the  process  and  its relationship to  the organization and  to  the 
system. 

Without speculating further  about  the  nature of the  process, we 



AM, = K,, + Sl + Zi ( 1 )  

or by 

M, = K,, + K , ,  R + S,  + Z ,  ( 2 )  

Here AM, represents  the net growth of the  system between 
(RSN)  = ( R  - 1 )  and (RSN)  = R. A least-squares fit to  the 
available data yields values of 760 and 200 for K , ,  and K , , ,  
respectively. The S and Z terms  represent  the  cyclic  and  sto- 
chastic  components  whose  nature  and magnitude can be deter- 
mined using statistical techniques,  such  as  those  described in 
Reference 8. The small number of available data points, how- 
ever,  restricts  the possible significance. We note  that  Equations 
I and 2 reflect directly the  First  and  Third  Laws  proposed in the 
introduction of this  paper. 

In  the  absence of a more  satisfactory  measure, we represent  the 
complexity of the activity  required during the interval preceding 
release R by the  fraction C,  (of modules of the total system) 
handled.  Figure 7 shows this measure plotted against RSN. 

One possible (and  least  square-wise significant) fit is  by a  quad- 
ratic in R. Other functional  forms  (particularly an exponential 
fit)  are  also significant. Both the  quadratic and exponential  rep- 
resentations appeal to  our need for models and limitations on 
the program development  process, but more data will have  to be 
obtained  to  determine the  one  that  more closely reflects a partic- 
ular  process.  On  the basis of the principle of parsimony,' we 
select  the following quadratic form for  the  current model: 

C ,  = K,, + K,, R + K,, R2 + S ,  + Z, (3) 

For the  present  data, K,, ,   K, , ,  and K,, are respectively  0.14, 0, 
and 0.00 12. 

We  note immediately that  the  monotonic  growth  trend implied 
by Equation 3 supports  the  Second of our  three Laws. The 
Third  Law is once again supported by the identification of a sig- 
nificant trend. 

Notice  that  the residuals for  this  quadratic fit, and equally those 
for an exponential fit, are generally rather large for R = 2 
through,  say, R = 14. This variation is, of course,  absorbed by 
the cyclic and  stochastic  terms,  but in fact  the residuals corre- 
late  very strongly with the handle rate HR,. This  correlation is 
not statistically conclusive, since both measures are in the  pres- 
ent  instance derived from related parameters.  Nevertheless, it 
suggests a more complete  representation of the following form: 

C ,  = Kg, + Kg, R + K6, R2 + KH, HR, + SH + Zg (4)  
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where a  least  squares tit to  the  present  data yields the values 
0.037, 0, 0.0013, and 0.008  respectively,  for coefficients Kb,,, 

An  interpretation of this model suggests  that  more rapid work 
leads  to  greater  pressures on the  team,  and  hence to more er- 
rors-  which, in turn,  require  greater  repair  activity. The data 
indicate that this is mainly incurred in the  same  release  rather 
than  discovered and undertaken  thereafter.  Furthermore,  since it 
appears  to lead to an increase in the  fraction of the system han- 
dled, it suggests that  the  maintenance  teams tend to  remove  the 
symptoms of a  fault  rather  than to locate  and  repair its cause. 
This  deduction  has been confirmed independently by a  number 
of observers  of-and  participants  in-  the  process, a fact  that 
strengthens  one’s confidence in Equation 4 as a  more  complete 
representation of one  aspect of the  process. 

work The work associated with each  release is measured in this in- 
rate stance by modules handled MH,. This  measure  is, in each  case, 

associated with a  particular  release  and  also with the  release in- 
terval  that  separates  the  release from its predecessor.  However, 
many releases  overlap - particularly those  releases  that include 
major functional  growth-and  a new release may be integrated 
successively against two  or even  more  predecessor  releases. 

Data on the  degree of overlap  between  the  various  releases  were 
not available to us. Therefore, we first examine  the  cumulative 
sum of modules handled (CMH)  as compared with the  age of 
the  system, in an  attempt  to  neutralize  the  overlap effect in de- 
termining the handle rate.  Figure 8 shows  these data titted, as a 
first approximation, by a  straight line. Such  a tit suggests that  the 
major changes that  have  occurred during the lifetime of the  op- 
erating  system in methodology, tooling, and staffing levels have 
had no significant impact on handle rate.  This  has  stayed  essen- 
tially constant  over  the period at some  eleven modules per  day. 

Figure 8 Handle   ra te  of modules The  data  at  the extremes of Figure 8 suggest that in the early life 

rate may have been a little lower.  This can no longer be con- 
firmed for  the  older  data. As far  as  present  trends  are  concerned, 

pect  the  scope of the  cumulative handle plot versus  system  age 
to  drop off from its previously constant value. It  appears  that 

S-curve provides a more faithful representation  over the life to 
date of the  operating  system. 

We may now usefully examine  the  handle  rate HR,  as  deter- 
mined by the  ratio of the  handle-to-release interval for each re- 
lease, as shown in Figure 9. Because of the effect of release  over- 

over system lifetime of the  system,  and in the most recent  two  releases,  the  handle 3FI 
52 /” however,  since  the handle fraction is approaching  unity, we ex- 
30 
vo 

LL 
0 even though the  straight line tit is adopted as an initial model, an 
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lap, the range of rates achieved is exaggerated,  but it  is indeed 
centered  around  an  average of about  eleven modules per day. 
Also note  that  where  the  release  rate has exceeded this average, 
the figure for  the  next  release is lower. We conclude from the 
data  for  Figures 8 and 9 that  the handle rate is stationary with 
cyclic and  stochastic  components  that are confirmed by analysis 
to be significant and  to  have  a  three-release cycle. 

Thus we adopt  as  our third relationship  an  expression of the fol- 
lowing form: 

HR, = K;, + SA + Z; ( 5 )  

or 

C M H ,  = K, ,  + K,, D + S:, + 2, (6) 

CMH, counts  the  total  number of modules handled between  the 
first  release of the  system  and  day D ,  that  is, when its age from 
release 1 is D days. HR, represents  the module handle rate in the 
Rth release  interval. The S and Z terms  once again represent  the 
cyclic and  stochastic  components. For the  present  system, K,, 
and K,, are 1100 and 1 1 respectively. The statistically signifi- 
cant  determination of a long-range trend with cyclic  and  stochas- 
tic  components  once again confirms the  proposed  Third  Law. 

We must now consider the  data of Figure 5 which we have pre- 
sented  as  a  function of real time in Figure 10, where  system  size 
in modules is plotted as a function of system age in days. As in- 
dicated  earlier in this  paper,  the relationship developed  to  repre- 
sent  this  trend must be compatible with those  already  expressed 
in Equations 1 through 6. Of the  alternative  forms  that  can be 
significantly fitted we have  selected  the following expression: 

M ,  = K,, + K, ,  log ( 1  + D l  K42) + S, + Z ,  (7)  

Here, a  least  squares fit yields K,,, K,,, and K,, as 89, 13.50, and 
51 respectively. The value of the  intercept is not significant be- 
cause  the  representation is not meaningful where D approaches 
zero. In reality, of course,  system age was not  zero  at  the time 
of R = 1 ,  which is the  assumed origin of our time scale. Nor, in 
view  of the  assumption  that  the build and  maintenance  pro- 
cesses  are intrinsically different, may  we expect  to  express  the 
actual  system age at first release in the same terms,  even if this 
were  known. 

We note  that  the logarithmic representation is not  asymptotic. 
Nevertheless, it suggests unlimited growth  potential, though at a 
decreasing  rate.  This  corresponds  to  our  intuitive  understanding 
that, as a  system  ages, it  is always possible to  change  another 
instruction or add another module. However,  the time required 
to  do this  tends  to increase, unless the system is restructured 
and cleaned up. 
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One  further  observation of interest follows from the logarithmic 
representation  selected.  This  representation is compatible with 
the  constant incremental growth implied by Equation 1, provid- 
ed  that  the  release interval is growing polynomially, or, in the 
limit, exponentially. But this is precisely the  behavior of interval 
growth,  as  shown in Figure 11. As it so happened,  the  earliest 
and  very successful forecasting  undertaken by us was based on 
this  very  observation  and  on  the  resultant  exponential fits to  the 
data. 

Equations 1 through 7 provide a model of the maintenance pro- 
cess  for  the  operating  system, os/360, based  on five parametric 
concepts,  but with only four available measures. The model 
would be complete with the  determination of the  statistical pa- 
rameters of the cyclic and  stochastic  terms. The small number of 
data  points,  however,  precludes  the  determination of significant 
values. 

Recognizing the  essential  interdependence of the  various param- 
eters,  one can  also gain in descriptive  power by determining 
compatible multivariate relationships  such as  are shown in 
Equation 4. These relationships  could, of course, involve addi- 
tional or lower-level breakdowns of existing parameters. 

The number of basic  relationships  presented  has been deliber- 
ately  restricted  to  the  number  that is necessary  and sufficient 
with respect  to  the existing degrees of freedom.  Equations ( 1  ) 
through (4) have been selected  because  they bring out  apparent 
invariants of the  process. The recognition of invariances is fun- 
damental  to  the application of the scientific method. As  such, 
invariant  detection in an analysis of the programming process 
not only strengthens  our  basic  assumption of regularity in the 
process  development,  but it also provides hope  that  the  analysis 
can be further  developed  and  eventually permit improvement of 
the  process. 

Although the present model represents  the  observed  behavior, it 
does,  however,  not explain it. Moreover,  the  representations 
break  down at  the  extrema of observation.  We  have  commented 
on this in the  case of Equation 7 when D approaches  zero from 
above. Similarly, Equations  3 through 6 are seen  to be invalid 
representations as the  fraction handled approaches  its  intrinsic 
limit of one.  In  fact,  the expected  nonlinear  trend is visible in 
Figure 8. Good reasons  have been given,  however,  for expecting 
a  constant handle rate  to be valid over  the major portion of the 
interval  considered. Thus it is not surprising that  forecasting  and 
planning techniques  based  on  these  representations  have been 
useful in providing accurate  data to improve planning in this  par- 
ticular  environment. 
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ior of other  systems from both the  same  and from other program 
development  organizations, so as  to  determine the range of ap- 
plicability of the  observed  phenomena.  First confirmation has 
come from data on a  second though smaller operating  system 
that originated in the  same  organization. With minor differences, 
this  operating  system  shows  the  same  characteristics  and  trends, 
though with markedly different parameters. Preliminary data 
from a totally different organizational environment  have  also 
been examined’. As indicated in Figures 12 through 14, the 
smaller operating  system confirms the  basic  observations of 
constant growth trends,  cyclicity, overall smoothness,  and de- 
clining work rates. The confirmation that  this implies is of par- 
ticular interest  because  the  source is a programming organiza- 
tion outside IBM that  created  structured programs in ALGOL for 
IBM use  only.  Thus  the organizational environment is quite dif- 
ferent, but the phenomena are visibly present. 

Clearly,  these  data- especially the  invariants - should be studied 
further,  for  example by examining actual  work  rates within a 
release  interval. With further  study,  one  hopes to discover  the 
reasons  for  the  phenomena  and ultimately to  remove  the limita- 
tions  that  they imply. 

In parallel with the  study of invhriants,  one should also proceed 
with the  development of abstract models that  represent  and for- 
malize our perception and understanding of the large-program 
development  process itself or of aspects of the  process. We de- 
scribe  examples of our  earliest  approaches to this problem in the 
following section. 

operating system 

’ 
SYSTEM AGE IN DAYS 

Figure 13 Number  of  changes 
a s  a function of re- 
lease number of a 
second operating sys- 
tem 
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Formal modeling of the program  development  process 

Since  our goal  is to  understand  and to learn to  control  the pro- 
gramming process,  one view of the  process is to  see it as  the in- 
teraction between two  entities. On the  one  hand,  the  large  pro- 
gram in  all its  representations  and with its  documentation we Figure 14 Declining work rate 

call the  “object.” On the  other  hand,  the human organization exhibited  by  a second 

that implements the  process in its manipulation of the  object is 
termed  the  “team.” The function of the  team is to execute 9 
changes in the  object. 

In conjunction with user-provided data, the  object  enables a 3 
computing machine to perform useful work. During its lifetime, 2 
all kinds of changes to  the object are necessary. The  (hardware) 
machine, or some of its  components may  be changed or re- i/-1 
placed. New devices may  be added.  Computing  requirements 
may be redefined to  serve new uses. New ways of using the sys- 

operating system 
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Figure 15 Primitive  model of 
fault   penetration 
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tem may be devised.  In  general,  the  behavior of the system  de- 
viates from that  anticipated  or  desired  because of jaults in the 
system. We term  faults  related  to  changes in the environment 
defects, whereas  an error relates  to the difference between ac- 
tual  and  anticipated behavior. When faults manifest themselves, 
the  team is required  to  undertake  corrective  action,  to perform 
changes  on the object. 

Observations  related  to  those  discussed in the  previous section 
suggest that  system evolution is to  some  considerable  extent 
influenced by fault  repair  activity. Our earliest formal models, 
therefore,  have been designed to examine  fault  distribution in 
the  system. These models were based on  the following assump- 
tions: 

Changes,  that  is,  object handlings, are, in general,  imperfect. 
When changes are performed,  errors are injected by the team 
with probability greater  than  zero. This by itself would imply 
a continuous  need  for  change,  even if the environment  were 
fixed. 
There is a delay  between  the injection of an error  and  its first 
detection  and  recording,  and  another delay exists  between 
recording  the  error  and  its final elimination. 
Some  errors  are  ordered in that  one of them  must be repaired 
before the  other  can be detected.  That  is,  there is a layering 
of errors in the  object  that is representable by a directed 
graph. 
The team  creates and uses  documents, which are kinds of 
representations of the  object,  to study  faults  and  possible 
courses of action. The documentation may be viewed as an 
integral part of the  object. 
Team members, while involved with changes,  communicate 
with each  other in the lanugage of these  documents. 
Team  members  have  to be educated in the  documentation; 
moreover,  the  team  has  the additional task of updating the 
documentation  to reflect changes performed on  the remain- 
der of the  object. 
Deficiencies in documentation influence the effectiveness of 
the  process  and,  therefore,  cause deficiencies in the  object. 

From  these  assumptions,  we  have  developed  two  classes of 
models. The first emphasizes  the internal distribution  and propa- 
gation of errors in the object. The role of the team  is simply to 
eliminate observed  faults. 

The second  class of models gives the  team a more  active  role. 
Management is free to make decisions as to  those  particular 
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tasks,  error  repair,  documentation, or other  activities to which 
the team should turn. The object  responds  to  these  actions by 
manifesting different error  generation  rates. 

The model of fault  penetration  that  we now discuss is a  measure model 
of complexity due  to aging. Consider  an  elementary  change  ac- of fault 
tivity in the time interval (i,i + 1) .  This is depicted in Figure 15, penetration 
where the width of each  arrow band may be interpreted  to be 
proportional  to  the  number of faults it represents. 

At time i, a number of faults is assumed  to  exist.  As  a  result of 
team  activities,  the following occurrences  are likely: 

I 
A fraction E of the total faults is removed (extracted). 

~ New faults G are injected (generated)  due  to imperfection in 
the  activity. 

Thus  at time i + 1 a new composition of faults  appears  that con- 
sists of residual R and  generated  errors. 

Preserving  the  distinction between residual and newly generated 
errors is fundamental  to an understanding of the  evolutionary 
process. A system  cannot be effectively maintained if that dis- 
tinction is not  understood.  And  complete  understanding de- 
mands a knowledge of the  history as well as of the  state of the 
object at all times. 

The primitive change  activity of Figure 15 spans  the  network of 
Figure 16, where i is a  discrete  measure of age (or release 
number) a n d j  is a variable used to  introduce  the  tree  structure. 
For each  node,  the residual design faults R and  the  generated 
faults G may be expressed as follows: 

Gi-l,j = Ri,zj + Ei,2j (9) 
and Gi,2j-l and Gi,2j are  to be defined for  each  node by the fol- 
lowing additional assumptions: 

Gi,j > 0 (imperfection hypothesis) 
We define Ci = 2i" ,fault c1asse.s for  every i. Each  class  has  a 
unique label that  consists of a two-valued { R , G }  character 
string of length i, with the first element  always R, meaning 
residual design faults. For example, R R G R G G R repre- 
sents  a  node  or  fault  class  at i = 7 .  More specifically, faults in 
this class are the 
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Figure 16 Network  showing  faults  extracted  and  faults  generated 

residue (. . . R ) of 
faults  generated (. . . G R )  

while extracting  faults  generated (. . . GGR)  
while extracting  the  residue (. . . RGGR) of 

faults  generated (. . GRGGR) 
while extracting  the  residue (. RGRGGR) of 

faults in the original design (RRGRGGR) 

The model as described  represents  an increasingly large and 
complex network of fault  trajectories or histories,  even though 
the total  number of faults  present may have  been  stable or even 
declining as a  consequence of nonzero Es. Faults  are identified 
in terms of unexpected  or  undesired  system  behavior in execu- 
tion. Thus we have  excluded from consideration  here simple 
faults  that manifest themselves locally in a single element of the 
system. That  is, we may omit from consideration  those  faults 
that may  be detected or removed by operating with or  on any  one 
element  alone,  and  consider  those  situations  where  rectification 
of a fault requires  coordinated  changes in two or more system 
elements  and in their interfaces.  Interactions  among  interele- 
ment and  intergeneration effects represent  the  conceptual com- 
plexity of the fault  pattern. And it is the increasingly complex 
fault  structure  that underlies increasing object  complexity. Thus 
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periodic restructuring of the  object is necessary  to  reduce com- 
plexity because increasing object complexity is itself a fault  that 
impinges on the maintainability of the  system. 

The connection  between  the relational complexity of errors  and 
the  structural complexity of the  system implies that relational 
complexity may be a measure of communication  requirements 
for  the team and  the underlying cause of fault  extraction  and 
generation  over  the  entire lifetime of the  object. 

We now give a  quantitative  interpretation of the fault penetra- 
tion model, which is a simplified view of structural aging. To 
analyze  the  above  fault  generation model so as  to obtain  even  a 
simplified view of the  resultant  structural aging, additional as- 
sumptions must be made about  the  fault  extraction  and  genera- 
tion variables E and G. 

The simplest hypothesis is that,  for  each  node, 

E = G  (10) 

that  is,  as many faults are  extracted  as  are  generated.  Under  this 
assumption the system  appears  to be in a  steady  state. 

Let us consider  the  number of fault  classes Ci as a measure of 
complexity of the  system. Analysis has  shown that complexity 
increases  even in steady state,  that  is, when the  number of faults 
in the  system remains constant. 

A degree of freedom  can be eliminated by establishing a relation 
between  fault  extraction  and  the fault content of a given class. A 
reasonable  assumption could be that Ei,2j"l is in  fixed proportion 
to and no new errors  are  generated.  Thus we have  the fol- 
lowing fault elimination-to-fault residue ratio: 

and  fault  decay follows a geometric distribution with parameter 
p ,  which is constant  such  that 0 < p < 1. After i intervals,  and 
having started with a given collection of faults S ,  the remaining 
number of faults in the original collection is S (1 - P ) ~ ,  whereas 
S (  1 - (1 - p ) ' )  faults must have been extracted.  Since Gi = 0 
for all nodes,  the  system  approaches  an  error-free  state  asymp- 
totically (approximately  exponentially).  Thus in all cases  con- 
sidered the  geometric  distribution reflects the  reasonable  as- 
sumption that the smaller the fault content  the  fewer  the  faults 
there  are  to be discovered  and  extracted. This, however, still 
implies a monotonically increasing Cj until, if ever, a fault-free 
state is reached. 

NO. 3 . 1976 LARGE-PROGRAM  DEVELOPMENT 



More  elaborate relations between E and G may be  required, so 
as  to  represent  currently  observed  situations. It is important  to 
note  that E and G at each  node are  not  independent,  but  are 
coupled via the team and  the  process. 

qualitative As already  indicated,  even with decreasing  fault  content ( E  > 
interpretation G j ,  the complexity measure C increases monotonically. This 

of fault results from and reflects the increasing stratification of the sys- 
penetration tem because of the increasing heterogeneity of faults. 

The resultant  structural  deterioration  experienced as an increas- 
ing difficulty in executing  change  alerts  the team to  the need to 
counteract  the aging process.  On  the basis of our previous as- 
sumptions, the  latter may be  considered  proportional  to 2('(i), 
where G ( i j  is a monotonically increasing function of i that re- 
flects higher-order variations  not  considered  here, as well as  the 
complex  relationship  between  fault  and  system  structure. 

To cope with the  situation,  the  state of the  system  has to be pre- 
cisely defined. Documentation  must  be  accurate,  complete and 
accessible. In addition,  the  administrative  organization or re- 
sponsibility of team members must be  well defined. Finally, team 
members must be aware of the  state of the system by learning. 
Fulfillment of these needs can effectively reduce  the effect of 
growing complexity, and can be represented symbolically as 
follows: 

2 G ' i '  

211AL(1) 
Ci (modified) - , - 2(;")b11'4',(i) - (12) 

where DAL means  "Documentation,  Accessability,  and  Learn- 
ing," which are constructive  factors.  Equation 12 is a  qualitative 
one,  and  one  that is closely related  to our earlier  fault  penetra- 
tion model. Real-life situations are much more complex. Com- 
munication complexity required to  overcome  system stratifi- 
cation  may,  for  example,  be  further  increased by geographic 
scattering of the  team  activity.  Nevertheless,  the model enables 
one  to  address  some  very real questions  about  the program 
maintenance  process. For example,  since  the model mirrors a 
domain that is discrete  (indexed with i )  , the model suggests that 
perhaps increasing the  number of intervals i (i.e.,  decreasing  the 
inter-release  time) should permit  faster  extraction of faults.  This 
would occur if such an increase  were to imply an increase in the 
frequency of restructuring  and of providing adequate  team 
knowledge of the  state of the system. That is, G (i) and D A L ( i )  
must be kept in step.  Whether more frequent  intervals would 
indeed be beneficial is by no means  clear. As a consequence of 
one of our early assumptions,  namely,  that  faults are layered  and 
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manifest themselves in a partially ordered  fashion,  one  has  to 
go through the  process of gradually repairing the  system, with 
the inevitable result of generating  complexity.  In  addition,  short 
intervals  provide  less  opportunity  to  exercise  the  system in ac- 
tual use for  fault  manifestation,  thus reducing the  number of 
faults  that  can be extracted.  The size of the  optimum interval is, 
therefore,  undecided. A more detailed model is required if this is 
to be formally explored with the  objective of helping solve a 
problem that  arises in real system  development. 

We now discuss  our management decision model, which reflects management 
our  earlier  formulation,  and which is based on  the following decision 
assumptions. model 

4.10.11 

Budget B, the available budget,  bounds  the  total  activity.  During 
the  change  process,  every unit of fault  extraction  (termed  “pro- 
gressive” P )  activity,  measured by G (i) in the model given by 

tion,  administration,  communication, and learning activity 
(termed  “antiregressive” A )  as measured by DAL( i) in Equa- 
tion 12. 

, Neglect of A activity  results in the accumulation of additional 
work  demand  to  cope with increasing complexity C .  This cumu- 
lative demand  can  be removed only by a (temporary) increase 
in the  intensity of A ,  which, as a result of the limited budget B, 
causes a (temporary)  decrease in progressive  activity P .  

Management is assumed  to  have full control of the allocation of 
its  resources  and  the division of effort between P- and  A-type 
activities.  Management  cannot,  however,  directly  control  the 
growth in complexity that  accumulates,  except by utter  concen- 
tration  on complexity control  through  restructuring.  This is an 
activity  that is strictly antiregressive  and, as  such, is psychologi- 
cally difficult to  inspire,  since it yields no direct,  short-term, 
benefits. 

To examine  these  concepts  further, we now present  an  alterna- 
tive  formulation of the model. In  a  somewhat simplified fashion, 
we  assume  that  resources  are fixed (by  budget) and that  they 
are equally applicable to either P or A activity. B and  activities 
P ,  A ,  and C can be measured in cost per unit of time, which ex- 
press  the budget rate  and its expenditure  rate on progressive, 
antiregressive,  and complex control  activities,  respectively.  In 
addition, we use the following relationships: 

k = A / P  represents  the  inherent A activity required  for each unit 
of P activity, so that complexity does  not grow. 
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rn = management factor, which is the  fraction of progress k P  
that is actually dedicated by management to A activity. 

At any time, the  total  expenditure  on all activities  must be equal 
to  the budget,  hence  the  formula  for  the budget is given as fol- 
lows 

B = P + A + C  

A = mkP 

and 

where 

The expression C,  or complexity reflects the  cumulative  decay 
caused by the neglect of A activity. 

Since  the values k and m are left free  to  vary with time,  the 
model can be used for  the investigation of the  consequences of 
various  possible management strategies in controlling the 
maintenance  process. Further freedom  can be introduced by 
inserting variable-length delays among the  three major expendi- 
ture  components. A large problem space  thus  results  that can be 
explored by interactive modeling for  increased insight. In this 
environment, real-life observed  phenomena  can be approached 
in the model  by stepwise  changes in model parameters. 

management A graphic modeling facility has been used by the  authors.  This 
simulation system was essentially an analog computer  that  was implemented 

on a digital machine such  that  the analog components  (delays, 
adders,  integrators,  etc.) could be connected  into  a  network on a 
cathode ray tube by the use of a lightpen. Upon  request,  the com- 
puter  accepted  the  network and numerical parameters as inputs 
for  a  stored program. The system  then  computed  the  response, 
as described in References I 2  and 13. 

During  the  numerous  experimental  sessions with this  facility, 
many real-life phenomena  were successfully reproduced.  One 
example was the cyclic pattern of object  growth  for  the  statistical 
model discussed  earlier. The network  consisted of a  nested two- 
loop  feedback  system;  preset  threshold values for k simulated 
the management decisions. 

More  precisely, in our simulation, after a period of persistent 
neglect of A-activities ( m  < 1 ) , management becomes  alarmed 
by the rapid reduction of P due  to increasing C .  Consequently, 
an increase in A is scheduled ( m  > 1 )  until the  situation  notice- 
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ably improves.  At  this point, management again becomes optimis- 
tic and relaxes k to a lower level. I n  the long run,  however, C 
grows monotonically. A sample output of a  run is presented in 
Figure 17. 

The authors  are  convinced  that  this  type of interactive modeling 
is perhaps  the most fertile,  and  certainly the  fastest, way of de- 
veloping a feel for  the  interactions  involved,  and gradually de- 
veloping a more complex model that  has  the power of predicting 
real-life behavior. 

In  contrast  to previous models, management decision modeling 
yields an optimistic prognosis,  since it includes parameters  that 
reflect management discretion. Thus it permits  the  counteraction 
to remove the  consequences of growing complexity,  action  that 
occurs in real-life situations. On  the  other  hand, of course,  the 
model does  not reflect the  internal  structure of the  object.  In  our 
earlier  models, internal structure  was modeled by combining the 
management model  with an extension of the  fault  penetration 
model. 

Suppose  that management is free  to  allocate  resources  to grow 
the  object,  as well as  to  extract  faults  as in the  previous model. 
Of course, both activity classes are essentially imperfect in that, 
while performing them,  errors  are injected into the object. 

As the simplest case, we would like to  show how the size rn of 
the object,  measured,  for  example, by the  number of modules it 
contains,  develops in the  presence of error  generation  that is 
proportional to growth  activity. In signal-flow-graph form,  the 
linear relations can be represented by Figure 18. Here E and R 
convert  growth  rate and error  repair  to work demand  (measured 
in man-hours). F is the  error  generation  rate (the number of 
errors  per man hour) and r is the  number of errors. 

The corresponding  equations are: 

h = R r  + E drn/dt  (16) 

r =  Fh (17) 

Assuming a  constant work force h, the solution is given as fol- 
lows: 

m=m,+-  ht (18) 

where  growth is a linear  function of time. The greater  the work 
force  and  the smaller the  error  generation,  the more rapid is the 
growth, which is, in principle, unlimited. The reason is that, on 
the basis of our  previous  assumptions,  the effort not used for 
repair is available to grow the  object at a  rate  that is independent 
of its size. 

1 - R F  
E 
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Figure 19 Model of limited 
growth  in  which  in- 

creasing  size  gener- 

ates  increusing  errors 

Observations on our previous models,  however,  have suggested 
that larger and older objects are more complex and  receive more 
errors  as  they  evolve - through  growth  and through fault remov- 
al. Retaining the linear character of the  relationships,  the flow- 
graph given in Figure 19 represents  the modified assumption, 
namely, that increasing size  causes  more  errors  to  be  generated. 
with a gain D per unit size. The somewhat modified equations 
appear  as follows: 

11 = R r  t E d m / d t  (19) 

and 

I’= Fh f D m  

where  Equation 19 represents  a negative feedback  to  control 
size. The solution now becomes  the following: 

/2( 1 - F R )  
KD I n c r  = 

Equations 19 through 22 indicate  that  under  the  assumptions of 
this section growth is limited to mer. This critical size  can only 
be reached  asymptotically. The reader may be wise to  compare 
this result with the real-life observations previously reported. 

The critical size can be increased by increasing the size of the 
work force.  However,  this  means  that  a  subsequent  reduction of 
the work force  can  create a new critical size that is smaller than 
the one already  reached. Thus a situation of monotonically in- 
creasing error  content is created. 

This model has been studied under differing assumptions. The 
main conclusion  remains,  however,  that  object  size is limited 
with even  the slightest negative feedback of size. 

This section has  presented  several models each throwing dif- 
ferent, though related, light on  the program maintenance or  en- 
hancement  process. Our aim has  not been to  present  completed 
models. Rather, we have wished to illustrate how the modeling 
may  be approached,  and how interpretation of the models may 
be used to  study  and to improve  the programming process. 

Concluding remarks 

Currently,  the  process of large-scale program development  and 
maintenance  appears  to be unpredictable; its costs  are high and 
its output is a fragile product.  Clearly, one should try  to  reach 
beyond understanding  and  attempt  to  change  the  process  for  the 
better. 
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As  a first step  toward ultimate improvement, we are studying 
the  process as it is,  and as it is evolving, much as the physicist 
studies  nature. Out immediate goal  is an organized quantized 
record of observations  that  formalizes  the  perception of what is 
happening and what is being done. With such global studies,  one 
may hope  to identify specific points or sources of trouble  and 
perhaps identify areas of the  process  that are major causes of 
concern. When that which is happening is understood in the  con- 
text of the  process as a  whole,  one may attempt  to  understand 
why  it  is happening. Only then will one  attempt to change  the 
process without risking local optimization that is very likely to 
reduce significantly the degree of global optimization. At the 
present  time, for example, it is not  clear  to  what  extent  improve- 
ments should be sought by attention  to  the human organization, 
management,  or by emphasis on the  product side of the  process, 
in order  to  achieve  the most significant gain in and from the pro- 
cess. 

We do speculate  that communication is a major problem. If this 
can be confirmed then,  for  example,  a design methodology that 
expresses  the understanding and intention of the  designer unam- 
biguously and completely might eliminate many difficulties. One 
may also  hope  to  avoid problems in the  performance  area as a 
consequence of overspecification. Thus one might equally con- 
sider  that a reduction in product  complexity, by better partition- 
ing, for  example, could lessen  the need for communication and, 
at  the same  time,  improve  performance  potential. To do this 
effectively, however, we must be able to identify those  parts of 
the  product  that are most interlaced in their logical structure. 

Our  data so far  have been largely limited to  that of a few rather 
large operating  systems  that  were produced within the same 
large administrative  organization.  Even  these  data  are meager. 
Since the initial design phase, no one anticipated the long series 
changes that was to follow the initial development. We now 
know much better  and  are  able  to specify the kinds of data  that 
are  necessary  for  future  analysis of the  development, imple- 
mentation,  and  maintenance  processes. 

We are also enlarging our  scope beyond the  environments 
studied so far.  It is already  clear  that  qualitative  observations 
similar to  ours  have been made at  other places where large-scale 
programming has been undertaken.  This suggests an urgent need 
for  the definition and  standardization of process  measures to fa- 
cilitate meaningful comparisons  between dissimilar systems, 
processes,  and  organizations. 

Clearly, we  still must test  the generality of the  hypotheses  pre- 
sented in this  paper. It will, for  example, be of major interest  to 
determine  the  degree of generality and  the range of validity of 
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to remove noise due  to  environmental  factors.  This should im- 
prove  the usability of program evolution dynamics  concepts and 
techniques as planning tools,  an  improvement much needed by 
managers who are, in general,  not  very successful in assessing, 
predicting,  and controlling schedules  and  resources in the soft- 
ware  process. 

It is important  for  an emerging discipline, such as program evo- 
lution dynamics,  to  summarize its most essential  concepts  into 
unambiguously defined and  measurable  quantities at an early 
stage in its development. This makes it possible to use appro- 
priate  techniques  and  tools from established disciplines. Mathe- 
matics,  for  example,  facilitates  comparisons between derived 
results  and real life, and may even help the  development  and 
communication of new ideas. 

One of the  most  frequently  used-  but as yet undefined- con- 
cepts  encountered in our  studies is that of complexity. Particular 
definitions that  have been established in the  somewhat  narrow 
content of computational magnitude do not  appear  to be useful 
or applicable for  the study of structure  and  interaction.  After 
some preliminary studies,  we  have  concluded  that  a  measure of 
complexity, applicable to  the large scale programming environ- 
ment, could be developed by using established  concepts  that  are 
related  to  information,  uncertainty, and entropy. Further investi- 
gation in this  direction  forms  an ongoing activity in the authors’ 
groups. 

Given a measure of complexity expressed in terms  of simple 
structural  properties-  such as  the number of interactions be- 
tween  product or organizational elements - normalized measures 
for programming effort, productivity,  system reliability, and se- 
curity  can be derived  and  comparisons between different prod- 
ucts or methodologies made meaningful. Without such a  measure, 
many of  the  essential  parts of the developing discipline remain 
unconnected  and  phenomena are easily misunderstood.  An early 
result in the  study,  for  example,  suggests  the  consideration of 
complexity of  software  and its documentation in a unified fashion. 
In this  case,  the total project workload can be better  quantified, 
and plans and  schedules made more accurate, provided that  the 
manpower need is strongly related to complexity. 

Many of the  directions  pursued in our  exploration of evolution 
dynamics  appear  to  relate to  the global properties of complex 
systems  rather  than  to  properties  that  result specifically from  the 
software  environment. 



Thus we  assume  that the results of our  studies may be generaliz- 
able  to other complex technological projects,  and to the  study of 
sociological, economic,  and biological systems or organisms. In 
the immediate future,  however,  we shall concentrate  our  studies 
on the  evolution of large programs, since in this  area  change is 

, observable  over  a relatively short period of time,  and  experi- 
~ mentation is possible without  the  serious  penalties  that could be 
~ incurred in other fields. Thus program evolution dynamics may 
~ be  interpreted as a  suitable  prototype or  test bed for  the  study of 
1 more  general  system evolution dynamics. 
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