
A model of large program development
by L. A. Belady and M. M. Lehman

As a need for a discipline of software engineering has been
recognized, the design, implementation, and maintenance of
computer software has come into the forefront. The formulation
of concepts of programming methodology, exemplified by
Dijkstra's structured programming,' strikes at the roots of the
problem. The realization is that a program, much as a mathe-
matical theorem, should and can be provable. Recognition that
a program can be proved correct as it is developed and main-
tained,' and before its results are used, may ultimately change
the nature of the programming task and the face of the program-
ming world. Clearly these developments are of fundamental
importance. They appear to point to long-term solutions to prob-
lems that will be encountered in creating the great amount of
program text that the world appears to require. But even though
progress in mastering the science of program creation, mainte-
nance, and expansion has also been made, there is still a long
way to go.

Such progress as is currently being made stems primarily from the system
the personal involvement of researchers and developers in the approach
programming process at a detailed level. Often they tackle a sin-
gle problem area: algorithm development, language, structure,
correctness proving, code generation, documentation, or testing.
Others view the process as a whole, yet they are primarily con-
cerned with the individual steps that, together, take one from
concept to computation. Still this type of study is essential if real
insight is to be gained and progress made.

NO. 3 . 1976 I ARGE-PROGRAM DEVELOPMENT 225

Figure 1 Growth trends of system attribute counts with time

Figure 2 Average growth trends
of system attributes

I
AVERAGE RELEASE

SEQUENCE NUMBER LEGEND:
0 SIZE IN MODULES

+RELEASE INTERVAL
X MODULES HANDLED

MODULES HANDLED

COMPONENTS

.
TIME

The scientific method has made progress in revealing the nature
of the physical world by pursuing courses other than studying
individual phenomena in exquisite detail. Similarly, a system, a
process, or a phenomenon may be viewed from the outside, by
acts of observing; clarifying; and by measuring and modeling
identifiable attributes, patterns, and trends. From such activities
one obtains increasing knowledge and understanding, based on
the behavior of both the system and its subsystems, the process
and its subprocesses.

Starting with the initial release of os/360 as a base, we have
studied the interaction between management and the evolution
of os/360 by using certain independent variables of the improve-
ment and enhancement (i. e., maintenance) process. We cannot
say at this time that we have used all the key independent vari-
ables. There is undoubtedly much more to be learned about the
variables and the data that characterize the programming pro-
cess. Our method of study has been that of regression-outside
in-which we have termed “structured analysis.” Starting with
the available data, we have attempted to deduce the nature of
consecutive releases of os/360. We give examples of the data

226 BELADY AND LEHMAN IBM SYST J

that support this systematic study of the programming process.
Again, however, we wish to emphasize that this study is but the
beginning of a new approach to analyzing man-made systems.

The authors have studied the programming process:’ as it per-
tains to the development of os/360, and now give a preliminary
analysis of some project statistics of this programming system,
which had already survived a number of versions or releases
when the study began. The data for each release included mea-
sures of the size of the system, the number of modules added,
deleted or changed, the release date, information on manpower
and machine time used and costs involved in each release. In
general there were large, apparently stochastic, variations in the
individual data items from release to release.

All in all, the data indicated a general upward trend in the size,
complexity, and cost of the system and the maintenance pro-
cess, as indicated by components, modules, statements, instruc-
tions, and modules handled in Figure 1. The various parameters
were averaged to expose trends. When the averaged data were
plotted as shown in Figure 2, the previously erratic data had
become strikingly smooth.

Some time later, additional data were plotted as shown in Figure
3 and confirmed suspicions of nonlinear-possibly exponential -
growth and complexity. Extrapolation suggested further growth
trends that were significantly at odds with the then current pro-
ject plans. The data were also highly erratic with major, but
apparently serially correlated, fluctuations shown in Figure 4 by
the broken lines from release to release. Nevertheless, almost
any form of averaging led to the display of very clear trends as
shown by the dashed line in Figure 4. Thus it was natural to
apply uni- and multivariate regression and autocorrelation tech-
niques to fit appropriate regression and time-series models to
represent the process for purposes of planning, forecasting, and
improving it in part or as a whole. As the study progressed, evi-
dence accumulated that one might consider a software mainte-
nance and enhancement project as a self-regulating organism,
subject to apparently random shocks, but-overall -obeying its
own specific conservation laws and internal dynamics.

Thus these first observations encouraged the search for models
that represented laws that governed the dynamic behavior of
the metasystem of organization, people, and program material
involved in the creation and maintenance process, in the evolu-
tion of programming systems.

It is perhaps necessary to explain here why we allege continu-
ous creation, maintenance, and enhancement of programming
systems. It is the actual experience of all who have been in-

NO. 3 . 1976 LARGE-PROGRAM DEVELOPMENT

the
programming
process

Figure 3 Average growth trends
of system attributes
compared with planned
growth

I I
AVERAGE RELEASE

SEQUENCE NUMBER LEGEND:
0 Sl2E IN MODULES

+ RELEASE INTERVAL
X MODULES HANDLED

Figure 4 Serial and average
growth trends of a
particular attribute

REND
VERAGE

RELEASE SEQUENCE NUMBE

laws of
program
evolution

227

volved in the utilization of computing equipment and the running
of large multiple-function programs, that such systems demand
continuous repair and improvement. Thus we may postulate the
First Law of Program Evolution Dynamics.‘

1. L a w of continuing chunge. A system that is used undergoes
continuing change until it is judged more cost effective to freeze
and recreate it.

Software does not face the physical decay problems that hard-
ware faces. But the power and logical flexibility of computing
systems, the extending technology of computer applications, the
ever-evolving hardware, and the pressures for the exploitation of
new business opportunities all make demands. Manufacturers,
therefore, encourage the continuous adaptation of programs to
keep in step with increasing skill, insight, ambition, and opportu-
nity. In addition to such external pressures for change, there is
the constant need to repair system faults, whether they are er-
rors that stem from faulty implementation or defects that relate
to weaknesses in design or behavior. Thus a programming system
undergoes continuous maintenance and development, driven by
mutually stimulating changes in system capability and environ-
mental usage. In fact, the evolution pattern of a large program is
similar to that of any other complex system in that it stems from
the closed-loop cyclic adaptation of environment to system
changes and vice versa.

As a system is changed, its structure inevitably degenerates.
The resulting system complexity and reduction of manageability
are expressed by the Second Law of Program Evolution Dy-
namics.

11. Luw qf’incrrusing entropy. The entropy of a system (its un-
structuredness) increases with time, unless specific work is exe-
cuted to maintain or reduce it.

This law too expresses vast experience, in part by data to be
presented later in this paper. This, in turn, leads to the formula-
tion of the Third Law of Program Evolution Dynamics.

111. Law of stmtistically smooth growth. Growth trend measures
of global system attributes may appear to be stochastic locally
in time and space, but, statistically, they are cyclically self-
regulating, with well-defined long-range trends.

The system and the metasystem-the project organization that
is developing it-constitute an organism that is constrained by
conservation laws. These laws may be locally violated, but they
direct, constrain, control, a n i thereby regulate and smooth, the
long-term growth and development patterns and rates. Observa-

228 B E L A D Y AND LEHMAN IBM SYST J

~

tion, measurement, and interpretation of the latter can thus be
used to plan, control, and forecast better the product of an exist-
ing process and to improve the process so as to obtain desired or
desirable characteristics.

The “laws” that we are expounding upon have gradually
evolved as we have pursued our study of the programming task.
When we began our studies, observations led to the concept that
we termed “programming systems growth dynamics.”5 We have
now renamed this subdiscipline “programming evolution dy-
namics.”

The remainder of this paper describes some of the statistical and
formal models of the programming process that we have been
able to develop by pursuing the consequences of the laws of
programming evolution dynamics. It is our conviction that the
extension of these studies can lead to an increasing understand-
ing of the nature and dynamics of the programming process.
Hence, studies such as these may yield significant advances in
the ability to engineer software, i.e., to plan and control program
creation and maintenance.

The process observed-a statistical model

The basic assumptions of programming evolution dynamics
spring from viewing the program being implemented, enhanced,
and maintained and its metasystem - the organization that gener-
ated and undertook the development of 0~/360-as interacting
systems. The evolutionary process and life cycle of a program
are at least partially governed by the structural and functional
attributes of both the program and the human organization.
Their size, complexity, and numerous internal interactions sug-
gest the use of statistical techniques for interpreting observed
behavior.

Detailed studies of available data in conjunction with the almost
universal experience of the programming community indicate
that a large programming project has many of the properties of a
multiple loop, self-stabilizing feedback system. The overall trend
has been summarized in the previously discussed three laws that
underlie the dynamics of evolution of large programs. The pres-
ent section presents some of the accumulated numerical evi-
dence derived from experience with os/360 -one model of one
system from one environment.

The project data presented here originate from Os/360, which is
now some twelve years old. This system has been made avail-
able to an increasing number of users in a series of over twenty
user-oriented releases. These releases have extended the capa-

NO. 3 . 1976 LARGE-PROGRAM DEVELOPMENT

available
data

229

bility of the operating system by correcting faults, improving
performance, supporting new hardware, and by adding newly
conceived functions.

These and other intermediate releases were assigned names or
numbers as identifiers. Each release may, however, also be iden-
tified as a program that - with its documentation - forms an iden-
tifiable and stable text in an otherwise continuously changing
environment. Assigning Release Sequence Numbers (RSNs) to
versions receiving the same degree of exposure, yields a se-
quence of integers that forms a pseudo time measure in the
sense of Cox and Lewis6 that may be used to describe the time-
dependent behavior of program evolution.

Of the releases considered, the first represents the culmination
of the basic design and build (i.e. system integration) process.
The iterative process that yields the specification, architecture,
design, and the first implementation of a large program system
differs significantly from subsequent maintenance and enhance-
ment activity. In particular, there is at this stage no feedback of
fault reporting or performance assessment by independent users.
Hence data relating to that first release are not included in this
analysis. The build process itself may, however, be studied by
using data obtained periodically during the development activity.

Data from a second release were also unused because they were
shown to represent a component development somewhat off the
main stream. In the final analysis, the model and the plots to be
presented are based on twenty-one sets of observations. This
relatively small number of data points implies that extreme care
must be exercised in interpreting the results of the statistical
analysis. Subsequent data from the os/360 augmented by data
from other environments have generally confirmed our observa-
tions and conclusions.

observables The release sequence number (R S N) is taken as the first of the
of system system evolution parameters. The second is the age of the sys-
evolution tem D, at release with R S N = R. Equivalently, D, is the inter-

release interval I , ; in other words, the interval in days between
releases with R S N = R-l and R , respectively. A third available
parameter M , measures the size of the system in modules. We
present the results of our analysis in terms of modules, though
other size measures- such as numbers of components or instruc-
tions in the system - could also have been used. The suitability of
the module stems from the fact that in Os/360 the concept of
module- though imprecisely defined- represents at one and the
same time a functional and implementation entity and, for exe-
cution, a unit of system generation and storage allocation.

230 B E L A D Y A N D L E H M A N IBM SYST 1

A fourth parameter M H , records the number of system modules
that have received attention, i.e., those that have been handled
during the release interval and, more specifically, during the in-
tegration process. We have used this as an initial estimator of
the amount of activity undertaken in each release. The measure
is imprecise, but represents the best available information over
the entire sequence. From M H , and I , , in turn, we determine an
estimate of the handle rate H R , for the activity that produced
the release with RSN = R.

From the very first beginnings of this study of the programming
process,’ it has been clear that the changing complexity of a sys-
tem, as it is modified, plays a vital role in the aging process.
Unfortunately there is no clear or unique understanding of what
complexity is and how it can be defined and measured. The
choice of complexity definition cannot, in fact, be disassociated
from the use to which it is to be put. But complexity of the sys-
tem, of the organization, and of each particular series of changes
is fundamental to the maintenance and to the resultant aging
process. Hence some measures of complexity must be estab-
lished.

For the purposes of the present analysis, complexity C , has
been defined as the fraction of the released system modules that
were handled during the course of the release with R S N = R.
This definition is clearly inadequate. It does not separately mea-
sure the various independent complexity factors involved. It
does not discriminate between system organization and the na-
ture of the work undertaken. Nor does it measure the amount of
activity involved. But at least it is a measure for which real data
exist. Moreover the data give interpretable results. Hence C ,
= M H R / M R will suffice until better measures become available.

We have just identified five observable and measurable parame-
ters of the programming process. Our hypothesis implies that
these parameters do not vary independently, at least when
viewed over a relatively long period of time. In fact, we have
been able to determine, for example, four bivariate relationships
among them. The complexity parameter, however, is derived
from two of the others. Hence, on the basis of present data, we
are entitled to fit only three independent functions. The fourth
relationship, then, must be derived from the other three and test-
ed for fit. As in all data fitting, the forms selected must also pass
a test of conceptual reasonableness.

We stress that, in general, any statistical goodness of fit test is
insufficient to establish any relationship as an element of the to-
tal model -as an expression of causal relationships-unless it
can be convincingly interpreted in the light of one’s insight into
the process. Ultimately, it is only through the interplay and

NO. 3 . 1976 LARGE-PROGRAM DEVELOPMENT

nature

of the

relationships

iteration of observation, modeling, and interpretation that real
progress can be made in understanding and mastering the large-
scale programming process.

The statistically derived relationships to be presented here com-
prise a model of the programming process with respect to this
system’s life cycle. The relationships represent a simple, but
recognizably incomplete, model of what is happening. In prac-
tice, the statistical model has been used to improve the planning
for this particular system. With the insight gained from the mod-
el’s development, further statistical and analytic models have
been and will continue to be developed that may explain the
process and eventually lead to the insight that permits improve-
ment of process planning, control, and cost/effectiveness.

In the first instance, we must identify the global nature of the
process as expressed in the relationships to be, or that have
been, developed. The previously stated Third Law suggests that
smooth long-term trends can be seen in the measures even if
short-term behavior tends to be erratic. This is supported by the
fact that we have been able to construct statistically significant
relationships consisting of three parts: the first expresses the
long-term, deterministic trend; the second describes short-term
cyclic effects: and the third part expresses any system-relative
stochastic influences on the process.

The stochastic influences arise, in part, from a certain arbitrari-
ness in the selection of the new function and, therefore, new
code to be included in any given release. It is influenced to a
significant degree by user and management pressure, the availa-
bility of new hardware devices, and by business considerations
that are not directly related to the internal dynamics of the pro-
cess. Equally, the release target date, and hence the age of the
system at the release point, is strongly influenced by factors ex-
ternal to the programming process.

The cyclic trends that we have observed in the data, and that
have long been accepted on a heuristic basis by managers and
observers of programming practice, may well contain the clue to
current limitations of the process. In part, at least, inter-release
effects arise from the interaction of repair and enhancement ac-
tivity, particularly when they share common resources and are
undertaken in parallel. I t is probably the interplay between the
levels and rates of the various activities and, in particular, their
divisions at any given time between repair, functional improve-
ments, and new capability additions that charts the fate of a pro-
gramming system. Long-term trends, however, are perhaps of
greatest significance in understanding the process and in foresee-

Figure 5 shows the size of os/360 in modules plotted with re-
spect to release sequence numbers. Relative to the nonuniform
time measure, growth in size is more or less linear. Indicated by
arrows around the linear trend line is a visible ripple. This cyclic
effect can be understood if the total organization is viewed as a
self-stabilizing feedback system. That is, the design-programming-
distribution-usage system has a feedback-driven and controlled
transfer function and input-output relationship.

Some feedback results, for example, from constant pressure to
supplement system capability and power. As the growth rate
and work pressures build up, thereby increasing the size and
complexity of the operating system, reduced quality of design,
coding and testing, lagging documentation, and other factors
emerge to counter the increasing growth rate. Sooner or later, as
indicated by the segments marked C , these lead, at best, to a
need for a system consolidation, a release that contains little or
no functional enhancement and in which correction, restructur-
ing, and rewriting activities predominate. As a result the system
size does not grow significantly during such a release and may
even shrink. At the worst a fission effect F may occur, as at
R S N = 20 to 21 where excessive prior growth has apparently
led to a break up of the system.

Figure 6 presents the net growth of os/360 in each release.
Analysis confirms the cyclicity of the growth process as indicat-
ed in the figure. A second observation may, however, be of even
greater significance in estimating the limits of growth. With three
exceptions, the net growth points may be seen to lie in a band
bounded at about the 400-module level, a level that does not
appear to have changed significantly in size during the lifetime of
the system. Moreover, in the three instances where this growth
level of oS/360 was exceeded, the record shows that, in the first
case, the release was of such quality that it had to be followed
by an unplanned clean-up release. The later two cases had
equally unplanned consequences, significant schedule slippages,
relatively disappointing performance, and - in the case of release
20- the previously unplanned division of the operating system
into at least two independent systems. Moreover, note that re-
leases with net growth near or in excess of the indicated bound
tend to be followed by one or more releases with a much re-
duced net growth.

If we may generalize our conclusion, it is that as a large system
grows through the addition of new and modified code, the sys-
tem requires the regular establishment of a unique base refer-
ence to both code and documentation, such as is attained when
the system is to be released for significant usage outside the
development and maintenance group.

NO. 3 1976 LARGE-PROGRAM DEVELOPMENT

system releases

:ERFORMANCE PROBLEMS
.AUSE SLIPPED RELEASE

I 1

Also, in the present state of the art, complete and unambiguous
specifications of changes or additions to be made are not normally
achieved or even achievable. Nor is it possible to continuously
prove the specifications to be consistent, and their subsequent
implementation to be correct with respect to the new program
behavior desired (or even with respect to previous program be-
havior). Hence the code and the system are tested. But tests can
reveal only deviations from desired or expected b e h a ~ i o r , ~ they
do not demonstrate absolutely correct behavior or the absence of
faults. Furthermore, the extent to which testing reveals devi-
ations or faults is limited by both the resources that can be con-
sumed to conduct them and by the view that test designers and
interpreters have of the total program, the changes, and the
intended behavior of both.

Thus, a further intrinsic consequence of system release is that
the program is suddenly exposed to an environment in which
both the expected behavior and the actual usage may - and usu-
ally do -differ from that to which the system was exposed in the
development, maintenance, and test environments. Inevitably,
therefore, release of the code results in the discovery of new
faults. We conclude that sufficiently early release to users of
stabilized code and documentation prevents a build-up of undis-
covered faults. On the other hand, too many code changes that
are undertaken without exposure to a wider usage pattern than
can be generated in any test shop causes an accumulation of in-
terrelated faults and system weaknesses, such as poor perfor-
mance, that are far more complex to unravel. The data on which
Figure 6 is based suggest that there existed a nonlinear effect
with a critical growth mass in the operating system we are dis-
cussing of some four hundred modules.

This critical growth mass had been essentially invariant in al-
most a decade of os/360 project and system life, despite meth-
odological and technological improvements: increasing use of
high-level languages and programming support tools; and in-
creasing experience of designers, implementers, and manage-
ment. Thus the characteristic is likely to be an attribute of the
entire organization that relates to this system. That is, we appear
to have identified a combined system and metasystem invari-
ance. In view of the posited multiloop feedback nature of the
process, one can expect to change and improve this characteris-
tic growth rate only when one begins to understand the structure
of the process and its relationship to the organization and to the
system.

Without speculating further about the nature of the process, we

AM, = K,, + Sl + Zi (1)

or by

M, = K,, + K , , R + S, + Z , (2)

Here AM, represents the net growth of the system between
(RSN) = (R - 1) and (RSN) = R. A least-squares fit to the
available data yields values of 760 and 200 for K , , and K , , ,
respectively. The S and Z terms represent the cyclic and sto-
chastic components whose nature and magnitude can be deter-
mined using statistical techniques, such as those described in
Reference 8. The small number of available data points, how-
ever, restricts the possible significance. We note that Equations
I and 2 reflect directly the First and Third Laws proposed in the
introduction of this paper.

In the absence of a more satisfactory measure, we represent the
complexity of the activity required during the interval preceding
release R by the fraction C, (of modules of the total system)
handled. Figure 7 shows this measure plotted against RSN.

One possible (and least square-wise significant) fit is by a quad-
ratic in R. Other functional forms (particularly an exponential
fit) are also significant. Both the quadratic and exponential rep-
resentations appeal to our need for models and limitations on
the program development process, but more data will have to be
obtained to determine the one that more closely reflects a partic-
ular process. On the basis of the principle of parsimony,' we
select the following quadratic form for the current model:

C , = K,, + K,, R + K,, R2 + S , + Z, (3)

For the present data, K,, , K, , , and K,, are respectively 0.14, 0,
and 0.00 12.

We note immediately that the monotonic growth trend implied
by Equation 3 supports the Second of our three Laws. The
Third Law is once again supported by the identification of a sig-
nificant trend.

Notice that the residuals for this quadratic fit, and equally those
for an exponential fit, are generally rather large for R = 2
through, say, R = 14. This variation is, of course, absorbed by
the cyclic and stochastic terms, but in fact the residuals corre-
late very strongly with the handle rate HR,. This correlation is
not statistically conclusive, since both measures are in the pres-
ent instance derived from related parameters. Nevertheless, it
suggests a more complete representation of the following form:

C , = Kg, + Kg, R + K6, R2 + KH, HR, + SH + Zg (4)

NO. 3 * 1976 LARGE-PROGRAM DEVELOPMENT

Figure 7 Complexity growth dur-
ing the interval prior
to each release

RELEASE SEQUENCE NUMBER

235

where a least squares tit to the present data yields the values
0.037, 0, 0.0013, and 0.008 respectively, for coefficients Kb,,,

An interpretation of this model suggests that more rapid work
leads to greater pressures on the team, and hence to more er-
rors- which, in turn, require greater repair activity. The data
indicate that this is mainly incurred in the same release rather
than discovered and undertaken thereafter. Furthermore, since it
appears to lead to an increase in the fraction of the system han-
dled, it suggests that the maintenance teams tend to remove the
symptoms of a fault rather than to locate and repair its cause.
This deduction has been confirmed independently by a number
of observers of-and participants in- the process, a fact that
strengthens one’s confidence in Equation 4 as a more complete
representation of one aspect of the process.

work The work associated with each release is measured in this in-
rate stance by modules handled MH,. This measure is, in each case,

associated with a particular release and also with the release in-
terval that separates the release from its predecessor. However,
many releases overlap - particularly those releases that include
major functional growth-and a new release may be integrated
successively against two or even more predecessor releases.

Data on the degree of overlap between the various releases were
not available to us. Therefore, we first examine the cumulative
sum of modules handled (CMH) as compared with the age of
the system, in an attempt to neutralize the overlap effect in de-
termining the handle rate. Figure 8 shows these data titted, as a
first approximation, by a straight line. Such a tit suggests that the
major changes that have occurred during the lifetime of the op-
erating system in methodology, tooling, and staffing levels have
had no significant impact on handle rate. This has stayed essen-
tially constant over the period at some eleven modules per day.

Figure 8 Handle ra te of modules The data at the extremes of Figure 8 suggest that in the early life

rate may have been a little lower. This can no longer be con-
firmed for the older data. As far as present trends are concerned,

pect the scope of the cumulative handle plot versus system age
to drop off from its previously constant value. It appears that

S-curve provides a more faithful representation over the life to
date of the operating system.

We may now usefully examine the handle rate HR, as deter-
mined by the ratio of the handle-to-release interval for each re-
lease, as shown in Figure 9. Because of the effect of release over-

over system lifetime of the system, and in the most recent two releases, the handle 3FI
52 /” however, since the handle fraction is approaching unity, we ex-
30
vo

LL
0 even though the straight line tit is adopted as an initial model, an

SYSTEM AGE IN DAYS

I 236 BELADY A N D LEHMAN IBM SYST J

lap, the range of rates achieved is exaggerated, but it is indeed
centered around an average of about eleven modules per day.
Also note that where the release rate has exceeded this average,
the figure for the next release is lower. We conclude from the
data for Figures 8 and 9 that the handle rate is stationary with
cyclic and stochastic components that are confirmed by analysis
to be significant and to have a three-release cycle.

Thus we adopt as our third relationship an expression of the fol-
lowing form:

HR, = K;, + SA + Z; (5)

or

C M H , = K, , + K,, D + S:, + 2, (6)

CMH, counts the total number of modules handled between the
first release of the system and day D , that is, when its age from
release 1 is D days. HR, represents the module handle rate in the
Rth release interval. The S and Z terms once again represent the
cyclic and stochastic components. For the present system, K,,
and K,, are 1100 and 1 1 respectively. The statistically signifi-
cant determination of a long-range trend with cyclic and stochas-
tic components once again confirms the proposed Third Law.

We must now consider the data of Figure 5 which we have pre-
sented as a function of real time in Figure 10, where system size
in modules is plotted as a function of system age in days. As in-
dicated earlier in this paper, the relationship developed to repre-
sent this trend must be compatible with those already expressed
in Equations 1 through 6. Of the alternative forms that can be
significantly fitted we have selected the following expression:

M , = K,, + K, , log (1 + D l K42) + S, + Z , (7)

Here, a least squares fit yields K,,, K,,, and K,, as 89, 13.50, and
51 respectively. The value of the intercept is not significant be-
cause the representation is not meaningful where D approaches
zero. In reality, of course, system age was not zero at the time
of R = 1 , which is the assumed origin of our time scale. Nor, in
view of the assumption that the build and maintenance pro-
cesses are intrinsically different, may we expect to express the
actual system age at first release in the same terms, even if this
were known.

We note that the logarithmic representation is not asymptotic.
Nevertheless, it suggests unlimited growth potential, though at a
decreasing rate. This corresponds to our intuitive understanding
that, as a system ages, it is always possible to change another
instruction or add another module. However, the time required
to do this tends to increase, unless the system is restructured
and cleaned up.

NO. 3 . 1976 LARGE-PROGRAM DEVELOPMEN I

Figure 9 Handle rate as a func-
tion of release number

RELEASE SEQUENC
NUMBE

size as a
function
of age

Figure 10 System size as an in-
dication of declining
growth rate

SYSTEM AGE IN DAYS

237

summary

Figure 1 1 Increasing release
interval

RELEASE SEQUENCE NUMBER

238

One further observation of interest follows from the logarithmic
representation selected. This representation is compatible with
the constant incremental growth implied by Equation 1, provid-
ed that the release interval is growing polynomially, or, in the
limit, exponentially. But this is precisely the behavior of interval
growth, as shown in Figure 11. As it so happened, the earliest
and very successful forecasting undertaken by us was based on
this very observation and on the resultant exponential fits to the
data.

Equations 1 through 7 provide a model of the maintenance pro-
cess for the operating system, os/360, based on five parametric
concepts, but with only four available measures. The model
would be complete with the determination of the statistical pa-
rameters of the cyclic and stochastic terms. The small number of
data points, however, precludes the determination of significant
values.

Recognizing the essential interdependence of the various param-
eters, one can also gain in descriptive power by determining
compatible multivariate relationships such as are shown in
Equation 4. These relationships could, of course, involve addi-
tional or lower-level breakdowns of existing parameters.

The number of basic relationships presented has been deliber-
ately restricted to the number that is necessary and sufficient
with respect to the existing degrees of freedom. Equations (1)
through (4) have been selected because they bring out apparent
invariants of the process. The recognition of invariances is fun-
damental to the application of the scientific method. As such,
invariant detection in an analysis of the programming process
not only strengthens our basic assumption of regularity in the
process development, but it also provides hope that the analysis
can be further developed and eventually permit improvement of
the process.

Although the present model represents the observed behavior, it
does, however, not explain it. Moreover, the representations
break down at the extrema of observation. We have commented
on this in the case of Equation 7 when D approaches zero from
above. Similarly, Equations 3 through 6 are seen to be invalid
representations as the fraction handled approaches its intrinsic
limit of one. In fact, the expected nonlinear trend is visible in
Figure 8. Good reasons have been given, however, for expecting
a constant handle rate to be valid over the major portion of the
interval considered. Thus it is not surprising that forecasting and
planning techniques based on these representations have been
useful in providing accurate data to improve planning in this par-
ticular environment.

BELADY AND LEHMAN IBM SYST J

ior of other systems from both the same and from other program
development organizations, so as to determine the range of ap-
plicability of the observed phenomena. First confirmation has
come from data on a second though smaller operating system
that originated in the same organization. With minor differences,
this operating system shows the same characteristics and trends,
though with markedly different parameters. Preliminary data
from a totally different organizational environment have also
been examined’. As indicated in Figures 12 through 14, the
smaller operating system confirms the basic observations of
constant growth trends, cyclicity, overall smoothness, and de-
clining work rates. The confirmation that this implies is of par-
ticular interest because the source is a programming organiza-
tion outside IBM that created structured programs in ALGOL for
IBM use only. Thus the organizational environment is quite dif-
ferent, but the phenomena are visibly present.

Clearly, these data- especially the invariants - should be studied
further, for example by examining actual work rates within a
release interval. With further study, one hopes to discover the
reasons for the phenomena and ultimately to remove the limita-
tions that they imply.

In parallel with the study of invhriants, one should also proceed
with the development of abstract models that represent and for-
malize our perception and understanding of the large-program
development process itself or of aspects of the process. We de-
scribe examples of our earliest approaches to this problem in the
following section.

operating system

’
SYSTEM AGE IN DAYS

Figure 13 Number of changes
a s a function of re-
lease number of a
second operating sys-
tem

RELEASE SEQUENCE NUMBER

Formal modeling of the program development process

Since our goal is to understand and to learn to control the pro-
gramming process, one view of the process is to see it as the in-
teraction between two entities. On the one hand, the large pro-
gram in all its representations and with its documentation we Figure 14 Declining work rate

call the “object.” On the other hand, the human organization exhibited by a second

that implements the process in its manipulation of the object is
termed the “team.” The function of the team is to execute 9
changes in the object.

In conjunction with user-provided data, the object enables a 3
computing machine to perform useful work. During its lifetime, 2
all kinds of changes to the object are necessary. The (hardware)
machine, or some of its components may be changed or re- i/-1
placed. New devices may be added. Computing requirements
may be redefined to serve new uses. New ways of using the sys-

operating system

SYSTEM AGE IN DAYS

NO. 3 . 1976 LARGE-PROGRAM DEVELOPMENT 239

Figure 15 Primitive model of
fault penetration

240

tem may be devised. In general, the behavior of the system de-
viates from that anticipated or desired because of jaults in the
system. We term faults related to changes in the environment
defects, whereas an error relates to the difference between ac-
tual and anticipated behavior. When faults manifest themselves,
the team is required to undertake corrective action, to perform
changes on the object.

Observations related to those discussed in the previous section
suggest that system evolution is to some considerable extent
influenced by fault repair activity. Our earliest formal models,
therefore, have been designed to examine fault distribution in
the system. These models were based on the following assump-
tions:

Changes, that is, object handlings, are, in general, imperfect.
When changes are performed, errors are injected by the team
with probability greater than zero. This by itself would imply
a continuous need for change, even if the environment were
fixed.
There is a delay between the injection of an error and its first
detection and recording, and another delay exists between
recording the error and its final elimination.
Some errors are ordered in that one of them must be repaired
before the other can be detected. That is, there is a layering
of errors in the object that is representable by a directed
graph.
The team creates and uses documents, which are kinds of
representations of the object, to study faults and possible
courses of action. The documentation may be viewed as an
integral part of the object.
Team members, while involved with changes, communicate
with each other in the lanugage of these documents.
Team members have to be educated in the documentation;
moreover, the team has the additional task of updating the
documentation to reflect changes performed on the remain-
der of the object.
Deficiencies in documentation influence the effectiveness of
the process and, therefore, cause deficiencies in the object.

From these assumptions, we have developed two classes of
models. The first emphasizes the internal distribution and propa-
gation of errors in the object. The role of the team is simply to
eliminate observed faults.

The second class of models gives the team a more active role.
Management is free to make decisions as to those particular

BELADY AND 1,EHMAN IBM SYST J

tasks, error repair, documentation, or other activities to which
the team should turn. The object responds to these actions by
manifesting different error generation rates.

The model of fault penetration that we now discuss is a measure model
of complexity due to aging. Consider an elementary change ac- of fault
tivity in the time interval (i,i + 1) . This is depicted in Figure 15, penetration
where the width of each arrow band may be interpreted to be
proportional to the number of faults it represents.

At time i, a number of faults is assumed to exist. As a result of
team activities, the following occurrences are likely:

I
A fraction E of the total faults is removed (extracted).

~ New faults G are injected (generated) due to imperfection in
the activity.

Thus at time i + 1 a new composition of faults appears that con-
sists of residual R and generated errors.

Preserving the distinction between residual and newly generated
errors is fundamental to an understanding of the evolutionary
process. A system cannot be effectively maintained if that dis-
tinction is not understood. And complete understanding de-
mands a knowledge of the history as well as of the state of the
object at all times.

The primitive change activity of Figure 15 spans the network of
Figure 16, where i is a discrete measure of age (or release
number) a n d j is a variable used to introduce the tree structure.
For each node, the residual design faults R and the generated
faults G may be expressed as follows:

Gi-l,j = Ri,zj + Ei,2j (9)
and Gi,2j-l and Gi,2j are to be defined for each node by the fol-
lowing additional assumptions:

Gi,j > 0 (imperfection hypothesis)
We define Ci = 2i" ,fault c1asse.s for every i. Each class has a
unique label that consists of a two-valued { R , G } character
string of length i, with the first element always R, meaning
residual design faults. For example, R R G R G G R repre-
sents a node or fault class at i = 7 . More specifically, faults in
this class are the

NO. 3 . 1976 LARGE-PROGRAM DEVELOPMENT 241

Figure 16 Network showing faults extracted and faults generated

residue (. . . R) of
faults generated (. . . G R)

while extracting faults generated (. . . GGR)
while extracting the residue (. . . RGGR) of

faults generated (. . GRGGR)
while extracting the residue (. RGRGGR) of

faults in the original design (RRGRGGR)

The model as described represents an increasingly large and
complex network of fault trajectories or histories, even though
the total number of faults present may have been stable or even
declining as a consequence of nonzero Es. Faults are identified
in terms of unexpected or undesired system behavior in execu-
tion. Thus we have excluded from consideration here simple
faults that manifest themselves locally in a single element of the
system. That is, we may omit from consideration those faults
that may be detected or removed by operating with or on any one
element alone, and consider those situations where rectification
of a fault requires coordinated changes in two or more system
elements and in their interfaces. Interactions among interele-
ment and intergeneration effects represent the conceptual com-
plexity of the fault pattern. And it is the increasingly complex
fault structure that underlies increasing object complexity. Thus

242 BELADY AND LEHMAN IBM SYST J

periodic restructuring of the object is necessary to reduce com-
plexity because increasing object complexity is itself a fault that
impinges on the maintainability of the system.

The connection between the relational complexity of errors and
the structural complexity of the system implies that relational
complexity may be a measure of communication requirements
for the team and the underlying cause of fault extraction and
generation over the entire lifetime of the object.

We now give a quantitative interpretation of the fault penetra-
tion model, which is a simplified view of structural aging. To
analyze the above fault generation model so as to obtain even a
simplified view of the resultant structural aging, additional as-
sumptions must be made about the fault extraction and genera-
tion variables E and G.

The simplest hypothesis is that, for each node,

E = G (10)

that is, as many faults are extracted as are generated. Under this
assumption the system appears to be in a steady state.

Let us consider the number of fault classes Ci as a measure of
complexity of the system. Analysis has shown that complexity
increases even in steady state, that is, when the number of faults
in the system remains constant.

A degree of freedom can be eliminated by establishing a relation
between fault extraction and the fault content of a given class. A
reasonable assumption could be that Ei,2j"l is in fixed proportion
to and no new errors are generated. Thus we have the fol-
lowing fault elimination-to-fault residue ratio:

and fault decay follows a geometric distribution with parameter
p , which is constant such that 0 < p < 1. After i intervals, and
having started with a given collection of faults S , the remaining
number of faults in the original collection is S (1 - P) ~ , whereas
S (1 - (1 - p) ') faults must have been extracted. Since Gi = 0
for all nodes, the system approaches an error-free state asymp-
totically (approximately exponentially). Thus in all cases con-
sidered the geometric distribution reflects the reasonable as-
sumption that the smaller the fault content the fewer the faults
there are to be discovered and extracted. This, however, still
implies a monotonically increasing Cj until, if ever, a fault-free
state is reached.

NO. 3 . 1976 LARGE-PROGRAM DEVELOPMENT

More elaborate relations between E and G may be required, so
as to represent currently observed situations. It is important to
note that E and G at each node are not independent, but are
coupled via the team and the process.

qualitative As already indicated, even with decreasing fault content (E >
interpretation G j , the complexity measure C increases monotonically. This

of fault results from and reflects the increasing stratification of the sys-
penetration tem because of the increasing heterogeneity of faults.

The resultant structural deterioration experienced as an increas-
ing difficulty in executing change alerts the team to the need to
counteract the aging process. On the basis of our previous as-
sumptions, the latter may be considered proportional to 2('(i),
where G (i j is a monotonically increasing function of i that re-
flects higher-order variations not considered here, as well as the
complex relationship between fault and system structure.

To cope with the situation, the state of the system has to be pre-
cisely defined. Documentation must be accurate, complete and
accessible. In addition, the administrative organization or re-
sponsibility of team members must be well defined. Finally, team
members must be aware of the state of the system by learning.
Fulfillment of these needs can effectively reduce the effect of
growing complexity, and can be represented symbolically as
follows:

2 G ' i '

211AL(1)
Ci (modified) - , - 2(;")b11'4',(i) - (12)

where DAL means "Documentation, Accessability, and Learn-
ing," which are constructive factors. Equation 12 is a qualitative
one, and one that is closely related to our earlier fault penetra-
tion model. Real-life situations are much more complex. Com-
munication complexity required to overcome system stratifi-
cation may, for example, be further increased by geographic
scattering of the team activity. Nevertheless, the model enables
one to address some very real questions about the program
maintenance process. For example, since the model mirrors a
domain that is discrete (indexed with i) , the model suggests that
perhaps increasing the number of intervals i (i.e., decreasing the
inter-release time) should permit faster extraction of faults. This
would occur if such an increase were to imply an increase in the
frequency of restructuring and of providing adequate team
knowledge of the state of the system. That is, G (i) and D A L (i)
must be kept in step. Whether more frequent intervals would
indeed be beneficial is by no means clear. As a consequence of
one of our early assumptions, namely, that faults are layered and

244 REL.ADY AND LEHMAN IBM SYST J

manifest themselves in a partially ordered fashion, one has to
go through the process of gradually repairing the system, with
the inevitable result of generating complexity. In addition, short
intervals provide less opportunity to exercise the system in ac-
tual use for fault manifestation, thus reducing the number of
faults that can be extracted. The size of the optimum interval is,
therefore, undecided. A more detailed model is required if this is
to be formally explored with the objective of helping solve a
problem that arises in real system development.

We now discuss our management decision model, which reflects management
our earlier formulation, and which is based on the following decision
assumptions. model

4.10.11

Budget B, the available budget, bounds the total activity. During
the change process, every unit of fault extraction (termed “pro-
gressive” P) activity, measured by G (i) in the model given by

tion, administration, communication, and learning activity
(termed “antiregressive” A) as measured by DAL(i) in Equa-
tion 12.

, Neglect of A activity results in the accumulation of additional
work demand to cope with increasing complexity C . This cumu-
lative demand can be removed only by a (temporary) increase
in the intensity of A , which, as a result of the limited budget B,
causes a (temporary) decrease in progressive activity P .

Management is assumed to have full control of the allocation of
its resources and the division of effort between P- and A-type
activities. Management cannot, however, directly control the
growth in complexity that accumulates, except by utter concen-
tration on complexity control through restructuring. This is an
activity that is strictly antiregressive and, as such, is psychologi-
cally difficult to inspire, since it yields no direct, short-term,
benefits.

To examine these concepts further, we now present an alterna-
tive formulation of the model. In a somewhat simplified fashion,
we assume that resources are fixed (by budget) and that they
are equally applicable to either P or A activity. B and activities
P , A , and C can be measured in cost per unit of time, which ex-
press the budget rate and its expenditure rate on progressive,
antiregressive, and complex control activities, respectively. In
addition, we use the following relationships:

k = A / P represents the inherent A activity required for each unit
of P activity, so that complexity does not grow.

NO. 3 . 1976 LARGE-PROGRAM DEVELOPMENl- 245

rn = management factor, which is the fraction of progress k P
that is actually dedicated by management to A activity.

At any time, the total expenditure on all activities must be equal
to the budget, hence the formula for the budget is given as fol-
lows

B = P + A + C

A = mkP

and

where

The expression C, or complexity reflects the cumulative decay
caused by the neglect of A activity.

Since the values k and m are left free to vary with time, the
model can be used for the investigation of the consequences of
various possible management strategies in controlling the
maintenance process. Further freedom can be introduced by
inserting variable-length delays among the three major expendi-
ture components. A large problem space thus results that can be
explored by interactive modeling for increased insight. In this
environment, real-life observed phenomena can be approached
in the model by stepwise changes in model parameters.

management A graphic modeling facility has been used by the authors. This
simulation system was essentially an analog computer that was implemented

on a digital machine such that the analog components (delays,
adders, integrators, etc.) could be connected into a network on a
cathode ray tube by the use of a lightpen. Upon request, the com-
puter accepted the network and numerical parameters as inputs
for a stored program. The system then computed the response,
as described in References I 2 and 13.

During the numerous experimental sessions with this facility,
many real-life phenomena were successfully reproduced. One
example was the cyclic pattern of object growth for the statistical
model discussed earlier. The network consisted of a nested two-
loop feedback system; preset threshold values for k simulated
the management decisions.

More precisely, in our simulation, after a period of persistent
neglect of A-activities (m < 1) , management becomes alarmed
by the rapid reduction of P due to increasing C . Consequently,
an increase in A is scheduled (m > 1) until the situation notice-

246 BELADY AND LEHMAN IBM SYST J

ably improves. At this point, management again becomes optimis-
tic and relaxes k to a lower level. I n the long run, however, C
grows monotonically. A sample output of a run is presented in
Figure 17.

The authors are convinced that this type of interactive modeling
is perhaps the most fertile, and certainly the fastest, way of de-
veloping a feel for the interactions involved, and gradually de-
veloping a more complex model that has the power of predicting
real-life behavior.

In contrast to previous models, management decision modeling
yields an optimistic prognosis, since it includes parameters that
reflect management discretion. Thus it permits the counteraction
to remove the consequences of growing complexity, action that
occurs in real-life situations. On the other hand, of course, the
model does not reflect the internal structure of the object. In our
earlier models, internal structure was modeled by combining the
management model with an extension of the fault penetration
model.

Suppose that management is free to allocate resources to grow
the object, as well as to extract faults as in the previous model.
Of course, both activity classes are essentially imperfect in that,
while performing them, errors are injected into the object.

As the simplest case, we would like to show how the size rn of
the object, measured, for example, by the number of modules it
contains, develops in the presence of error generation that is
proportional to growth activity. In signal-flow-graph form, the
linear relations can be represented by Figure 18. Here E and R
convert growth rate and error repair to work demand (measured
in man-hours). F is the error generation rate (the number of
errors per man hour) and r is the number of errors.

The corresponding equations are:

h = R r + E drn/dt (16)

r = Fh (17)

Assuming a constant work force h, the solution is given as fol-
lows:

m=m,+- ht (18)

where growth is a linear function of time. The greater the work
force and the smaller the error generation, the more rapid is the
growth, which is, in principle, unlimited. The reason is that, on
the basis of our previous assumptions, the effort not used for
repair is available to grow the object at a rate that is independent
of its size.

1 - R F
E

NO. 3 . 1976 LARGE-PROGRAM DEVELOPMENT

Figure 19 Model of limited
growth in which in-

creasing size gener-

ates increusing errors

Observations on our previous models, however, have suggested
that larger and older objects are more complex and receive more
errors as they evolve - through growth and through fault remov-
al. Retaining the linear character of the relationships, the flow-
graph given in Figure 19 represents the modified assumption,
namely, that increasing size causes more errors to be generated.
with a gain D per unit size. The somewhat modified equations
appear as follows:

11 = R r t E d m / d t (19)

and

I’= Fh f D m

where Equation 19 represents a negative feedback to control
size. The solution now becomes the following:

/2(1 - F R)
KD I n c r =

Equations 19 through 22 indicate that under the assumptions of
this section growth is limited to mer. This critical size can only
be reached asymptotically. The reader may be wise to compare
this result with the real-life observations previously reported.

The critical size can be increased by increasing the size of the
work force. However, this means that a subsequent reduction of
the work force can create a new critical size that is smaller than
the one already reached. Thus a situation of monotonically in-
creasing error content is created.

This model has been studied under differing assumptions. The
main conclusion remains, however, that object size is limited
with even the slightest negative feedback of size.

This section has presented several models each throwing dif-
ferent, though related, light on the program maintenance or en-
hancement process. Our aim has not been to present completed
models. Rather, we have wished to illustrate how the modeling
may be approached, and how interpretation of the models may
be used to study and to improve the programming process.

Concluding remarks

Currently, the process of large-scale program development and
maintenance appears to be unpredictable; its costs are high and
its output is a fragile product. Clearly, one should try to reach
beyond understanding and attempt to change the process for the
better.

248

As a first step toward ultimate improvement, we are studying
the process as it is, and as it is evolving, much as the physicist
studies nature. Out immediate goal is an organized quantized
record of observations that formalizes the perception of what is
happening and what is being done. With such global studies, one
may hope to identify specific points or sources of trouble and
perhaps identify areas of the process that are major causes of
concern. When that which is happening is understood in the con-
text of the process as a whole, one may attempt to understand
why it is happening. Only then will one attempt to change the
process without risking local optimization that is very likely to
reduce significantly the degree of global optimization. At the
present time, for example, it is not clear to what extent improve-
ments should be sought by attention to the human organization,
management, or by emphasis on the product side of the process,
in order to achieve the most significant gain in and from the pro-
cess.

We do speculate that communication is a major problem. If this
can be confirmed then, for example, a design methodology that
expresses the understanding and intention of the designer unam-
biguously and completely might eliminate many difficulties. One
may also hope to avoid problems in the performance area as a
consequence of overspecification. Thus one might equally con-
sider that a reduction in product complexity, by better partition-
ing, for example, could lessen the need for communication and,
at the same time, improve performance potential. To do this
effectively, however, we must be able to identify those parts of
the product that are most interlaced in their logical structure.

Our data so far have been largely limited to that of a few rather
large operating systems that were produced within the same
large administrative organization. Even these data are meager.
Since the initial design phase, no one anticipated the long series
changes that was to follow the initial development. We now
know much better and are able to specify the kinds of data that
are necessary for future analysis of the development, imple-
mentation, and maintenance processes.

We are also enlarging our scope beyond the environments
studied so far. It is already clear that qualitative observations
similar to ours have been made at other places where large-scale
programming has been undertaken. This suggests an urgent need
for the definition and standardization of process measures to fa-
cilitate meaningful comparisons between dissimilar systems,
processes, and organizations.

Clearly, we still must test the generality of the hypotheses pre-
sented in this paper. It will, for example, be of major interest to
determine the degree of generality and the range of validity of

NO. 3 * 1976 LARGE-PROGRAM DEVELOPMENT 249

to remove noise due to environmental factors. This should im-
prove the usability of program evolution dynamics concepts and
techniques as planning tools, an improvement much needed by
managers who are, in general, not very successful in assessing,
predicting, and controlling schedules and resources in the soft-
ware process.

It is important for an emerging discipline, such as program evo-
lution dynamics, to summarize its most essential concepts into
unambiguously defined and measurable quantities at an early
stage in its development. This makes it possible to use appro-
priate techniques and tools from established disciplines. Mathe-
matics, for example, facilitates comparisons between derived
results and real life, and may even help the development and
communication of new ideas.

One of the most frequently used- but as yet undefined- con-
cepts encountered in our studies is that of complexity. Particular
definitions that have been established in the somewhat narrow
content of computational magnitude do not appear to be useful
or applicable for the study of structure and interaction. After
some preliminary studies, we have concluded that a measure of
complexity, applicable to the large scale programming environ-
ment, could be developed by using established concepts that are
related to information, uncertainty, and entropy. Further investi-
gation in this direction forms an ongoing activity in the authors’
groups.

Given a measure of complexity expressed in terms of simple
structural properties- such as the number of interactions be-
tween product or organizational elements - normalized measures
for programming effort, productivity, system reliability, and se-
curity can be derived and comparisons between different prod-
ucts or methodologies made meaningful. Without such a measure,
many of the essential parts of the developing discipline remain
unconnected and phenomena are easily misunderstood. An early
result in the study, for example, suggests the consideration of
complexity of software and its documentation in a unified fashion.
In this case, the total project workload can be better quantified,
and plans and schedules made more accurate, provided that the
manpower need is strongly related to complexity.

Many of the directions pursued in our exploration of evolution
dynamics appear to relate to the global properties of complex
systems rather than to properties that result specifically from the
software environment.

Thus we assume that the results of our studies may be generaliz-
able to other complex technological projects, and to the study of
sociological, economic, and biological systems or organisms. In
the immediate future, however, we shall concentrate our studies
on the evolution of large programs, since in this area change is

, observable over a relatively short period of time, and experi-
~ mentation is possible without the serious penalties that could be
~ incurred in other fields. Thus program evolution dynamics may
~ be interpreted as a suitable prototype or test bed for the study of
1 more general system evolution dynamics.

ACKNOWLEDGMENT

The authors appreciate the contributions of their many colleagues
in IBM and in the Imperial College, and in particular their dis-
cussions with Heinz Beilner and Lip Lim. The CSMP modeling
was a contribution made by Steve Morse.

CITED REFERENCES
1 . E. W. Dijkstra, “Notes on structured programming,” pp. 1 - 82 0. J . Dahl,

E. W. Dijkstra, and C. A. R. Hoare, Structured Programming, Academic
Press, New York, New York (1972).

2. E. W. Dijkstra, “A constructive approach to the problem of program cor-
rectness,” B I T 8, 174-186 (1968).

3 . M . M. Lehman, The Programming Process, IBM Research Report RC
2722, (December 5 , 1969). IBM Thomas J. Watson Research Center,
Yorktown Heights, New York 10598.

4. M. M. Lehman, Programs, Cities andStudents-Limits to Growth? Inaugur-
al Lecture, Imperial College of Science and Technology (University of
London) London, England, May 14, 1974.

5 . L. A. Belady and M. M. Lehman, Programming Systems Dvnumics, or the
Meta-Dynamics of‘ Systc~ms in Maintenance and Growth, IBM Research
Report RC 3546 (September 1971), IBM Thomas J. Watson Research
Center, Yorktown Heights, New York 10598.

6. D. R. Cox and P. A. W. Lewis, The Statisticul Analysis of Series of’ Events,
John Wiley and Sons, New York, New York (1966).

7. E. W. Dijkstra, “The humble programmer,” Communicutions o j t h e A C M
15,859-866, (October 1972).

8. G. E. P. Box and G. M. Jenkins, Time Series Antrlysis, Holden-Day, Inc.,
500 Sansome St., San Francisco, California 94 1 1 1 .

9 . 3. H. Hooton, A Case Study in Evolution Dynamics, M.Sc. thesis, Depart-
ment of Computing and Control, Imperial College of Science and Technol-
ogy (Uaiversity of London), London, England (September 1975).

I O . L. A. Belady and M. M. Lehman, “An introduction to growth dynamics”,
Statisticul Computer Prrjormance Etuluution, Academic Press, New York,
New York (1972).

1 1 . L. A. Belady and M. M. Lehman, A Systems Viewpoint o j Programming
Projects, Imperial College Research Report 72/3 1 , Imperial College of Sci-
ence and Technology (University of London), London, England (1972).

NO. 3 . 1976 LARGE-PROGRAM DEVELOPMENT 251

12. H. B. Baskin and S. P. Morse, “A multilevel modeling structure for interac-

13. 1130 Continuous System Modeling Progrum, Order No. H20-0209-1, IBM
tive graphic design”, IBM Systems Journal 7 , 3 -4, 218-228 (1968).

Data Processing Division. White Plains. N.Y.. 10504.
I I~ ~~

Reprint Order No. G321-5035.

252 BELADY AND LEHMAN

