
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Generating Unit Tests for Documentation
Mathieu Nassif, Alexa Hernandez, Ashvitha Sridharan, and Martin P. Robillard

Abstract—Software projects capture redundant information in various kinds of artifacts, as specifications from the source code are
also tested and documented. Such redundancy provides an opportunity to reduce development effort by supporting the joint
generation of different types of artifact. We introduce a tool-supported technique, called DScribe, that allows developers to combine
unit tests and documentation templates, and to invoke those templates to generate documentation and unit tests. DScribe supports
the detection and replacement of outdated documentation, and the use of templates can encourage extensive test suites with a
consistent style. Our evaluation of 835 specifications revealed that 85% were not tested or correctly documented, and DScribe could
be used to automatically generate 97% of the tests and documentation. An additional study revealed that tests generated by DScribe
are more focused and readable than those written by human testers or generated by state-of-the-art automated techniques.

Index Terms—Code documentation, Testing, Testing tools, Test generation, Maintainability, Specification management

F

1 Introduction

Mature software frameworks and libraries are usually
complemented by extensive test suites and reference

documentation. For example, Apache Commons Math 3.6 is
supported by over 4400 tests and 215 000 words of method
reference documentation. Although tests and documentation
serve different purposes, they express similar information. For
example, many functions throw an exception when supplied
with an invalid argument. Ideally, such behavior is also doc-
umented and tested. Future maintenance tasks should ensure
that tests and documentation remain consistent and accurate.
Such maintenance tasks can require considerable effort [1], [2],
and are often neglected [3].

Current practices for testing and documenting reusable
software assets require the capture of redundant information.
Redundancy introduces the risk of specifications being incon-
sistently captured between documentation and the exercise of
the corresponding behavior in a test. This risk is significant as
developers sometimes fail to update documentation [4] or only
do so long after the corresponding code changes [5]. In situa-
tions where many functions exhibit similar constraints (e.g., a
parameter that should be positive), the redundancy between
tests and documentation exacerbates the repetitiveness of the
testing and documentation effort. As a result, studies have
found recurrent issues in documentation [6] and unit tests [7],
[8], such as a lack of completeness and up-to-dateness.

The goal of our research is to leverage the redundancy
and repetitiveness of information in software artifacts to
reduce the effort required to create them and the threat of
inconsistencies. We introduce a technique, called DScribe,
that leverages a new synergy between template-based unit
tests and documentation to efficiently create consistent and
checkable documentation and unit tests. The technique is fully
supported by a publicly available tool for Java.

DScribe provides developers with a method to create joint
templates for unit tests and documentation that capture the

• The authors are with the School of Computer Science, McGill
University, Montréal, Canada.
E-mail: {mnassif, martin}@cs.mcgill.ca,
E-mail: {alexa.hernandez, ashvitha.sridharan}@mail.mcgill.ca

Manuscript received ...; revised ...

structure to test and document a recurring concern. Testers
can then invoke the templates to generate test code and docu-
mentation. With this approach, developers only need to write
boilerplate code (i.e., templates) once, and can effectively
update a large numbers of artifacts, e.g., when changing code
style conventions. The template-based generation also ensures
that tests and documentation follow a consistent style, and
their association allows to detect outdated documentation
when the corresponding tests fail.

The design of DScribe incorporates, among others, a new
template definition language, a serialization format for tem-
plates and invocations, and algorithms for integrating gen-
erated unit tests and documentation with existing artifacts,
without disrupting them.

As a research project focused on engineering design, we
evaluated DScribe’s ability to reduce testing and documen-
tation effort for recurrent specifications and to prevent in-
consistencies between artifacts. We analyzed qualitative and
quantitative data from different perspectives to gain a deeper
understanding of this ability: we surveyed recurrent specifi-
cations related to exceptions in production code, test code,
and documentation; we gathered feedback from developers
about the quality of the artifacts generated with DScribe; we
assessed the degree to which tests capture information worth
documenting; and we elicited factors acting as obstacles to
our approach. Our studies revealed the potential benefits that
DScribe could have on development practices. For example,
85% of the specifications about exceptions in the Apache
Commons IO library are either untested, undocumented, or
both, with 97% of these problems being directly preventable
by DScribe. Moreover, our comparison study substantiated
DScribe’s ability to produce tests with a quality matching or
surpassing existing baselines.

The main contribution of this paper is a novel technique
to support the co-generation of unit tests and documentation.
We also contribute four studies that provide insights on the
potential of generating unit tests for documentation.

This article is organized as follows. In Section 2, we provide
an overview of DScribe, followed by a description of its two
key aspects: templates (Section 3) and generative technology
(Section 4). Section 5 presents the empirical assessment of

This article has been accepted for publication in a future issue of the journal, but has not been fully edited. Content may change prior to final publication. https://doi.org/10.1109/TSE.2021.3087087

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

Template Invocations

Documentation
(Javadoc)

Unit Tests
(JUnit)

Serialized
Invocations

Templates

Fig. 1. Information representations in DScribe. Rounded rectangles show
representations of information, and arrows indicate supported transfor-
mations. Dashed lines indicates a dependency to a set of templates.

Identify
test case

[Yes]

[No]Relevant
template in
database

Invoke
template

[No]

[Yes]

Recurrent
test case

Write new test

Write new
template

Add new tests
to test suite

Fig. 2. Integration of DScribe in a development process. The activity
diagram compares the creation of new unit tests in a typical scenario
(dashed arrow) to a scenario using DScribe (solid arrows).

the work, followed by the details of a usefulness study (Sec-
tion 6), a comparative quality assessment study (Section 7),
a validation study (Section 8), and a qualitative study of the
limitations of our approach (Section 9). Section 10 presents
the related work and Section 11 concludes the paper.

Our contributions are complemented by an on-line ap-
pendix, which contains the source code of DScribe and details
of the evidence collected as part of the studies, available at
https://github.com/prmr/DScribe-Research (version 1.0).

2 DScribe Overview
DScribe is an approach to transform different representations
of equivalent information about software elements. In the
current implementation of DScribe, each piece of information
must relate to a public Java method, called the focal method.
For example, a focal method may throw a NullPointerException
when its argument is null. DScribe allows developers to encode
this specification once using a simple format, then generate
different artifacts that capture the same information.

Figure 1 summarizes the information representations sup-
ported by DScribe. At the center are template invocations,
which consist of the minimal amount of information necessary
to describe a specification, including the focal method and
details of the case to test and document.

Template invocations rely on templates. A template cap-
tures the structure of the tests and documentation for a spec-
ification. It includes placeholders to allow its reuse in different
contexts. Table 1 presents three examples of templates, each
composed of a documentation (doc.) and a test component.

Developers invoke the templates to express a particular
specification about a method by writing JSON-formatted
invocation files. DScribe uses this information together with
templates to generate documentation and unit tests that
capture the same information as the invocation files.

DScribe integrates into the development process as shown
in Figure 2. When testing a method, a tester normally iden-
tifies a test case, then writes a new test. With DScribe, the

TABLE 1
Three examples of template. Each template consists of a unit test and
documentation fragment, with placeholders marked by dollar signs ($).

ID Template
1 (doc.) $method$ will throw an exception of type $excep$ if the

argument is arg.
1 (test) @Test

public void test$method$_invalidArgument() {
$class$ obj = $factory$();
assertThrows($excep$.class, () −> obj.$method$(arg));

}

2 (doc.) If no argument is provided, the default value for the
arguments of $method$ is $defVal$.

2 (test) @Test
public void test$method$_defaultArgument() {
assertEquals($method$() , $method$($defVal$));

}

3 (doc.) If the $class$ object is closed, $method$ returns val.
3 (test) @Test

public void test$method$_afterClose() {
$class$ instance = $factory$();
instance.close();
assertEquals(val, instance.$method$());

}

tester instead selects a relevant template and only provides
values for its placeholders. New templates can be created at
any point, either opportunistically or as part of a testing plan.
The generated assets are independent of the generation frame-
work, so the use of DScribe does not require a project-wide
adoption or other changes in the development environment.

The realization of DScribe required solving a number of
design and implementation challenges. A key design principle
of DScribe was to make the generation process as transparent
as possible for developers. Past research has proposed various
inference techniques to generate information, based on var-
ious representations [9]. A limitation of these techniques is
that they require developers to validate the outcome of the
inference process. In contrast, DScribe makes effective use of
unambiguous information specified by developers.

3 Templates and Invocations
We consider the following test:
@Test
public void testGet_WhenEmpty_ThrowsException() {
Optional<?> instance = Optional.empty();
assertThrows(NoSuchElementException.class,

() −> instance.get());
}

The test checks that the method get throws an exception
when called on an Optional instance that does not contain a
reference. Some information, such as the state of the Optional
instance, is specific to the current test case, but the code
also captures information that is relevant to other contexts,
such as a typical usage of the assertThrows method. This same
structure can thus apply to a variety of test cases.

The design of DScribe hinges on the separation of this
information, related to the general concern being tested (cap-
tured by the template), or related to details of the test case
(provided by each invocation). Templates should be reusable
across different contexts, while retaining a self-evident pur-
pose. In contrast, invocations should require the minimal
information to complete a template for a specific context.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

3.1 Templates
A template is the association of a code skeleton for a specific
kind of unit test, together with a documentation fragment
that describes the tested specification. This association is the
key to generating consistent and verifiable documentation.

The code skeleton is created as an abstract syntax tree
(AST) with a set of nodes marked as placeholders, identified as
tokens surrounded by dollar signs (‘$’, a legal but discouraged
character for manually-written Java identifiers [10, §3.8]).
Thus, code skeletons are written as syntactically valid code.

For example, the test shown at the beginning of this
section can be adapted into a code skeleton by replacing test-
case-specific elements with placeholders. In this example, this
would require modifying (a) the Get and (b) Empty tokens
in the test name, (c) the type and (d) instantiation of the
instance variable, (e) the type of exception thrown, and (f)
what method is called on the instance variable. Three of
these values (a, c, and f) are derived directly from the focal
method and its declaring class, for which DScribe provides two
predefined placeholders ($method$ and $class$). Two other
values (b and d) capture the state of the tested object that
triggers the specification, allowing to use a single placeholder
for both. Thus, the following code skeleton, extracted from
the original unit test, only require two custom values and the
focal method:
@Test
public void test$method$_When$state$_ThrowsException() {
$class$ instance = $class$.$state$();
assertThrows($exception$.class, () −> instance.$method$());

}

To help testers use templates correctly, we defined a type
system that indicates how a placeholder is used within the
code skeleton. For example, the type of the $exception$ place-
holder specifies that its value should refer to an exception class
name. Other types specify that a placeholder replaces either
a Java type, a method, a field, a Java expression, or a list of
Java expressions (e.g., arguments of a method call). DScribe
includes straightforward validation rules for each type: values
must be syntactically well-formed according to their type,
and class names must also resolve to an existing class. As
predefined placeholders receive their value from properties of
the fully resolved focal method, they do not need a type.

To complete the transformation of a unit test into a
DScribe template, template creators associate the new code
skeleton with a text fragment that describes what the code
checks. This documentation fragment can be any free form
text and uses the same placeholders as the code skeleton. As
for code skeletons, template creators can reuse existing doc-
umentation, replacing specific information with placeholders,
to create the text fragment. In our running example, a suitable
fragment could be “$method$ will throw $exception$ if the
implicit argument is $state$.” Creating this documentation
fragment requires an effort no different from documenting a
method, but the result can be reused to document all methods
tested by the same template (see Section 4.2).

3.2 Invocations
Testers use template invocations to apply a template to a focal
method. In addition to a reference to the template being in-
voked and the focal method it applies to, each invocation also

provides specific values for the (non-predefined) placeholders
of the template. Thus, the invocation to generate the test from
our running example would specify the focal method Optional-
.get(), refer to the template defined in the previous section,
and provide the values empty and NoSuchElementException for
the $state$ and $exception$ placeholders, respectively.

Following the principle that the generation of tests and
documentation should be transparent for testers, DScribe
replaces placeholders with the invocation values with as little
transformation as possible, only in straightforward cases. For
example, DScribe adds the new keyword when a placeholder
for a method name is a constructor. Thus, the values supplied
to the template invocation are not expressions to be evaluated,
but to be substituted verbatim for the placeholders.

Testers invoke templates using invocation files. We made
the arbitrary decision to format those files using JSON, which
allows testers to directly read, write, and edit invocation
files with any text editor. The many JSON libraries also
support the implementation of a straightforward serialization
and deserialization of invocations.

4 Asset Generation
DScribe generates two kinds of software assets: individual unit
tests and documentation fragments inserted in the header
comment (Javadoc) of the focal method. The general genera-
tion procedure consists of replacing placeholders with invoca-
tion values. However, integrating the assets within the system
requires solving practical challenges to keep them up-to-date
while avoiding corrupting manually-written assets.

4.1 Unit Test Integration
DScribe places the generated tests in new Java files, separated
from the rest of the test suite, so that they can be deleted
and generated again to update old tests. This strategy allows
testers to leverage test scaffolding code by referring to helper
methods to provide placeholder values. The scaffolding code
only needs to be located in distinct utility files, to avoid being
deleted when tests are updated.

Another concern for the generated tests is that they com-
pile and run correctly. The transparent generation process
helps testers generate tests that run as they intend, and the
placeholder type system helps prevent simple compilation
errors. However, DScribe cannot guarantee that generated
tests are correct or even compilable. A generated test could,
for example, contain unresolved references. This is the trade-
off of the flexibility of DScribe: although template creators
can design templates for virtually any testing environment,
it also allows them to design bad templates. This limitation
is consistent with the objective of DScribe, which is to help
developers efficiently express and capture knowledge about a
system while testing it, rather than dictate a testing style.

4.2 Documentation Integration
Template invocations already capture valuable information
about the system under test. They summarize how a specifica-
tion, defined by the template, applies to different focal meth-
ods, in a machine-readable format. This information can be
leveraged to generate or improve documentation. As a proof
of concept, we implemented one documentation generation

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

approach that inserts natural language fragments directly into
the header comment (Javadoc) of the focal methods.

Contrary to generated tests, documentation cannot be
generated in a different file, otherwise developers are likely
to ignore it. However, integrating new generated fragments
in existing documentation introduces the threat of corrupt-
ing existing documentation. DScribe must also update old
fragments when invocations or templates are edited, again
without affecting manually-written documentation.

To solve both issues, DScribe marks the generated frag-
ments with the custom Javadoc tag @dscribe. This tag unam-
biguously identifies fragments to replace when updating doc-
umentation. It also indicates to developers which statements
are automatically generated and backed by unit tests.

Each fragment is prefixed by its own tag to avoid a large
unreadable paragraph. However, generating many similar
fragments for a single method can still clutter the documenta-
tion. For example, Java’s Math.log(double a) method returns
the value NaN if the argument is negative or NaN itself. Testing
this specification requires two template invocations, which
would in turn generate two sentences that differ only by one
word: “If the argument is [negative/NaN], ‘log’ returns NaN.”

To avoid generating such repetitive fragments, we designed
an optional format for the documentation fragment of a
DScribe template. The format consists of two components, a
condition followed by a consequence, both consisting of three
internal parts: a subject, a relation, and an object (similar
to Resource Description Framework (RDF) triples [11]). For
example, one documentation fragment for Math.log would be
the argument/is/negative/‘log’/returns/NaN. As this example
shows, many specifications naturally follow this six-part struc-
ture. This format allows DScribe to merge fragments that
differ only by some of their parts. In our running example,
only the object of the condition differs in both fragments, so
DScribe can add a single sentence to the documentation: “If
the argument is negative or NaN, the method returns NaN.”

5 Overview of the Empirical Assessment
We conducted a multi-pronged empirical investigation of
key aspects relating to the co-generation of unit tests and
documentation, using our implementation of DScribe. The
investigation sought to answer two research questions:
RQ1 In practice, what is the nature of inconsistencies

between source code, unit tests, and documentation?
RQ2 To what extent can developers leverage templates to

automatically test and document focal methods?
We followed a four-stage process, with each stage con-

stituting a cohesive study of its own (see Table 2). An in-
depth usefulness study focused on the benefits of applying
DScribe in a narrow context, i.e., testing thrown exceptions
(Section 6). We compared the quality of the tests generated
by DScribe to that of tests generated by humans and two
automated techniques in a comparison study with external
annotators (Section 7). We performed a multi-case validation
study to assess the generalizability of the findings of the
usefulness study beyond exception handling (Section 8). Fi-
nally, to better understand the limitations of our approach in
diverse scenarios, we conducted an empirical limitations study
(Section 9). For all four studies, the complete and detailed
results are publicly available in our on-line appendix.

6 Usefulness Study
We investigated the usefulness of DScribe to prevent inconsis-
tencies. The objective of the investigation was twofold. First,
it aimed at assessing the amount of repetitive and redundant
information between unit tests and documentation. Second,
it aimed at assessing the potential of DScribe to prevent
inconsistencies by automating the generation of assets.

6.1 Usefulness Study Design
To study information inconsistency and redundancy, it was
necessary to define what constitutes a cohesive unit of infor-
mation about a method. The information relevant to methods
typically includes units of specification regarding, among oth-
ers, exceptions, parameter types, edge cases, and return types.
We chose as our unit of analysis such a unit of specification.

In general, a significant manual effort is required to isolate
and make sense of even just a few units of specifications
in unfamiliar code. To make this case study tractable, we
narrowed the scope to a well-defined type of specification:
units of specification about exceptions, which are relevant in
almost all systems, yet often improperly implemented [12].
For a single method, its source code, associated unit tests,
and documentation should present the same information
about thrown exceptions. Thus, an exception specification unit
(ESU) is inconsistent if there is any divergence in its associ-
ated artifacts (code, documentation, or tests). This definition
includes the cases where an artifact omits the ESU.

As the subject of the case study, we selected the latest
version (at the time of the study) of Apache Commons IO
(version 2.6, commit 11f0abe). This library consists of utility
functions and classes, each mostly independent of the others,
with well-defined ESUs. It is also extensively documented and
tested, mature (over 18 years old), actively developed (over
500 forks on GitHub, and multiple weekly commits), and
popular (over 20k dependents on Maven). Because the library
contains a total of 152 top-level Java types, an amount which
precludes an in-depth analysis of each method, we focused
only on the public types in the root package org.apache-
.commons.io. We also excluded deprecated, abstract, and ex-
ception types, which resulted in eleven remaining classes and a
total of 293 public, non-deprecated methods. Table 3 presents
an overview of these classes, including the number of identified
ESUs and template invocations for each class.

For each method declared in the classes under study, bar-
ring deprecated and private ones, one of the authors identified
all ESUs present in at least one of the documentation, test
suite, and source code. The identified ESUs include not only
exceptions directly thrown by the method under investigation,
but also those thrown by nested calls, which explains the
large effort involved in eliciting the ESUs. For each ESU, the
investigator noted the type of exception thrown, the state
that triggers the exception, which of the source code, test
suite, and/or documentation captured the ESU, and which
DScribe template could be used to generate a unit test and
documentation for this exception, creating the template if
necessary. For the latter, if no template could capture the
ESU, the investigator recorded the reason instead. Of the 849
ESUs identified, the investigator was not able to verify the
correctness of 14 with respect to the source code. These 14
cases are included in Table 3, but we omitted them from the
rest of the study.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

TABLE 2
Overview of the empirical assessment of unit test generation for documentation

Study Sect. Subject Scope Purpose RQs
Usefulness 6 Commons IO (root package) Exceptions Assess DScribe’s ability to prevent inconsistencies 1, 2
Comparison 7 Commons IO (root package) Unit tests Compare tests from different tools 2
Validation 8 Commons Math, Lang, Config. Tested specifications Validate the results of the usefulness study 1
Limitations 9 Five open source projects All Understand DScribe’s limitations 2

TABLE 3
Number of methods, exception specification units (ESUs), and
instantiated DScribe templates per class under investigation.

Class Methods ESUs Instances
ByteOrderMark 8 6 6
ByteOrderParser 1 1 1
Charsets 4 2 2
EndianUtils 30 67 67
FileCleaningTracker 7 8 8
FileDeleteStrategy 5 4 4
FileUtils 95 403 386
FilenameUtils 33 30 28
HexDump 2 5 5
IOUtils 101 315 295
LineIterator 7 8 8
Total 293 849 810

TABLE 4
Presence of exception specification units (ESUs) in documentation and
unit tests. For each value, the number after the “+” sign indicates the

number of ESUs that are not present in the source code.

In Doc. Not in Doc. Total
In Test 122+1 29+0 152
Not in Test 458+9 216+0 683
Total 590 245 835

6.2 Results and Discussion

To answer RQ1, Table 4 summarizes the degree to which
identified ESUs are consistent across the artifacts of Commons
IO, by comparing the number of ESUs captured by the docu-
mentation (In Doc.) and the test suite (In Test). The results
highlight the pervasiveness of information inconsistencies in
Commons IO: 85% of the identified ESUs are missing in at
least one of the documentation, test suite, or source code. An
even more concerning observation is that the overwhelming
majority (82%) of ESUs are untested, which increases the risk
of documentation becoming silently inaccurate. This risk of
documentation becoming silently inaccurate is already exem-
plified from the 10 cases where ESUs in documentation are
not traceable to the source code. In this case, use of DScribe
would also remediate the 19% of tested ESUs that are absent
from the documentation, presumably by accident.

In some cases, an ESU was only partially or vaguely
described in the documentation. Of the 590 ESUs present in
documentation, 22 (4%) did not include the type of exception
thrown, and 115 (19%) only described the input state that
triggers the exception in broad terms, or aggregated multiple
invalid states. A recurring example of such broad documenta-
tion in the FileUtils class is “IOException - if source [file] is invalid”.

TABLE 5
Number of times that each DScribe template was instantiated. The
five templates are variations of Template 1 presented in Table 1.

Invocations Not Invoked
Template Count Reason Count
Static 237 (28%) Inaccurate Doc. 10 (1%)
NotStatic 2 (0%) Unable to Test 15 (2%)
MessageStatic 547 (66%)
MessageNotStatic 19 (2%)
MessageConstructor 5 (1%)
Total 810 (97%) Total 25 (3%)

Here, an API user is left wondering about the various specific
invalid input states that may trigger the exception, such as a
file that does not exist or that is a directory. Such cases, which
decrease the usefulness of documentation, would be avoided
by DScribe.

To answer RQ2, the investigator created the necessary
templates and invocations to capture as many ESUs as pos-
sible. Table 5 shows the resulting templates, and the number
of invocations for each of them, as well as the reason why we
could not invoke any template for some ESUs. The fact that
97% of the identified ESUs could be captured by a template
invocation confirms DScribe’s potential to avoid future infor-
mation inconsistencies. Each such invocation would lead to
a unit test and a documentation fragment. Failing unit tests
would instantly flag invocations inconsistent with the source
code, thereby alleviating the burden of having to maintain
ESUs in multiple artifacts manually.

The results also show that DScribe’s ESU templates are
highly reusable. Almost all ESUs (94%) were supported by
only two templates, Static andMessageStatic. Thus, the overall
relative cost of template creation is low. In our case, 810 ESUs
(97%) were instantiated using only five templates. The five
templates vary depending on the different types of focal meth-
ods (static, non-static, and constructor), and whether to verify
the message of the exception. The templates NotStatic and
MessageNotStatic, designated for non-static focal methods,
were used less often as most methods under investigation were
static. Similarly, the MessageConstructor template was not
widely used because few ESUs were identified for constructors.

In addition to these results, we observed the use of
three alternative patterns to test exceptions. Namely, using
a try-catch block with JUnit’s fail method, using JUnit’s
assertThrows method, and using helper methods to verify
the type and message of an exception. It is thus evident
that developers leverage recurrent templates naturally, but
inconsistently. This inconsistency hinders readability and,
consequently, maintainability. DScribe helps standardize the
consistent use of recurrent templates, thus enhancing the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

quality of test suites.
We did not instantiate ESUs in only 25 cases (3%), due to

two main reasons. In ten cases, an ESU in the documentation
was inaccurate, i.e., its description did not reflect the actual
behavior of the method. While it is possible to instantiate
these ESUs, it would lead to failing unit tests and outdated
documentation. For the 15 other ESUs, we could not produce
input states that would trigger the target exception. For
example, it is not possible to ensure that an InputStream
instantiated inside a method, rather than passed as an input
parameter, produces an IOException when it is read. Instan-
tiating those ESUs would require considerable scaffolding to
precisely manipulate the file system, which was beyond the
scope of this study. The majority of these cases were also not
tested in the test suite.
Findings: Among the sampled methods of Commons IO,
only 15% of the specifications related to thrown exceptions
(ESU) are both tested and documented. The remaining 85%
of ESUs represent inconsistent information that would re-
quire a non trivial amount of effort to manually fix. DScribe
can generate the tests and documentation for 97% of these
ESUs, using only five templates.

6.3 Threats to Validity
Two of the authors performed all annotations, with no overlap
between the annotators. It is possible that the investigators
may have missed some ESUs, or misinterpreted the purpose
of a test or behavior of a method, as they are not part of
the development team for the library under test. We mit-
igated this threat by selecting a library that requires little
specialized knowledge, with self-contained methods that can
be understood without knowledge of the system as a whole.

Nevertheless, to assess this threat, we selected 20 methods
from our sample at random to be independently annotated
by two additional authors, providing three sets of annotations
for these methods. In total, the annotators found 49 ESUs for
these methods, ten of which were not found by the original
annotator. These missed ESUs are exceptions thrown by
methods deep in the call sequence of the target API, and
that are not typically described in documentation, such as
SecurityExceptions thrown when the file system does not have
sufficient permission to perform some operations. In seven
cases, the original and additional annotators agreed about the
existence of an ESU for a method, but not about which of the
source code, unit tests, or documentation captured it, mostly
when the additional annotators failed to notice a part of an
artifact. Thus, although the number of ESUs may actually
be an underestimation, our conclusions about the amount of
information inconsistency are reliable. To ensure verifiability,
we include the complete results of our study in our on-line
appendix.

A threat to external validity stems from our decision to
focus on exception handling. We do not expect that this
context would generalize to all types of units of specification.
Moreover, we only investigated eleven classes from Commons
IO. The results may not generalize to the library as a whole,
let alone other systems. Similarly, our results are dependent
on our selection of templates. Different templates may not
be as reusable, and we did not evaluate the challenges devel-
opers have to use templates created by others. Nevertheless,

TABLE 6
Number of tests generated by each approach (including the original

test suite). The percentage of branch and line coverage, respectively, is
reported in parentheses.

Class Original DScribe EvoSuite Randoop
BOM 9 (100; 100) 6 (33; 30) 12 (100; 100) 3251 (88; 92)
BOP 3 (100; 100) 1 (50; 60) 3 (100; 75) 3 (50; 67)
Char 8 (75; 94) 2 (50; 47) 5 (100; 100) 4279 (50; 94)
EUtil 22 (100; 100) 67 (50; 8) 21 (100; 100) 6746 (0; 42)
FCT 9 (93; 98) 8 (40; 44) 8 (67; 79) 2922 (86; 85)
FDS 5 (100; 90) 4 (25; 53) 7 (100; 82) 3852 (13; 53)
FUtil 181 (86; 90) 386 (51; 45) 166 (73; 86) 668 (51; 60)
FNUtil 45 (94; 97) 28 (25; 26) 90 (76; 83) 6988 (45; 57)
HexD 1 (100; 96) 5 (83; 80) 6 (100; 100) 7982 (21; 37)
IOUtil 190 (85; 87) 295 (44; 42) 115 (68; 77) 3355 (64; 64)
LineIt 16 (100; 100) 8 (44;57) 8 (95; 100) 3 (7; 16)

the natural format in which a template is expressed (i.e.,
a syntactically valid code fragment coupled with a natural
language description) favor effective reuse, and the study
demonstrates the usefulness of DScribe in at least one realistic
software development context, as we applied it to the popular
Commons IO library, from which we can analytically generate
to similar software components.

7 Comparison Study
We assessed the quality of the tests generated by DScribe
relative to three baselines: the original test suite of Commons
IO, and tests generated by two automated approaches. The
objective of this study was to assess whether it is possible to
generate high-quality unit tests using DScribe with reasonable
effort relative to other techniques. We did not evaluate the
quality of the documentation fragments generated by DScribe,
because templates for documentation are free form and can be
trivially improved at any point.

7.1 Comparison Study Design
We used the unit tests produced during the usefulness study as
the target population for this study. These tests are relevant
to a popular software library, and were created following a
systematic procedure with a well-defined scope. These 810
tests are also derived from only five templates, mitigating the
threat of using overly specific templates to inflate the quality
of the generated tests.

We compared the quality of DScribe’s tests with the
current test suite of the Commons IO project. We also used
two state-of-the-art fully-automated test generation tools as
additional baselines: EvoSuite [13] and Randoop [14]. Ran-
doop is an approach to generate large regression test suites
using random sequences of method calls. EvoSuite attempts
to generate a test suite that optimizes several coverage criteria
(line and branch coverage in our case) while minimizing the
number of generated tests. We used the most recent version
of both tools (EvoSuite 1.1.0 and Randoop 4.2.5) with their
default parameters on each of the eleven Commons IO classes
one by one (it was necessary to use the call-timeout option for
Randoop on the FileUtils class). Table 6 shows the number of
tests in each test suite, for each tested class, as well as the
branch and line coverage for the class as computed by the
EclEmma code coverage tool.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

TABLE 7
Ratio of unit tests considered focused (F) and readable (R) by each

annotator (An.). Asterisks mark scores that are statistically lower than
DScribe’s scores at the 0.05 (*) or 0.001 (**) significance level, using a
one-tailed Mann-Whitney U test to compare the distribution of scores.

An. DScribe Original EvoSuite Randoop
F R F R F R F R

A 1.00 0.85 1.00 0.90 1.00 0.65 0.80* 0.30**
B 1.00 1.00 0.80* 0.50** 0.00** 0.60** 0.00** 0.05**
C 1.00 0.80 0.50** 0.25** 0.80* 0.40* 0.50** 0.00**
D 1.00 0.30 0.15** 0.65 0.30** 0.85 0.35** 0.10*
All 1.00 0.74 0.61** 0.58* 0.53** 0.63* 0.42** 0.11**

To evaluate the quality of the unit tests, we relied on
the design principles described by Martin [15, Chapter 9].
Specifically, unit tests should be readable (i.e., clean tests) and
focused (i.e., single concept per test). Because these two prop-
erties rely on human comprehension, we asked four external
annotators, all with at least three years of Java programming
experience and prior experience in writing unit tests, to eval-
uate the tests. We selected 20 tests per suite per annotator,
for a total of 320 evaluated tests (80 per test suite). After
reading a definition of the readable and focused properties,
the annotators rated both qualities independently for each
test on a five-point ordinal scale (1=not readable/focused,
5=readable/focused).

We provided the set to annotate to each annotator with all
tests in a random order, so that annotators were unaware of
the origin of each test and the number of different generation
tools. To further reduce the distinction between test suites, we
ported test scaffolding to the same single helper class for all
four suites, removed inline comments, formatted tests using a
consistent style, and ported JUnit 4 types to JUnit 5. We also
removed automated generation artifacts such as meaningless
test names (e.g., test0123), fully qualified type names (re-
placed with import statements), unnecessary throws clauses,
and if statements used for debugging. These adjustments only
increased the quality of tests from EvoSuite and Randoop, for
a fair comparison.

7.2 Results and Discussion
Despite the five-point scale, the annotators gave the highest
score to a majority of tests, for both properties. Although
this observation in itself is encouraging, showing that four
independent annotators found the tests suitable in terms
of scope and readability, it makes the comparison between
generation approaches more difficult. To analyze the results,
we transformed the five-point scale into a binary decision,
where a test is either focused (resp. readable) if the annotator
gave the highest score, or not if the score is lower.

Table 7 shows the proportion of tests rated with the
highest score for each test suite and quality. Already, the
differences between annotators demonstrate the subjectivity
of the task (especially for readability, as was previously ob-
served [16]), not only due to the scale, but also to each devel-
oper’s interpretation of good unit testing practices. However,
despite these differences, all annotators agree that DScribe
can produce unit tests that are focused, and three out of four
annotators (A, B, C) found the majority of DScribe’s tests
readable, on par with or exceeding even manually written

tests. The last annotator commented that DScribe’s tests
should rely on more local variables to increase readability, and
thus gave a score of four to most DScribe tests.

Findings: Overall, DScribe produced a higher ratio of tests
marked as readable and focused than human contributors
and two alternative test generation approaches.

7.3 Threats to Validity
There are two main threats to the validity of this study. First,
the sample of tests under study is not sufficient to generalize
our results beyond the context of the Commons IO project.
The decision to use only ESUs for DScribe’s tests also resulted
in a different scope for DScribe compared the baselines, which
could favorably bias DScribe’s scores for the focused quality.
However, DScribe is not intended as a single comprehensive
test generation solution, but rather as a complement to other
testing tools (or manually-written tests). Therefore, it is a
reasonable scenario to use DScribe only for testing a small
number of repetitive specifications.

The second threat relates to the subjectivity of the anno-
tation task. To mitigate this threat, we provided the same def-
inition of the two qualities to all annotators, and required all
annotators to have their own prior experience of unit testing.
However, beyond these definitions, we let each developer rate
tests according to their own experience and judgment, instead
of training them to adhere to our own guidelines, which would
inevitably introduce biases. We report the results of each
annotator independently, rather than only in aggregated form,
to let readers interpret the subjectivity of the task.

8 Validation Study
The results presented in Section 6 indicate that information
inconsistency across source code, documentation, and unit
tests is a common issue for exception handling in the Com-
mons IO project. We performed a multi-case study to validate
and expand the findings of the initial case study.

8.1 Validation Study Design
Because identifying all units of specifications from the source
code of a method is both effort-intensive and subjective (due to
the ambiguity of what constitutes a single “unit”), this second
study focused on the units of specifications found in unit
tests. This design restricts the scope of the validation study
to testable (and tested) specifications, but it is necessary to
make the findings reliable.

As the subjects of the validation study, we selected the
three Apache Commons projects with the most unit tests:
Math (version 3.5, commit d7d4e4d, 3757 tests), Lang (ver-
sion 3.8.1, commit 2ebc17b, 3086 tests), and Configuration
(version 2.4, commit 61732d3, 2554 tests). We randomly
sampled tests uniformly from the total population of 9397
tests. For each sampled test, one author manually identified
the focal unit of the test, using the test’s name, the Last Call
Before Assert heuristic [17], and comments. Because we were
focusing on specifications about methods in the production
code, we rejected tests whose focal unit was not a single
method (e.g., multiple methods, or a class or field), or if the
focus was ambiguous. We also rejected degenerate cases (e.g.,
empty, deprecated, or auto-generated tests). We continued the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

TABLE 8
Number of unit tests capturing at least one specification (documented

or not). Percentages are computed with respect to each project.

Project Information Present No Info. Total
Doc. Partial Not doc.

Config. 9 (9%) 3 (3%) 16 (15%) 76 (73%) 104
Lang 55 (39%) 10 (7%) 20 (14%) 57 (40%) 142
Math 17 (14%) 3 (2%) 24 (19%) 80 (65%) 124
Total 81 (22%) 16 (4%) 60 (16%) 213 (58%) 370

sampling until we gathered a set of 370 viable tests, rejecting
a total of 93 unsuitable tests. This sample size is sufficient to
support a generalization of proportions of tests computed on
the sample to the whole population within a 5% confidence
interval at the 0.95 level.

For each test in the sample, one author noted whether
the test captured at least one unit of specification about the
focal method (some complex tests actually tested multiple
inputs), writing it down to ensure it was well-defined. Each
specification was expressed as If X, then calling the method
will do Y, to avoid considering all information (including, e.g.,
usage examples) as a specification. For each identified unit
of specification, the investigator then noted whether it was
described in the documentation, and if so, if the description
was only partial and broad, or complete and explicit.

8.2 Results and Discussion
Table 8 presents, for each project, the number of tests that
captured self-contained information about a specification of
its focal method (Information Present), or not (No Info.),
and whether the information was completely included in the
documentation (Doc.), partially or broadly (Partial), or not
mentioned at all (Not doc.). The information captured by
the tests varied. As expected, many tests capture similar
information, for example a special behavior of a focal method
when an argument consists of a special value (e.g., null), and
other tests captured more unique information, for example
that the leading spaces of a string argument are discarded or
that the return value of a method is immutable. However, the
variety of testing practices resulted in many different ways to
capture similar information, each involving small variations.
Therefore, in our analysis, we only use a binary variable to
indicate the presence of information as we cannot reliably
categorize tests based on whether they capture the same
information.

Overall, 42% of tests captured at least one unit of speci-
fication, which means that a significant amount of tests need
to be kept consistent with documentation. This proportion
is even higher (60%) for Lang. For Configuration and Math,
undocumented specifications amount to over half of the tested
specifications, a situation that the use of DScribe prevents.
In the case of Lang, although the lack of consistency is less
significant, the use of DScribe would reduce the effort required
to produce and maintain the more extensive documentation.

Multiple factors can explain the absence of unit of specifi-
cation in the remaining 58% of tests. In many cases, a test was
simply verifying that under “usual” inputs, a method behave
as it should. For example, the test KendallsCorrelationTest.test-
SimpleReversed() in Math simply validates that the correlation

computed in a specific (normal) scenario is correct. Other
cases, however, were more ambiguous: some tests captured
at least a partial unit of specification, but the complete
information was obscured by external references or ambigu-
ous names. For example, TestDataConfiguration.testGetByte-
Array() in Configuration follows some recognizable patterns,
but depends on values from configuration files referred to as
byte.list1, byte.list2, etc. In such cases, the investigator used
a conservative strategy and marked the test as capturing no
specification. Nevertheless, refactoring the tests, or generating
them with DScribe, could make them more self-contained,
thus improving their quality. Numbers reported in Table 8
should thus be regarded as lower bounds of the effective
values.

This study also revealed an interesting use case for DScribe
outside the scope of this study: developers can use tem-
plates to add usage examples to documentation. For example,
the documentation of StrBuilder.asTokenizer(), from the Lang
project, contains a usage example that is almost equivalent to
the test StrBuilderTest.testAsTokenizer().

Findings: Approximately 42% of the unit tests of Commons
Configuration, Lang, and Math capture information that
would be relevant to document, but that information is
documented for only 52% of these tests. Developers can
use DScribe to generate documentation from these tests
more consistently and efficiently, especially for repetitive
specifications.

8.3 Threats to Validity
As for the usefulness study, a single author performed all
annotations, which leads to the same threats outlined in
the Section 6.3. However, as it is common in case studies,
this procedure was necessary to obtain detailed insights that
require a degree of interpretation.

Nevertheless, we selected a random sample of 50 tests
to be independently annotated by two other authors. This
additional annotation shows the subjectivity of the task, as
the additional annotators agreed only on 31 and 33 of the
tests (Cohen’s κ = 0.25 and 0.29 [18], interpreted as fair by
Landis and Koch [19]), respectively, reinforcing the motivation
to conduct our initial usefulness study on a narrow scope.
Nevertheless, the independent results of all three annotators
lead to the same general conclusion: that a non trivial amount
of information in tests is not properly documented, even if pre-
cisely quantifying information is challenging. For verifiability,
we include the complete results in our on-line appendix.

The target systems are a collection of mostly independent
utility methods and classes, with extensive test suites, from
the same organization as the usefulness study. We do not
expect that this context would generalize to all systems. We
recognize this limitation, and we scope our claims accordingly.
Nevertheless, the evaluation shows evidence of a considerable
amount of information inconsistencies in a realistic and signif-
icant software development context.

9 Limitations Study
The usefulness study showed evidence of the potential ef-
fectiveness of DScribe in one particular context, in which
97% of the identified exception specification units could be

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

TABLE 9
Five open source subjects of the limitation study

System Prod. Files Test Files Inspected Files
Freemind 379 26 18
Eclipse 3933 1669 49
Weka 1614 253 20
Tomcat 1402 475 16
Hibernate 3845 5647 12

captured by template invocations. However, to better answer
RQ2 about the use of templates in a general context, we
performed a qualitative multi-case study specifically to elicit
the strengths and limitations of a template-based approach
for generating unit tests and documentation.

9.1 Limitations Study Design
To ensure a variety of contexts, we selected five open source
projects that are at least 15 years old and that vary in
their development style, target audience, and application
domain: Freemind (version 1.1.0, commit 643c55c), Eclipse
Platform UI (version 4.9.0, commit d6d8a6a), Weka (version
3.9.3, commit r14866), Apache Tomcat (version 9.0.11, com-
mit r183513), and Hibernate ORM (version 5.3.2, commit
35806c9).

One author annotated a subset of the test suite of each
project. For each test, the investigator answered the question
What are the technical factors that would enable or prevent
the generation of similar unit tests from templates? To help
answer this question, the investigator noted the unit under
test, purpose, format, and recurrent patterns for each test, in
addition to the enabling and hindering factors.

To achieve maximal purposive sampling, instead of anno-
tating a fixed subset of each project, the investigator itera-
tively included more unit tests to the sample until reaching
saturation, which we defined as when three consecutive iter-
ations generated no new noted observations. Each iteration
consisted of selecting a package with at least three classes
at random from the test suite of a project, then selecting
three random classes (or more if the classes or package are
small enough) from that package, and annotating all tests
from these classes. The investigator analyzed one project at
a time, moving to the next once saturation was reached for
one. For Freemind, which only contains two test packages, the
investigator annotated all unit tests from the root package
of the test suite. Table 9 shows the number of production
and tests Java files for each project, in the order they were
annotated, as well as the number of inspected test files.

The investigator initially used an open coding process [20]
to annotate each test. After completing the open coding,
and after a preliminary analysis of the initial codes, the
investigator systematically re-coded each test using a closed
code catalog.

9.2 Results and Discussion
We identified eight technical factors that can impact the abil-
ity to generate unit tests from templates or the qualities of the
generated tests. We discuss these factors at a high level in this
section, but the interested reader can find multiple concrete

examples of each factor in our on-line appendix. Although
these factors outlined several limitations for using DScribe in
different contexts, they also revealed simple strategies to work
around these limitations, which can improve the quality of the
generated tests.

Generic Variable Names: Recurrent generic names for
local variables (e.g., input and expected) better support the
reuse of templates than names specific to the test context
(e.g., baseString, encodedString). Although only a minority of
the studied tests used such generic identifiers, generic names
allow unfamiliar readers to understand new tests quickly by
identifying recurrent aspects. Thus, despite being a limitation
of template-based approach, this factor can be beneficial in
the long term.

Structured Test Names: A template-based approach can
help standardize local conventions. For example, it is consid-
ered good practice to use meaningful names for unit tests,
usually following a fixed convention. As an extreme exam-
ple of a highly-structured name, all test names in Tomcat’s
class CheckOutThreadTestmatch the pattern test(DBCP|Pool)-
Threads(10|20)Connections(10|20)(Validate)?(Fair)?. This local
structure could be encouraged with a specialized template for
this class.

Recurrent Complex Operations: A common limitation of
template-based approaches is the diverging implementations
of similar operations. For example, verifying that the content
of two objects varies based on their internal structure. This
variation can prevent tests that follow the same high-level pat-
terns to be generated from the same template. Encapsulating
recurrent complex operations into helper methods, especially
with meaningful generic names such as assertContentEqual,
can mitigate this limitation. This strategy can be abused:
As an extreme, but not unique, example, Tomcat’s helper
method TestELParser.doTestParser encapsulates all operations
of multiple tests, resulting in a complex logic that is hard to
maintain. In fact, a template-based generation of the tests in
this class would have achieved the same objective (i.e., writing
the recurrent structure of many tests only once) while keeping
each test decoupled and more readable.

Complex Assertions: Some tests require complex asser-
tion structures, such as nesting assertions inside methods
of custom mock objects. Such structures can severely limit
the applicability of templates, and thus the usefulness of a
template-based approach. However, if the same pattern of
complex assertion is often needed, a template-based approach
can encourage testers to develop a more systematic approach
to test complex behaviors, with the necessary scaffolding.

Testing Preconditions: Several tests include assertions to
verify the input state of tested objects before the method
under test is performed.1 Although a template can include
such early assertions, they are often specific to the tested
objects or the test case, so they are not well suited for
template-based generation. To mitigate this limitation, testers
can use factory methods that include the necessary assertions
to create the tested objects in the right input state.

1. This practice is controversial among testing communities. We
do not take a stance in this debate, but recognize the importance of
supporting this feature as some tester may desire it.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

Constrained Resources: Tests that rely on constrained
resources, such as connections to external servers, multiple
threads, or even read and write operations to the file sys-
tem, may involve unique operations to avoid corrupting the
resources or control errors originating from the constrained
resources themselves (e.g., trying twice to connect to a flaky
server). These operations can prevent the use of templates
that are not designed specifically for handling these resources.
Mitigation strategies for this limitation include an efficient
use of setup and teardown methods (using JUnit’s @Before and
@After annotations), and the creation of local templates.

Different Units Under Test: In the sampled set of tests,
the unit under test was not always a single method. Some tests
focused on a whole class, whereas others focused on validating
a single field. For example, Freemind’s test HtmlConversions-
Test.testEndContentMatcher validates the expected behavior of
a regular expression encoded in a constant field. Our approach
assumes that each test targets a method, but this assumption
could be modified in future work.

Variety of Test Purpose: Unit tests can serve various
purposes, e.g., testing a typical behavior using arbitrary input
values or a corner case with special inputs. Tests for typical
behaviors are less likely to capture precise information that
need to be documented, compared to corner cases that should
be thoroughly described. Similarly, tests that verify the cor-
rect interaction of various components in complex scenarios
and tests specifically tailored to a historical defect typically
do not capture information valuable for documentation, and
involve unique sequences of operations. Thus, a template-
based approach would not completely remove the need for
manually-crafted tests.
Findings: We identified eight technical factors that can
improve or limit the effectiveness of DScribe in certain
contexts. These factors relate to the testing constraints (e.g.,
complex assertion procedures) and contexts (e.g., reliance
on an external server), as well as to the testing conventions
(e.g., recurrent identifiers or number of use cases in the same
test). Developers can consider those factors before deciding
whether to use DScribe.

9.3 Threats to Validity
The case study relied on the identification of testing patterns,
a concept influenced by the experience of each developer.
Hence, our conclusions may reflect the personal experience
of the investigator. This limitation was necessary because the
data analysis required a very high initial effort investment,
and a consistent point of view, to study the five systems. Thus,
the coding procedure could not be packaged into multiple sets
of data to be labeled by independent coders. Hypothetical
external coders would have to be extensively trained to have
the in-depth knowledge of the template-based approach re-
quired for the task, which would re-introduce the risk of bias.
For transparency and independent verification of the quality
of the coding, the on-line appendix contains several concrete
examples supporting each of our conclusions.

10 Related Work
The difficulty of maintaining high-quality documentation [5],
[21], [22], [23] led to a vast exploration of automated

documentation generation approaches [24]. Techniques
proposed in prior work involve static [25] and dynamic [26]
analysis of the body of methods, as well as their context [27].
Different techniques are tuned to document either classes [28],
methods [29], [30], or method parameters [25]. Techniques
also differ in the kind of documentation they generate, such
as specifications [31], [32], [33], program invariants [34], test
summaries [35], [36], and usage scenarios and examples [37],
[38]. These techniques contribute insights to automatically
produce more documentation with minimal effort. However,
an inherent limitation of fully automated techniques is the in-
evitable threat of false positives, and the possibility of diluting
important insights within large amounts of trivial information
generated automatically. These techniques thus require man-
ual effort to filter documentation after its generation. DScribe
proposes an alternative to this process by leveraging developer
effort before the generation, keeping them in control of what
information is added to the system.

A vast number of techniques have also been proposed to
automatically generate tests. Notable early work includes
CUTE [39] and DART [40], which introduced the concept
of concolic testing. Concolic testing couples a symbolic and
concrete execution of a program to explore the space of
inputs that will trigger different responses from the program.
Thummalapenta et al. [41] generate test cases by extracting
sequence of method calls to create relevant input states.
Pacheco et al. [14] proposed Randoop, a technique to generate
test cases by randomly creating sequences of execution, with
a feedback loop to inform the next generations. Fraser and
Zeller [42] follow a more systematic random generation ap-
proach by leveraging mutation operators, and using genetic
algorithms to optimize the test suite. Taneja and Xie [43]
leverage the version history of a project to create test cases.
Other techniques focus only on the generation of test cases
that can crash a system [44], that apply to multi-threaded
code [45], or that map to the system’s UML diagrams [46].
Automated test generation techniques suffer from the same
limitation than documentation generation techniques: by aim-
ing to exclude developers from the generation process, they
are susceptible to false positives, which in turn requires human
effort to sift through their output. In contrast, DScribe aims
to optimize early human effort to create trustworthy assets.
Similarly, Gaston and Clause recently proposed a technique
to suggest missing tests for a method based on existing tests
for similar methods [8]. This technique could complement
DScribe, as both leave the decision to generate a test to
developers.

The value proposition of DScribe, however, extends be-
yond the generation of tests and documentation. An im-
portant benefit is the traceability links of the generated
artifacts to the method they complement. Documentation
traceability is a challenging problem [47], [48], but it is a
prerequisite to validate the correctness of the documentation,
another challenging problem [49], [50]. By generating both
tests and documentation from the same invocations, DScribe
solve both problems: following a change in a method specifi-
cation, updating the invocation related to a failing unit test
will also update the corresponding outdated documentation.
This solution is similar to that of behavior-driven development
(BDD) [51], a methodology derived from test-driven devel-
opment [52]. BDD recognizes the documentation potential

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

of testing code, and BDD frameworks such as JBehave [53]
integrate documentation fragments directly into unit tests, so
that documentation is again backed by passing tests. However,
contrary to DScribe, BDD frameworks require developers to
write both the testing code and documentation fragments, a
repetitive and redundant effort.

Finally, our research is related to the field of code pat-
tern mining, which parses large corpora of source code
to identify regularities in the usage of various type of code
elements (e.g., functions). The objective of these techniques is
to identify specifications [37], [54], [55], and in particular vio-
lations of these implicit specifications, or design patterns [56],
[57]. Future work can leverage a similar approach to automat-
ically generate DScribe templates, to further reduce the initial
burden of developers.

11 Conclusion
Motivated by the observation that documentation and testing
code often capture redundant and repetitive information, we
designed a technique, called DScribe, to allow developers
to decouple aspects of unit testing and documentation that
relate to repetitive specifications from the aspects specific to
each instance. This technique can partially relieve developers
of the burden of maintaining a consistent and extensive docu-
mentation and test suite.

A four-phase investigation of the inconsistencies in se-
lected mature software projects revealed their pervasiveness
in testing code and method documentation, with 85% of
the specifications about exceptions thrown by the Apache
Commons IO methods either untested, undocumented, or
both. The investigation revealed that DScribe could have
prevented 97% of these inconsistencies in a favorable context,
with generated tests that external annotators found both
more readable and focused than three baselines. A systematic
study of the limitations of DScribe provided rich descriptions
of technical factors that facilitate or hinder the co-generation
of tests and documentation in varied contexts.

Acknowledgments
We are grateful to the external annotators for helping with
the comparison study. This work was funded by the Natural
Sciences and Engineering Research Council of Canada.

References
[1] B. Dagenais andM. P. Robillard, “Using traceability links to rec-

ommend adaptive changes for documentation evolution,” IEEE
Trans. Softw. Eng., vol. 40, no. 11, pp. 1126–1146, 2014.

[2] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo,
“The oracle problem in software testing: A survey,” IEEE Trans.
Softw. Eng., vol. 41, no. 5, pp. 507–525, 2015.

[3] M. Kajko-Mattsson, “A survey of documentation practice within
corrective maintenance,” Empir. Softw. Eng., vol. 10, no. 1, p.
31–55, 2005.

[4] A. Forward and T. C. Lethbridge, “The relevance of software
documentation, tools and technologies: A survey,” in Proc. ACM
Symp. Document Eng., 2002, p. 26–33.

[5] T. C. Lethbridge, J. Singer, and A. Forward, “How Software
Engineers Use Documentation: The State of the Practice,” IEEE
Softw., vol. 20, no. 6, pp. 35–39, 2003.

[6] E. Aghajani, C. Nagy, O. L. Vega-Márquez, M. Linares-Vásquez,
L. Moreno, G. Bavota, and M. Lanza, “Software documentation
issues unveiled,” in Proc. IEEE/ACM 41st Int. Conf. Softw.
Eng., 2019, pp. 1199–1210.

[7] V. Garousi and B. Küçük, “Smells in software test code: A survey
of knowledge in industry and academia,” J. Syst. Softw., vol. 138,
pp. 52–81, 2018.

[8] D. Gaston and J. Clause, “A method for finding missing unit
tests,” in Proc. IEEE Int. Conf. Softw. Maintenance and Evolu-
tion, 2020, pp. 92–103.

[9] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and
T. Ratchford, “Automated API property inference techniques,”
IEEE Trans. Softw. Eng., vol. 39, no. 5, pp. 613–637, 2013.

[10] J. Gosling, B. Joy, G. Steele, G. Bracha, A. Buckley, D. Smith,
and G. Bierman. (2020) The Java language specification.
[Online]. Available: https://docs.oracle.com/javase/specs/jls/
se14/html/index.html

[11] O. Lassila and R. R. Swick, “Resource description
framework (RDF) model and syntax specification,”
W3C, W3C Recommendation, 1999. [Online]. Available:
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

[12] E. A. Barbosa, A. Garcia, M. P. Robillard, and B. Jakobus,
“Enforcing exception handling policies with a domain-specific
language,” IEEE Trans. Softw. Eng., vol. 42, no. 6, pp. 559–584,
2016.

[13] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE
Trans. Softw. Eng., vol. 39, no. 2, pp. 276–291, 2013.

[14] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-
directed random test generation,” in Proc. 29th Int. Conf. Softw.
Eng., 2007, pp. 75–84.

[15] R. C. Martin, Clean Code – a Handbook of Agile Software
Craftsmanship. Prentice Hall, 2009.

[16] E. Daka, J. Campos, G. Fraser, J. Dorn, and W. Weimer,
“Modeling readability to improve unit tests,” in Proc. 10th Joint
Meeting Found. Softw. Eng., 2015, pp. 107–118.

[17] B. Van Rompaey and S. Demeyer, “Establishing Traceability
Links between Unit Test Cases and Units under Test,” in 13th
IEEE European Conf. Softw. Maintenance and Reengineering,
2009, pp. 209–218.

[18] J. Cohen, “A coefficient of agreement for nominal scales,” Educa-
tional and psychological measurement, vol. 20, no. 1, pp. 37–46,
1960.

[19] J. R. Landis and G. G. Koch, “The measurement of observer
agreement for categorical data,” Biometrics, vol. 33, no. 1, pp.
159–174, 1977.

[20] M. B. Miles, A. M. Huberman, and J. Saldana, Qualitative data
analysis. Sage, 2013.

[21] B. Fluri, M. Würsch, and H. C. Gall, “Do code and comments
co-evolve? On the relation between source code and comment
changes,” in Proc. Work. Conf. Reverse Eng., 2007, pp. 70–79.

[22] L. Tan, D. Yuan, G. Krishna, and Y. Zhou, “/*iComment: Bugs
or Bad Comments?*/,” in Proc. ACM Symp. Operating Syst.
Princ., 2007, pp. 145–158.

[23] I. K. Ratol and M. P. Robillard, “Detecting Fragile Comments,”
in Proc. 32nd IEEE/ACM Int. Conf. Automated Softw. Eng.,
2017, pp. 112–122.

[24] K. Nybom, A. Ashraf, and I. Porres, “A systematic mapping
study on API documentation generation approaches,” in Proc.
44th Euromicro Conf. Softw. Eng. and Adv. Appl., 2018, pp. 462–
469.

[25] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Generating
parameter comments and integrating with method summaries,”
in Proc. IEEE Int. Conf. Program Comprehension, 2011, pp. 71–
80.

[26] M. Sulír and J. Porubän, “Generating Method Documentation
Using Concrete Values from Executions,” in Proc. Symp. Lang.,
Appl. and Technol., 2017, pp. 3:1–3:13.

[27] P. W. McBurney and C. McMillan, “Automatic documentation
generation via source code summarization of method context,”
inProc. 22nd Int. Conf. ProgramComprehension, 2014, pp. 279–
290.

[28] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and
K. Vijay-Shanker, “Automatic generation of natural language
summaries for java classes,” in Proc. 21st Int. Conf. Program
Comprehension, 2013, pp. 23–32.

[29] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-
Shanker, “Towards automatically generating summary com-
ments for java methods,” in Proc. IEEE/ACM Int. Conf. Au-
tomated Softw. Eng., 2010, pp. 43–52.

[30] N. J. Abid, N. Dragan, M. L. Collard, and J. I. Maletic, “Using
stereotypes in the automatic generation of natural language

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

summaries for c++ methods,” in Proc. IEEE Int. Conf. Softw.
Maintenance and Evolution, 2015, pp. 561–565.

[31] G. Ammons, R. Bodík, and J. R. Larus, “Mining specifications,”
in Proc. 29th ACM SIGPLAN-SIGACT Symp. Princ. of Pro-
gram. Lang., 2002, pp. 4–16.

[32] S. Shoham, E. Yahav, S. J. Fink, and M. Pistoia, “Static Spec-
ification Mining Using Automata-Based Abstractions,” IEEE
Trans. Softw. Eng., vol. 34, no. 5, pp. 651–666, 2008.

[33] C. Le Goues and W. Weimer, “Specification mining with few
false positives,” in Proc. Int. Conf. Tools and Algorithms for the
Construction and Anal. of Syst., 2009, pp. 292–306.

[34] M. D. Ernst, W. G. Griswold, Y. Kataoka, and D. Notkin,
“Dynamically discovering pointer-based program invariants,” in
Proc. Int. Conf. Softw. Eng., vol. 373, 1999.

[35] S. Panichella, A. Panichella, M. Beller, A. Zaidman, and H. C.
Gall, “The impact of test case summaries on bug fixing per-
formance: An empirical investigation,” in Proc. 38th Int. Conf.
Softw. Eng., 2016, pp. 547–558.

[36] B. Zhang, E. Hill, and J. Clause, “Towards automatically gener-
ating descriptive names for unit tests,” in Proc. 31st IEEE/ACM
Int. Conf. Automated Softw. Eng., 2016, pp. 625–636.

[37] M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining API Patterns
As Partial Orders from Source Code: From Usage Scenarios
to Specifications,” in Proc. 6th Joint Meeting of the European
Softw. Eng. Conf. and the ACM SIGSOFT Symp. Found. of
Softw. Eng., 2007, pp. 25–34.

[38] R. P. L. Buse and W. Weimer, “Synthesizing API usage exam-
ples,” in Proc. 34th Int. Conf. Softw. Eng., 2012, pp. 782–792.

[39] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit
testing engine for c,” in Proc. 10th European Softw. Eng. Conf.
Held Jointly with 13th ACM SIGSOFT Int. Symp. Found. Softw.
Eng., 2005, p. 263–272.

[40] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed au-
tomated random testing,” in Proc. ACM SIGPLAN Conf. Pro-
gram. Lang. Des. and Implementation, 2005, p. 213–223.

[41] S. Thummalapenta, T. Xie, N. Tillmann, J. De Halleux, and
W. Schulte, “Mseqgen: Object-oriented unit-test generation via
mining source code,” in Proc. 7th joint meeting of the European
Softw. Eng. Conf. and the ACM SIGSOFT Symp. Found. Softw.
Eng., 2009, pp. 193–202.

[42] G. Fraser and A. Zeller, “Mutation-driven generation of unit
tests and oracles,” IEEE Trans. Softw. Eng., vol. 38, no. 2, pp.
278–292, 2012.

[43] K. Taneja and T. Xie, “Diffgen: Automated regression unit-test
generation,” in Proc. 23rd IEEE/ACM Int. Conf. Automated
Softw. Eng., 2008, pp. 407–410.

[44] C. Csallner and Y. Smaragdakis, “JCrasher: an automatic ro-
bustness tester for java,” Softw.: Pract. and Exp., vol. 34, no. 11,
pp. 1025–1050, 2004.

[45] A. Nistor, Q. Luo, M. Pradel, T. R. Gross, and D. Marinov,
“Ballerina: Automatic generation and clustering of efficient ran-
dom unit tests for multithreaded code,” in Proc. 34th Int. Conf.
Softw. Eng., 2012, pp. 727–737.

[46] J. Offutt and A. Abdurazik, “Generating Tests from UML Spec-
ifications,” in UML’99 – The Unified Modeling Language, 1999,
pp. 416–429.

[47] A. Marcus and J. I. Maletic, “Recovering documentation-to-
source-code traceability links using latent semantic indexing,”
in Proc. 25th Int. Conf. Softw. Eng., 2003, pp. 125–135.

[48] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documenta-
tion,” IEEE Trans. Softw. Eng., vol. 28, no. 10, pp. 970–983,
2002.

[49] Y. Zhou, R. Gu, T. Chen, Z. Huang, S. Panichella, and H. Gall,
“Analyzing APIs Documentation and Code to Detect Directive
Defects,” in Proc. IEEE/ACM Int. Conf. Softw. Eng., 2017, pp.
27–37.

[50] E. Ben Charrada, A. Koziolek, and M. Glinz, “Identifying out-
dated requirements based on source code changes,” in Proc.
IEEE Int. Requirements Eng. Conf., 2012, pp. 61–70.

[51] M. Soeken, R.Wille, and R. Drechsler, “Assisted behavior driven
development using natural language processing,” in Proc. Int.
Conf. Modelling Techn. and Tools for Comput. Perform. Eval.,
2012, pp. 269–287.

[52] K. Beck, Test-driven development: by example. Addison-
Wesley, 2003.

[53] JBehave.org. (2017) What is JBehave? [Online]. Available:
https://jbehave.org/

[54] M. Allamanis and C. Sutton, “Mining idioms from source code,”
in Proc. 22nd ACM SIGSOFT Int. Symp. Found. Softw. Eng.,
2014, pp. 472–483.

[55] Z. Li and Y. Zhou, “PR-Miner: automatically extracting implicit
programming rules and detecting violations in large software
code,” in Proc. Joint Meeting of the European Softw. Eng. Conf.
and the ACM SIGSOFT Symp. Found. Softw. Eng., 2005, pp.
306–315.

[56] J. Dong, Y. Zhao, and T. Peng, “A Review of Design Pattern
Mining Techniques,” Int. J. Softw. Eng. Knowl. Eng., vol. 19,
no. 06, pp. 823–855, 2009.

[57] A. Pandel, M. Gupta, and A. K. Tripathi, “DNIT – A new ap-
proach for design pattern detection,” inProc. Int. Conf. Comput.
and Commun. Technol., 2010, pp. 545–550.

Mathieu Nassif is a Ph.D. student in Computer
Science at McGill University, under the supervi-
sion of Martin Robillard. His research focuses on
the extract, representation, and manipulation of
knowledge in software systems to optimize the
contribution of developers to the system. Math-
ieu received his M.Sc. in Computer Science from
McGill University and his B.Sc. in Mathematics
from Université de Montréal.

Alexa Hernandez is an M.Sc. student in Com-
puter Science at McGill University, under the
supervision of Martin P. Robillard. Her research
aims to understand the structure of and rela-
tionship between software documentation and
tests to facilitate their creation and maintenance.
Alexa received a B.A. in Computer Science at
McGill University.

Ashvitha Sridharan is a software engineer opti-
mizing the edge network at Shopify. Her research
interests include software design, maintenance,
and evolution. Sridharan received a B.Sc. Com-
puter Science at McGill University, Montreal,
where she worked under the supervision of Mar-
tin P. Robillard.

Martin P. Robillard is a Professor of Computer
Science at McGill University. His research inves-
tigate how to facilitate the discovery and acquisi-
tion of technical, design, and domain knowledge
to support the development of software systems.
He served as the Program Co-Chair for the 20th
ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE 2012)
and the 39th ACM/IEEE International Confer-
ence on Software Engineering (ICSE 2017). He
received his Ph.D. and M.Sc. in Computer Sci-

ence from the University of British Columbia and a B.Eng. from École
Polytechnique de Montréal.

