
0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2836450,
IEEE Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Automatically Categorizing Software
Technologies

Mathieu Nassif, Christoph Treude and Martin P. Robillard

Abstract—Informal language and the absence of a standard taxonomy for software technologies make it difficult to reliably analyze
technology trends on discussion forums and other on-line venues. We propose an automated approach called Witt for the
categorization of software technology (an expanded version of the hypernym discovery problem). Witt takes as input a phrase
describing a software technology or concept and returns a general category that describes it (e.g., integrated development
environment), along with attributes that further qualify it (commercial, php, etc.). By extension, the approach enables the dynamic
creation of lists of all technologies of a given type (e.g., web application frameworks). Our approach relies on Stack Overflow and
Wikipedia, and involves numerous original domain adaptations and a new solution to the problem of normalizing automatically-detected
hypernyms. We compared Witt with six independent taxonomy tools and found that, when applied to software terms, Witt

demonstrated better coverage than all evaluated alternate solutions, without a corresponding degradation in false positive rate.

F

1 INTRODUCTION

Software development increasingly relies on reusable com-
ponents in the forms of frameworks and libraries, and the
programming languages and tools to use them. Consid-
ered together, these software technologies form a massive
and rapidly-growing catalog of building blocks for sys-
tems that becomes difficult to monitor across discussion
channels. The unstructured data, informal nomenclature,
and folksonomies used on social media forums make it
difficult to reliably determine, for example, the list of all
technologies of a certain type, or their popularity relative
to this type. Questions such as “what is the most popu-
lar web application framework?” are important to many
organizations, for example to decide which development
tool to adopt at the start of a project, or which technology
to develop a driver for. Answers to these questions are
routinely proposed without any kind of supporting data
(e.g., [35]), but sound empirical surveys are hard to find.
To move towards a streamlined, evidence-based approach
to monitoring the use of software technologies, we need to
be able to automatically classify and group named mentions
of software technologies.

An important step toward the machine understanding of
terminology is hypernym discovery, i.e., the discovery of the
more general concept in a is-a relationship (e.g., AngularJS
is a web application framework), which led to the devel-
opment of many automated hypernym extraction tools.
Unfortunately, discovering valid hypernyms is not sufficient
to support the detection and monitoring of comparable

• M. Nassif is with the School of Computer Science, McGill University,
Montréal, QC, Canada
E-mail: mnassif@cs.mcgill.ca

• C. Treude is with the School of Computer Science, University of Adelaide,
Adelaide, SA, Australia
E-mail: christoph.treude@adelaide.edu.au

• M.P. Robillard is with the School of Computer Science, McGill University,
Montréal, QC, Canada
E-mail: martin@cs.mcgill.ca

software technologies. For example, commercial cross-platform
IDE for PHP is a valid hypernym for PhpStorm, but the
expression is too specific to constitute a useful category of
technologies. Categorizing software technologies is a much
more complex problem that requires additional abstraction
and normalization.

To address this issue, we propose an automated approach
for the categorization of software technologies. Our ap-
proach, called Witt, for What Is This Technology, takes as in-
put a term such as PhpStorm and returns a general category
that describes it (e.g., integrated development environment),
along with attributes that further qualify it (commercial, php,
etc.). Our approach involves three automated phases that
each address a major technical challenge. First, we find the
Wikipedia article (or article section) that best describes the
input term. Then, we use the article to extract candidate
hypernyms for the phrase. Finally, we extract general cate-
gories and related attributes for the hypernyms.

The approach was developed with the goal of grouping
a large set of software technologies into categories all at
once, so that one can track mentions to any of the tech-
nologies within one or more categories. It was intended to
provide answers to questions such as “what are all the web
application frameworks available?”. An important aspect to
consider is the ability to express queries with varying levels
of precision. Already established development teams may
want only web application framework for a given language,
whereas the managers of a given framework could want to
track the popularity of their product relative to all frame-
works. Hence, we focused our efforts on generating a nor-
malized and flexible categorization structure. Nevertheless,
the success of such a task relies on the ability to accurately
answer questions like “what is this new technology X?”

With Witt used on the set of all tags from Stack
Overflow, we were able to automatically classify software
technologies and, by extension, create dynamic lists of all
technologies of a given type (e.g., web application frame-
works). As an example application, Figure 1 shows the
proportion of Stack Overflow posts tagged with a specific



0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2836450,
IEEE Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

0%

25%

50%

75%

100%

Dec
08

Dec
09

Dec
10

Dec
11

Dec
12

Dec
13

Dec
14

Dec
15

Dec
16

Dec
17

Time

W
ith

in
−

C
at

eg
or

y 
P

op
ul

ar
ity

 R
at

io

item

others

asp.net

angularjs

ruby−on−rails

asp.net−mvc

django

Fig. 1. Ratio of Stack Overflow posts tagged with a specific technology
over all posts tagged with a technology in the same automatically
discovered category (frameworks) and attribute (web application)

web application framework over all posts tagged with a web
application framework – a pair of category and attribute that
Witt automatically constructed. Without Witt, this kind of
visualization would require a manually-crafted list of tags
or keywords that match all technologies of interest. This
visualization, however, is only one of numerous potential
applications.

To evaluate the quality of the results and the value of the
domain adaptation in general, we compared our approach
to six available hypernym discovery tools, ranging from the
venerable WordNet [25] to the most recent development,
WebIsADb [32], and including the Google search engine.
When queried for software terms, Witt was found to be su-
perior to the six alternatives in terms of combined coverage
and number of false positives.

The contributions of this paper include an automated ap-
proach for categorizing software technologies. The approach
expands numerous information extraction techniques with
adaptations for the software domain. The approach also
includes a new algorithm for the abstraction of hypernyms
of software terms into general categories. We also provide
the first comparative evaluation of six existing hypernym
discovery tools as applied to software terminology.

In Section 2 we present the background on information
extraction and the related work in software engineering.
Sections 3–6 describe the approach, starting with a general
overview. Our comparative evaluation is presented in Sec-
tion 7, followed by the conclusion in Section 8.

On-line Appendix. This paper is complemented by an
on-line appendix that contains sample input data, a coding
guide for labelling data, and text processing resources. The
appendix is available at http://www.cs.mcgill.ca/∼swevo/
witt/.

2 BACKGROUND AND RELATED WORK

This work builds on previous efforts on the construction of
general taxonomies and relates to efforts in the development
of lexicographic resources for software engineering, and to
studies aimed at understanding tagging and other knowl-
edge structuring practices in software engineering.

Background on Taxonomy Construction
Work on the automated construction of linguistic relations
is usually traced to the development of WordNet [25], a
manually-constructed database of semantic relations such
as hypernymy and synonymy. Particularly relevant to our
work is Miller et al.’s definition of hyponym (and, con-
versely, hypernym): “A concept [...] x is said to be a hy-
ponym of the concept [...] y if native speakers of English
accept sentences constructed from such frames as ’An x is a
(kind of) y”’ [25, p.8].

Foundational work on automating the construction of
word relations through text mining then followed: Hearst
proposed a series of lexico-syntactic patterns that usually
indicate hyponymy (e.g, “such as X”) [13], and Caraballo
extended the idea by aggregating hypernyms into a hierar-
chy [4]. These approaches were improved with the use of
linguistic dependencies [33] and supervised machine learn-
ing algorithms [30]. All these approaches work by mining
large text corpora. Among the latest such techniques is the
WebIsA Database [32] from the Web Data Commons project,
which extracts hypernyms from CommonCrawl,1 a corpus
of over 2.1 billion web pages.

In contrast to these previous works, our method only
requires Stack Overflow tag information data and targeted
Wikipedia searches. It creates a structure that links a single
term to an attributed category that describes the term.

Wikipedia as a Source of Encyclopedic Knowledge
Previous work often leverages Wikipedia as the main re-
source to guide taxonomy construction, as it is commonly
agreed to be the largest freely available collection of ency-
clopedic knowledge [46].

Several works have focused on automatically discov-
ering and resolving ambiguous links between terms from
textual documents and Wikipedia, a process known as wik-
ification. Milne and Witten [26] used unambiguous links as
contextual information to give as input to a trained classifier.
Mihalcea and Csomai [24] evaluated two disambiguation
approaches, the first one also using a machine learning
classifier, but with the words surrounding the target term as
input rather than other links, and the second one comparing
the context in which the target term is found to the potential
definitions. We cannot rely on these traditional approaches
because the tag information on Stack Overflow is typi-
cally concise and often missing, and because we cannot
make the assumption that a relevant link exists. Thus, we
implemented a novel linking approach based on different
information and domain-specific conditions.

Others have worked on the extraction of semantic re-
lations between Wikipedia articles. Nakayama et al. [27],
for example, retrieved semantic relations of any kind by
discovering both the related terms and the predicate of the
relation, such as is bordered by when linking Djibouti and
Eritrea. Closer to our work, Targeted Hypernym Discovery
(THD) attempts to find hypernyms for a query using the
Linked Hypernyms Dataset generated from Wikipedia [9],
[15].

Given the amount of links and meta-data available in
Wikipedia, numerous other approaches to information ex-

1. http://commoncrawl.org/

http://www.cs.mcgill.ca/~swevo/witt/
http://www.cs.mcgill.ca/~swevo/witt/
http://commoncrawl.org/


0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2836450,
IEEE Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

traction are possible, such as leveraging similarities between
words [44], keyword popularity [16], or HTML tables [6].
The Wikipedia Bitaxonomy Project (WiBi), extracts infor-
mation from Wikipedia articles to add to the taxonomy of
Wikipedia categories, and vice-versa [11], with the goal of
improving the quality of the resulting knowledge structure.

Finally, some of the structured data extraction efforts
on Wikipedia make their way into DBPedia [3], a crowd-
sourced database of structured information that can also be
queried for hypernyms through various tools and APIs [23].
Similar efforts are also under way in industry [42].

Our work contrasts from those efforts in that we search
hypernyms for targeted terms, rather than extracted entities
from a text, and thus must deal with very limited contextual
information to find the relevant article. We overcome this
lack of context by using domain-specific techniques.

Lexicographic Resources for Software Engineering

Falleri et al. used natural language processing to extract im-
portant concepts from identifiers defined in source code, ag-
gregating them into a WordNet-like structure that includes
their hypernymy relation [10]. In a similar vein, Nonnen et
al. use heuristics to discover where concepts associated with
an identifier are introduced or described in source code [28].
In both of these approaches all terms are derived from
source code elements, information which cannot generally
be used to categorize software technologies.

A major limitation of WordNet for applications to soft-
ware engineering is the lack of support for specialized
terminology. A number of projects have targeted the design
of lexical databases that include a word similarity relation
(a variant of synonymy). This relation can be computed
from co-occurrences in the context of a forum post [36],
[37] and its meta-data [40], or from source code comments
and identifiers [45]. Similarity relations can be especially
helpful to support searching, either for source code or related
resources, because they help bridge the vocabulary gap
between queries and documents [5]. Our work is different
from these efforts in that we attempt to detect and organize
hypernyms, which is a different type of semantic relation.

Tagging in Software Engineering

Tags often function as descriptors for software technologies,
and may thus act as categories.

In a study on the use of tags in a work item management
system, Treude and Storey found that software developers
had developed implicit and explicit mechanisms to man-
age tag vocabularies [39]. For a larger tag vocabulary on
software project hosting websites such as Freecode, Wang
et al. proposed a similarity metric to infer semantically
related tags and build a taxonomy [40]. Li et al. proposed
an agglomerative hierarchical clustering framework which
relies only on how similar every two tags are, using data
from Ohloh [19]. It is important to note that their work
does not produce a hypernym hierarchy: for example, the
term hibernate is clustered as a subnode of java. In addi-
tion, previous work has proposed a tag recommendation
approach for projects hosted on Ohloh and Freecode [41]
and an approach to find similar applications based on the
SourceForge tags [20].

On Stack Overflow, tags are mostly used to indicate pro-
gramming languages, frameworks, environment concerns,
domains, and non-functional issues [38]. Several approaches
have been developed for recommending tags for Stack Over-
flow posts, including a discriminative model approach [31],
a Bayesian probabilistic model [34], and an approach com-
bining several techniques called TagCombine [43].

Using topic modeling to discover the main topics on
Stack Overflow, Barua et al. found a wide range of topics
and identified those that increased and decreased over
time [1]. In contrast to this work, our approach automati-
cally categorizes the software technologies represented by
tags.

3 OVERVIEW OF THE APPROACH

Our approach takes as input a term to categorize. As a
vocabulary for software technologies, we use the set of
all Stack Overflow tags. With a cardinality of 51 109, these
tags form a closed set that is a very good equivalent of
the otherwise open set of all possible terms that describe
software technologies. In the remainder of this paper, we
thus consider a Stack Overflow tag and an input term to our
approach to be equivalent concepts.

As a starting point, we use the excerpt and information
page of Stack Overflow tags downloaded from the Stack
Exchange API.2 The tag excerpt is a short, unformatted
summary of the tag, and the information page is a more
complete, html-formatted, documentation page. The tag
information is user-generated and can be missing.

Once the tag data is available, our approach begins by
automatically selecting the Wikipedia article that describes
the tag, if it exists (Section 4). Then, we apply a new
hypernym detection algorithm to the article that describes
the tag (Section 5). Finally, we transform hypernyms into
more abstract descriptors called categories and attributes (Sec-
tion 6).

We developed the structure of Witt using a set of 6317
tags and their corresponding information downloaded in
2014. This set was used to generate the foundations of
our approach and test different heuristics in an iterative,
trial-and-error process. After this initial development phase,
we downloaded all 51 109 tags, with their corresponding
information, on January 10, 2018. We extracted two distinct
subsets. We used the first subset, composed of 382 tags
chosen uniformly among the entire set, as our development
set, to refine our approach and select the values of the
different parameters of our approach. The second subset,
containing 984 tags, was exclusively used to evaluate Witt,
and is described in greater details in Section 7. Throughout
this paper, we report global statistics computed over all
51 109 tags from Stack Overflow.

4 LINKING TAGS TO ARTICLES

Several scenarios can make the linking process far from
trivial. Some tags closely match a Wikipedia title, but for
a different sense (e.g., the default article for ant refers to the
insect, not the build tool). Other tags, such as curl, could
reasonably be linked to more than one computer science

2. http://api.stackexchange.com/

http://api.stackexchange.com/


0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2836450,
IEEE Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

related article. Also, some tags are only described within a
section of a related article. For example, the tag catalina
is described in the section Catalina of the article Apache
Tomcat. These three challenges are compounded by the fact
that we cannot assume that there is a Wikipedia article or
article section for every tag.

We tackle these challenges with original solution ele-
ments related to software technology. Overall, our linking
process is able to find a corresponding article for 30% of
the tags. We point out that this ratio is useful as a general
indication of the coverage of tags by Wikipedia articles,
and that they do not represent a performance measure.
Many tags, such as those representing a specific class like
uinavigationcontroller, simply do not have any corre-
sponding Wikipedia article.

Our linking process relies on the computation of a
similarity score between a tag and a Wikipedia article, and
involves some numeric parameters and a fixed list of pro-
gramming keywords. We detail how we determined these
components of the approach at the end of the section.

4.1 Search Process
The search process uses the information contained in the
tag excerpt and information page. Missing tag information
is common on Stack Overflow, which increases the difficulty
of the search task: in the 2018 dataset, only 55% of the tags
have a full information page and an excerpt.

We start by parsing the tag information page for hyper-
links to Wikipedia articles. If we do not find any match,
we automatically perform a text search using the Wikipedia
API.3 This text search involves three steps. First, we trans-
form the tag into proper query terms. Next, we pass the
query terms to the search API, and use a similarity score to
select zero or one article among the results. Finally, if we find
an article, we parse it to identify which section describes the
tag.

Inspecting Links in Tag Information Pages
We identified four situations in which a link to Wikipedia
found in the information page is likely to be to the matching
article. We proceed through the following cases in order and
select the first match, if any:

1) There is a single hyperlink and it points to a
Wikipedia article.

2) There are links to Wikipedia articles in the first
paragraph. In this case, we select the article with
the highest similarity score (see Section 4.2).

3) There is a single list containing a single link to a
Wikipedia article. This case usually happens when
the information page contains a list of references.

4) There is a block quote, with a reference to a
Wikipedia article.

Creating Query Terms for the Wikipedia Search API
If the heuristics in the previous section do not find an article,
we create well-formed query terms to perform a text search.
This step is necessary because of the constrained format of
Stack Overflow tags.4

3. http://en.wikipedia.org/w/api.php
4. The only valid characters are [a-z0-9+-#.]

First, we consider all hyphens in Stack Overflow tags
as spaces, and we look at the tag’s synonyms on Stack
Overflow. Tag synonyms are secondary tags that redirect
to the main tag. We use the synonym if the three following
conditions are met: (1) the synonym is longer than the main
tag (to avoid further contractions), (2) the main tag is not a
substring of the synonym (to avoid more specific concept),
and (3) all words of the synonym appear in the tag excerpt
(to avoid distinct but related concepts).

Next, we apply a series of transformations specific to
Wikipedia. We remove all version numbers, and look for
a more descriptive name in the tag excerpt. We recognize
three patterns where another phrasing for the tag can be
found:

1) The excerpt starts with a series of capitalized words:
Windows Communication Foundation is . . .

2) The excerpt starts with “Stands for” or “[tag] stands
for”, followed by a series of capitalized words: SUP
stands for Sybase/SAP Unwired Platform

3) There are parenthesis containing a series of capital-
ized words after the first or the second word of the
excerpt: AJAX (Asynchronous JavaScript and XML)

Analyzing Search Results
The query terms are now passed to the Wikipedia search
API. We select the first five results as candidate articles, and
continue to add subsequent results to our list of candidates
as long as at least half of the titles contain at least one of the
query terms.

If we can find a disambiguation page5 among the re-
sults, and if its title matches the query terms, we extract
all articles on this page, except for articles under the See
also section.6 If the disambiguation page contains section
headings with at least one programming keyword, we only
take articles under these sections and the leading section.
This new list of candidates will replace the one obtained
from the Wikipedia search API.

Finally, we remove all disambiguation pages from the
results, and apply a second category-based filter described
in Section 4.2. We select the candidate article with the
highest similarity to the tag among the remaining articles,
unless the similarity score is below a minimum threshold
minsim, in which case we determine that there is no match-
ing Wikipedia article.

Identifying Specific Sections
To identify whether the tag is described only in a specific
section of the article, we start with the assumption that the
leading section of the article describes it, and iterate through
the sections of the article. We select a different section only
if both components of the similarity score are higher than
those computed with the leading section and article title.

4.2 Computing the Similarity Score
We define a similarity score measure simscore between a
tag and a pair (article, section). The score estimates the

5. A page containing a list of articles sharing a similar title.
6. A section that typically appears at the end of Wikipedia pages,

linking to related articles.

http://en.wikipedia.org/w/api.php


0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2836450,
IEEE Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

likelihood that a tag and a section of an article refer to the
same concept. Simscore is composed of two components,
textsim and titlesim. To compute the score, we add the
first component (textsim) to the product of a small factor
wtitle and the second component (titlesim). Because both
components take values in the unit interval, simscore values
range from 0 to 1 + wtitle.

The following sections describe each component in de-
tails, followed by a justification of the constants employed.

Category-Based Filter
Each Wikipedia article belongs to a number of categories.
We analyze the categories to estimate the relevance of the
article to software technologies.

We defined the function prog(s) that takes as input any
string s and returns 1 if the s is in camel case or contains at
least one of our predefined programming keywords, and 0
otherwise. For each category, we compute both the result of
prog on the category’s name and the average of prog over all
of its members. We average the two to create an individual
score for the category. Finally, we determine that an article
should be filtered out if the average score of its categories is
less than a fixed threshold, mincat.

Textual Similarity (textsim)
We calculate the textual similarity based on the Q grams
similarity [12] between the first paragraph of the selected
article section and the tag excerpt. This metric calculates
the proportion of common sequences of q tokens between
two strings. The outcome is a score between 0 (completely
different) and 1 (exactly copies). We chose the commonly
used value q = 2 for this metric, with words as tokens. We
stemmed each word using the Porter Stemmer [29] and did
not consider the letter casing.

We chose this metric because it is order-sensitive (as
opposed to, e.g., the Jaccard index [14]) and do not greatly
penalize insertions of long sequences such as propositions
(as opposed to, e.g., the normalized Levenshtein similar-
ity [18]).

The similarity is calculated for the first sentence of both
texts, then the first two sentences, the first three, etc., until
one of the inputs runs out of sentences. The best similarity
score is kept as representative of the overall similarity
between the two inputs. Finally, we return the square of
the best metric value, to minimize variations between small
values.

If either the tag excerpt or the first paragraph of the
article is missing or empty, it is impossible to compute the
textual similarity. In this case, we give a default textual score
of minsim − wtitle for this component. This default score is
such that the titlesim must take the maximum value of 1 for
simscore to pass the minsim threshold.

Title Similarity (titlesim)
The title score component is also computed using a string
similarity metric that returns a value between 0 (different)
and 1 (identical). We compare the query terms and the
article title. If there are other Wikipedia titles that redirect
to the same article, we take the maximum similarity over
all titles. However, if only a specific section of the article

0,05 0,06 0,07 0,08 0,09 0,10 0,11 0,12 0,13 0,14 0,15

0,00            

0,01            

0,02            

0,03            

0,04            

0,05            

0,06            

0,07            

0,08            

0,09            

0,10            

            
0.18 0.19

wtitle

mincat

0.20 0.21

Fig. 2. Sensitivity of the wtitle and mincat parameters to small variation.
Each cell represents the number of true positive rate obtained when
using the corresponding pair of values, according to the legend below,
for an optimal value of minsim (possibly different for each cell).

describes the tag, we take the maximum value of only two
alternatives: the section title and the concatenation of the
article title and the section title.

For this component, we use the normalized Levenshtein
similarity, which penalizes every insertion, deletion, dis-
placement and substitution, because the small length of the
titles would make the Q grams similarity very sensitive to
small variations.

Here again, we use stemmed words as tokens for both in-
put strings, and do not consider letter casing. Additionally,
we remove any disambiguation part in parentheses before
the comparison.

Selecting Values for the Parameters

Three numeric parameters are involved in the linking pro-
cess: wtitle, mincat and minsim, respectively the weight of
the title similarity relative to the text similarity, the cut-
off threshold of our category-based filter and the minimum
score threshold to accept the final candidate article.

To choose the parameters’ value, we manually created
a benchmark of the Wikipedia articles for each tag in our
development set. We then simulated the search with dif-
ferent values of each parameter and computed the true
positive rate and accuracy of our approach. Because the
balance between these metrics is arbitrary, we had to make
an arbitrary final decision. However, we found out that the
values of these parameters are not very sensitive to small
variations. Figures 2 and 3 show the combined effect of
varying wtitle and mincat on the true positive rate and
accuracy. Combined variations of up to 50% of the value of
wtitle and 100% of the value of mincat induced a maximal
variation of 3% on the true positive rate and accuracy.
Figure 4 shows the sensitivity of parameter minsim, with
the fixed values wtitle = 0.10 and mincat = 0.05. Variations
of up to 20% of its value only modifies the true positive rate
and accuracy by 2%.



0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2836450,
IEEE Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

0,05 0,06 0,07 0,08 0,09 0,10 0,11 0,12 0,13 0,14 0,15

0,00            

0,01            

0,02            

0,03            

0,04            

0,05            

0,06            

0,07            

0,08            

0,09            

0,10            

         
0.78 0.79

wtitle

mincat

0.80

Fig. 3. Sensitivity of the wtitle and mincat parameters to small variation.
Each cell represents the accuracy obtained when using the correspond-
ing pair of values, according to the legend below, for an optimal value of
minsim (possibly different for each cell).

15%

16%

17%

18%

19%

20%

75%

76%

77%

78%

79%

80%

81%

0,10 0,15 0,20

True Positive Rate (dashed)

Ac
cu

ra
cy

 (f
ul

l)

minsim

Fig. 4. Sensitivity of (minsim) to small variations. For these simulations,
the values of wtitle and mincat were fixed at 0.10 and 0.05.

Creating a List of Programming Stems
To generate the set of programming keywords used in the
linking process, we extracted all words from all tag excerpts,
stemmed them using the Porter Stemmer, and sorted them
by decreasing number of occurrences. This produced a list of
28 013 stems. We automatically filtered out stems appearing
less than 100 times (the most popular ones had over 10 000
occurrences). Next, we manually analyzed the remaining
950 stems. We removed all stems that either did not have
a specific meaning in the programming domain, or that
corresponded to a specific software technology, such as java,
as opposed to a general programming concept. The final
result is a list of 75 stems.

5 HYPERNYM DISCOVERY

The next step of our approach consists of extracting hyper-
nyms from the gathered resources (Wikipedia article and
Stack Overflow tag information). We use four techniques
that complement each other, and can each return zero, one,
or multiple hypernyms. Two of those techniques are specific
to Wikipedia articles, and the other two are used both on

the Wikipedia articles and tag excerpt. The output of this
process is the union of all six sets of discovered hypernyms.

5.1 Wikilinks

This technique involves inspecting the first wikilinks of the
article. If the first wikilink is not in the first sentence or if
the first sentence is not in the form [Subject] is [a—an—the]
[description]. . . 7, the technique returns nothing.

We only use the first uninterrupted sequence of wik-
ilinks, separated only by spaces, commas, conjunctions and
the articles a, an and the. Wikilinks that appear later in the
sentence are rejected. We return the complete sequence as
a hypernym. We also return each wikilink individually, as
additional hypernyms.

When wikilinks are piped,8 i.e., with a different text
than the title of the linked article, we use the displayed
text for the hypernym extracted from the whole sequence,
but the exact titles for the hypernyms extracted from each
individual wikilink.

Finally, we remove all disambiguation terms in parenthe-
ses, and reject all hypernyms consisting of only one word, as
we found these to generally represent specific technologies
instead of broader concepts.

For example, the first sentence of the article Java
servlet is A java servlet is a Java program that extends the
capabilities of a server. In this sentence, Java links to Java
(programming language), program links to Computer
program and server links to Server (computing). The
hypernym java program is returned, as well as Computer
program.

5.2 Infobox Values

This technique involves parsing the first infobox of the
article, if there is one.

For this technique, we manually determined a small
set of attributes that usually contain hypernyms, and are
present in many templates. We created the list by looking
at all programming-related infobox templates. This list con-
sists exclusively of the four keys genre, type, family and
paradigm.

For each key found in the infobox template, we return
a normalized version of the associated value. The nor-
malization consists of straightforward transformations that
split all items in an enumeration and remove markup and
elements such as hyperlinks and footnotes. For one-word
values, we append to them the title of the infobox to form a
complete hypernym. Finally, we add the infobox title alone
as an additional hypernym. This title is usually general, but
accurate.

5.3 Wikipedia Categories

We considered using the Wikipedia categories as hyper-
nyms, but eventually rejected the idea because the concept
of a category, as used in Wikipedia, is more general than
the hypernymy relation. For example, the categories of the
article Chrome OS include Google and Google Chrome.

7. As required by the Wikipedia Manual of Style.
8. https://en.wikipedia.org/wiki/Wikipedia:Piped link

https://en.wikipedia.org/wiki/Wikipedia:Piped_link


0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2836450,
IEEE Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

Fig. 5. An example of the Phrasal Group approach. The input sentence
was “JSON is an open-standard format using humain-readable text.”
The structure of the phrasal groups is shown as returned by the parser.
The analysis starts at the first verb phrase (in yellow), and parses the
tree, keeping only the relevant phrasal groups (in green with thick border,
the groups kept, in red with slim border, the groups rejected).

While those categories represent meaningful associations of
articles, they do not represent a hypernym of their members.

As evidence, the WiBiTaxonomy Project attempts to ex-
tract hypernyms based on both the articles and categories
linked to a Wikipedia article, and this resulted in a higher
false positive rate (see Section 7).

5.4 Natural Language Processing
The other two techniques use NLP to select only the most
pertinent words of the first sentence of an article (or section)
to form a hypernym. We assume that this sentence is in
the format [Subject] is [a—an—the] [description]. . . , although
slight variation can still be accepted if parsed properly.
Otherwise no hypernym is returned. The two different
techniques are based on the different outputs of the Stanford
Core NLP library for Java [22].

Phrasal Groups Approach
The first heuristic starts from the whole sentence and re-
duces it to a single hypernym by removing extraneous
phrasal groups. A phrasal group can be a noun phrase, a
verb phrase, etc. Phrasal groups are made of single words
and other phrasal groups. For this heuristic, we start with
the longest verb phrase of the sentence where is is the
main verb, and we remove all extraneous phrasal groups.
Extraneous groups are those that are not single words,
noun phrases, adjectival phrases, prepositional phrases or
conjunction phrases. We recursively parse all remaining
phrasal groups, removing extraneous groups at each step.
Figure 5 shows an example of this approach.

Grammatical Relations Approach
The second heuristic considers the grammatical relations
between the words in the sentence and, starting from the
word identified as the root of the sentence, adding all words
related by pre-selected grammatical relations. We then take
all new words, and look for more words related to them
with the same relations, until there are no more words to
add. The hypernym is composed of the selected words in
the same order as they appear in the sentence. Some of

Fig. 6. An example of the Grammatical Relation approach, using the
same sentence as in Figure 5. The approach starts with the root word
and includes all words related by one of the chosen relations (in green
with thick border, the words kept, in red with slim border, the words
rejected).

TABLE 1
Sample Hypernym Detection Output

Tag Detected Hypernym

1 html markup language
2 python imperative and functional programming lan-

guage
3 objective-c general-purpose programming language
4 objective-c object oriented programming language
5 ruby general-purpose open-source dynamic object

oriented reflective programming language
6 java open-source, dynamic, reflective, object ori-

ented, general-purpose programming language
7 java class-based, object oriented, strongly typed, re-

flective language and run-time environment
8 silverlight run time environment and multimedia frame-

work
9 django open source web application framework
10 xcode integrated development environment
11 phpstorm commercial ide for php
12 phpstorm commercial php integrated development envi-

ronment

the relations, such as the coordinating relations, will split
the output, generating new hypernyms. If this happens, all
previous words in the group are copied over to the other,
and we continue with both groups. The accepted grammat-
ical relations [8] are poss, possessive, amod, mod, nn, det,
predet, pobj, advmod and number. The splitting relations
are conj, apos and dep. Figure 6 shows an example of this
approach.

6 EXTRACTING CATEGORIES

The last step of our approach is to transform the list of
hypernyms extracted as described in the previous section
into a unified category structure. The final output is a set of
category–tag pairs, each associated with a set of attributes.

6.1 Importance of Grouping Hypernyms

Table 1 shows some examples of hypernyms discovered,
with their corresponding input tags. Even this small sample
illustrates the limitations of using hypernyms to categorize
similar technologies.

First, attributes introduce variants of a concept repre-
sented by a hypernym. For example, five hypernyms (2, 3,
4, 5 and 6) mention programming languages. On one hand,
grouping these would lose the distinction between different



0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2836450,
IEEE Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

types of programming languages. On the other, not group-
ing them would mean these tags would not share a hyper-
nym, making direct comparisons difficult. Simply grouping
by common terms is also problematic: some tags are said
to be open source (5, 6 and 9), but creating an open source
category would not respect the hypernymy relation. Second,
some compound hypernyms represent multiple concepts.
For example, hypernym 7 implies that java is both a
programming language and a run-time environment. In this
case, the hypernym should be split around the word and.
However, hypernym 2 is not in this situation, because and
connects two attributes of the concept programming language.
Third, hypernyms sometimes use an acronym instead of the
expanded form. This situation introduces some additional
variations preventing a consistent grouping of the software
technologies. Finally, some hypernyms differ only in word
order (e.g., hypernyms 11 and 12, after expansion).

6.2 Hypernym Tokenization
The first step for abstracting hypernyms into categories is
to tokenize and normalize the hypernyms, which we do
through transformations such as putting all words in lower
case, normalizing punctuation, removing disambiguation
terms in parentheses, and transforming nouns into a com-
mon base form, i.e., removing grammatical variations like
the plural forms and cultural variations like the American
ending or instead of the British our. The last step is per-
formed using WordNet’s catalog as our reference of the base
form of a word.

6.3 Detecting Acronyms and Compound Terms
The previous tokenization may split compound terms (e.g.,
open source). Compound terms should act as a unit, so we
regroup them and treat them as one token before pursuing
the transformation.

We start by aggregating all originally hyphenated word
sequences back into a compound term. This has the added
benefit of normalizing hyphenation. Hence, open-source and
open source will both be considered as the same, single term.

We also replace expanded acronyms by their abbreviated
form. This step both regroups compound terms and solves
the problem of the having two expressions of the same
concept (the acronym and its expansion).

Detecting acronyms is a hard research problem in itself,
and most state-of-the-art methods were not usable with our
set of hypernyms because they rely on a large corpus of text
to detect acronyms and their expansion. We used a heuristic
to generate a list of acronyms and their expansions: for
each set of hypernyms associated with a given tag, and for
each word w of those hypernyms (except stop-words), we
look for a sequence of words in the other hypernyms such
that by taking the first letter of each word in the sequence,
and at most one additional letter by word, in order, we
could reconstruct w. Stop words can be ignored or used to
complete a match.

This simple technique produced surprisingly good re-
sults. We manually validated the list of all acronym–
expansion pairs. Of the 174 candidate pairs automatically
generated, 102 (59%) were retained. Most of the false posi-
tives were incorrect expansions of real acronyms for which

the correct expansion was also found. We used the manually
validated list in our approach.

Finally, we used a statistical approach to detect the
remaining compound terms. As for the acronyms, cur-
rent state-of-the-art approaches [21, Chapter 5] to detect
compound terms cannot be used reliably on our corpus
composed of many short, nominal sentences, with high
redundancy due to popular categories of tags. Therefore, we
used the following model to define and detect compound
terms in our particular context. A set of terms forms a
compound term if, whenever the terms in the set appear
together in the same hypernym, they are placed one after
the other, always in the same order.

Based on this model, if we could find a sequence of terms
that, whenever they appear in the same hypernym, are
placed one after the other in the same order with probability
1 − ε, we concluded that they formed a compound term.
We chose the value of ε as the ratio of hypernyms with
a grammatically incorrect structure, which we estimated
using our development set. We used the statistical binomial
test, with a confidence of 95%, to filter out coincidental
events.

6.4 Extracting Categories and Attributes

The final step of the approach consists of transforming the
hypernyms into a set of categories, possibly with some
attributes.

We designed categories to represent general hypernyms,
with a focus on coverage: commercial ide for php is a better
(more precise) hypernym than ide, but the latter is a bet-
ter category (higher coverage). The attributes are meant to
provide a flexible way to express the information lost when
transforming a hypernym into a category. They represent
typical variants of the category, but would not constitute
valid hypernyms on their own.

To transform a hypernym into a category with attributes,
we start by removing all non-informative phrases like name
of and type of. We also transform phrases indicating a
collection, e.g., set of, into the attribute collection of, and
remove it from the hypernym. We constructed a small list of
such phrases based on our development set. If two or more
occurrences of the word of or of the word for remain in the
hypernym, we do not parse the hypernym, as its structure
is possibly too complex for our simple heuristics.

If the remaining hypernym contains both the words of
and for, we remove everything after and including for. This
procedure tends to produce reliable hypernyms without
removing too much information.

At this point, the hypernym may contain at most one
occurrence of of or for. If this is the case, we consider the
sequence that comes after of or for to be a series of attributes.
We split this sequence on the conjunctions and commas, and
remove trailing stop words. Each remaining group will form
a new attribute.

We are left with a sequence of terms without of or for.
To parse this sequence, we need three metrics to distinguish
categories from attributes. We define the position of a word
in a hypernym by counting from right to left, from 0. Hence,
in the hypernym markup language, language has the position
0, and markup has the position 1. Then, for each word, we



0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2836450,
IEEE Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

compute the mean of its position and its variance over all
hypernyms. Finally, the support represents the number of
times the word appears in any hypernym.

To parse the remaining sequence, we employ the follow-
ing algorithm. The last term becomes a category, unless it
has a support of at least 10 and a position variance of at
least 2.5. However, if there was a group starting with of or
for that created some attributes, this rule is not applied, and
the last term always become a category. Then, for each word
from right to left, if the word is a stop word, we ignore
it, otherwise the word becomes an attribute, unless it has
a support of at least 10, a mean position of at most 0.5,
and the term to its right is a conjunction, in which case
it becomes a category. Attributes are always assigned to
the last discovered category. If no category is found in the
hypernym, the hypernym is rejected.

We used three parameters in the conditions: the min-
imum variance of an attribute (2.5), the maximum average
of a category (0.5), and the minimum number of occurrences
to make a decision (10). These thresholds were determined
by studying the hypernyms of the development set. For the
stop words, we used the list from the NLTK project. [2]

Finally, for each tag that belongs to two categories, where
one is a prefix or suffix of the other, only the longest category
is kept, but all attributes are kept.

7 EVALUATION

The complete output of Witt is a very large set of tag–
category–attributes relations, and the categories discovered
by the approach have technically open-ended extensions.
For these reasons, it is not possible to compare the out-
put with any specific oracle. Instead, we evaluated the
approach by comparison, and decompose the evaluation
to individually target the two major steps on which the
quality of the results is dependent: the ability to provide
good hypernyms for each input term, and the ability to
group similar hypernyms together. Specifically, we sought
to answer those two questions: how does the performance of
Witt compare with existing taxonomy tools?, and how effective
is the new hypernym abstraction phase for grouping equivalent
technologies?

7.1 Comparative Evaluation

We compared Witt with six taxonomy tools to determine
how well they could extract valid hypernyms for software
technologies. We found five active projects offering com-
parable functionality: WebIsADb [32], WordNet [25], DBpedia
Spotlight [23], WiBiTaxonomy [11] and THD [9] (see Section 2).
We found these tools by using the Google Scholar search
engine, with queries such as targeted hypernym OR hyponym
extraction and automatic taxonomy OR ontology creation OR
discovery. We also looked at the tools described in the
research articles and those used in the evaluation sections
of these articles. We also compared Witt with Google’s
definitions to make sure a simple automated Google search
would not outperform our approach.

Evaluation Set

We were conscious that taxonomy tools in general work
better on popular concepts. We accounted for this assump-
tion by partitioning the population of all tags into three
groups, popular, common and rare, and stratifying our sample
accordingly. We defined popular tags as tags that had been
used on Stack Overflow at least 10,000 times, common tags
as having been used between 100 and 9,999 times, and rare
tags as everything else. This resulted in 563, 15 673 and
34 873 popular, common and rare tags.

We randomly sampled tags in each strata of the popu-
lation. The size of each subsample was computed so that
ratios observed for the subsample would have a confidence
interval of 5% at the 0.95 level. Our sample thus consisted
of 229 popular tags, 375 common tags, and 380 rare tags, for
a total of 984.

Obtaining Hypernyms

We provided all the tags in our sample as input to the seven
tools under evaluation. Because the comparison tools are
not domain-specific, we injected additional information to
contextualize the query to the programming domain. We
manually verified that this made the tools perform better,
resulting in a fairer comparison. We provided the contex-
tual information in two different ways. For some tools,
we appended the term programming to the input tag. For
others, we used the same list of programming word stems
we created and used in the development of Witt, which is
described in Section 4.2. Additionally, because the format of
Stack Overflow tags may affect the efficiency of the tools,
if a tool did not return any hypernym for a tag, we tried
again with the normalized version of the tag we created in
Section 4.1.

The following sections briefly describe each tool and
detail the exact procedure employed to obtain hypernyms
for sample tags. All procedures described were fully auto-
mated.
WiBiTaxonomy: The WiBiTaxonomy project (WiBi) [11] cre-
ated a directed hypernymy graph from all of Wikipedia
articles and categories, using NLP techniques and the ex-
isting links between articles and categories. As in our case,
WiBi relies on the assumption that the first sentence of a
Wikipedia article defines the subject of the article.

Because the taxonomy is created between Wikipedia
pages only, it requires an existing Wikipedia article as input.
To get this article, we used the Wikipedia search engine,
providing the tag as the input, and taking the first article
containing at least one of the programming stems in its
leading section. If we found no article, we considered that
this tool would not return any hypernym for this tag. If an
article was found, we gave it to WiBi as input. The output
of the tool is a set of articles and categories. We took the
titles of all articles and categories as hypernyms. The title of
the article given as input, however, was not considered as a
hypernym. We used the default values of the online demo
for the two parameters of the approach: a maximum page
height of 2 and a category height of 3.
THD: Targeted Hypernym Discovery (THD) [9], [15] uses
hand-crafted lexico-syntactic patterns to discover hyper-
nyms from targeted knowledge sources (Wikipedia articles).



0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2836450,
IEEE Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

It automatically detects named entities from an input text,
and returns a list of hypernyms for each entity detected.

For our search, we gave one tag at a time to THD. We
did not append the word programming at the end of the tag,
because preliminary experimentation with THD showed
that this actually lowers the quality of the results because
programming is then extracted as the entity (instead of the
input tag). THD offers many options. We selected the Linked
Hypernyms Dataset as the knowledge base, which gave the
best results in the preliminary experimentation, we chose
to extract all entities (named entities and common entities),
and selected all sources. If the tag was extracted as an entity,
we took all hypernyms returned by THD. Those hypernyms
were from three sources: THD, DBpedia and Yago.
WordNet: WordNet [25] is a lexical database containing,
among other information, hypernymy and hyponymy rela-
tions. The database was manually crafted, and is considered
a golden standard in many linguistic applications.

With WordNet, we first retrieved all words that matched
the tag. We removed a result if its gloss did not contain at
least one of the programming stems. For all the remaining
results, we analyzed the words listed as the hypernyms of
the result. We considered all of those hypernyms for the
evaluation.
DBpedia Spotlight: DBpedia [3] is a crowd-sourced
database populated by structured information from
Wikipedia. The DBpedia entries contains, among other in-
formation, hypernymy relations. DBpedia Spotlight is a
tool for annotating text documents with DBpedia entries. It
takes as input a free-formed text, and automatically extracts
DBpedia entries.

We provided as input a piece of text composed of the
tag and the word programming. If an entity was extracted,
we verified that it covered the tag, and not the injected
term “programming”. Then, we retrieved the DBpedia re-
source, and took all of the terms listed under the official
dcterms:subject key [7].
WebIsADb: The WebIsA Database was created by applying
a refined and extended set of grammatical patterns, similar
to the Hearst patterns, to the very large corpus of web doc-
uments, Common Crawl. In addition to finding hypernyms,
WebIsADb uses pre-modifiers and post-modifiers, a concept
similar to our attributes.

We gave as input the tag to WebIsADb, and collected
the three hypernyms with the highest support. For each
of these hypernyms, we added the three pre-modifiers or
post-modifiers with the highest support. We prepended
all pre-modifiers and appended all post-modifiers to their
corresponding hypernym, thus creating only one larger
hypernym. We restricted the number of results to three,
because WebIsADb often returned a very large number of
results for a tag, sometimes up to a few thousand results for
a single tag. Not only would using all hypernyms have a
significant cost in the evaluation, but the precision of lower
results greatly reduces after the top ones. The same rationale
stands for the modifiers. Without restricting the size of the
output, we would end up with hypernyms composed of
hundreds of words.
Google: The Google search engine defines a define operator.
When used, the search engine will try to find a definition
of the word following the operator. If at least one definition

is found, it will appear in a specific box on top of the web
links. We used those definitions as hypernyms, but only if
the tag was parsed as a noun. We only used the numbered
definitions, and not the variants or the examples.
Witt: For the evaluation, we considered three variants of
our approach. One variant returns only the raw hypernyms
extracted as described in Section 5 (WittH ). Another variant
returns only the names of the general categories, without
any attribute attached, and considered the returned cate-
gories to be hypernyms (WittC ). The third variant returns,
for a given tag, the corresponding category and all attached
attributes (WittCA). Those variants were needed to answer
the second question: how effective is the new hypernym abstrac-
tion phase for grouping equivalent technologies?

Evaluating the Output
Applying the tag sample to all tools produced 12596 tag–
hypernym pairs that needed to be validated, following the
logic is the hypernym returned a true hypernym of the tag in
the sense of software technology? The last two authors acted as
source-blind judges of the validity of a hypernym. The first
author independently compiled all the results and provided
each evaluator with a list of tag–hypernym pairs randomly
ordered. This way, it was impossible for the evaluators to
know which tool had produced which pair. Furthermore,
200 unidentified pairs were given to both evaluators, to
support an assessment of the evaluator’s agreement. The
evaluators marked each pair as either correct (and in a sense
related to software), or incorrect.

We emphasize that we were interested in learning
whether the tools could explain the software technology
sense. For a developer interested in build tools, it is not
useful to compare Ant with other insects. As a consequence,
some tags could not receive the correct mark since they are
not directly related to software. For example, a histogram
is a statistical concept, and it does not have a software
specific sense.

The evaluators worked independently and followed an
explicit evaluation guide (see the on-line appendix). Evalu-
ating hypernyms is a relatively low-subjectivity task, and
the evaluators completed the task with a Cohen’s kappa
agreement of 0.719. According to a common scale this agree-
ment can be considered substantial [17]. All disagreements
were resolved by attributing the value incorrect to the pair.

Results
Typical evaluations report on the precision and recall of a
given method. However, given the nature of our situation,
and the diversity of tools we used, these metrics would not
properly measure the performance of our approach.
Recall: To evaluate recall, one must know the full set of
expected outcomes of the evaluated tool. In our case, it
would be impossible to determine the set of all hypernyms
of a term, first because such a taxonomy does not exists
(which is one of the motivations for Witt), and second
because the many possible variations of a natural language
phrase further increase the ambiguity of recall. For example,
possible hypernyms for the term Java include:

1) multi paradigm concurrent object oriented general
purpose programming language



0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2836450,
IEEE Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

2) object oriented programming language
3) general purpose programming language
4) multi paradigm programming language
5) concurrent programming language
6) programming language

Although this list is far from exhaustive, we can see
from this example that all of these hypernyms overlap
to some extent, and common hypernym tools (which we
experimented with as reported on in the paper) are simply
not designed to return exhaustive combinations of phrases.
Precision: In contrast to recall, we can actually compute
precision because both the numerator and denominator are
known. The problem in this case is that the resulting number
is heavily subject to noise, so not acceptably meaningful. Us-
ing the same examples of hypernyms for Java, we can see
that a tool could produce exponentially more hypernyms by
generating minor variations of the same concept (#1 adds
no information to #2-5). Assume that the list returned for
Java comprises the most specific term (item 1) and ”island
in the Pacific”. Here for our purpose (categorizing software
technology), the precision would be 1/2 = 50%. But then
any tool could be tweaked to spuriously return variants
of the output terms. For example, we could add, without
increasing the amount of information, items 2 and 3 in the
list. Then precision would jump to 3/4 = 75%. Precision is
thus not a proper performance measure, but an artifact of
design decisions in individual tools, and as the example
illustrates, in this scenario a tool with a higher precision
would be, actually, less precise.
Alternatives: We measured two aspects of the performance
of each tool: the proportion of tags for which at least
one correct hypernym is found (coverage), and the average
number of wrong hypernyms returned by the tool for a tag
(average number of false positives). The first measure provides
a sense of the breadth of the terminology spectrum that can
be handled by a tool, while the second is intended to capture
the usability degradation caused by false positives. Table 2
provides the complete results, organized by subsample and
by tool. The best performance for each subsample is in bold.

We find that WittH and WittCA offer better coverage
than all other tools, for all three sets of tags. Given the 5%
confidence interval, the superiority of Witt is statistically
significant. Google is the only tool that consistently returned
a lower number of false positives than WittCA, but at the
cost of very low coverage. Otherwise, WittCA returned
fewer false positives than all other tools (except for WordNet
over the set of rare tags, but again, at the cost of very low
coverage).

Among the variants of Witt, WittC generally produces
worse results than WittH and WittCA. We explain this
difference by the fact that category names are usually too
general to represent a useful hypernym on its own. How-
ever, adding the attributes in WittCA solves this issue and
provides major coverage improvements. Also, there is a
slight loss of coverage from WittH to WittCA, but this also
results in a large improvement of the false positive rate.

To get a better idea of the relative performance of the
tools that takes into account both aspects under evaluation,
Figure 7 plots the performance of the tools in two dimen-
sions. For this graph, we combined the three subsamples

TABLE 2
Evaluation Results

Popular tags Common tags Rare tags

Proportion of tags with at least one correct hypernym
WittH 0.686 0.408 0.247
WittCA 0.590 0.368 0.224
WittC 0.376 0.195 0.089
DBpedia 0.454 0.197 0.082
WiBi 0.293 0.160 0.089
THD 0.074 0.035 0.013
Google 0.118 0.040 0.003
WordNet 0.024 0.022 0.005
WebIsADb 0.328 0.187 0.084

Average number of wrong hypernyms per tag
WittH 1.528 0.955 0.466
WittCA 0.913 0.584 0.295
WittC 1.262 0.827 0.458
DBpedia 3.135 2.683 2.600
WiBi 2.314 2.749 2.092
THD 1.419 0.979 0.708
Google 0.751 0.379 0.095
WordNet 2.288 1.080 0.126
WebIsADb 2.031 1.589 0.971

with a linear extrapolation that takes into account the rela-
tive sizes of the population stratas.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Proportion of tags with at least one good hypernym

A
ve

ra
ge

 n
um

be
r 

of
 b

ad
 h

yp
er

ny
m

s 
pe

r 
ta

g

Witt_H

Witt_CA
Witt_C

DBpedia

WiBi

THD

Google

WordNet

WebIsA

Fig. 7. Extrapolated aggregated performance. The bottom right corner
indicates the overall best performance.

7.2 Categories
A major contribution of this work is the algorithm we use
to abstract hypernyms into general categories (Section 6).
We saw in the previous section that WittH and WittCA

show very similar performance, which confirms that the
categories we abstract are also valid hypernyms. However,
categories are much more useful than raw hypernyms,
because they support automatically categorizing equivalent
technologies to produce analyses such as those showcased
in Figure 1.

As a measure of the aggregating power of the category
structure, we computed the membership size of each cate-
gory for all variants of Witt. We considered each hypernym
as a category for WittH , and only the category names for
WittC and WittCA. Therefore, the categories are exactly the
same for the last two versions. We used the complete output
for all of the Stack Overflow tags for this comparison.



0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2836450,
IEEE Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

50 100 200 500 1000 2000 5000

Number of tags per category

W
itt

 v
er

si
on

50 100 200 500 1000 2000 5000

W
itt

_H
W

itt
_C

/C
A

Fig. 8. Size of the 100 largest categories (log scale).

First, we found that after transforming hypernyms into
more abstract categories, the total number of categories
decreased from 31 760 to 2707. The proportion of singleton
categories also decreased from 80.6% to 49.4%. When look-
ing at the 100 most popular categories, we also found that
those categories contained more tags. Figure 8 shows the
distribution of the size of those categories.

We also reviewed the 50 largest categories for each
variant and confirmed that the categories of WittC/WittCA

more systematically reflect general classes of technologies
than those of WittH . This observation can be confirmed by
reviewing the complete lists on our on-line appendix. As an
illustration, Table 3 lists the 20 largest categories for each
variant, with their membership size. As evidence: the sec-
ond largest hypernym (open source) is incorrect; the shared
entries (e.g., programming language) have much higher mem-
bership for categories, and the hypernyms show much more
redundancy (five variations of programming language). In
case the membership numbers seem staggering, we note
that many software technologies are described by multiple
different tags. For example, in addition to the tag java,
there are at least twelve other tags related to the Java
programming language (e.g., java-9).

7.3 Threats and Limitations

Our use of a representative random sample for three stratas
of the entire population of Stack Overflow tags means
that our results are expected to generalize within their
strata with 95% confidence. However, we cannot make any
claim about the performance of the approach for general
input queries. In practice, however, Stack Overflow tags
already make up a vocabulary of over 50 000 software terms.
Furthermore, small variants in spelling or in the use of
acronyms are eliminated by our normalization procedures,
which effectively broadens the input space to include a
much larger number of supported queries.

The implementation of Witt relies on thresholds that
were manually selected during the development of the ap-
proach. Choosing different values will naturally impact the
performance of the tool. However, the overall combination
of heuristics reduces the impact of specific thresholds, and
the set of evaluated tags differed from the set of tags used to
develop Witt and fix its parameters. Moreover, the sensitiv-
ity of the our parameters shown in Section 4.2 demonstrates
that these thresholds are robust to small variations. Finally,
none of the thresholds are directly related to the complete

TABLE 3
Ten largest categories of each version

WittH WittC /WittCA

Hypernym Size Category Size

software 4282 software 4104
open source 590 library 2101
programming language 537 framework 1578
company 501 tool 1288
file format 305 systems 812
process 300 programming-language 687
integrated development

environment 256 platform 646
tool 255 company 634
library 250 language 587
web application framework 224 class 478
os 218 service 449
free software 209 plugin 430
functional

programming language 200 component 420
imperative

programming language 199 application 395
multi-paradigm

programming language 199 api 395
software framework 185 program 374
open-source software 182 extension 349
website 179 functions 336
framework 178 file-format 318
object-oriented

programming language 173 os 314

text or popularity of an input tag, so it would be impossible
to predictably bias the results through threshold selection.

8 CONCLUSION

Motivated by the intention to better track references to cat-
egories of equivalent technologies in informal documenta-
tion, we developed a domain-specific technique to automat-
ically produce an attributed category structure describing
an input phrase assumed to be a software technology. We
implemented our technique into a tool called Witt, which
relies on the Stack Overflow and Wikipedia data sources.
With Witt, we contribute a solution to three technical prob-
lems: 1) to find the Wikipedia article (or article section) that
best describes a Stack Overflow tag, if available; 2) to extract
valid hypernyms for a tag from a Wikipedia article (or
section); 3) to abstract hypernyms into general and uniform
categories that group similar technologies.

We evaluated our technique by comparing its perfor-
mance to that of six existing taxonomy tools applied to a rep-
resentative sample of Stack Overflow tags. The results show
that Witt has significantly better coverage than the next best
technology, while keeping a low relative false positive rate.
For popular tags (the most likely to be queried), Witt shows
59% coverage with an average of 0.91 false positives. The
closest matches are DBPedia Spotlight (45% coverage, at the
cost of an average of 3.1 false positives) and Google (average
0.75 false positives, at the cost of 12% coverage).

We do not claim that our solution is universally superior
to existing taxonomy tools. Indeed, it was developed with
the goal of performing well for the software domain, and
for this reason it encodes many software-specific rules.
Nevertheless, the experiment gives us confidence that to



0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2836450,
IEEE Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

automatically categorize software technologies, Witt is cur-
rently the best option available.

REFERENCES

[1] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers
talking about? An analysis of topics and trends in Stack Overflow,”
Empirical Software Engineering, vol. 19, no. 3, pp. 619–654, 2014.

[2] S. Bird, E. Klein, and E. Loper, Natural language processing with
Python: analyzing text with the natural language toolkit. O’Reilly
Media, Inc., 2009.

[3] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak,
and S. Hellmann, “DBpedia - a crystallization point for the web of
data,” Web Semantics: Science, Services and Agents on the World Wide
Web, vol. 7, no. 3, pp. 154–165, Sep. 2009.

[4] S. A. Caraballo, “Automatic construction of a hypernym-labeled
noun hierarchy from text,” in Proceedings of the 37th Annual Meeting
of the Association for Computational Linguistics on Computational
Linguistics, 1999, pp. 120–126.

[5] N. R. Carvalho, J. J. Almeida, M. J. V. Pereira, and P. R. Henriques,
“Probabilistic SynSet Based Concept Location,” in 1st Symposium
on Languages, Applications and Technologies, 2012, pp. 239–253.

[6] B. B. Dalvi, W. W. Cohen, and J. Callan, “WebSets: Extracting
sets of entities from the web using unsupervised information
extraction,” in Proceedings of the Fifth ACM International Conference
on Web Search and Data Mining, 2012, pp. 243–252.

[7] DCMI Metadata Terms, DCMI Usage Board, June 2012,
http://dublincore.org/documents/2012/06/14/dcmi-terms/
?v=terms#subject.

[8] M.-C. de Marneffe and C. D. Manning, Stanford typed
dependencies manual, The Stanford Natural Language Pro-
cessing Group, Sep. 2008, http://nlp.stanford.edu/software/
dependencies manual.pdf.

[9] M. Dojchinovski and T. Kliegr, “Entityclassifier.eu: Real-time clas-
sification of entities in text with wikipedia,” in Machine Learning
and Knowledge Discovery in Databases, ser. Lecture Notes in Com-
puter Science, H. Blockeel, K. Kersting, S. Nijssen, and F. elezn,
Eds. Springer, 2013, vol. 8190, pp. 654–658.

[10] J.-R. Falleri, M. Huchard, M. Lafourcade, C. Nebut, V. Prince,
and M. Dao, “Automatic extraction of a WordNet-like identifier
network from software,” in 18th IEEE International Conference on
Program Comprehension (ICPC), 2010, pp. 4–13.

[11] T. Flati, D. Vannella, T. Pasini, and R. Navigli, “Two is bigger (and
better) than one: the Wikipedia Bitaxonomy Project,” in Proceedings
of the 52nd Annual Meeting of the Association for Computational
Linguistics, 2014.

[12] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukr-
ishnan, L. Pietarinen, and D. Srivastava, “Using q-grams in a
DBMS for approximate string processing,” IEEE Data Engineering
Bulletin, vol. 24, no. 4, December 2001.

[13] M. A. Hearst, “Automatic acquisition of hyponyms from large
text corpora,” in Proceedings of the 14th Conference on Computational
Linguistics, 1992, pp. 539–545.

[14] P. Jaccard, “Étude comparative de la distribution florale dans une
portion des alpes et des jura,” Bulletin de la Societe Vaudoise des
Sciences Naturelles, vol. 37, no. 142, pp. 547–579, 1901.

[15] T. Kliegr, V. Svatek, K. Chandramouli, J. Nemrava, and
E. Izquierdo, “Wikipedia as the premiere source for targeted
hypernym discovery,” in Proceedings of the ECML PKDD Workshop
Wikis, Blogs, Bookmarking Tools: Mining the Web 2.0, 2008.

[16] Z. Kozareva and E. Hovy, “A semi-supervised method to learn
and construct taxonomies using the web,” in Proceedings of the
Conference on Empirical Methods in Natural Language Processing,
2010, pp. 1110–1118.

[17] J. R. Landis and G. G. Koch, “The measurement of observer
agreement for categorical data,” Biometrics, vol. 33, no. 1, pp. 159–
174, March 1977.

[18] V. I. Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” in Soviet physics doklady, vol. 10, no. 8,
1966, pp. 707–710.

[19] X. Li, H. Wang, G. Yin, T. Wang, C. Yang, Y. Yu, and D. Tang,
“Inducing taxonomy from tags: An agglomerative hierarchical
clustering framework,” in Advanced Data Mining and Applications,
ser. Lecture Notes in Computer Science, S. Zhou, S. Zhang, and
G. Karypis, Eds. Springer Berlin Heidelberg, 2012, vol. 7713, pp.
64–77.

[20] D. Lo, L. Jiang, and F. Thung, “Detecting similar applications with
collaborative tagging,” in Proceedings of the International Conference
on Software Maintenance, 2012, pp. 600–603.

[21] C. D. Manning and H. Schütze, Foundations of statistical natural
language processing. MIT press, 1999.

[22] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and
D. McClosky, “The stanford CoreNLP natural language processing
toolkit,” in Proceedings of 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations, 2014, pp. 55–60.

[23] P. N. Mendes, M. Jakob, A. Garcı́a-Silva, and C. Bizer, “DBpedia
Spotlight: Shedding light on the web of documents,” in Proceedings
of the 7th International Conference on Semantic Systems, 2011, pp. 1–8.

[24] R. Mihalcea and A. Csomai, “Wikify!: Linking documents to
encyclopedic knowledge,” in Proceedings of the Sixteenth ACM
Conference on Conference on Information and Knowledge Management,
2007, pp. 233–242.

[25] G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. J. Miller,
“Introduction to Wordnet: An on-line lexical database,” Interna-
tional Journal of Lexicography, vol. 3, no. 4, pp. 235–244, 1990.

[26] D. Milne and I. H. Witten, “Learning to link with Wikipedia,” in
Proceedings of the 17th ACM Conference on Information and Knowledge
Management, 2008, pp. 509–518.

[27] K. Nakayama, T. Hara, and S. Nishio, “Wikipedia link structure
and text mining for semantic relation extraction.” in Proceedings
of the Workshop on Semantic Search, 5th European Semantic Web
Conference, 2008, pp. 59–73.

[28] J. Nonnen, D. Speicher, and P. Imhoff, “Locating the meaning
of terms in source code: Research on ”term introduction”,” in
Proceedings of the 18th Working Conference on Reverse Engineering,
2011, pp. 99–108.

[29] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14,
no. 3, pp. 130–137, 1980.

[30] A. Ritter, S. Soderland, and O. Etzioni, “What is this, anyway:
Automatic hypernym discovery,” in Proceedings of the AAAI Spring
Symposium: Learning by Reading and Learning to Read, 2009, pp. 88–
93.

[31] A. K. Saha, R. K. Saha, and K. A. Schneider, “A discriminative
model approach for suggesting tags automatically for Stack Over-
flow questions,” in Proceedings of the 10th Working Conference on
Mining Software Repositories, 2013, pp. 73–76.

[32] J. Seitner, C. Bizer, K. Eckert, S. Faralli, R. Meusel, H. Paulheim,
and S. P. Ponzetto, “A large database of hypernymy relations
extracted from the web,” in Proceedings of the 10th edition of the
Language Resources and Evaluation Conference, 2016, pp. 360–367.

[33] R. Snow, D. Jurafsky, and A. Y. Ng, “Learning Syntactic Patterns
for Automatic Hypernym Discovery,” in Proceedings of the 18th
Annual Conference on Neural Information Processing Systems, 2004.

[34] C. Stanley and M. D. Byrne, “Predicting tags for StackOverflow
posts,” in Proceedings of the 12th International Conference on Cognitive
Modelling, 2013, pp. 414–419.

[35] “Most popular web application frameworks,”
Blog, http://www.hurricanesoftwares.com/
most-popular-web-application-frameworks/.

[36] Y. Tian, D. Lo, and J. Lawall, “Automated construction of a
software-specific word similarity database,” in Proceedings of the
IEEE Conference on Software Maintenance, Reengineering, and Reverse
Engineering, 2014, pp. 44–53.

[37] ——, “SEWordSim: Software-specific word similarity database,”
in Companion Proceedings of the 36th International Conference on
Software Engineering, 2014, pp. 568–571.

[38] C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers
ask and answer questions on the web? (NIER Track),” in Pro-
ceedings of the 33rd International Conference on Software Engineering,
2011, pp. 804–807.

[39] C. Treude and M.-A. Storey, “Work item tagging: Communicating
concerns in collaborative software development,” IEEE Transac-
tions on Software Engineering, vol. 38, no. 1, pp. 19–34, 2012.

[40] S. Wang, D. Lo, and L. Jiang, “Inferring semantically related
software terms and their taxonomy by leveraging collaborative
tagging,” in Proceedings of the 28th International Conference on Soft-
ware Maintenance, 2012, pp. 604–607.

[41] T. Wang, H. Wang, G. Yin, C. X. Ling, X. Li, and P. Zou, “Tag
recommendation for open source software,” Frontiers of Computer
Science, vol. 8, no. 1, pp. 69–82, 2014.

[42] W. Wu, H. Li, H. Wang, and K. Q. Zhu, “Probase: A probabilistic
taxonomy for text understanding,” in Proceedings of the ACM

http://dublincore.org/documents/2012/06/14/dcmi-terms/?v=terms#subject
http://dublincore.org/documents/2012/06/14/dcmi-terms/?v=terms#subject
http://nlp.stanford.edu/software/dependencies_manual.pdf
http://nlp.stanford.edu/software/dependencies_manual.pdf
http://www.hurricanesoftwares.com/most-popular-web-application-frameworks/
http://www.hurricanesoftwares.com/most-popular-web-application-frameworks/


0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2836450,
IEEE Transactions on Software Engineering

SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

SIGMOD International Conference on Management of Data, 2012, pp.
481–492.

[43] X. Xia, D. Lo, X. Wang, and B. Zhou, “Tag recommendation in
software information sites,” in Proceedings of the 10th Working
Conference on Mining Software Repositories, 2013, pp. 287–296.

[44] I. Yamada, K. Torisawa, J. Kazama, K. Kuroda, M. Murata, S. D.
Saeger, F. Bond, and A. Sumida, “Hypernym Discovery Based
on Distributional Similarity and Hierarchical Structures,” in Pro-
ceedings of the Conference on Empirical Methods in Natural Language
Processing, 2009, pp. 929–937.

[45] J. Yang and L. Tan, “SWordNet: Inferring semantically related
words from software context,” Empirical Software Engineering, pp.
1–31, 2013.

[46] T. Zesch, C. Mller, and I. Gurevych, “Extracting lexical semantic
knowledge from wikipedia and wiktionary,” in Proceedings of the
Conference on Language Resources and Evaluation, electronic proceed-
ings, 2008.

Mathieu Nassif I am a Master student at McGill
University, Canada. My research interests in-
clude the evolution of software systems, informa-
tion extraction techniques, and software docu-
mentation. I completed my B.Sc. in pure and ap-
plied mathematics at the Université de Montréal
in June 2016.

Christoph Treude I am a faculty member and
an ARC DECRA Fellow in the School of Com-
puter Science at the University of Adelaide, Aus-
tralia. I received my Diplom degree in Computer
Science/Management Information Systems from
the University of Siegen, Germany, and my PhD
degree in Computer Science from the Univer-
sity of Victoria, Canada. Before joining the Uni-
versity of Adelaide, I worked as a postdoc-
toral researcher at McGill University in Montréal,
Canada, and I conducted research in Brazil at

DIMAp/UFRN in Natal as well as at IME/USP in São Paulo.

Martin P. Robillard Martin Robillard is a Pro-
fessor of Computer Science at McGill Univer-
sity. His current research focuses on problems
related to software evolution, architecture and
design, and software reuse. He served as the
Program Co-Chair for the 20th ACM SIGSOFT
International Symposium on the Foundations of
Software Engineering (FSE 2012) and the 39th
ACM/IEEE International Conference on Soft-
ware Engineering (ICSE 2017). He received his
Ph.D. and M.Sc. in Computer Science from the

University of British Columbia and a B.Eng. from École Polytechnique
de Montréal.


