
Enforcing Exception Handling Policies
with a Domain-Specific Language
Eiji Adachi Barbosa,Member, IEEE, Alessandro Garcia,Member, IEEE,

Martin P. Robillard,Member, IEEE, and Benjamin Jakobus,Member, IEEE

Abstract—Current software projects deal with exceptions in implementation and maintenance phases without a clear definition of

exception handling policies. We call an exception handling policy the set of design decisions that govern the use of exceptions in a

software project. Without an explicit exception handling policy, developers can remain unaware of the originally intended use of

exceptions. In this paper, we present Exception Handling Policies Language (EPL), a domain-specific language to specify and verify

exception handling policies. The evaluation of EPLwas based on a user-centric observational study and case studies. The user-centric

study was performed to observe how potential users of the language actually use it. With this study, we could better understand the

trade-offs related to different language design decisions based on concrete and well-documented observations and experiences

reported by participants. We identified some language characteristics that hindered its use and that motivated new language

constructs. In addition, we performed case studies with one open-source project and two industry-strength systems to investigate how

specifying and verifying exception handling policies may assist in detecting exception handling problems. The results show that

violations of exception handling policies help to indicate potential faults in the exception handling code.

Index Terms—Exception handling, exception handling policy, policy specification, domain-specific language

Ç

1 INTRODUCTION

ROBUST programs must provide their functionalities cor-
rectly even in the presence of exceptions [24]; for this

reason, robust programs usually dedicate part of the source
code to exception handling. An exception is any unexpected
condition that occurs at runtime and disrupts the normal
execution flow of a program [13], [22]. To ease the design
and implementation of the exception handling of software
systems, most mainstream object-oriented (OO) program-
ming languages provide built-in exception handling mecha-
nisms (EHMs) [13], [22]. These mechanisms provide
language constructs to indicate in the source code the places
where exceptions are raised and the places where excep-
tions are handled. Developers can then use these constructs
to structure the exception handling of their systems.

To further support the construction of the exception han-
dling part of software systems, some OO programming
languages provide EHMs with extra facilities aimed at
improving software robustness. These mechanisms are
called reliability-driven EHMs [7], [8]. Java is perhaps the
best-known programming language that provides a reliabil-
ity-driven EHM. In Java, exception types can be classified as
either checked or unchecked exceptions. Typically, checked

exceptions represent recoverable exceptional conditions,
whereas unchecked exceptions represent programming
errors, such as accessing an invalid array index [5]. Aiming
at improving software robustness, the EHM implemented by
Java verifies at compile time if checked exceptions are either
handled locally or declared on the signature of methods.
Declaring a checked exception on the signature of a method
binds the method that calls it to the contract of either han-
dling this exception or also declaring this exception on its
signature. If a checked exception is neither handled nor is
declared on the signature of the method, then the Java EHM
signals an error at compile time. The Java EHMdoes not per-
form these reliability checks for unchecked exceptions. For
this reason, the declaration of Java unchecked exceptions on
the signature of methods is not mandatory. Other program-
ming languages, such as CLU [29] and Eiffel [34], also pro-
vide reliability-driven EHMs.

Despite EHMs having been conceived as structuring
mechanisms aimed at improving software robustness, fail-
ures due to improper use of exception handling constructs
are being continually reported in the literature [2], [7], [8],
[17], [32], [33], [39]. Not even the use of reliability-driven
EHMs seems to improve exception handling, since many
exception handling failures are actually reported in systems
implemented in programming languages with this type of
EHM [2], [7], [17], [32], [33], [39]. One of the problems with
exception handling is that developers use exception han-
dling constructs during implementation and maintenance
phases without being aware of the exception handling pol-
icy of their projects [15], [26]. We call the exception handling
policy of a software project the set of design decisions that
govern the use of its exceptions. In fact, most software proj-
ects currently do not even define an explicit exception
handling policy [16]. As a consequence, developers are

� E.A. Barbosa, A. Garcia, and B. Jakobus are with the OPUS Research Group,
Informatics Department, Pontifical Catholic University of Rio de Janeiro,
Rua Marquês de S~ao Vicente, 255-G�avea, Rio de Janeiro 22453-900, Brazil.
E-mail: {ebarbosa, afgarcia, bjakobus}@inf.puc-rio.br.

� M.P. Robillard is with the School of Computer Science, McGill University,
3480 University Street, McConnell Engineering Building, Office 114N,
Montreal QCH3A 2A7, Canada. E-mail: martin@cs.mcgill.ca.

Manuscript received 19 Jan. 2015; revised 8 Oct. 2015; accepted 22 Nov. 2015.
Date of publication 6 Dec. 2015; date of current version 20 June 2016.
Recommended for acceptance by L. Baresi.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2015.2506164

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 6, JUNE 2016 559

0098-5589� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:

unaware of how they are supposed to use exceptions in
their projects, so they end up using them in an ad-hoc man-
ner or even neglecting them [40], [41]. Not surprisingly, the
exception handling code is more error-prone and contains
more faults than the normal code [32], [33], [39].

Currently, there is no proper means to specify, let alone
verify, exception handling policies in software projects. Cur-
rent EHMs assume that only defining the places where
exceptions are raised and handled and the list of exceptions
a method might throw is enough to define an exception han-
dling policy. However, important aspects of exception han-
dling policies cannot be expressed with current EHMs, not
even with the reliability-driven ones. For instance, one can-
not definewhere an exceptionmust be re-mapped to another
specific exception type nor the correct place where the excep-
tion should be handled. Previous studies performed by
Cacho et al. [7], [8] showed that almost 42 percent of excep-
tion handling faults observed in industry-strength software
systems stem from violations of basic exception handling
policies, such as performing re-mappings and leaving the re-
mapped exception unhandled. The lack of means to specify
and verify explicit exception handling policies in software
projects may be one of the main reasons why developers still
struggle to implement exception handling.

In this context, we propose the Exception Handling Poli-
cies Language (EPL), an external domain-specific language
(DSL) [20] for specifying and automatically verifying excep-
tion handling policies in Java programs. Exception handling
policies are specified in EPL in terms of exception handling
rules that must be adhered in the source code. The evalua-
tion of EPL was based on a user-centric observational study
and two case studies. We performed a user-centric observa-
tional study with ten developers from different organiza-
tions to explore how potential users of the language
actually use it to produce their exception handling policies.
We could observe participants reactions while using EPL
and also interview them after they have used the proposed
language. With this study, we could better understand the
trade-offs related to different language design decisions
based on concrete and well-documented observations and
experiences reported by participants. Thus, we identified
some language characteristics that hindered its use and that
motivated new language constructs. We also performed
case studies in the context of one open-source software sys-
tem—Apache Tomcat—and two different industry-strength
software systems—Mobile Media [19] and Health Watcher
[28], [44]. For Tomcat, we inspected its architectural specifi-
cation, extracted from this specification requirements
related to exception handling, produced a partial exception
handling policy for the system and verified its source code.
The violations of the specified policy pinpointed to a severe
bug reported in the project’s bug tracking system. For the
other two systems, we specified their complete exception
handling policies and verified the source code compliance.
In both systems, we observed considerable amounts of vio-
lations of the specified policies. In the context of Mobile
Media, we observed violations in 42 percent of the methods
handling exceptions. In the context of the Health Watcher,
we observed violations in 62 percent of the methods raising
an exception. Then, we manually inspected the violations
observed in Mobile Media and Health Watcher to explore

how these violations can assist developers in finding poten-
tial faults of categories of exception handling faults previ-
ously proposed by Barbosa et al. [2] and Ebert et al. [17]. We
observed that most violations of the intended policy were
related to potential faults of the proposed categories of
exception handling faults. We also observed violations that
may pinpoint to potential faults that were not described in
previous work.

The main contribution of this paper is the definition and
implementation of EPL, a domain-specific language that
allows software designers and developers to make their
exception handling policies explicit, helping to raise the
awareness of the intended use of exceptions in a software
project. We also discuss how violations of specific EPL rules
may pinpoint to potential faults of categories of exception
handling faults, which can aid developers to proactively
detect in their systems potential problems in the exception
handling code. The rest of this paper is structured as fol-
lows. Section 2 presents background and basic terminology
about exception handling mechanisms. Section 3 describes
an implementation scenario that serves the purpose of moti-
vating the proposed DSL. Section 4 presents the proposed
specification language. Section 6 explains the evaluation
procedures and shows the results gathered from the user-
centric study and Section 7 presents the case studies per-
formed with industry-strength systems. Finally, Section 8
discusses related work and Section 9 concludes the paper.

2 EXCEPTION HANDLING MECHANISMS

Even though exception handling mechanisms are imple-
mented differently across programming languages [21], the
vast majority of programming languages with built-in EHM
implement the try-catch model [25]. The try-catch model is
depicted in the following generic structure:

try {S}
catch (E1 x) {H1}
catch (E2 x) {H2}

The try block delimits a set of statements S. The try
block guards S from occurrences of exceptions flowing
out of the block with a list of exception handlers. An
exception handler is defined by a catch block in most pro-
gramming languages.1 The catch block delimits a set of
statements Hn, which is responsible for implementing the
handling actions that cope with an exception. The catch
block also declares an argument x of type En. The type of
this argument serves as a filter to define which types of
exception each catch block can handle. In most EHMs, if a
catch block declares as argument type an exception type
E, then it can handle exceptions that are instances of E
and also exceptions that are instances of subtypes of E.
The JavaScript programming language is an exception to
this description. Exception handlers in JavaScript do not
declare arguments with types and, therefore, do not filter
which exception types they can handle. Exception han-
dlers in JavaScript simply capture all exceptions that
might be raised within the try block.

1. Some programming languages do not use the catch keyword for
exception handlers. For instance, Python uses the except keyword,
whereas Ruby uses the rescue keyword.

560 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 6, JUNE 2016

In most programming languages that implement the try-
catch model, a finally block may also be attached to a try
block. The finally block delimits a set of statements that is
executed when the control leaves a try block. The control
can leave a try block as a result of normal execution termina-
tion (i.e., all statements in the try block are executed nor-
mally), of the execution of a break, continue, go-to or return
statement, or of the propagation of an exception flowing out
of the try block. In other words, the finally block is always
executed, regardless of whether the try block terminates
normally or exceptionally. In practice, finally blocks can be
used to avoid that a given set of statements are accidentally
bypassed by a transfer of control. For this reason, finally
blocks are often used to perform cleanup actions that must
be executed even in the presence of exceptions.

2.1 Raising Exceptions and Searching for Handlers

EHMs also provide means to explicitly signal the occur-
rence of exceptions. Signaling an exception occurrence is
structured in most programming languages with the throw
statement.2 The throw statement causes an exception to be
raised. The result of raising an exception is an immediate
transfer of control to search for a proper exception handler.
The EHM assumes the program control and starts the
search from the scope where the exception is raised. If the
exception is raised from an unguarded scope (i.e., from a
statement outside a try block), then the exception propa-
gates up the call stack until a try block is found. When a try
block is found or when the exception is raised from within a
try block, the EHM searches in the list of catch blocks
attached to this try block for a suitable handler. The runtime
type of the raised exception is compared with the exception
types in each catch block. For the first matching catch block,
its set of statements is executed. If no matching is found, the
exception propagates up the call stack until a matching han-
dler is found. If no handler is found in the whole call stack,
the EHM normally terminates the program.

2.2 Propagating Exceptions

If no exception handler is defined in the scope where an
exception is raised, the exception can be propagated up the
call stack until a proper handler is found. In most main-
stream programming languages, the EHM automatically
propagates exceptions from where they are raised to where
they can be handled [21]. However, there are some pro-
gramming languages, like CLU [29], that do not support
automatic propagation of exceptions [21]. In these lan-
guages, exceptions are only propagated between the
method who explicitly raised the exception and its immedi-
ate caller. To propagate exceptions to higher-level compo-
nents, the immediate caller has to catch the raised exception
and explicitly re-raise it to the next caller in the call stack. In
Java, unchecked exceptions are automatically propagated
by the underlying EHM. Checked exceptions, on the other
hand, are only propagated when they are declared in the
method’s signature with the throws clause. The throws clause
in Java defines the method’s exceptional interface, i.e., the

list of exceptions that might occur during the method execu-
tion. If a checked exception occurs in the context of a
method and it is neither handled nor propagated, then the
Java compiler signals a compilation error.

2.3 Re-Throwing Exceptions

After being raised, exceptions usually traverse through dif-
ferent intermediate methods on the call stack before they
are handled. Intermediate methods are those in an excep-
tion propagation path situated between the place where the
exception is raised and the place where the exception is han-
dled. In some cases, it might be necessary to implement par-
tial handling actions in intermediate methods. In these
cases, intermediate methods need to catch the exception,
implement partial handling actions and re-raise the caught
exception to its immediate caller. A re-throw occurs when a
throw statement within a catch block raises the exception
instance caught by the catch block without losing any con-
text information (e.g., the exception stack trace). In C++ and
C#, for instance, a re-throw is implemented as follows:

try {S}

catch(E1 e){

//perform handling actions

throw;

}

In C++ and C#, when a throw statement is invoked within
a catch block and without an argument, the underlying
EHM automatically re-raises to the immediate caller the
exception instance caught by the catch block. In Java, on the
other hand, there is no specific command to re-raise an
exception. Instead, a re-throw is performed as follows:

try {S}

catch(E1 e){

//perform handling actions

throw e;

}

In Java, a re-throw is implemented with a throw statement
within the catch block that explicitly receives as its argument
the same exception instance captured by the catch block.
Although syntactically different, both re-throws are semanti-
cally equivalent, since they both re-raise the exception
caught by the catch blockwithout losing any information.

2.4 Re-Mapping Exceptions

In addition to scenarios where intermediate methods need
to re-throw the caught exception, there are also scenarios
when they need to re-map the caught exception. An excep-
tion re-mapping occurs when an exception instance differ-
ent from the exception caught by the catch block is raised
from within the catch block. Current EHMs do not provide a
specific construct to perform exception re-mappings. The
following generic code depicts how exception re-mappings
are typically implemented:

try {S}

catch(E1 e) {throw new E2(e);}

catch(T1 e) {throw new T2();}

In the previous code snippet, the first catch block captures
instances of E1 and subtypes of E1 and raises an exception
instance of type E2. In this case, it is said that the exception is

2. Some programming languages, like Ada, Python and Ruby, for
instance, use the raise keyword to indicate the occurrence of an
exception.

BARBOSA ETAL.: ENFORCING EXCEPTION HANDLING POLICIES WITH A DOMAIN-SPECIFIC LANGUAGE 561

re-mapped from E1 to E2. Notice that the caught exception is
wrapped in the re-mapped exception. This practice can be
used to store the original exception in the re-mapped excep-
tion. In fact, this is a common practice and most of Java and
C# built-in exception types have constructors that take an
exception instance as parameter. The second catch block in the
previous code snippet re-maps from T1 to T2 without wrap-
ping the caught exception in the re-mapped exception. Excep-
tion re-mappings can be implemented in both manners;
developers are free to decidewhichmanner suits thembest.

3 MOTIVATING EXAMPLE

We present a typical scenario involving exceptions in this
section. The scenario serves the purpose of illustrating the
need for exception handling policies. Consider the follow-
ing scenario depicted in Fig. 1, which was extracted from
the Mobile Media application [19]. Mobile Media is a mobile
application responsible for managing albums of images,
videos and audio files in mobile devices running Java Micro
Edition. The Mobile Media architecture adheres to the
Model-View-Controller architectural pattern.

3.1 The Intended Exception Handling Policy

In the example depicted in Fig. 1, when the RecordStore.
addRecord method is executed, it might throw exceptions
of the RecordStoreException type. An instance of the
RecordStoreException type represents an exceptional
condition that occurs when accessing the device storage sys-
tem. Therefore, if this exception occurs, it is not possible to
add the selected photo to a given album and there is nothing
else that could be done to persist the photo in the device.
Hence, the application should warn its user about the prob-
lem that prevents storing a given image on the device. To
achieve this requirement, it is necessary to decide how the
exception should be handled. To warn the user about
the problem, it is necessary to propagate the exception from
the scope where it occurred (within the Model module) up
to the Controller module scope, so that it handles the excep-
tion and updates the View with an error message. However,
directly propagating instances of RecordStoreExcep-

tion from the scope of the Model module to the scope of
Controller module would break the information hiding

principle, since the exception contains information pertain-
ing to the implementation of the Model module that it is
more than what is permitted by its encapsulation. To avoid
this, when RecordStoreException crosses the bound-
aries of the Model and Controller modules, it should be re-
mapped to a more abstract exception type called Persis-

tenceException. Thus, this more abstract exception type
re-mapped by the Model module provides sufficient infor-
mation about the cause of the problem, but does not expose
implementation details. In addition, the Controllermodule is
able to identify the cause of the problem and has proper
information to handle the exception. In this manner, it is
possible to address the requirement (showing an error mes-
sage) without breaking any design principle (e.g., informa-
tion hiding). This set of decisions comprises the intended
use of exceptions in this scenario.

3.2 Implementing Exception Handling in Practice

The complete intended exception handling policy is difficult
to discover and understand from the source code. The
exception handling code is usually scattered throughout the
whole system’s code and tangled with different functionali-
ties of the system, hindering its inspection and comprehen-
sion. If we take into account all exception types that occur in
the source code of Mobile Media, there are 372 references to
exceptions in the source code. These references occur in 30
different classes, accounting for almost 3.0 KLOC. More-
over, important parts that define an exception handling pol-
icy cannot be defined in the source code with the exception
handling constructs of current programming languages.
For instance, the exception handling policy previously
described defines that instances of the RecordStoreEx-

ception type must be re-mapped to the more abstract type
PersistenceException by the Model module and that
the Controller module must handle instances of the Per-

sistenceException type. These exception handling
responsibilities are fundamental parts of the intended
exception handling policy, but cannot be expressed in the
source code with the EHMs provided by current OO pro-
gramming languages.

By only analyzing the source code, it is not possible to
discover what parts of the intended exception handling pol-
icy are not expressed in the source code. In addition, it is
also not possible to know if the implemented exception han-
dling code adheres to the originally intended exception han-
dling policy or if it actually violates it. Unaware of how
exceptions are supposed to be used, developers tend to
ignore exceptions [40], [41]. They either opt to leave excep-
tions unhandled or they catch them in the scope where they
occurred with an empty catch block. In the context of the
code snippet depicted in Fig. 1, ignoring the occurrence of
RecordStoreException would introduce a fault in the
application. In the first case, there would be no handler for
the exception. So if the exception occurs, it is propagated up
to the program execution entry point, causing the program
execution to be terminated by the underlying EHM. In the
second case, the photo would not be added to the device
due to the exception, no error message would be shown to
the user, but the application would continue to execute
normally, updating the screen with a successful message

Fig. 1. Inserting a photo in mobile media.

562 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 6, JUNE 2016

(invoking the PhotoScreen.update method as can be
observed in the code snippet depicted in Fig. 1). Similar sce-
narios are commonly observed in industry-strength systems
[2], [7], [8], [17], [32], [33], [39].

4 MAKING EXCEPTION HANDLING

POLICIES EXPLICIT

The Exception Handling Policies Language is an external
domain-specific language [20] aimed at supporting the
explicit definition of exception handling policies. In object-
oriented programming languages with built-in EHMs,
exceptions are used at the method level, i.e., methods are
the source code elements that raise, handle, propagate, re-
throw or re-map exceptions. However, defining a system’s
exception handling policy by enumerating the exception
handling responsibilities of its methods would not scale
well, since systems have a large number of methods. To
specify exception handling policies at a higher level of
abstraction, EPL provides the concept of Compartment. In
EPL, a compartment is a named and referable set of meth-
ods to which responsibilities can be specified. This concept
is further discussed in Section 4.1.

In EPL, the Rule concept is used to express responsibilities.
These responsibilities are expressed in terms of permissions,
prohibitions and obligations about how compartments and
specific exception types can establish dependency relations.
The language supports dependency relations originated from
exceptions being raised, handled, propagated, re-thrown and
re-mapped. These relations cover all structural dependencies
between source code elements and exception types common
in programming languages with built-in EHMs (Section 2).
The rule concept is further discussed in Section 4.2. Finally, in
Section 4.3 we present theAlias concept, which allows the def-
inition of an alias for a list of exceptions in the specification of
exception handling policies.

4.1 Compartments

In EPL, a compartment is a named and referable set of
code elements that can relate to exceptions in the source
code. In an object-oriented programming language, for
instance, a compartment would be a set of methods. In
EPL, compartments may be specified in two ways: by
explicitly listing the names of their elements or by defining
type constraints for their elements. When a compartment
is defined by explicitly listing its elements, it is defined
with the following syntactic structure:

define <elements> as compartment <comp_id>;

In the previous syntactic structure, <elements> spec-
ify a list of elements in the source code that compose the
compartment and <comp_id> specifies an identifier for
the compartment being defined. To define a list of elements
in the source code, the wildcard character “*” can be used to
define a name pattern. The following example depicts how
a compartment can be defined at a fine-grained level:

define pucrio.DataAccessor.create*,

pucrio.DataAccessor.read*,

pucrio.DataAccessor.update*,

pucrio.DataAccessor.delete*

as compartment DATA-ACCESS;

In the previous example, the DATA-ACCESS compart-
ment comprises all code elements of the module pucrio.

DataAccessor whose fully qualified names have the pre-
fix create, read, update or delete. Moreover, compart-
ments can also be defined in terms of more coarse-grained
elements, as shown in the next example:

define pucrio.controller.*.*

as compartment CONTROLLER;

In the previous example, the CONTROLLER compart-
ment comprises all code elements of all modules whose
fully qualified names have the prefix pucrio.control-

ler. In Java, for instance, it would comprise all methods of
all classes whose fully qualified names have the prefix
pucrio.controller.

Compartments in EPL may also be specified by defining
type constraints for their elements. In particular, EPL sup-
ports the definition of compartments in terms of subtype
relations, as shown in the following example:

define X.* as compartment CONTROLLER

where X is subtype of IController;

In the previous example, the CONTROLLER compart-
ment comprises all code elements of the modules that are
subtypes of the IController type. EPL also supports the
definition of compartments by combining name patterns
and subtype relations, as shown in the next example:

define X.create*, X.read*, X.update*, X.delete*

as compartment DATA-ACCESS where X is

subtype of IDataAccessor;

In the previous example, the DATA-ACCESS compart-
ment comprises all code elements of the modules that are
subtypes of the IDataAccessor type and whose fully
qualified names have the prefix create, read, update or
delete. In Java, for instance, this compartment would
comprise the methods whose names start with either cre-
ate, read, update or delete of the classes that are sub-
types of the IDataAccessor type. It is worth mentioning
that this feature for defining compartments in terms of sub-
type relations was not in the first version of EPL; we iden-
tified the need for this feature during one of our case
studies (Section 7).

4.2 Rules

The main purpose of an exception handling policy is to
explicitly define which responsibilities source code ele-
ments have to comply with specific exception types. These
responsibilities are expressed in EPL in terms of permis-
sions, prohibitions and obligations. More specifically, the
rule concept expresses permissions, prohibitions and obli-
gations about how compartments can establish dependency
relations with specific exception types. We consider that a
given compartment C establishes a dependency relation
with a specific exception type E if there exists one of C’s ele-
ment that establishes a dependency relation with an excep-
tion instance of the type E. Moreover, we consider that
dependency relations can be established between code ele-
ments and exception types when a code element handles,
raises, propagates, re-maps or re-throws an exception of a
given type. These are “canonical” dependency relations
between exceptions and code elements, since they are

BARBOSA ETAL.: ENFORCING EXCEPTION HANDLING POLICIES WITH A DOMAIN-SPECIFIC LANGUAGE 563

typical relations with which developers structure their
exception handling code (see Section 2). Table 1 summarizes
these dependency relation types.

EPL provides two rule types to express permissions: the
Only-May rule type and the May-Only rule type. Rules of
the Only-May type express permissions about which com-
partments can establish dependency relations with specific
exception types. This rule type is expressed with the follow-
ing syntactic structure:

only<comp_id>may<dep_type><exception_list>

The Only-May rule type is defined in terms of a depen-
dency type (<dep_type>), which may be one of the
dependency types shown in Table 1 and a list of exception
type identifiers (<exception_list>). For example, the
Only-May rule supports the definition of the following per-
mission between a compartment X and exception types A,
B and C:

only X may handle A, B, C;

In the previous example, the compartment named X is
the only one in the specification that has permission to han-
dle exceptions of type A, B and C. If a compartment differ-
ent from X handles A, B or C, then this is considered a
violation of the specified rule. The semantics of the Only-
May rule type is the same for the other dependency types.

The other rule type provided by EPL to express permis-
sions is the May-Only rule type. Rules of this type express
permissions about which exception types a given compart-
ment can establish dependency relations. This rule type is
expressed with the following syntactic structure:

<comp_id>mayonly<dep_type><exception_list>

TheMay-Only rule type is syntactically similar to the previ-
ous rule type. It is also defined in terms of a dependency type
and a list of exception type identifiers. TheMay-Only rule sup-
ports the definition of the following permission between a
compartmentX and exception typesA,B,C andD:

X may only re-map from A to B, from C to D;

The compartment named X in the previous example has
permission to re-map only from exceptions of type A to
exceptions of type B and from exceptions of type C to

exceptions of type D. If the compartment X performs a re-
mapping that is neither from type A to type B nor from
type C to type D, then this is considered a violation of the
specified rule. The semantics of the May-Only rule is the
same for the other dependency relations.

Notice in the previous example that the re-map depen-
dency type has a syntactic structure slightly different from
structure used in the example of the Only-May rule type.
The argument <exception_list> for the re-map
dependency relation is defined in terms of pairs ðE1; E2Þ.
Each pair specifies the exception type being caught (E1)
and the exception type that the caught exception is sup-
posed to be re-mapped (E2). Each pair is expressed in EPL
with the syntactic structure: from E1 to E2. This syntactic
structure for the re-map dependency relation is the same
for the other rule types.

Besides allowing expressing permissions, EPL also pro-
vides a rule type to express obligations. The Must rule type
allows expressing obligations that a given compartment has
to establish with specific exception types. The Must rules
are defined with the following syntactic structure:

<comp_id> must <dep_type> <exception_list>

The Must rule type has syntactic structure similar to the
other rule types: it has a dependency relation and a list of
exception type identifiers as argument. The Must rule can
be used to express obligations as follows:

X must propagate A, B, C;

The compartment named X in the previous example is
obligated to propagate exceptions of type A, B and C. If
compartment X does not propagate exceptions of type A, B
and C, then this is considered a violation of the specified
rule. The semantics of theMust rule is the same for the other
dependency relations.

EPL also provides a rule type to express prohibitions.
The Cannot rule type is used to express rules that prohibit
compartments to establish dependency relations with spe-
cific exception types. The Cannot rule was not part of the
first version of EPL; we identified the need for this type of
rule during our user-centric study (Section 6). The Cannot
rule type is specified with the following syntactic structure:

<comp_id> cannot <dep_type> <exception_list>

The syntactic structure of the Cannot rule type is similar
to the structure of the other rules types. The Cannot rule
type can be used to express prohibitions as follows:

X cannot raise A, B, C ;

In the previous example, the compartment named X is
prohibited to raise exceptions of typeA,B andC. If compart-
ment X raises exceptions of type A, B or C, then this is con-
sidered a violation of the specified rule. The semantics of the
Cannot rule is the same for the other dependency relations.

4.3 Alias for Exceptions

EPL also provides a language construct to allow users to
define an alias for a given list of exception types. In fact, this
language construct was also not part of the first version of
EPL; its need also emerged during our user-centric study
(Section 6). We defined the alias construct with a syntactic
structure similar to the structure used to define

TABLE 1
Dependency Relation Types

Dependency type Description

m handles E Methodm
handles an exception of type E in its scope

m raises E Methodm
explicitly raises an exception of type E in
its scope

m propagates E Methodm
propagates an exception of type E from
its scope

m re-maps from
E1 to E2

Methodm
re-maps an exception of type E1 to an
exception type E2 in its scope

m re-throws E Methodm
re-throws an exception of type E from
its scope

564 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 6, JUNE 2016

compartments. Aliases for lists of exceptions are defined
with the following syntactic structure:

define <exception_list> as alias <alias_id>;

This new language construct allows simpler specifica-
tions, as shown in the following example:

define IOException, RecordStoreException as

alias API-EXCEPTIONS;

DATA-ACCESS cannot raise API-EXCEPTIONS;

DATA-ACCESS cannot handle API-EXCEPTIONS;

only CONTROLLER may handle API-EXCEPTIONS;

In the previous example, the alias API-EXCEPTIONS
groups the exception types IOException and Record-

StoreException. Then, the same alias is used to specify
different rules, avoiding the repetition of the same list of
exceptions in the rules definition.

5 VERIFYING EXCEPTION HANDLING POLICIES

To verify a given exception handling policy, we imple-
mented the EPL Verifier, which verifies exception handling
policies for Java programs. The EPL Verifier consists of two
main modules: the Rule Checker and the Facts Extractor. The
Rule Checker receives the policy specification and for each
specified rule it uses the Facts Extractor to check if there
exists methods in the source code violating the rules. For
each violated rule, the Rule Checker module presents a list of
the methods in the source code violating the rule. In Section
5.1 we detail the Facts Extractor module and in Section 5.2
we detail how the Rule Checkerworks.

5.1 Extracting Dependency Facts

The Facts Extractor was implemented using the Eclipse Java
Development Tools (JDT). It analyzes the source code of a
system to extract the information needed by the Rule
Checker module. In particular, the source code of a target
system is parsed and its Abstract Syntax Tree (AST) is ana-
lyzed in order to extract dependency facts related to the
exception handling dependency relations supported by
EPL. To extract the dependency facts related to the depen-
dency relations supported by EPL, which are Handle, Prop-
agate, Raise, Re-map and Re-throw the Facts Extractor
analyzes the catch blocks, throw statements and throws
clauses in the source code.

In the context of the Facts Extractor module, catch blocks
may be related to the Handle, Re-map and Re-throw depen-
dency relations. The Facts Extractor module registers only
one dependency fact for each catch block. The following
pseudo code shows how it distinguishes each case:

IF catch-block contains throw-statement THEN

IF throw-statement raises the same exception

instance caught by the \catch block THEN

Register Re-throw fact

ELSE

Register Re-map fact

END IF

ELSE

Register Handle fact

END IF

As defined in the previous pseudo code, if a given catch
block contains a throw statement, then the Facts Extractor
module registers either a Re-throw or a Re-map fact; other-
wise, the Facts Extractor module registers a Handle fact. If
the throw statement contained by the catch block raises the
same exception instance caught by the catch block, then the
module registers a Re-throw fact; otherwise, the module
registers a Re-map fact. The rationale behind this characteri-
zation of the facts associated to catch blocks is that we con-
sider that an exception is only handled when the program
execution flow returns to its normal flow. When the caught
exception is re-mapped or re-thrown, the program contin-
ues in its exceptional flow. Therefore, the caught exception
is not actually handled.

In the context of the Facts Extractor, throw statements may
also be related to more than one dependency relation; they
may be related to the Raise, Re-map and Re-throw depen-
dency relations. The following pseudo code depicts how the
Facts Extractor distinguishes each case:

IF throw-statement is inside \catch block THEN

IF throw-statement uses the same exception

instance caught by the \catch block THEN

Register Re-throw fact

ELSE

Register Re-map fact

END IF

ELSE

Register Raise fact

END IF

If a given throw statement occurs inside a catch block,
then the Facts Extractor module registers either a Re-throw or
a Re-map fact; otherwise, the module registers a Raise fact. If
the throw statement inside of a the catch block raises the
same exception instance caught by the catch block, then the
module registers a Re-throw fact; otherwise, the module
registers a Re-map fact.

Finally, from the throws clauses, the Facts Extractor mod-
ule extracts the facts related to which exceptions are explic-
itly propagated by a given method. The following code
snippet exemplifies the dependency facts extracted by the
Facts Extractormodule:

public void foo() throws IOException,

MyException2, MyException3{

try{

throw new FileNotFoundException();

} catch(MyException1 e){

log(e);

} catch(MyException2 e){

throw e;

} catch(MyException3 e){

throw new MyException3();

}

}

In the previous example, the Facts Extractor module ana-
lyzes the throws clause to extract the facts related to the Prop-
agate dependency relation. Thus, the module registers that
the foo() method establishes Propagate dependency rela-
tions with the IOException, MyException2 and MyEx-

ception3 types. It should be noted that Propagate rules are

BARBOSA ETAL.: ENFORCING EXCEPTION HANDLING POLICIES WITH A DOMAIN-SPECIFIC LANGUAGE 565

intended to specify how exceptional interfaces of methods
should be declared. Rules of this type are not intended to
specify which specific exceptions flow through the bound-
aries of a given method. In the previous example, the type
IOException is declared in the method exceptional inter-
face, but the exception that is actually raised and flows
through the boundaries of the method is FileNotFound-

Exception. To specify which exceptions throw statements
should raise, one should use Raise rules. For this reason,
the dependency facts related to the Propagate dependency
relation are extracted directly from the throws clause; the
Facts Extractor module does not employ flow analysis tech-
niques to extract more accurate information about the exact
types of the exceptions flowing through the boundaries of
methods.

The Propagate rules are intended to specify how excep-
tional interfaces should be declared because these interfaces
are an important part of the exception handling structure of
Java programs. In fact, a significant part of the maintenance
effort related to exception handling in Java programs is
spent on maintaining the exceptional interface of methods
[1], [7]. If a developer declares a given exception type on
his method’s exceptional interface and needs to change this
interface during software evolution, then this will result in
changes to different parts of the code. Therefore, deciding
which exception types are allowed to be declared on the
exceptional interface of a method is an important design
decision and, as such, needs to be specified and verified
throughout the software development process. For this rea-
son, we believe that it is more important to define which
exception types are allowed to be declared on the excep-
tional interfaces of Java methods, rather than to define
which specific exception types are allowed to flow through
the boundaries of methods.

In addition, EPL does not support the specification of
rules describing which specific exceptions flow through the
boundaries of a method because this requires knowing the
internal structure of modules, which would break the infor-
mation hiding principle. Thus, we focus on supporting the
specification and verification of rules related to the Propagate
dependency type only in terms of the throws clause of Java
methods. This way, we allow developers to make internal
choices in their methods, as long as they adhere to the exter-
nal behavior specified in the exception handling policy.
There are also innumerable possible unchecked exceptions
flowing through the boundaries of methods, including
NullPointerException, BufferOverflowException,
Arithmetic-Exception, and many others. Therefore,
specifying all possible exceptions flowing through the
boundaries of methods would be impractical. In fact, this
significant burden is one of the reasons of why unchecked
exceptions are not required to be declared in exceptional
interfaces in Java [5].

Still on the previous code snippet, the Facts Extractor
module registers for the first catch block the fact that the
foo() method establishes a Handle dependency relation
with the MyException1 type. For the second catch block,
which contains the second throw statement, the module
registers the fact that the foo() method establishes a Re-
throw dependency relation with the MyException2 type.
For the third catch block, which contains the third throw

statement, the module registers the fact that the foo()

method establishes a Re-map dependency, in which it re-
maps an exception instance of the MyException3 type to
another exception instance of the same type. It is worth
highlighting that the re-map facts registered by the Facts
Extractor module are defined in terms of the exception type
declared in the catch block and the exception type of the
throw statement. Also, we consider that re-mappings may
occur between exception instances of different types and
also between exception instances of the same type, as shown
in the previous example.

To extract the dependency facts related to the Raise and
Re-map dependency relations, the Facts Extractor module
analyzes the type of the throw statement expression. In the
previous example, the type of the throw statement expres-
sion can be statically determined by only inspecting the
throw statement: its expression is a new instance creation, so
its type is the type of the instance being created. For exam-
ple, the only exception type that can be raised by the first
throw statement is the FileNotFoundException type.
Therefore, the Facts Extractor module registers the fact that
the foo() method establishes a Raise dependency relation
with the FileNotFoundException type. However, when
the expression of throw statements refers to variables,
method calls or conditional expressions, the type of the
raised exception cannot be directly determined by only
inspecting the throw statement. For this reason, a type-infer-
ence algorithm is necessary to determine the type of the
raised exception in these cases. The following code snippet
exemplifies these cases:

public void bar() throws Exception{

if(condition1){

Exception e1 = new MyException();

throw e1;

}
else{

Exception e2 = cond() ? new Type1Exception()

: createException();

throw e2;

}

}

public Type2Exception createException(){

return new Type2Exception();

}

In the previous example, the expressions of both throw
statements are references to variables. To determine the
exception type actually raised by the throw statements, we
implemented the type-inference algorithm for exception
types proposed by Sinha and Harrold [43]. The algorithm
performs a reverse data-flow analysis starting from the
throw statement, searching for statements that assign a type
to that variable. For the first throw statement in the previous
example, the algorithm finds an assignment expression for
the e1 variable, whose right-hand side is a new instance cre-
ation expression. Thus, the type of the raised exception can
be precisely determined and the Facts Extractor module
registers the fact that the bar() method raises MyExcep-

tion, which is the type of the instance being created.
For the second throw statement, the type-inference

algorithm also finds an assignment expression for the e2

566 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 6, JUNE 2016

variable, but the right-hand side of the variable assignment
is a conditional expression. Since the assignment of the e2

variable depends of a conditional expression, its type can-
not be precisely defined statically. Consequently, the type
of the exception raised by the second throw statement cannot
be precisely defined too. In these cases, the type-inference
algorithm returns the set of the possible types of the throw
statement expression. Thus, in the previous example, the
type-inference algorithm finds two possible assignable
types for the e2 variable: Type1Exception, which comes
directly of the then expression of the conditional expression;
and Type2Exception, which comes from else expression
of the conditional expression—the returned type of the
createException() method invocation. Then, for each
possible type of the throw statement expression, the Facts
Extractor module registers a fact. Thus, it registers the fact
that the bar() method establishes Raise dependency rela-
tions with both Type1Exception and Type2Exception.
If the type-inference algorithm finds more than one possible
type for a throw statement that is part of a re-map, then the
Facts Extractor will register more than one Re-map fact, one
for each possible type of the throw statement.

Finally, it is worth mentioning that the type-inference
algorithm implemented by the Facts Extractor module sim-
plifies its analysis when a virtual method invocation is
found in its data-flow path. In Java, every non-static method
is by default a virtual method, except final and private
methods. Moreover, in object-oriented paradigm, a virtual
method is a method whose behavior can be overridden
within an inheriting class by a method with the same signa-
ture to provide polymorphic behavior. Therefore, given a
virtual method invocation, it is not always possible to stati-
cally decide which concrete method is being invoked. To
overcome this limitation, when the Facts Extractor module
finds a virtual method invocation in the data-flow analysis
path of a throw statement, it does not try to analyze all
return statements of all possible virtual method invocations
to determine the precise type being returned. Instead, it con-
siders the return type in the method’s signature. This sim-
plification may return less precise types, but it is at least
type-safe, since the precise types are either the actual type
or subtypes of the type considered by the Facts Extractor
module. In fact, this simplification is similar to the analysis
performed by the Java compiler. Moreover, empirical evi-
dence suggests that the overwhelming majority of throw
statement expressions in Java programs are new instance
expressions [43], so in most cases the types of raised excep-
tions can be precisely determined without loss of precision.

5.2 Checking the Rules

The Rule Checker module checks for each specified rule in
the exception handling policy if there exists in the source
code violating facts. Then, for each violated rule, the verifier
presents a list of the violating facts. In EPL, each rule type
specifies how a given compartment is allowed to establish a
dependency relation to a list of exception types. Consider a
rule R that specifies how a compartment C is allowed to
establish a dependency relation D to a list E of exception
types. A violation to a Cannot rule is defined as follows:

9m:Method 2 C ^ 9 e:Exception 2 E |D(m, e)

In the previous notation, D(m,e) means that a method
m establishes a dependency relation D with the exception
type e. Thus, a violation to a rule R of the Cannot type occurs
when there exists a method m in compartment C that estab-
lishes a dependency relation D to an exception type e in the
list E. In other words, a violation to a Cannot rule occurs
when a method establishes a dependency relation to an
exception type that it is prohibited to.

Similarly, violations to May-Only rules are defined as
follows:

9m:Method 2 C ^ 9 e:Exception =2 E |D(m, e)

A violation to rule R of the May-Only type occurs when
there exists a method m in compartment C establishing a
dependency relation D with an exception type e not in the
list E, i.e., the method establishes a dependency relation to
an exception type that it is not allowed to.

Violations to Only-May rules are defined as follows:

9m:Method =2 C ^ 9 e:Exception 2 E |D(m, e)

A violation to a rule R of the Only-May type occurs when
there exists a method m not in compartment C establishing
a dependency relation D with an exception e that is in the
list E. That is, an Only-May rule R states that only methods
in C are allowed to establish a dependency relation D with
the exception types in E, but a method not in C is establish-
ing a dependency relationDwith an exception type in E.

Finally, violations toMust rules are defined as follows:

9 e:Exception 2 E ^ @m:Method 2 C |D(m, e)

A violation to rule R of the Must type occurs when for at
least one exception type e in the list E there is no method m
in compartment C establishing a dependency relation D
with e. In other words, for at least one exception type e spec-
ified in the list E, there is no method fulfilling its obligation
of establishing a dependency relationDwith e.

Verification warnings. EPL makes it possible to define sets
of inconsistent rules; that is, developers might specify rules
that conflict with one another. Prior to checking for policy
violations, the Rule Checker module will validate the given
set of specified rules and warn the developer of any conflicts
between rules. Developers must then correct these conflicts
before checking their policies. Thus, readers of the specifica-
tion can readily comprehend the intended use of exceptions
without the extra burden of understanding the complete
specification and identifying implicit conflicts. The follow-
ing rule conflicts are detected by the EPL Verifier.

5.2.1 Conflict between Cannot and Must

Given the same compartment and the same dependency
type, a Cannot rule and aMust rule will conflict if they share
the same exception type. Likewise, a Cannot rule will con-
flict with May-Only rules and Only-May rules when refer-
ring to a common compartment and exception type. For
example, the following cannot rule:

X cannot handle A;

Conflicts with:

X must handle A;

X may only handle A;

only X may handle A;

BARBOSA ETAL.: ENFORCING EXCEPTION HANDLING POLICIES WITH A DOMAIN-SPECIFIC LANGUAGE 567

5.2.2 Conflict between Only-May and Only-May

Given a common exception type and two or more different
compartments, Only-May rules will conflict if they refer to
the common exception type. For example, the following
Only-May rules conflict with each other:

only X may raise A;

only Y may raise A;

5.2.3 Conflict between Must and May-Only

Given a common compartment, aMust rule and aMay-Only
rule will conflict if an exception type is declared in the Must
rule, but it is not declared in the May-Only rule. For exam-
ple, the following rules conflict with each other:

X must handle A;

X may only handle B, C;

5.2.4 Redundancy between Cannot and Only-May

Besides the previous conflicts between rules, Cannot rules
and Only-May rules may also interact with each other to cre-
ate implicit redundancies in the specification. A given Can-
not rule and a given Only-May rule will create an implicit
redundancy if they refer to different compartments and to a
common exception type. The following rules create a redun-
dancy in a specification:

only X may handle A;

Y cannot handle A;

In the previous example, the rule “Y cannot handle A” is
subsumed by the rule “only X may handle A”, i.e., the first
rule does not add practical information to the policy specifi-
cation. The Rule Checker will warn developers about these
implicit redundancies in the specification. Unlike conflicts
between rules, developers are allowed to verify their poli-
cies even if their specifications contain redundant rules.
Since redundancies between Only-May and Cannot rules do
not introduce inconsistencies in the policy specification, we
allow developers to leave redundant rules in the specifica-
tion as a manner to make them more explicit to other read-
ers of the specification.

6 USER-CENTRIC EVALUATION

After designing the EPL language, we designed a study to
explore how developers use EPL to produce their exception
handling policies. In addition, we were also interested in
exploring if the language actually provides suitable con-
structs for specifying exception handling policies. To
explore these design dimensions, we needed to observe the
use of EPL and also to gather the reactions of developers
that used EPL. In this context, we performed an exploratory
user-centric observational study. In this study, we recruited
developers with different backgrounds and from different
organizations and asked them to use EPL in an observa-
tional study, which was followed by a semi-structured
interview. We opted to combine these two research methods
for two reasons. First, we could use the observational study
to give participants context, i.e., we could set up scenarios
in which participants could perform tasks using EPL while
we directly observed them. Second, we could use the inter-
view to gather participants’ reactions about their experience

in using the language. In the next sections we detail the set-
tings of our observational study (Section 6.1) and we present
its results (Section 6.2).

6.1 Study Design

The main goal of this study was to observe how participants
use EPL to produce their exception handling policies. To do
so, we set up tasks to expose participants to the use of EPL.
The sessions of the observational studywere performed indi-
vidually. Each session comprised two tasks of 30 minutes
each. The goal of the tasks was to mimic different scenarios
of use of the language. Thus, we could also observe how par-
ticipants use the language in the different scenarios.

The first task simulated a scenario where the exception
handling policy is specified when the system is already in
production, but without an explicit policy. In this case, it is
necessary to recover the implemented exception handling
policy from the source code. The goal of participants was to
inspect the source code of the target system and extract the
implemented exception handling policy. Participants
received only the source code of the target system in this
task. The source code of the target system was available as a
project in the Eclipse IDE and participants were allowed to
use any feature of the IDE. They had no access to any type of
documentation of the target system. We believe that this
would be the most common scenario of use of the language,
since documentation artifacts about exception handling poli-
cies are currently not part of most software projects [15], [26].

The second task simulated a scenario where the exception
handling policy is specified during the design of the system,
prior to its implementation. This scenario is less usual, but it
happens in some software projects with more critical robust-
ness requirements [6]. In this task, participants received the
systemdocumentation. The systemdocumentation describes
the intended architecture of the target system, showing its
main components in a component diagram, as well as the
intended relations between these components. The docu-
mentation also describes the intended exception hierarchy
tree, showing the hierarchy structure in a class diagram.
Finally, the documentation describes the exception handling
responsibilities of each component regarding each exception
type. Participants were in charge of planning and producing
the intended exception handling policy of the target system
based solely on the documentation of the target system; they
had no access to its source code.

Prior to actually performing the tasks, the researcher
gave to each participant a lecture (approximately 15-20
minutes) about: basic exception handling concepts, the con-
cepts provided by the proposed specification language, the
study settings and the architecture of the target system. The
presentation covered all main topics of EPL: compartments,
types of rules and dependency types. Participant had at
their disposal in both tasks a notebook with a regular text
editor to produce the specification. They also had a printed
document containing the description of the core concepts of
the language, the language grammar and a concrete exam-
ple of an exception handling policy specification. The con-
crete example was defined to cover all concepts provided in
the specification language. In this manner, participants
were exposed to all main features of EPL. During the lecture

568 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 6, JUNE 2016

and in the printed document provided, we intentionally did
not mention the possibility of specifying conflicting rules.
We did not mention this because we wanted to observe if
participants would be aware of possible conflicting rules.
During the study, the researcher only observed the partici-
pants and did not participate in the task. Questions about
concepts and the use of the language or the target system
were answered with “you can consult the provided doc-
umentation”. After the lecture and before actually perform-
ing the first task, participants were allowed to read the
document describing the language without a limit of time.
The artifacts used to perform the observational study and
the interviews are available on-line.3

6.1.1 Data Collection and Data Processing

There were three main data sources in this study: field notes
taken during the tasks performed by participants, the speci-
fications produced by participants during the tasks and the
answers to the post-task interview. During the observa-
tional study, the first author took field notes about the spe-
cific operations that participants performed during each
task. Examples of these notes are “Participant highlighted the
system documentation”, “Participant used the search feature of
the IDE”, etc. There were also notes with questions to be
asked during the post-task interview.

We analyzed the collected data with a mix of quantitative
and qualitative methods [12]. The specifications produced
by participants were saved at the end of each task and later
analyzed by the researchers. We quantitatively analyzed
each specification produced by computing its size in terms
of the number of compartments and rules specified. We also
qualitatively compared the specifications of each task in
terms of how compartments are defined and in terms of
what rule types and dependency types are used.

The post-task interviews were recorded and later tran-
scribed by the researcher. The interviews were performed
in Portuguese. The audio transcriptions were also in Portu-
guese, but they were translated to English by the research-
ers in order to report the results. To analyze the collected
data, we adopted an iterative coding process. First, we
extracted the main fragments of participants answers and
assigned a topic to each of these fragments. In this context,
a topic refers to a name created by the researchers for a
common and recurring theme that clusters a set of frag-
ments. Next, we reexamined the assigned topics and fur-
ther examined the fragments and field notes to check if
new topics emerged. We also checked the need to merge
existing topics in more abstract topics. We repeated these
last steps until we reached saturation, i.e., until new topics
did not emerge and existing topics could not be merged in
more abstract topics.

6.1.2 Target System

To produce the artifacts required to perform the study, we
needed a software system for which we had access to its
source code and its intended exception handling policy. We
used the Mobile Media system as the target system for three
main reasons. First, Mobile Media is a well documented

product line that has been used in previous empirical stud-
ies in exception handling [9], [11], [38]. Second, we could
contact the original designers of Mobile Media to elucidate
its intended exception handling policy. Third, as Mobile
Media is a product line, the general exception handling
policy would need to be specified in a way that it would
be reused and applicable to all its more than 100 products.
The artifacts describing Mobile Media’s exception hierar-
chy tree and responsibilities of components regarding
exception types did not exist prior to this study. The
researcher produced them by consulting the source code
and existing artifacts of Mobile Media and with the help of
its original designers.

6.1.3 Participants

The participants of our study were invited by email and vol-
untarily accepted to participate on the study. We invited
participants from different organizations and with different
levels of experience. We selected the set of participants of
our study in an iterative manner: we selected one new par-
ticipant, performed the observational study followed by the
interview and analyzed the collected data. We repeated this
iteration until we reached saturation, i.e., until we analyzed
the collected data and observed that the emerging topics
were already previously mapped. We selected ten partici-
pants, although we reached saturation with eight. Partici-
pants in our study had their university education in
different institutions from different cities. Their experience
ranged from very inexperienced, with less than one year of
experience in industry, to very experienced, with more than
ten years of experience in industry. They also had different
backgrounds in terms of their previous experience in per-
forming relevant design decisions in software projects.

To keep participants’ anonymity, we refer to each one of
them with an Id, as shown in Table 2. The table also presents
the participants profiles in terms of their years of develop-
ment experience. It also describes the programming lan-
guages that they use (or have already used) in their project
activities. All participants had previous experience with the
use of exceptions in their projects and they all have different
backgrounds in terms of experience with programming lan-
guages. All participants worked with Java, but also worked
with other programming languages. Each participant had
already used at least two programming languages imple-
menting different exception handling mechanisms. For

TABLE 2
Participants Profile

Id Experience in
Software Industry

(in years)

Programming languages

P1 <1 Java, C, C++, C#
P2 10 Java, JavaScript, C#, PHP
P3 8 Java, JavaScript, PHP
P4 3 Java, C#
P5 3 Java, JavaScript, PHP
P6 10 Java, JavaScript
P7 8 Java, C++, C#
P8 6 Java, JavaScript, C#, VB.NET
P9 5 Java, JavaScript, C#, Delphi
P10 7 Java, C#, VB.NET

3. Available at: http://www.les.inf.puc-rio.br/opus/EPL

BARBOSA ETAL.: ENFORCING EXCEPTION HANDLING POLICIES WITH A DOMAIN-SPECIFIC LANGUAGE 569

instance, in Java, the compiler automatically verifies if there
exist proper handlers for checked exceptions. In C#, Java-
Script and PHP, on the other hand, there exist exceptions,
but no automatic verification for proper handlers. Thus,
participants were not biased towards a specific exception
handling mechanism.

6.1.4 Interview Guide

The goal of the interview was to gather participants’ reac-
tions about their experience in using the specification lan-
guage. To help us in understanding participants usage of
the EPL language we relied on a technology adoption model
that try to explain the determinant factors of technology
usage behavior. Thus, we built our interview guide based
on the Technology Acceptance Model (TAM) [14]. The TAM
is one of the most used models for predicting technology
adoption, but in the context of this study this model was
useful to set up the theoretical background of our interview
guide. The TAM considers that two dimension may influ-
ence the user behavior towards a technology: “Perceived ease
of use” and “Perceived usefulness”. The first dimension relates
to how much a user believes that using a given technology
is free from effort. The second dimension relates to how
much a user believes that using a given technology is useful
to support his tasks. Moreover, we structured our interview
guide as a semi-structured interview. Thus, we would have
flexibility to explore unforeseen information that could
emerge during the interviews.

6.2 Results

This section presents the results of our observational study.
In Section 6.2.1 we present the analysis of the specifications
produced in each task of the observational study, whereas
in Section 6.2.2 we present our observations of how devel-
opers used the language in each task. Finally, in Section
6.2.3 we present the analysis of the interviews.

6.2.1 Artifacts Analysis

Comparing the specifications produced during the first task,
we could observe that participants produced specifications
with similar compartments, but with very different rules.
As can be observed in Table 3, the number of specified com-
partments varied in a smaller range (minimum of 2, maxi-
mum of 6) than the number of specified rules (minimum of
2, maximum of 30). The source code of the target system
comprised five high-level packages: Controller, Screen, Albu-
mData, ImageAccessor and ImageUtil. We observed in the
specifications that all participants defined compartments
for the Controller and AlbumData packages. The packages
ImageAccessor and ImageUtil were specified as compart-
ments by 5 participants; the other participants did not spec-
ify compartments for these packages. Similarly, the Screen
package was specified as a compartment by 4 participants;
the other participants did not specify compartments for this
package. Only participant P2 specified a compartment
named Main for the main class of the system. In addition,
most participants defined their compartments at the pack-
age level with name patterns using the wildcard operator;
only participant P1 defined his compartments by listing all
of its elements. It is worth mentioning that the feature for

specifying compartments in terms of subtype relations was
incorporated to EPL only after this observational study.
Thus, participants did not use it in this study.

For the specified rules, we can observe in Table 3 that the
maximum number of rules specified in a specification was
30, which was produced by Participant P2; the other partici-
pants produced specifications with two to nine rules. While
participant P2 was performing the first task, we observed
that for the rules that could be specified in terms of a list of
exceptions, he specified one rule for each exception type in
the list. The following code snippet exemplifies what partic-
ipant P2 did. Participant P2 specified a set of rules similar to
the following rules:

X must raise A;

X must raise B;

X must raise C;

Instead of specifying a single rule similar to the following
rule:

X must raise A, B, C;

If participant P2 had used rules using exception lists, his
specification would have nine rules, instead of 30. It is
worth noting that what participant P2 did is not an error in
the language use, but rather an ineffective use. We asked
him why he adopted this approach and he answered:

P2: I thought that each rule had to have only one excep-
tion. Could I have used a list here? (...) Well, now I can
see here in the examples (provided with the language doc-
umentation) that there is an example with a comma and a
list. (...) That (using a list) would decrease the number of
lines (of the specification), because it is all repeated in
here.

In terms of the dependency type used, some specifica-
tions produced in the first task were defined in terms of
only one dependency type: participants P3 and P5 specified
only rules of the Handle dependency type, whereas partici-
pant P7 specified only rules of the Raise dependency type.
The specification produced by the participant P2 was the
only one to cover all the exception handling dependency
types provided by EPL. The specifications produced by the
other participants comprised no more than two different
dependency types, mostly Handle and Raise.

Similarly, in terms of the rule types used, some specifica-
tions were defined in terms of only one rule type: partici-
pants P5 and P8 produced their specifications using only
rules of the May-Only type, whereas participants P6 and P9
produced their specifications using only rules of the Must
type. There was no specification produced using only the
Only-May type. The other participants used more than one
rule type to produce their specifications. It is worth

TABLE 3
Specifications Produced in the First Task

Compartments # Rules

Min 2 2
Max 6 30
Average 4 7.2
Median 4 4.5

570 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 6, JUNE 2016

mentioning that the Cannot rule type was incorporated to
EPL only after this observational study, so participants did
not use it in this study.

We also reviewed the specifications produced in the first
task to check if the specifications produced were consistent
with the exception handling code implemented in the target
system. That is, we checked if the specified rules referred to
dependency relations and exception types that exist in the
source code. We observed that all rules specified by partici-
pants P2, P3, P4 and P7 were consistent with the source
code. For the other participants, there were both consistent
and inconsistent rules in their specifications. There was no
participant that produced only inconsistent rules. It is worth
highlighting that inconsistent rules are not necessarily
incorrect in this context. During this study, participants
were free to produce their specifications, as they wanted to.
We did not give any specific order of how participants
should produce their specifications. This decision implies
that some participants may have produced an exception
handling policy that directly mirrors the information con-
tained in the source code. That is, the specification produced
strictly describes what is implemented in the source code.
On the other hand, other participants may have considered
that the source code does not necessarily adheres to an
exception handling policy and have produced an idealized
exception handling policy that should have been followed
in the target system. For this reason, we did not consider
the consistency between the specification produced and the
source code as an indicator of the correctness of the specifi-
cation. We consider it only as an indicator of the different
approaches adopted by participants in this task.

For the specifications produced in the second task, we
can observe in Table 4 that there was one specification with
0 compartments definitions, which was produced by partic-
ipant P9. The other participants produced specifications
with the number of compartments definitions ranging from
a minimum of 3 and a maximum of 4. While participant P9
was performing the second task, we observed that he speci-
fied his rules without specifying any compartment. During
the interview we asked him why he did not specify com-
partments and participant P9 answered:

P9: Well, I think I forgot to specify them. Now that you’ve
asked me, I realized that I defined the rules using the
names of the components (in the diagram of the
documentation).

We can also observe in Table 4 that the maximum num-
ber of rules specified in the second task is 21. This specifica-
tion was produced by participant P2, who instead of
specifying his rules with lists of exceptions, created one rule
for each exception in the list, as we previously discussed.
The other participants produced specifications with the

number of rules ranging from a minimum of six rules to a
maximum of nine rules.

From the system documentation provided in the sec-
ond task, there were five exception handling require-
ments that could be specified by participants. In general,
participants specified more than five rules because they
expressed the same requirement more than once using
different rule types. Consider the following requirement,
for example:

The following exceptions are raised by third party
APIs and are handled in the context of the Image
Accessor component: RecordStoreException,
RecordStoreNotOpenException, IOException.

The previous requirement was specified as two rules by
participants P2 and P4:

only IMAGE_ACCESSOR may handle RecordStoreException,

RecordStoreNotOpenException,IOException;

IMAGE_ACCESSOR must handle RecordStoreException,

RecordStoreNotOpenException, IOException;

As one can observe in the previous specification, par-
ticipants P2 and P4 expressed the previous requirement
using rules Only-May and Must rules for the same
requirement. Both rules were consistent with the system
documentation.

Participants P2, P3, P4 and P6 covered all exception han-
dling requirements. They specified each requirement by
using rules that were consistent with the system documen-
tation. Participants P1, P5, P7, P9 and P10 also specified
rules that covered all exception handling requirements, but
each participant specified one rule incorrectly. Curiously,
they all mistaken the specification of a rule related to the
same requirement; they forgot to specify some exception
types in a given rule. This requirement was specified in two
different parts of the system documentation. Thus, partici-
pants may have missed the second part of the requirement.
Participant P8 completely missed one requirement, but
specified rules that were consistent with the documentation
of the other requirements. Moreover, only participant P5
created rules that were not related to any of the exception
handling requirements defined in the system documenta-
tion. This participant specified two extra rules, which were
both inconsistent with the system documentation. In partic-
ular, participant P5 created two rules for exception types
that were not defined in the system documentation and
these types did not seem to represent cases of other existing
types misspelled.

By comparing the specifications produced in the second
task, we observed that they were similar to each other.
Except for the participant P9, who forgot to specify the com-
partments, all the other participants grouped the system
components into compartments in the same way: they spec-
ified four compartments comprising the same components.
In fact, we observed that participants P4 and P8 initially
specified four compartments, but they removed the specifi-
cation of one of their compartments at the end of the task.
We asked them why they removed it and they answered
that, at the end of the task, they realized that they had not
produced any rule for that compartment, so they opted to
remove its definition. Moreover, all participants used at

TABLE 4
Specifications Produced in the Second Task

Compartments # Rules

Min 0 6
Max 4 21
Average 3.4 8.4
Median 4 7

BARBOSA ETAL.: ENFORCING EXCEPTION HANDLING POLICIES WITH A DOMAIN-SPECIFIC LANGUAGE 571

least three dependency types (Handle , Raise , Re-map) to pro-
duce their specifications.

Analyzing the artifacts produced in the second task, we
could also observe that when the system documentation
explicitly used a modal verb to define a given exception
handling requirement, all participants produced the same
rule type. For example, the system documentation had one
requirement explicitly using the modal verb must:

The exceptions raised by third party APIs do not leave the
Image Accessor component and must be remapped to the
PersistenceMechanismException type.

For this requirement, all participants specified it as a
Must Re-map rule. However, when requirements in the sys-
tem documentation did not explicitly use a modal verb, par-
ticipants specified the same requirement with different rule
types. For instance, the system documentation had one
requirement stating the following:

The Image Accessor component raises the following
exceptions: NullAlbumDataException, ImageNotFound-
Exception (...).

Participants P1, P3, P5 and P10 specified the previous
requirement with a May-Only raise rule, whereas partici-
pants P2, P4, P8 and P9 specified it using a Only-May raise
rule and participants P6 and P7 specified it using a Must
raise rule.

Finally, except from the lapse of participant P9 in the sec-
ond task, we did not observe any other serious errors in the
specifications produced in both tasks. The most recurring
error observed was the lack of the “from” keyword in the
rules of the Re-map dependency type. A total of six out of the
10 participants forgot this keyword in their specifications. In
addition, the other errors we found were minor syntax
errors, such as amissing semicolon or amisspelled keyword.

6.2.2 Observation Analysis

By observing how participants used the language during the
observational study, we could observe distinct approaches
in each task. During the first task, when participants had to
inspect the source code to infer the exception handling pol-
icy, the approaches adopted by participants to produce the
policy specification varied. In particular, we could observe
that some participants adopted systematic approaches to
inspect the source code, whereas others seemed to inspect
the source code at random. Moreover, we could observe that
those who adopted systematic approaches relied on search
features of the IDE to assist them.

Participant P2 navigated through the packages of the sys-
tem and found the exception types defined by the applica-
tion. Then, for each of these exception types, he used the
“References in Project” search feature of the Eclipse IDE,
which shows the places in the source code where a given
type is used. Participants P3 and P8 searched in the source
code methods matching the keyword “catch”. Similarly, par-
ticipant P7 searched in the source code methods matching
the “throw new” keywords. Then, for each matching method,
participant P7 used the “Call Hierarchy Tree” view of the
Eclipse IDE, which shows the callers and callees of a given
method. Participant P6 followed a systematic approach dur-
ing the first task, but he did not use any search feature of

the IDE. First, he defined one package of the system as one
compartment. Next, he opened each one of the classes of
this package and inspected its source code. When he fin-
ished inspecting the classes of the first package, he repeated
these steps for another package. For the other participants,
we could not observe any structured approach to inspect
the source code and produce the exception handling policy
specification. They also did not use any specific feature of
the IDE, rather than those generally used to navigate
through the source code files.

The different approaches adopted in the first task may be
one of the reasons of why the specified rules produced in
this task were so different, as discussed in the previous sec-
tion. Participants P3 and P7, for instance, produced specifi-
cations with rules of only one dependency type, the Handle
and Raise dependency types, respectively. This is actually
aligned with their systematic approach of searching for key-
words related to specific exception handling dependency
relations. Participant P2, on the other hand, was the only
participant to produce a specification covering all exception
handling dependency types provided by EPL. This is also
aligned with his approach of searching for all the references
of a given exception type in the source code, instead of
searching for a specific dependency relation. In addition,
participants P2, P3 and P7 produced policy specifications
that were completely consistent with the source code. So it
might be the case that their systematic approaches were
employed to produce specifications that mirrored the infor-
mation contained in the source code.

During the second task, when participants had to extract
the exception handling policy from the system documenta-
tion, we could observe that most participants followed a
similar approach. First, they specified the compartments of
the system based on the components diagram provided in
the system documentation. Then, they inspected the system
documentation searching for requirements that could be
expressed as exception handling rules. For each require-
ment found, they specified a given exception handling rule.
The only exception to this approach was the participant P9,
who forgot to specify his compartments, as discussed in the
previous section. He specified his rules using the names of
the components shown in the system documentation,
instead of the names of compartments.

The similarity in the approaches adopted by most devel-
opers in the second task may be the reason why the specifi-
cations produced were so similar. In particular, all
participants defined their compartments matching the
architecture elements described in the system documenta-
tion. In terms of how participants specified their rules,
except from the case in which the modal verb must was
explicit in the text, as discussed in the previous section, we
could not distinct how each developer interpreted the sys-
tem documentation to produce their rules.

6.2.3 Interview Analysis

We extracted 133 fragments from the interviews transcrip-
tions and a total of six topics emerged from these fragments.
The topics that emerged, presented in order of largest num-
ber of associated fragments, were: Perceived Usefulness (29
fragments), Expressiveness (26 fragments), Usability (25

572 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 6, JUNE 2016

fragments), Impact on Performance and Productivity (22 frag-
ments), Learnability (16 fragments) and Comprehensibility (15
fragments). The results of this study take the form of quotes
that illustrate the participants’ reactions about different
dimensions of EPL captured by the six topics.

a) Perceived usefulness. The Perceived Usefulness topic groups
together the fragments in which participants mention if and
in which ways the EPL would be useful to them. Overall, all
participants considered the proposed DSL useful, but in dif-
ferent ways. Participant P10, in particular, commented about
the usefulness of expressing exception handling policies:

P10: I think that defining this (exception handling) policy
is like defining any other system requirement. If we don’t
specify it, products will have to conform to what? If this
(exception handling policy) is part of system’s specifica-
tion, then we have to do it. Conformance (to require-
ments) is part of the system’s quality.

Other participants perceived the language as a useful
means to support software quality assurance practices. Par-
ticipants P2 and P4 mentioned that using the proposed DSL
would be useful to support software inspections. About this
P2 mentioned:

P2: In an inspection meeting there would be probably less
anomalies (related to exceptions) to fix. Then, it would
improve source code quality, because we wouldn’t make
many mistakes (related to exceptions), because there
would be a warning in my IDE “hey, look, you raised an
exception in the wrong place!”

Participants P1 and P10 mentioned that using the lan-
guage would prevent defects and bad programming practi-
ces related to exception handling. Participant P1 mentioned:

P1: It would help me to avoid bad programming practices
and follow the rules someone else specified, which would
probably enhance my knowledge about how exceptions
have to be used. In fact, using this language would help
me or guide me on how exceptions must be used, how
things should be done.

Participant P3 introduced another perspective about how
the language can be useful. This participant considered that
using the language is useful because it would raise the aware-
ness of a role required in the development team in charge of
managing exception handling in the software project:

P3: I believe that using the language would be useful
because we would have a person to explicitly think about
exception handling policies. This is perhaps the main ben-
efit: a person to define and reason about the exception
handling policy and the exception handling rules.

Participant P6 also considered the language useful, but
he showed concerns about aligning this type of solution
with the organizational objective:

P6: The language seems useful and I would like to see its
practical use. The problem is that in most cases there is
no support from the company administration to invest on
this (type of solution). They only focus on results. Appar-
ently there is a barrier in using these “auxiliary methods”
because it seems a waste of time, a waste of money. But I
do like things aimed at improving software quality.

Other participants mentioned more reasons why they
considered the language useful, including: it may help
improving system’s architecture by defining exception han-
dling responsibilities, it may support communication about
exception handling among members of a development
team, it may support system comprehension and it may
support maintenance of legacy systems.

b) Expressiveness. The Expressiveness topic groups together
the fragments in which participants commented on if it was
possible to express what they wanted using the EPL lan-
guage. Overall, all participants considered that expressing
exception handling policies with the proposed specification
language was easy. However, some participants also men-
tioned issues with the language that hinders its expressive
power. In particular, six participants mentioned the lack of
a proper construct in the language to express negation.
About this matter, participant P1 said:

P1: During the second task I read in the documentation
(of the target system) “this compartment (Screen) does
not raise any exception”. But then I looked the language
grammar and I couldn’t find anything for that. There was
no “not” to express “may not handle” or “may not raise”.

Participants P2 and P4 mentioned that they could not
express the rule “Screen does not raise any exception”, but did
not explicitly complain about the lack of a specific construct
for that. Instead, they tried to express it using the Only-May
rule. Participant P2 said:

P2: If I specify that only compartment X may raise a
given exception, then Screen is not allowed to raise that
exception. That’s how I tried to express this rule, using
the only-may rule.

Even though the understanding of participant P2 about
the Only-May rule type is correct, his attempt to express the
rule “Screen does not raise any exception” using the Only-May
rule had some unwanted side effects in the specification.
Participant P2 tried to express the previous rule as follows:

only X may raise *;

In the previous rule, the wildcard operator was used to
specify that the compartment X is the only one allowed to
raise any exception. As a consequence, the Screen compart-
ment is not allowed to raise any exception. This specifies
the intended exception handling rule for the Screen compart-
ment, but it may have some unwanted side effects, since no
other compartment is allowed to raise any exception. In
fact, participant P2 produced another rule of the Raise
dependency type that conflicted with this one, although he
seemed not to realize that. For this reason, users may mis-
use the Only-May rule in an attempt to compensate the lack
of a negation construct in EPL, at the risk of producing con-
flicting rules, which shows a design flaw of the proposed
specification language. When we first defined EPL, the
negation construct was actually not defined. We thought
that compartments were supposed to be specified in terms
what they should do, instead of in terms what they should
not do. It was only during the post-task interviews that we
realized that the negation construct was necessary in EPL.
Hence, the negation construct, as described in Section 4, is
an improvement that was incorporated a posteriori into EPL.

BARBOSA ETAL.: ENFORCING EXCEPTION HANDLING POLICIES WITH A DOMAIN-SPECIFIC LANGUAGE 573

c) Usability. The topic Usability groups together the frag-
ments in which participants mentioned issues related to the
practical use of EPL. Some of the aspects about how partici-
pants used EPL were already described in Sections 6.2.1
and 6.2.2. During the interviews, all participants answered
that EPL is easy to use. However, some participants pon-
dered that defining the exception handling policy was not
easy, especially during the first task. About this, partici-
pants P4 and P5 said:

P4: I think that it would be difficult for a user to retrieve a
set of (exception handling) rules from the source code of a
previously implemented system. But I can’t think of an
easy way of doing it. I don’t think that the language itself
can ease that.

P5: Specifying it (the exception handling policy) was dif-
ficult, especially because I didn’t know the system. But if
you know what you have to specify, using the language
for that is very simple.

Participant P3 mentioned that the complexity involved in
extracting exception handling rules from the source code
relates to the amount of information involved:

P3: (It is difficult, but) Not because of the language, but
because of the huge amount of information (in the source
code) that I had to deal with.

Finally, participants identified some usability aspects of
the proposed specification language that could be
improved. Participant P1, in particular, suggested the possi-
bility of defining an alias for a list of exceptions:

P1: It would be great if we could define a name for a given
list of exceptions the same way we define a compartment.
Without this, I waste my time re-writing all exceptions
over and over. It would decrease the copy and paste and
would be faster to specify.

Participant P3 also complained about having to re-write
the same list of exception names in different rules along the
specification, even though she did not suggest a possible
solution. An alias construct for lists of exceptions was not
part of the first version of the language. We considered it a
good suggestion and added it to EPL, as previously
described in Section 4. Finally, it is worth noting that during
the interviews no participant commented on the possibility
of specifying inconsistent rules.

d) Impact on performance and productivity. The topic Impact
on Performance and Productivity groups together the frag-
ments in which participants mention the impact that using
EPL would have on their activities. Overall, participants
considered that the language would have a positive impact
on their performance and productivity. Most of the reasons
given by participants were already discussed in the topic
Perceived Usefulness. Only participants P1 and P3 showed
some concerns about a possible negative impact on their
performance and productivity. About this matter, partici-
pant P3 said:

P3: For the person responsible for specifying the rules,
it would be very costly. Not because of the language,
which is simple to use, but as far as I know from the
projects I’ve worked on, this concept of “exception pol-
icy” simply do not exist. In most cases we only handle

exceptions locally, so it would be very hard to reason
about broader policies.

About the possible negative impact on performance and
productivity, participant P1 said:

P1: Using the language may decrease a bit our pro-
ductivity, but that’s because developers have bad (pro-
gramming) habits. So it would force us to adhere to
the specified rules right from the start. In this manner,
if you are a programmer with bad (programming) hab-
its, then in the beginning it would take longer to get
things done.

Participant P1 explained that developers with bad pro-
gramming habits would probably take longer to finish their
implementation tasks. He believed that the verification tool
of the DSL would yield many warnings about violations.
Later on, during the interview, participant P1 pondered his
previous comment:

P1: Maybe I would take longer to get things done, but
that’s because I have these bad (programming) habits. In
the long term, using the language would actually help me
to adopt better (programming) habits, then probably my
productivity would be the same or better.

e) Learnability. The topic Learnability groups together the
fragments in which participants mentioned their experien-
ces to learn EPL. Regarding the learning of the specification
language for exception handling policies, all but one partici-
pant of the study considered it easy to learn. Participants
that considered the language easy to learn pinpointed the
conciseness of the language as the main factor of why it was
easy to learn. The following quote from participant P2 sum-
marizes this notion:

P2: The grammar is very small, so we don’t have that
high learning curve, such as when we learn a language
like Java, which has a million different things to learn.

Only participant P10 did not consider the language easy
to learn. He considered that the time available was not
enough to learn the language. He also complained about the
lack of more examples illustrating the use of the language:

P10: With more detailed examples and with more time I
think I would learn it better.

Other than the issues related to the limited time and the
lack of examples mentioned by participant P10, we did not
observe any language characteristic that seemed to hinder
its learning.

f) Comprehensibility. The topic Comprehensibility groups
together the fragments in which participants commented on
if and how well they understood the elements of the EPL
language. Regarding the comprehension of the concepts
provided by the language, participants considered them
easy to understand. Participants highlighted the importance
of using common exception handling terms in the specifica-
tion language. Participant P3 mentioned:

P3: Once you previously know basic exception handling
concepts, you can easily understand them (concepts of the
proposed language). (...) it was not difficult to memorize
the “keywords” of the concepts, even in this short time of
the task.

574 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 6, JUNE 2016

There was only one participant that had difficulties in
understanding the rule types. Participant P1, in particular,
had difficulties in understanding the differences between
the semantics of the rule types Only-May and May-Only.
When asked why he faced difficulties in understanding
these rule types, participant P1 said that the use of similar
keywords for different rules confused him:

P1: If you had used another name, then I would have
known right from the start “this one is this, that one is
for that”; I would have mentally separated them.

We intentionally designed these rules with similar names
since they have similar semantics, i.e., they both express
permissions. Although we understand that this kind of con-
fusion may occur to other users, we do not plan to change
the keywords used for each rule. Moreover, when ques-
tioned about the semantics of the rule types, P1 confirmed
that he understood it; he only hesitated to associate the
semantics to the rule type name.

6.3 Limitations of the Study

Our research method does not support the generalization
of the results to a general population of developers. Even
so, with our user-centric study we could observe how par-
ticipants used EPL and also characteristics of the language
that seem to play important roles in developers usage.
Thus, we could gather interesting insights that inspired
concrete improvements in the language, as well as initial
insights of possible approaches adopted by developers to
produce exception handling policies. We could also under-
stand the trade-offs related to different language design
decisions based on concrete and well-documented experi-
ences reported by participants.

Another limitation of the study relates to the target sys-
tem used in the observational study, especially due to its
medium size. However, we believe that this is not a major
threat to our study. First, participants faced difficulties
while inspecting the source code to extract the exception
handling rules. For this reason, using a larger system would
probably force developers to spend more time inspecting
the source code. Thus, it would hinder the goal of the tasks,
which was to expose developers to the use of the proposed
DSL. Another limitation of our study is the possible
cultural-related bias of participants. To mitigate this possi-
ble threat, we selected participants from different organiza-
tions, who had their university education in different
institutions and with different backgrounds. Thus, the spe-
cific organization culture or specific education training was
not a significant threat to our study validity.

Finally, our interview guide has probably not covered
every important question that could have been asked to
participants. We built our interview guide based on the
Technology Acceptance Model [14], which is an empiri-
cally tested model to study factors that influence technol-
ogy adoption. In this manner, we tried to cover in our
interview guide important factors that were tested in
previous empirical studies. Moreover, we organized
semi-structured interviews in such a way that we could
ask follow-up questions and also questions that emerged
during the observational study. Thus, we had the flexi-
bility to ask questions whenever the participants were

sharing interesting information about topics not covered
in our interview guide.

7 CASE STUDIES

In Section 4, we presented EPL, a DSL for specifying excep-
tion handling policies. We argued that the lack of exception
handling policies may be one of the reasons why exception
handling code is more error prone and contains more faults
than the overall code. In this study, we aimed at investigat-
ing if and to what extent verifiable exception handling poli-
cies can assist developers in finding exception handling
faults. Our aim is stated in the following research question:

RQ: How do verifiable exception handling policies assist
in the detection of exception handling faults?

To answer our research question, we assessed EPL in two
different settings. In the first setting, we specified the excep-
tion handling policy of an open-source software system and
verified its source code. Then, we inspected the violations
of the specified policy to check if they were related to
reported failures of the system. We present the details of
this case study in Section 7.1. In the second setting, we
employed EPL to specify the complete exception handling
policy of two industry-strength systems and verified their
source code. Then, we analyzed the violations of the speci-
fied policies to assess how these violations relate to potential
faults of categories of exception handling faults previously
proposed by Barbosa et al. [2] and Ebert et al. [17]. We detail
this second case study in Section 7.2.

7.1 Partial Specification Analysis

In this assessment, we employed EPL to specify parts of
the Apache Tomcat web server. We used Tomcat as the
target system for two main reasons. First, Tomcat is
endorsed by Oracle as the reference implementation of the
Java Servlet and Java Server Pages technologies. These
technologies are part of the Java Enterprise Edition—
JEE—architecture, which has a complete and public avail-
able specification. Thus, we could extract exception han-
dling requirements from the JEE architecture specification.
Second, Tomcat is a widely adopted open source project
with source code and bug reports repositories publicly
available. Thus, we could use EPL to check if Tomcat
implementation complies with the exception handling
requirements specified in the JEE architecture specification
and we could also check if the violations observed were
related to reported failures of the system.

The JEE architecture specification is described in the
Java Specification Request—JSR—number 342.4 JSRs are
descriptions and final specifications for the Java platform.
They are developed by expert members affiliated to the
Java Community Process (JCP), a community that comprise
commercial, educational and non-profit organizations, as
well as Java User Groups and individual Java users. After
an initial proposal, JSRs are reviewed by the Java commu-
nity and a JCP Executive Committee. After this review pro-
cess, the leader of the experts group checks the reference
implementation and the JSR specification before sending

4. Available at: https://jcp.org/en/jsr/detail?id=342

BARBOSA ETAL.: ENFORCING EXCEPTION HANDLING POLICIES WITH A DOMAIN-SPECIFIC LANGUAGE 575

them to the Executive Committee for final approval. Once
approved, the specification and reference implementation
are published. JSRs are developed by Java experts and are
only published after a thorough review and discussion
process. Thus, JSRs can be trusted as reliable specifications
of Java technologies.

To extract requirements related to exception handling from
JSR-342 we performed searches with keywords related to
exception handling: “exception”, “handling”, “catch”, “throw”,
“raise” and “re-map”. We identified five different require-
ments related to exception handling. From these five require-
ments, two were specified for components implemented by
Tomcat; the other three were specified for components of the
JEE architecture that are not implemented by Tomcat.

The first exception handling requirement specified for
components present in Tomcat is:

Requirement 1: The container must throw the javax.
naming.OperationNotSupportedException from all the
methods of the javax.naming.Context interface that mod-
ify the environment naming context and its subcontexts.
(JSR, page 78)

Notice that the previous exception handling require-
ment is expressed in terms of an obligation that specific
source code elements have to comply. For the first
requirement, specific methods of classes implementing
the javax.naming.Context interface are obligated to
raise the OperationNotSupportException type. This
requirement is expressed in EPL by defining one com-
partment and one rule, as shown in the following code
snippet:

define X.* as compartment CONTEXT where X is sub-

type of org.apache.naming.Context;

CONTEXT must raise javax.naming.

OperationNotSupportedException;

The elements of interest related to the Requirement 1
were specified as the CONTEXT compartment, which was
defined in terms of a subtype relation, as shown in the pre-
vious code snippet. Then, the rest of the exception handling
requirement was specified with a singleMust rule type.

The second exception handling requirement extracted
from the JSR-342 is the following:

Requirement 2: Web containers must throw a java.
lang.IllegalArgumentException if an object that is not
one of the above types, or another type supported by
the container, is passed to the setAttribute or put-
Value methods of an HttpSession object corresponding
to a Java EE distributable session. (JSR-342, page 174)

The second exception handling requirement also
expresses an obligation, but in a different context and for a
different exception type. For the second requirement, the
setAttribute and putValue methods of classes that
implement the HttpSession interface are obligated to
throw the IllegalArgumentException type. This
requirement is also expressed in EPL with one compartment
and one rule definition:

define X.setAttribute, X.putValue as compart-

ment SERVLET-SESSION where X is subtype

of javax.servlet.HttpSession;

SERVLET-SESSION must raise java.lang.

IllegalArgumentException;

The elements of interest related to the Requirement 2
were specified as the SERVLET-SESSION compartment,
which was also defined in terms of a subtype relation.
Then, the obligation imposed by the requirement was
expressed by means of a single Must rule. It is worth men-
tioning that the feature in EPL for defining compartment
in terms of subtype relations was not in the first version of
the language; it actually emerged during the execution of
this case study.

After specifying these requirements using EPL, we veri-
fied if Tomcat’s source code was adhering to the JEE specifi-
cations. We verified the implementation of Tomcat version
7.0.0. In this version, the rule specified for Requirement 2
was adhered to, whereas the rule for Requirement 1 was
violated. We inspected Tomcat issue tracking system and
discovered that this violation was already reported as a crit-
ical bug.5 This bug was reported on August 30 of 2011. One
developer reported the following description for the bug:

The problem happens, if someone calls close() in the
NamingContext object.

When developers called the close method in the
NamingContext object, it raised an instance of Namin-

gException. This caused a system failure by abruptly ter-
minating the system execution. Developers provided a first
fix on August 31 of 2011. However, on October 26 of 2011
the bug report was reopened. The developer who reopened
the bug report mentioned that he had the same problem,
but in another class implementing the Context interface:

It appears that something is not quite right with this fix
in 7.0.22. The following worked just fine in 7.0.14 (and
GlassFish, WebLogic and WebSphere) and now fails on
envCtx.close() with “Context is read only” message.

On October 27 of 2011 one developer mentioned that
those problems were related to Tomcat not adhering to the
JEE specification. He first quoted the exception handling
Requirement 1 in the bug report and then mentioned the
following:

I would argue that the close() method is a method that
“modifies the environment naming context” and therefore
an exception should be thrown here. Tomcat is, however,
not throwing the right exception in this case.

Moreover, this bug received a new fix on October 28 of
2011. However, the same bug was once again reopened on
June 21 of 2012 with the same problem being reported for
other Tomcat versions. Developers mentioned:

I just installed 7.0.23 and I still see “Context is read
only” exception thrown.

I’m using Tomcat 7.0.25 and am still seeing this same
issue.

The bug report was finally closed on June 21 of 2012.
The correct understanding of the intended use of excep-
tions in this specific context of Tomcat required discussions

5. Available at: https://bz.apache.org/bugzilla/show_bug.cgi?
id=51744

576 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 6, JUNE 2016

https://bz.apache.org/bugzilla/show_bug.cgi?id=51744
https://bz.apache.org/bugzilla/show_bug.cgi?id=51744

among six developers that lasted almost 10 months. Even
after discovering the exception handling requirement
related to the bug, developers faced difficulties in correct-
ing the bug because it was repeated in different classes
and different versions of the system. This may explain
why the bug report was reopened twice and required new
fixes in this period. Using EPL we created a short specifica-
tion of the exception handling requirement defined for the
JEE architecture and identified violations in the source
code. These violations pinpointed directly to the causes of
the reported bug. Thus, Tomcat’s verifiable exception han-
dling policy was able to detect a severe fault in the excep-
tion handling code.

7.2 Complete Specification Analysis

In this assessment, we specified the complete exception han-
dling policy of the systems Mobile Media v.9 and Health
Watcher v.10. We used these systems as the target systems
for two main reasons. First, they are well documented sys-
tems that have been used in previous empirical studies in
exception handling [9], [11], [38]. Second, we could contact
their original designers to validate the intended exception
handling policy.

The Mobile Media architecture adheres to the Model-
View-Controller (MVC) architecture pattern.MobileMedia’s
exception handling policy aligns with its architecture, with
compartments defined for each module of the MCV pattern.
Each compartment has the following responsibilities. The
Controller compartment centralizes the exception handling
by handling all exceptions. The Model module in Mobile
Media’s architecture comprises two sub-modules: Domain,
responsible for abstracting the domain concepts and Data
Access, responsible for accessing persistence APIs. In the
exception handling policy, Data Access is responsible for re-
mapping API exceptions to application-defined exceptions
and propagating these exceptions to Controller. The Domain
and View modules are not allowed to handle or raise any
exceptions. The complete exception handling policy specifi-
cation produced for Mobile Media v.9 comprises four com-
partments and 18 rules definitions.

The Health Watcher is a web-based system for register-
ing complaints about health units. It has a layered architec-
ture, with the layers: GUI, Business, Data and Persistence. It
also has an independent module responsible for dealing
with Distribution and a Façade module that manages the

communication between Business and GUI and between
Distribution and GUI. Health Watcher’s exception handling
policy also aligns with its architecture, with layers and
compartments having the same boundaries. Each compart-
ment has the following responsibilities. Persistence and
Distribution are responsible for re-mapping API-specific
exceptions to application-specific exceptions. Business is
responsible for re-mapping some persistence exceptions to
business exceptions, whereas the other persistence excep-
tions are propagated by Business and handled by Façade.
GUI is responsible for handling business and distribution
exceptions. Data is not allowed to handle or raise any
exception; it only propagates exceptions from Persistence to
Business. The complete exception handling policy specifica-
tion produced for Health Watcher v.10 comprises six com-
partments and 20 rules definition.

After producing the intended exception handling policy
for the target systems, we used the EPL Verifier to check
whether the source code of the target systems adhered or
not to their policies. From a total of 18 rules specified for the
Mobile Media, five different rules were violated in the
source code. For the Health Watcher, from a total of 20 rules
specified, eight different rules were violated in the source
code. Moreover, each rule can be violated more than once.
Thus, the total number of violations observed in the source
code is presented in Table 5.

Table 5 presents the total number of handling, propaga-
tion, raising, re-mapping and re-throwing sites observed in
each system, as well as the corresponding number of viola-
tions observed in each site type. A handling site is a method
in the source code where an exception is handled. A viola-
tion in a handling site means that a specific method estab-
lishes a Handle dependency relation that it is not allowed to,
or that a specific method does not establish a Handle depen-
dency relation that it is supposed to. These definitions hold
similarly for the other site types.

In the context of the Mobile Media target system, a total
of 33 violations were observed, where 27 violations were
observed in handling sites, two violations were observed in
raising sites and four in re-mapping sites. In the context of
the Health Watcher target system, a total of 115 violations
were observed, where 26 violations were observed in han-
dling sites, three violations in propagation sites, 65 viola-
tions in raising sites, 20 violations in re-mapping sites and
one violation in re-throwing site.

Unlike the Tomcat target system, the Mobile Media and
Health Watcher target system did not have publicly avail-
able bug reports, so that we could assess if the violations
observed were related to reported failures in these systems.
For this reason, we manually inspected each violation
observed in the Mobile Media and Health Watcher target
systems to assess if and how they were related to potential
faults of categories of exception handling faults previously
defined by Barbosa et al. [2] and by Ebert et al. [17]. We refer
to these violations as being related to “potential” faults
because they are very similar to the descriptions of the cate-
gories of exception handling faults proposed by Barbosa
et al. and by Ebert et al., but we could not confirm if they
were actual faults, since there were no bug reports available.
Next, we discuss the manual inspection of the detected vio-
lations in both target systems.

TABLE 5
Exception Handling Policy Violations

Target System Site Type Total With Violations

Handling Site 63 27
Propagation Site 88 0
Raising Site 9 2
Re-mapping Site 19 4

Mobile Media

Re-throwing Site 0 0

Handling Site 197 26
Propagation Site 1,064 3
Raising Site 99 65
Re-mapping Site 185 20

Health Watcher

Re-throwing Site 78 1

BARBOSA ETAL.: ENFORCING EXCEPTION HANDLING POLICIES WITH A DOMAIN-SPECIFIC LANGUAGE 577

7.2.1 Violations in Handling Sites

From the 27 handling site violations observed in Mobile
Media, there were five violations of Only-May Handle rules,
three violations of May-Only Handle rules and 19 violations
of Cannot Handle rules. From the 26 handling site violations
observed in Health Watcher, there were four violations of
Must Handle rules, six violations of Only-May Handle rules
and 16 violations ofMay-Only Handle rules.

Violations to Must Handle rules mean that a given com-
partment is obligated to handle exceptions of a given type,
but it does not handle exceptions of this type. A similar defi-
nition is given by Ebert et al. to the category named “Lack of
a Handler That Should Exist”, which, as the name suggests,
occurs when a given module is supposed to handle an
exception, but it does not handle it. Thus, violations to Must
Handlemay pinpoint potential faults of this category.

Violations to Only-May Handle rules mean that a given
compartment is handling exceptions that should be handled
by another compartment. A similar definition is also given
by Ebert et al. to the fault category named “Exception Caught
at the Wrong Level”. Faults of this category occur when the
exception is handled in a place that is not the one intended
by the developers of the system. Given the similarity of
these two definitions, violations to Only-May Handle could
be used to pinpoint potential faults of the “Exception Caught
at the Wrong Level” category. In addition, specific scenarios
of violations of May-Only Handle and Cannot Handle rules
may also pinpoint to potential faults of this category. When
a given compartment handles an exception of a type that it
is not allowed to handle and another compartment is
allowed to handle this same exception type, then this may
suggest that this exception is being handled in the wrong
compartment. Therefore, this type of scenarios of violations
could also be used to pinpoint potential faults of the
“Exception Caught at the Wrong Level” category.

Finally, there were some handling site violations that
were capturing exceptions with a catch block whose argu-
ment is the Exception type. We observed 15 of these viola-
tions in Mobile Media and 20 in Health Watcher. Barbosa
et al. defined the category of faults named “Overly Generic
catch block” and Ebert et al. defined an equivalent category
named “General catch block”. These categories comprise faults
that occur when a catch block has as argument an exception
with an overly-generic exception type, inadvertently catches
exceptions by subsumption and leads the system to an unex-
pected and erroneous state. In EPL, violations to rulesCannot
handle X, where X is a list of overly-generic exception types
(e.g., Exception, Throwable), could be used to pinpoint
potential faults of these categories. The following code snip-
pet exemplifies a potential fault introduced by a generic catch
block inMobileMedia:

public void stopVideo(){

try {

if(player != null) player.stop();

}catch(Exception e){

e.printStackTrace();

}

}

The previous code snippet shows the stopVideo

method extracted from the View compartment of Mobile

Media. The stop method is an implementation of the
interface javax.microedition.media.Player and
may throw instances of javax.microedition.media.

MediaException and also instances of java.lang.

IllegalStateException. The documentation of the
stop method specifies that instances of MediaException
may be thrown if the Player cannot be stopped. The docu-
mentation also specifies that instances of IllegalSta-

teException may be thrown if the Player is closed. Thus,
if the invocation to the stop method in the previous code
snippet throws a MediaException, the generic catch block
captures it and only prints its stack-trace. As a consequence,
the player is not actually stopped and the user of the appli-
cation is not informed about the problem. Then, the user of
the application will observe a failure in the system.

In Mobile Media, there was also 1 handling site violation
implementing a catch block whose argument is the Runti-

meException type, which can also be considered an
overly-generic exception type. In fact, handling exceptions
that are instances of the RuntimeException type is a dis-
couraged practice in Java [5], since these type of exceptions
typically represent programming errors that client code can-
not do anything to recover from.

7.2.2 Violations in Raising Sites

In Mobile Media, the two raising site violations occurred
because a rule of the Cannot Raise type was violated. In
Health Watcher, from the 65 raising site violations, there
were 10 violations of May-Only Raise rules, 12 violations of
Must Raise rules and 43 violations of Only-May Raise rules.

Violations to Cannot Raise andMay-Only Raise rules mean
that a given compartment raises an exception of a type that
it is not allowed to raise. Violations to these rules may pin-
point to potential faults categorized as “Exception That
Should Not Have Been Thrown”. Ebert et al. define this fault
category as the category of faults that usually occur when
part of a program should not try to detect the error, possibly
because it will be detected somewhere else. Similarly, viola-
tions to Only-May Raise rules mean that a given compart-
ment raises an exception that is supposed to be raised
somewhere else by another compartment. For this reason,
violations to Only-May Raise may also pinpoint to potential
faults of this category.

Violations toMust Raise rules mean that a given compart-
ment does not raise exceptions of a type that it is expected to
raise. We observed that violations to Must Raise rules may
pinpoint to two different categories of faults. If a given com-
partment is obligated to raise a given exception of type X,
but it does not raise any exception, then this may pinpoint
to potential faults of the category named “Exception Not
Thrown”. This category, as the name suggests, comprise
faults caused by modules not raising exceptions that they
are expected to raise. If, on the other hand, a given compart-
ment is obligated to raise a given exception of type X, but it
only raises exceptions of other types, then this may pinpoint
to potential faults of the category named “Throwing Wrong
Type”. This category, as the name suggests, occurs when a
given module raises an exception, but it uses the wrong
exception type. Faults of the category named “Throwing
Wrong Type” could also be pinpointed by violations of

578 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 6, JUNE 2016

Cannot Raise andMay-Only Raise rules, since these rule types
define the exception types that a given compartment is
allowed to raise.

One of the categories of exception handling faults related
to raising site is the “Uninformative Generic Type Thrown” cat-
egory, which is defined by Barbosa et al. as the category of
faults caused when an exception with an overly generic
type is thrown and, therefore, module clients cannot imple-
ment proper handling actions. In the context of Mobile
Media, we observed two raising site violations caused
because the Exception type was raised, whereas in Health
Watcher, we observed three raising site violations caused
because the RuntimeException type was raised. Thus, viola-
tions to Cannot Raise X rules, where X is a list of generic
exception types, may explicitly pinpoint to potential faults
of this category.

7.2.3 Violations in Re-Mapping Sites

From the categorizations of exception handling faults pro-
posed by Barbosa et al. and Ebert et al., there is only one
fault category related to re-mappings. Barbosa et al. pro-
posed the “Destructive Remapping” category, which occurs
when information is lost during the remapping process.
For the re-mapping observed in Mobile Media and Health
Watcher, we could not confirm if the re-mapping per-
formed were actually losing information or not. We could
only observe that some re-mappings did not wrap
the caught exception in the re-mapped exception, although
re-mappings that do not wrap the caught exception in the
re-mapped exception are not necessarily “Destructive
Remapping” faults.

In the context of MobileMedia, we observed one violation
to a Must Re-map rule and three violations to Cannot Re-map
rules. In the context of Health Watcher, we observed three
violations to Must Re-map rules, six violations to Only-May
Re-map rules and 11 violations to May-Only Re-map. We also
observed in HealthWatcher 14 re-mapping violations imple-
menting catch blocks declaring the Exception type, as well as
four re-mapping violations re-mapping the caught exception
to the RuntimeException type. The following code snippet
extracted fromHealthWatcher exemplifies these violations:

public long searchTimestamp(String table,

String id){

try {

PersistenceMechanism pm =

PersistenceMechanism.getInstance();

(...)

return answer;

} catch (Exception ex){

throw new RuntimeException();

}

}

In the previous code snippet extracted from the Persistence
compartment of HealthWatcher, the getInstancemethod
may raise an exception instance of the RepositoryExcep-
tion type. The exception instance of the RepositoryEx-

ception type is captured by subsumption by the generic
catch block and re-mapped to the RuntimeException

type. The first violation observed in the previous code snip-
pet is that exceptions of the RepositoryException type

are not supposed to be re-mapped at the Persistence compart-
ment; they are supposed to be propagated from the Persis-
tence compartment to the View compartment, where they are
supposed to be handled. The other violation observed in the
previous code snippet is that the Persistence compartment is
not allowed to remap from the Exception type to the Run-
time type. Although these violations are not defined by Bar-
bosa et al. and Ebert et al. as exception handling fault
categories, they resemble some other fault categories, such
as: “Exception Caught at theWrong Level”, “Overly Generic catch
block” and “Uninformative Generic Type Thrown”. In addition,
previous studies from Cacho et al. [7], [8] showed that recur-
ring exception handling failures in Java programs are caused
by uncaught exceptions that stem from re-mapping sites that
re-mapped the caught exception to unchecked types (e.g.,
RuntimeException). Thus, re-mapping violations may
pinpoint to potential faults of this type.

7.2.4 Violations in Propagation and Re-Throwing Sites

We observed propagation and re-throwing violations only
in the context of Health Watcher. There is no specific fault
category proposed by Barbosa et al. and Ebert et al. related
to propagation and re-throwing of exceptions. The propaga-
tion violations were caused because compartments Façade
and View propagated exceptions that only the Distribution
compartment is allowed to propagate. Similarly, the re-
throw violation occurred because the Data compartment re-
throws an exception that only the Persistence compartment
is allowed to re-throw. These violations also resemble the
definition of the “Exception Caught at the Wrong Level” in the
sense that the exception handling dependency relation was
implemented in the wrong place of the system.

7.3 Important Considerations

The analyses presented in this section were performed using
the EPL Verifier. As we discussed in Section 5, the type-infer-
ence algorithm implemented by the EPL Verifier to determine
the type of the raised exception may produce imprecise
results in specific scenarios. In particular, the type-inference
algorithm implemented by the EPL Verifier may produce
imprecise results when the type of the raised exception can-
not be precisely determined statically either because the type
of the raised exceptions is inferred from a conditional expres-
sion or from the returned type of a virtualmethod invocation.
For this reason, the type-inference algorithm implemented by
the EPL Verifiermay interfere in the results related to raising,
re-mapping and re-throwing site violations. To assess to
what extent the use of the EPL Verifier interfered the results
discussed, we assessed in howmany cases the type-inference
algorithm produced imprecise results.

For the Mobile Media and Health Watcher target sys-
tems, there were no cases in which the EPL Verifier found
conditional expressions or method invocations during its
analyses. Therefore, for these target systems, the use of the
EPL Verifier did not interfere the results discussed for these
target systems.

For the case study performed in the context of the Tom-
cat target system, all the throw statements within the com-
partments analyzed referred to new instance creation
expressions. Therefore, the type-inference algorithm did not

BARBOSA ETAL.: ENFORCING EXCEPTION HANDLING POLICIES WITH A DOMAIN-SPECIFIC LANGUAGE 579

introduce any imprecision in the analysis presented in this
section. Even so, we analyzed the source code of the whole
system to identify the cases in which the EPL Verifier
would have produced imprecise results. From the total of
1,880 throw statements in the system, in 1,582 cases the
type of the raised exceptions were inferred from new
instance creation expressions, 152 cases were inferred from
class cast expressions, 128 cases were inferred from refer-
ences to arguments of catch blocks, 17 case were inferred
from virtual method invocations and one case was inferred
from a conditional expression. We manually inspected the
cases where the type of the raised exception was inferred
from virtual method invocations or conditional expressions
to assess if the EPL Verifier would have interfered in the
analyses if these throw statements were within the com-
partments analyzed.

From the 17 cases where the throw statement referred to
virtual method invocations, one referred to an API method
invocation, so we could not inspect its source code. For the
other 16 virtual methods declared in the application, we
inspected their source code and observed that all of them
returned the same type declared in the method signature.
Thus, the analysis of virtual method declarations would not
have interfered in the analysis.

In the context of the Tomcat target system, there was only
one throw statement referring to a conditional expression, as
shown in the following code snippet:

if (t instanceof InvocationTargetException){

InvocationTargetException it=

(InvocationTargetException)t;

throw it.getCause() != null ? it.getCause() :

it;

}

In the previous code snippet, the throw statement refers
to a conditional expression. The then expression of the con-
ditional expression refers to an invocation to the getCause
method, whereas the else expression refers to the variable
name it. The return type of the getCause method is the
Throwable type and the type of the variable it is the

InvocationTargetException type, which is inferred
from the class cast expression. Thus, the EPL Verifier consid-
ers that the previous code snippet raises the Throwable

and the InvocationTargetException types. In the pre-
vious code snippet, the possible imprecision stem from the
fact that the runtime type of the object returned by the get-
Causemay be a subtype of the Throwable type. However,
the analysis performed by the EPL Verifier produces the
same results produced by the Java compiler. For the previ-
ous code snippet, the Java compiler requires that the
Throwable type is either handled locally, or declared in
the method’s exceptional interface, regardless of the exact
type of the object returned by the getCause method. Thus,
the analysis performed by the EPL Verifier for throw state-
ments referring to method invocations is as conservative as
the analysis performed by the Java compiler.

8 RELATED WORK

TheDSLproposed in thiswork is ameans to assure exception
handling quality by explicitly specifying and automatically
verifying exception handling policies. Similarly, solutions
aimed at assuring architecture quality by specifying and veri-
fying architectural design rules have been vastly explored in
the software architecture community in the last years.
According to Knodel and Popescu [27] and Van Ommering
et al. [46], these architectural solutions can be divided in three
main categories: (i) Reflexion Models, (ii) Relation Confor-
mance Rules and (iii) Component Access Models. Reflexion
Models [35] compare high-level descriptions of the intended
architecture of a system with its source code to detect diver-
gences and absences. Divergences occur when relations not
prescribed in the intended architecture exists in the source
code, whereas absences occur when relations prescribed in
the intended architecture do not exist in the source code. Sol-
utions based on Relation Conformance Rules [18], [23], [38],
[45] specify design rules that express allowed or forbidden
relations between architectural elements. Finally, Compo-
nent AccessModels solutions specify components interaction
by means of specifying components provided and required
ports, as well as connection between ports. These solutions
are inspired by Architecture Description Languages (ADLs)
[10]. Among these three categories, our proposed solution
has more similarities with those based on relation confor-
mance rules. Table 6 presents a comparison of EPL with
relatedworks based on Relation Conformance Rules.

As can be observed in Table 6, in terms of the semantics
of the provided rule types, EPL and the solutions proposed
by Gurgel et al. [23] and by Terra and Valente [45] provide
rule types with the semantics of permission, prohibition
and obligation. The other solutions provide only rule types
with the semantics of obligations. In terms of the supported
exception handling dependency relations, EPL is the only
solution that supports all the “canonical” dependency rela-
tions between exceptions and code elements described in
Section 2. The other solutions only support the Handle, Prop-
agate and Raise dependency relations. Thus, when compared
to these other solutions, the main contribution of EPL is to
provide a wider vocabulary of exception handling depen-
dency relations to specify exception handling policies. Next,
we detail other similarities and differences between EPL
and the other solutions.

TABLE 6
Comparison of EPLwith Related Works

Solutions Semantics of
Rule Types

Supported E.H.
Dependency
Relations

EPL Obligation,
Permission,
Prohibition

Handle, Propagate,
Raise, Re-map,

Re-throw

Cacho et al. (2008) Obligation Handle, Propagate,
Raise

Eichberg et al. (2008) Obligation Handle, Raise

Gurgel et al. (2014) Obligation,
Permission,
Prohibition

Handle

Sales and Coelho (2011) Obligation Handle, Raise

Silva and Castor (2013) Obligation Handle, Propagate,
Raise

Terra and Valente (2009) Obligation,
Permission,
Prohibition

Raise

580 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 6, JUNE 2016

The solution proposed by Sales and Coelho [38] is the
most similar to ours. Their solution is also aimed at specify-
ing exception handling policies, although they do not sup-
port all the “canonical” exception handling dependency
relations. Our solutions mainly differ in the manner we
express exception handling policies. While we express our
exception handling policies in terms of compartments and
their exception handling responsibilities, Sales and Coelho
express their exception handling policies in terms of
“exceptional contracts”. An exceptional contract specifies
an intended exception flow, i.e., it specifies the specific pla-
ces in the source code where specific exceptions are raised
and handled, and also which specific exception types may
flow between these places. Thus, their solution specifies
exception handling policies in a level closer to the imple-
mentation level, whereas our solution specifies policies in a
level closer to the design level. Another major difference
between our solutions is how we check the source code con-
formance: we check it statically, while they check it dynami-
cally. Based on their exceptional contracts, Sales and Coelho
generate partial JUnit test cases to stimulate the exceptional
behavior of the system. Moreover, their solution requires
the intervention of developers to finish the implementation
of the partially generated test cases, whereas the EPL Verifier
requires only the exception handling policy specification
and the system source code. In addition, due to limitations
of static analysis techniques for exception handling, such as
those in the type-inference algorithm implemented by the
EPL Verifier (Section 5.2), the verification approach adopted
by EPL may be more prone to less precise results when com-
pared to the dynamic approach adopted by Sales and
Coelho. For this reason, we believe that these two verifica-
tion approaches may be used in collaboration. In addition
to using the EPL Verifier to statically check the source code
conformance, we could extend the EPL tool apparatus
to also generate partial test cases in order to dynamically
check the conformance of the source code in exceptional sce-
narios that require more specific implementation details
and, therefore, cannot be described on a system-level speci-
fication language such as EPL.

The solutions proposed by Eichberg et al. [18], Gurgel
et al. [23] and Terra and Valente [45] specify architectural
design rules aimed at detecting and preventing architectural
degradation problems. For this reason, these solution focus
on expressing architectural design rules in terms of depen-
dency relations originated from source code elements access-
ing methods and fields, instantiating new class instances,
extending classes, implementing interfaces, among others.
Not all dependency relations related to exception handling
are supported by their solutions. Eichberg et al. considers the
Handle andRaise dependency relations as the generic relation
named Use; Gurgel et al. supports only the Handle relation,
whereas Terra and Valente supports only the Raise relation.
Similarly to specifications in EPL, which are expressed in
terms of compartments, their solutions are also defined in
terms of abstractions that group together elements of interest
at the system implementation level. These abstractions are
also defined in terms of name patterns and subtype relations,
just like the definition of compartments in EPL. The solution
proposed by Eichberg et al. is the only solution that allows
expressing design rules in terms of dependency relations

combined with logic operators for conjunction, disjunction
and negation. All the other solutions, EPL inclusive, may
only express their rules in terms of atomic dependency rela-
tions. Finally, the solution proposed by Gurgel et al. is the
only one that provides a compositional mechanism that
allows the specialization and reuse of abstract design rules in
the context of different projects. So far, we did not find evi-
dences that the specification of exception handling policies
requires the combination of exception handling dependency
relations with logic operators nor requires the specialization
and reuse of abstract rules in different projects. Still, these
are investigation paths that we might explore in the near
future as possible improvements in EPL.

In the exception handling literature, there are works that
extend EHMs of programming languages to support the
explicit specification of exception handling rules in the
source code [9], [42]. Cacho et al. [9] extended the EHM of
AspectJ, whereas Silva and Castor [42] extended the EHM
of Java, to provide new language constructs to specify and
verify the places in the source code where exceptions are
expected to be raised, propagated and handled. These
approaches mainly differ from ours because they specify
parts of the exception handling policy with the own pro-
gramming language, whereas our approach uses a domain-
specific language. In this sense, when compared to our solu-
tion, the solutions proposed by Cacho et al. and Silva and
Castor have the advantage of not requiring that developers
learn a new language, although developers still have to
learn a few new language constructs. In order to ease the
learning and use of EPL, we designed it with a concise
vocabulary of terms similar to those used in EHMs imple-
mented in programming languages. We also designed it to
produce readable specifications. The observations of our
user-centric study suggest that EPL is indeed easy to learn
and use, although more rigorous studies are needed to con-
firm that. The solutions proposed by Cacho et al. and Silva
and Castor have the main limitation of verifying only parts
of the system that are implemented in the programming
language that they used to express their exception handling
rules. In multi-language systems, where exceptions may
flow from a module implemented in one language to a mod-
ule implemented in another language, the specified excep-
tion handling rules cannot be completely verified. So far,
EPL also has this limitation, since its verifier is implemented
only for Java. But since EPL is a specification language
agnostic of programming language, we plan as future work
to implement EPL Verifiers for other programming lan-
guages and start to investigate how exceptions flow
between modules implemented in different programming
languages and if exception handling rules are violated in
these scenarios.

Previous works from Barbosa et al. [2] and Ebert et al.
[17] analyzed the bug history of open source systems to
assess and better comprehend faults in the exception han-
dling code. Ebert et al. have also employed a survey with
developers to gather their opinions and experiences about
faults related to exception handling. Both works proposed a
set of categories of exception handling faults. Most of the
categories proposed by these works are equivalent. A
detailed comparison of the proposed categories is presented
by Ebert et al. in their work [17]. As we discussed in

BARBOSA ETAL.: ENFORCING EXCEPTION HANDLING POLICIES WITH A DOMAIN-SPECIFIC LANGUAGE 581

Section 7.2, violations of EPL may pinpoint to potential
faults of six different fault categories. These categories are
present in the categorizations proposed by Barbosa et al.
and by Ebert et al. with equivalent names and definitions.
However, not all categories of faults defined by Barbosa
et al. and by Ebert et al. can be detected with the help of
EPL. Specifications in EPL are meant to contain information
at the design level; specific implementation details are
beyond the scope of EPL policies. For this reason, categories
of exception handling faults related to specific implementa-
tion details cannot be detected by means of violations of
EPL rules. For example, exception handling faults catego-
rized by Ebert et al. as “Error in the handler”, “Error in the
clean up action”, “Error in the exception assertion” and “Catch
block where only a finally would be appropriated”would require
detailed information about how catch blocks, finally blocks
and if statements are implemented. Similarly, faults catego-
rized by Barbosa et al. as “Improper continuation of execution”,
“Premature termination”, “Exceptional loop break” would also
require more detailed information about the implementa-
tion. During our case studies, we also observed violations of
EPL rules that are not specifically related to any category of
exception handling fault, but that are very similar to other
fault categories. For example, we observed re-mapping vio-
lations caused by re-mapping the caught exception to a
generic exception type, which is similar to the fault category
“Uninformative Generic Type Thrown”. For this reason, we
also plan to extended the categorizations of exception han-
dling faults by further investigating if these violations that
we observed may actually cause faults in software systems.

Finally, in the exception handling literature there are also
a few efforts to support developers in properly designing
exception handling of software systems. Litke [30] proposed
a method to design fault tolerant Ada systems. Litke’s
method proposes exhaustive specification of exceptions at
modules boundaries by enumerating and defining the
semantics of all exceptions that cross these boundaries.
Then, the method recommends the automated verification
of appropriated handlers for each exception specified in
modules boundaries. Robillard and Murphy [37] proposed
a method to design robust Java systems by adapting Litke’s
method. These methods provide good methodology for
specifying exception handling in modules boundaries, but
both lack an explicit definition of the intended exception
handling policy. They also lack tool support. Consequently,
there is no way to automatically check the source code con-
formance to the intended exception handling policy.
Malayeri and Aldrich [31] extended Java to support the
specification and verification of exceptions at module
boundaries, as proposed by the method of Robillard and
Murphy. Malayeri and Aldrich specify and verify excep-
tional interfaces at the module level, instead of at the
method level, as performed by the Java compiler. However,
exceptional interfaces of modules specify only which excep-
tion can traverse their boundaries. There is no way to
express exception handling responsibilities that comprise
exception handling policies. Therefore, these solutions do
not provide proper support for specifying and automati-
cally verifying exception handling policies. The works from
Litke and Robillard and Murphy provide methods that
could be adapted to assist developers during the

specification of their systems’ exception handling policies.
Thus, we plan to elaborate guidelines to help developers in
how to specify their exception handling policies.

9 FINAL REMARKS

In an increasingly software-dependent society, software fail-
uresmay have severe and negative outcomes. In cases where
system failures have severe consequences, important quality
attributes are those related to reliability. One of such quality
attributes is software robustness. By using exception han-
dling mechanisms, it is hoped that more robust programs
are implemented. However, previous studies reported that
recurring robustness problems in software systems are often
related to problems in the exception handling code [2], [7],
[8], [32], [33], [39]. Most of these problems are related to the
lack of explicit exception handling policies. In this paper, we
presented EPL, a domain-specific language to specify and
verify exception handling policies. Both designers and devel-
opers can benefit from our specification language for excep-
tion handling policies. Designers have at their disposal a
succinct and expressive language to explicitly define their
intentions regarding the use of exceptions within and across
software projects. And with an explicit definition about the
intended use of exceptions, developers can readily consult
the specification to comprehend how they are supposed to
maintain exception handling code. Both designers and
developers can use the static analyzer to verify if the source
code adheres to the specified rules.

With our user-centric observational study, we could bet-
ter understand the trade-offs related to different language
design decisions based on concrete and well-documented
observations and experiences reported by participants. We
observed some language characteristics that hindered its
use, especially in terms of expressiveness and usability.
These observations motivated us to add new language con-
structs to EPL. In addition, the participants of our user-cen-
tric study recognized the importance of having explicit
exception handling policies in their projects. They also con-
sidered exception handling policies expressed in EPL useful
to support quality assurance practices. This was the main
reason why participants affirmed that they would adopt the
proposed language in their activities. Participants also con-
sidered the language easy to learn and to have potential to
improve their performance and productivity, although
more rigorous studies must be conducted in the future to
confirm real gains in performance and productivity.

The results of our case studies revealed that violations
of verifiable exception handling policies could help to
directly detect faults in the exception handling code. These
faults could not be detected with the basic verification per-
formed by reliability-driven EHMs, such as those per-
formed by the Java compile for the checked exceptions. In
addition, our results also showed that the benefits of using
our proposed language could be achieved even when only
parts of a system are specified and verified. There might
be cases where specifying the exception handling policy
for the whole system is not practical. For example, the
architect or the lead developer might not have time to
specify the whole system; he might have time to specify
only small, but critical, parts of the system.

582 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 6, JUNE 2016

With regards to the EPL design, we intentionally
designed it not to support the definition of what specific
implementation actions exception handlers should do (e.g.,
retrying, logging, etc.). We believe that this type of specific
implementation details should not be included in system-
level design models, such as exception handling policies,
because specifying very specific implementation details of
modules would break the information hiding principle. In
fact, in some scenarios, the features provided by EPL may
be used in manners that break the information hiding prin-
ciple. For instance, in some cases, specifying the exceptional
behavior of a compartment in terms of the Raise dependency
type may require too much implementation details; it may
be enough to specify its exceptional behavior only in terms
of the Propagate dependency type. However, in other cases,
the same feature may be necessary to specify a given excep-
tion handling rule. For example, one of the exception han-
dling rules shown in Section 7.1 for the Tomcat system
required the Raise dependency type. For this reason, we
kept these features in EPL, even if in some cases they may
be used to break the information hiding principle. We
believe that is up to software architects and designers to
achieve the needed balance between the conservation of the
encapsulation of code elements and the detailed specifica-
tion of their exceptional behavior.

Another reason why we did not design EPL to specify
which specific exception handling actions should be taken
is that specifying this kind of information would make our
language too complex, given the high number of possible
handling actions that can be implemented. There can even
be exception handlers that perform more than one handling
action. For instance, an exception handler can log the excep-
tion, release pre-allocated resources and then shut down the
system. Specifying which handling actions should be taken,
how they are implemented and in which order, would prob-
ably hinder our main design goal, which is to keep the lan-
guage concise. Participants of our user-centric study
appreciated the simplicity of EPL, so making the language
more complex could possibly have a negative impact on
developers acceptance towards the language.

Finally, recommender systems are being explored as a
tool to support developers in implementing exception han-
dling code over the last years [3], [4], [36]. We plan to inte-
grate recommending techniques to the EPL implementation.
Our goal is to assist developers in implementing and main-
taining policy-compliant exception handling code with
recommendations.

ACKNOWLEDGMENTS

Eiji Adachi Barbosa has been funded with support from
Fundaç~ao Carlos Chagas Filho de Amparo �a Pesquisa do
Estado do Rio de Janeiro (FAPERJ), grant E-26/100.386/
2014.

REFERENCES

[1] E. A. Barbosa and A. Garcia, “Analyzing exceptional interfaces on
evolving frameworks,” in Proc. IEEE 5th Latin-American Symp.
Dependable Comput. Workshops, 2011, pp. 17–20.

[2] E. A. Barbosa, A. Garcia, and S. D. J. Barbosa, “Categorizing faults
in exception handling: A study of open source projects,” in Proc.
XXVIII Brazilian Symp. Softw. Eng., 2014, pp. 11–20.

[3] E. A. Barbosa, A. Garcia, and M. Mezini. (2012, Jun.). A recom-
mendation system for exception handling code. Proc. IEEE 5th
Int. Workshop Exception Handling, pp. 52–54 [Online]. Available:
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6226601

[4] E. A. Barbosa, A. Garcia, and M. Mezini. Heuristic strategies for
recommendation of exception handling code. Proc. 26th Brazilian
Symp. Softw. Eng.. Sep. 2012, pp. 171–180. [Online]. Available:
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6337870

[5] J. Bloch, Effective Java, series The Java Series. Englewood Cliffs, NJ,
USA: Prentice-Hall, 2008.

[6] P. H. S. Brito, R. Lemos, C. M. F. Rubira, and E. Martins. (2009,
Apr.). Architecting fault tolerance with exception handling: Verifi-
cation and validation. J. Comput. Sci. Technol. [Online]. 24(2),
pp. 212–237 [Online]. Available: http://dl.acm.org/citation.cfm?
id=1599001.1599006

[7] N. Cacho, E. A. Barbosa, J. Ara�ujo, F. Pranto, A. Garcia, T. C�esar,
A. Cassio, E. Soares, T. Filipe, and I. Garcia, “How does exception
handling behavior evolve? An exploratory study in Java and C#
applications,” in Proc. 30th Int. Conf. Softw. Maintenance Evolution,
2014, pp. 31–40.

[8] N. Cacho, E. A. Barbosa, T. C�esar, T. Filipe, E. Soares, A. Cassio, R.
Souza, I. Garcia, and A. Garcia. (2014). Trading robustness for
maintainability: An empirical study of evolving C# programs.
Proc. 36th Int. Conf. Softw. Eng., pp. 584–595 [Online]. Available:
http://dl.acm.org/citation.cfm?id=2568308

[9] N. Cacho, F. Castor, A. Garcia, and E. Figueiredo, “EJFlow: Tam-
ing exceptional control flows in aspect-oriented programming,”
in Proc. 7th Int. Conf. Aspect-Oriented Softw. Develop., 2008,
pp. 72–83.

[10] P. C. Clements. (1996, Mar.). A survey of architecture description
languages. Proc. 8th Int. Workshop Softw. Specification Des., p. 16
[Onl ine] . Avai lable : ht tp ://dl .acm.org/ci ta t ion .c fm?
id=857204.858261

[11] R. Coelho, A. Rashid, A. Garcia, F. Ferrari, N. Cacho, U.
Kulesza, A. Staa, and C. Lucena. (2008, Jul.). Assessing the
impact of aspects on exception flows: An exploratory study.
Proc. Eur. Conf. Object-Oriented Program., vol. 5142, pp. 207–234
[Onl ine] . Avai lable : ht tp ://dl .acm.org/ci tat ion.c fm?
id=1428508.1428522

[12] J. W. Creswell and V. L. P. Clark, Designing and Conducting Mixed
Methods Research. Newbury Park, CA, USA: Sage, 2007.

[13] F. Cristian. (1982, Jun.). Exception handling and software fault tol-
erance. IEEE Trans. Comput. [Online]. C-31(6), pp. 531–540
[Online]. Available: http://ieeexplore.ieee.org/articleDetails.jsp?
arnumber=1676035

[14] F. D. Davis, “Perceived usefulness, perceived ease of use, and user
acceptance of information technology,” MIS Quart., vol. 13,
pp. 319–340, 1989.

[15] R. de Lemos and A. Romanovsky. (2001, Mar.). Exception han-
dling in the software lifecycle [Online]. Available: http://kar.
kent.ac.uk/13633/

[16] F. Ebert and F. Castor. (2013, Sep.). A study on developers’ per-
ceptions about exception handling bugs. Proc. IEEE Int. Conf.
Softw. Maintenance, pp. 448–451 [Online]. Available: http://
ieeexplore.ieee.org/articleDetails.jsp?arnumber=6676929

[17] F. Ebert, F. Castor, and A. Serebrenik, “An exploratory study on
exception handling bugs in Java programs,” J. Syst. Softw.,
vol. 106, pp. 82–101, 2015.

[18] M. Eichberg, S. Kloppenburg, K. Klose, and M. Mezini. (2008,
May). Defining and continuous checking of structural program
dependencies. Proc. 13th Int. Conf. Softw. Eng., p. 391 [Online].
Available: http://dl.acm.org/citation.cfm?id=1368088.1368142

[19] E. Figueiredo and N. Cacho. (2008). Evolving software product
lines with aspects. Proc. 13th Int. Conf. Softw. Eng., p. 261. [Online].
Available: http://ieeexplore.ieee.org/articleDetails. jsp?
arnumber=4814137

[20] M. Fowler, Domain-Specific Languages. Noida, India: Pearson Edu.,
2010.

[21] A. F. Garcia, C. M. Rubira, A. Romanovsky, and J. Xu. (2001,
Nov.). A comparative study of exception handling mechanisms
for building dependable object-oriented software. J. Syst. Softw..
59(2), pp. 197–222 [Online]. Available: http://dx.doi.org/
10.1016/S0164-1212(01)00062-0

[22] J. B. Goodenough. (1975). Exception handling: Issues and a pro-
posed notation. Commun. ACM [Online]. 18(12), p. 683. Available:
http://portal.acm.org/citation.cfm?id=361230

BARBOSA ETAL.: ENFORCING EXCEPTION HANDLING POLICIES WITH A DOMAIN-SPECIFIC LANGUAGE 583

http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6226601
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6337870
http://dl.acm.org/citation.cfm?id=1599001.1599006
http://dl.acm.org/citation.cfm?id=1599001.1599006
http://dl.acm.org/citation.cfm?id=2568308
http://dl.acm.org/citation.cfm?id=857204.858261
http://dl.acm.org/citation.cfm?id=857204.858261
http://dl.acm.org/citation.cfm?id=1428508.1428522
http://dl.acm.org/citation.cfm?id=1428508.1428522
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=1676035
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=1676035
http://kar.kent.ac.uk/13633/
http://kar.kent.ac.uk/13633/
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6676929
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6676929
http://dl.acm.org/citation.cfm?id=1368088.1368142
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=4814137
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=4814137
http://dx.doi.org/10.1016/S0164-1212(01)00062-0
http://dx.doi.org/10.1016/S0164-1212(01)00062-0
http://portal.acm.org/citation.cfm?id=361230

[23] A. Gurgel, I. Macia, A. Garcia, A. von Staa, M. Mezini, M. Eich-
berg, and R. Mitschke. (2014, Apr.). Blending and reusing rules
for architectural degradation prevention [Online]. Proc. 13th Int.
Conf. Modularity, pp. 61–72. Available: http://dl.acm.org/
citation.cfm?id=2577080.2577087

[24] IEEE. (1990, Dec.). IEEE standard glossary of software engineering
terminology. pp. 1–84 [Online]. Available: http://ieeexplore.ieee.
org/articleDetails.jsp?arnumber=159342

[25] B. Jackobus, A. Garcia, E. A. Barbosa, and C. J. Lucena,
“Contrasting exception handling code across languages: An anal-
ysis of 50 open source projects,” in Proc. 26th Int. Symp. Softw. Rel.
Eng., 2015, pp. 189–200.

[26] J. Kienzle. (2008, Nov.). On exceptions and the software devel-
opment life cycle. Proc. 4th Int. Workshop Exception Handling,
pp. 32–38 [Online]. Available: http://dl.acm.org/citation.cfm?
id=1454268.1454273

[27] J. Knodel and D. Popescu. (2007, Jan.). A comparison of static
architecture compliance checking approaches. Proc. Working
IEEE/IFIP Conf. Softw. Archit., pp. 12–12 [Online]. Available:
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=4077029

[28] U. Kulesza, C. Sant’Anna, A. Garcia, R. Coelho, A. Staa, and C.
Lucena. (2006, Sep.). Quantifying the effects of aspect-oriented
programming: A maintenance study. Proc. 22nd IEEE Int. Conf.
Softw. Maintenance, pp. 223–233 [Online]. Available: http://
ieeexplore.ieee.org/articleDetails.jsp?arnumber=4021341

[29] B. Liskov and A. Snyder. (1979, Nov.). Exception handling in
CLU. IEEE Trans. Softw. Eng. [Online]. SE-5(6), pp. 546–558
[Online]. Available: http://ieeexplore.ieee.org/articleDetails.jsp?
arnumber=1702672

[30] J. D. Litke. (1990, Dec.). A systematic approach for implementing
fault tolerant software designs in Ada. Proc. Conf. TRI-ADA,
pp. 403–408 [Online]. Available: http://dl.acm.org/citation.cfm?
id=255471.255565

[31] D. Malayeri and J. Aldrich, “Practical exception specifications,” in
Advanced Topics in Exception Handling Techniques. New York, NY,
USA: Springer, 2006, pp. 200–220 [Online]. Available: http://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.1502

[32] C. Marinescu. (2011, Sep.). Are the classes that use exceptions
defect prone? Proc. 12th Int. Workshop 7th Annu. ERCIM Workshop
Principles Softw. Evolution Softw. Evolution, p. 56 [Online]. Avail-
able: http://dl.acm.org/citation.cfm?id=2024445.2024456

[33] C. Marinescu. (2013, Sep.). Should we beware the exceptions? An
empirical study on the eclipse project. Proc. IEEE 15th Int. Symp.
Symbolic Numeric Algorithms Sci. Comput., pp. 250–257 [Online].
Available: http://ieeexplore.ieee.org/articleDetails.jsp?
arnumber=6821157

[34] B. Meyer, Eiffel: The Language. Englewood Cliffs, NJ, USA: Pren-
tice-Hall, 1992.

[35] G. C. Murphy, D. Notkin, and K. Sullivan. (1995, Oct.). Software
reflexion models. ACM SIGSOFT Softw. Eng. Notes [Online]. 20(4),
pp. 18–28 Avai lable : ht tp ://dl .acm.org/citat ion.cfm?
id=222132.222136

[36] M. M. Rahman and C. K. Roy, “On the use of context in recom-
mending exception handling code examples,” in Proc. 14th Int.
Working Conf. Source Code Anal. Manipulation, 2014, pp. 285–294.

[37] M. P. Robillard and G. C. Murphy. (2000). Designing robust Java
programs with exceptions. Proc. 8th ACM SIGSOFT Int. Symp.
Found. Softw. Eng.: 21st Century Appl., pp. 2–10 [Online]. Available:
http://portal.acm.org/citation.cfm?id=357474.355046

[38] R. Sales and R. J. Coelho, “Preserving the exception handling
design rules in software product line context: A practical
approach,” in Proc. IEEE 5th Latin-American Symp. Dependable
Comput. Workshops. 2011, pp. 9–16.

[39] P. Sawadpong, E. B. Allen, and B. J. Williams. (2012, Oct.). Excep-
tion handling defects: An empirical study. Proc. IEEE 14th Int.
Symp. High-Assurance Syst. Eng., pp. 90–97 [Online]. Available:
http://www.computer.org/csdl/proceedings/hase/2012/4912/
00/4912a090-abs.html

[40] H. Shah, C. Gorg, and M. Harrold. (2010, Mar.). Understanding
exception handling: viewpoints of novices and experts. IEEE
Trans. Softw. Eng., 36(2), pp. 150–161 [Online]. Available: http://
dl.acm.org/citation.cfm?id=1803947.1804209

[41] H. Shah and M. J. Harrold. (2009). Exception handling negligence
due to intra-individual goal conflicts. Proc. ICSEWorkshop Coopera-
tive Human Aspects Softw. Eng., pp. 80–83 [Online]. Available:
http://portal.acm.org/citation.cfm?id=1572220

[42] T. B. L. Silva and F. Castor, “New exception interfaces for Java-like
languages,” in Proc. 28th Annu. ACM Symp. Appl. Comput.,
Mar. 2013, pp. 1661–1666.

[43] S. Sinha and M. J. Harrold, “Analysis and testing of programs
with exception handling constructs,” IEEE Trans. Softw. Eng., vol.
26, no. 9, pp. 849–871, Sep. 2000.

[44] S. Soares, E. Laureano, and P. Borba. (2002, Nov.). Implementing
distribution and persistence aspects with aspectJ. ACM SIGPLAN
Notices [Online]. 37(11), p. 174 Available: http://dl.acm.org/
citation.cfm?id=583854.582437

[45] R. Terra and M. T. Valente. (2009, Aug.). A dependency constraint
language to manage object-oriented software architectures. Soft-
ware—Practice Experience [Online]. 39(12), pp. 1073–1094 Avail-
able: http://dl.acm.org/citation.cfm?id=1573951.1573954

[46] R. van Ommering, R. Krikhaar, and L. Feijs. (2001, Apr.). Lan-
guages for formalizing, visualizing and verifying software archi-
tectures. Comput. Languages [Online]. 27(1–3), pp. 3–18 Available:
http://dl.acm.org/citation.cfm?id=2245755.2245982

Eiji Adachi Barbosa received the MSc degree in
informatics from the Pontifical Catholic University
of Rio de Janeiro. He is currently working toward
the PhD degree at the Informatics Department,
Pontifical Catholic University of Rio de Janeiro.
His research focuses on exception handling and
recommender systems for software engineering.
He is a member of the IEEE.

Alessandro Garcia received the PhD degree in
informatics from the Pontifical Catholic University
of Rio de Janeiro. He is an associate professor
at the Informatics Department, Pontifical Catholic
University of Rio de Janeiro. His research focuses
on software modularity, software metrics, excep-
tion handling and empirical software engineering.
He is a member of the IEEE.

Martin P. Robillard received the PhD degree in
computer science from the University of British
Columbia. He is an associate professor at the
School of Computer Science, McGill University.
His research focuses on software archive mining,
API usability, and recommender systems. He is a
member of the IEEE.

Benjamin Jakobus received the MSc degree in
advanced computing from the Imperial College
London. He is currently working toward the
PhD degree at the Informatics Department, Pon-
tifical Catholic University of Rio de Janeiro. His
research focuses on programming languages
and domain-specific languages. He is a member
of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

584 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 6, JUNE 2016

http://dl.acm.org/citation.cfm?id=2577080.2577087
http://dl.acm.org/citation.cfm?id=2577080.2577087
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=159342
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=159342
http://dl.acm.org/citation.cfm?id=1454268.1454273
http://dl.acm.org/citation.cfm?id=1454268.1454273
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=4077029
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=4021341
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=4021341
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=1702672
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=1702672
http://dl.acm.org/citation.cfm?id=255471.255565
http://dl.acm.org/citation.cfm?id=255471.255565
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.1502
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.1502
http://dl.acm.org/citation.cfm?id=2024445.2024456
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6821157
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6821157
http://dl.acm.org/citation.cfm?id=222132.222136
http://dl.acm.org/citation.cfm?id=222132.222136
http://portal.acm.org/citation.cfm?id=357474.355046
http://www.computer.org/csdl/proceedings/hase/2012/4912/00/4912a090-abs.html
http://www.computer.org/csdl/proceedings/hase/2012/4912/00/4912a090-abs.html
http://dl.acm.org/citation.cfm?id=1803947.1804209
http://dl.acm.org/citation.cfm?id=1803947.1804209
http://portal.acm.org/citation.cfm?id=1572220
http://dl.acm.org/citation.cfm?id=583854.582437
http://dl.acm.org/citation.cfm?id=583854.582437
http://dl.acm.org/citation.cfm?id=1573951.1573954
http://dl.acm.org/citation.cfm?id=2245755.2245982

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

