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Recommending Adaptive Changes for Framework Evolution
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In the course of a framework’s evolution, changes ranging from a simple refactoring to a complete rearchitec-
ture can break client programs. Finding suitable replacements for framework elements that were accessed
by a client program and deleted as part of the framework’s evolution can be a challenging task. We present a
recommendation system, SemDiff, that suggests adaptations to client programs by analyzing how a frame-
work was adapted to its own changes. In a study of the evolution of one open source framework and three
client programs, our approach recommended relevant adaptive changes with a high level of precision. In a
second study of the evolution of two frameworks, we found that related change detection approaches were
better at discovering systematic changes and that SemDiff was complementary to these approaches by de-
tecting non-trivial changes such as when a functionality is imported from an external library.
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1. INTRODUCTION

Application frameworks support large-scale reuse and free developers from low-value
programming tasks. By developing clients that integrate with the framework code,
developers are able to customize and enhance the framework to suit their specific
needs. However, as the framework evolves, changes ranging from a simple refac-
toring to a complete rearchitecture can break client programs. To lower the cost of
adapting client programs to changes in the framework, framework developers rely
on a variety of techniques such as automatically capturing and documenting some
of their changes [Dig et al. 2007; Henkel and Diwan 2005], providing migration
paths [Chow and Notkin 1996], or deprecating existing methods and indicating new
replacements [des Rivières 2007]. Current tools, however, cannot capture changes
more complex than refactorings, and manually documenting a framework’s evolu-
tion is not always cost-effective, especially for fast-evolving frameworks. Although
framework users are encouraged to use only published Application Programming
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Interfaces (API) because they usually provide a stable interface around evolving
features [Larman 2001], developers often use internal and undocumented parts of
frameworks for a variety of good reasons, such as accessing functionality that goes
beyond the ones available in the published interfaces [Boulanger and Robillard 2006].
These internal parts are accessible because they are declared as public in their
programming language, but they are not officially published by framework developers
[Fowler 2002].

A previous study of API evolution found that more than 80% of API-breaking
changes were caused by refactorings and concluded that techniques aiming at doc-
umenting or detecting refactorings were desirable [Dig and Johnson 2006]. The au-
thors of that study also mentioned that “Application developers will have to carry
only a small fraction [less than 20%] of the remaining changes. These are changes
that require human expertise” [Dig and Johnson 2006, p.105]. To detect the largest
portion of API-breaking changes, that is, refactorings, several approaches have been
proposed [Dig et al. 2006; Godfrey and Zou 2005; Kim et al. 2007, 2005; Weissgerber
and Diehl 2006; Xing and Stroulia 2006].

Although refactoring detection techniques partially automate the tedious task of
identifying and repairing small changes such as a renamed method, refactorings tend
to be minor changes easily identified through a manual inspection. Indeed, refactor-
ings usually involve only one change dimension: name or location. For example, if
a method is no longer accessible in the new version of a framework, a developer can
often simply perform a lexical search (“grep”) to find similarly named methods (name
dimension) or can look in the same module to find potential replacements (location
dimension). However, it will generally be harder to repair a client program if the
framework went through major modifications that led to nontrivial changes (e.g., a
composition of simple refactorings).

To help developers repair client programs that are affected by the nontrivial evolu-
tion of a framework, we propose an approach to recommend adaptive changes, a form
of maintenance aiming at adjusting a software system to comply with its technological
environment [Lientz and Swanson 1980]. Our idea is to automatically analyze how
the framework was adapted to its own changes, and to recommend similar adapta-
tions. Basically, if a method m1 is removed from the framework code, we can identify
all of the callers of m1 within the framework and analyze how they were adapted to the
removal of m1.

We implemented this approach for Java in a client-server application called SemDiff.
The SemDiff server component is responsible for analyzing the source code repository
of a framework and for inferring high level changes such as method additions and
deletions. The client component takes as input calls to methods that no longer exist in
a framework and produces recommendations in the form of recommended replacement
methods, accompanied by a confidence value.

We evaluated the effectiveness and the need for our approach by using SemDiff
in a legacy-based study [Zelkowitz and Wallace 1998] of one framework in which
we recommended adaptive changes for three broken client programs. We then com-
pared our results with the recommendations of a typical refactoring detection tool.
Our study showed that our approach provided a relevant functionality replacement
for 97% of the broken methods, detected nontrivial changes that were more com-
plex than refactorings, and could recommend methods from external libraries that
replaced a framework’s functionality, a change that is typically not detected by other
techniques.

To better understand the strengths and limitations of SemDiff, we inspected 100
methods removed as part of the evolution of two other frameworks, and we compared
the recommendations of SemDiff with the recommendations of two change detection
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techniques. We found that SemDiff was often complementary to the other approaches
and that only 10% of the methods removed could not be replaced by any of the three
approaches.

The contributions of this article include (1) a technique to automatically recommend
adaptive changes in the face of nontrivial framework evolution, (2) the architecture of a
complete system to track a framework’s evolution and infer nontrivial changes, and (3)
a body of empirical evidence detailing the strengths and limitations of current change
detection techniques.

In the remainder of this article, we present a sample scenario that illustrates the
difficulties associated with nontrivial framework evolution (Section 2). We then de-
scribe the principles and implementation details underlying our approach (Section 3).
We present a legacy-based study on the evolution of the Eclipse Java Development
Tool (JDT) framework (Section 4) and a qualitative study on the evolution of two
other frameworks and three change detection techniques (Section 5). We conclude
with an overview of the related work (Section 6) and a summary of our conclusions
(Section 7).

2. SAMPLE SCENARIO

Let us now consider the case of a developer who decides to reuse internal classes of the
Eclipse framework in a client program. This scenario is based on the actual evolution
of the Eclipse code-base. In Eclipse, classes that are in a package containing the word
internal are, by convention, not part of the supported API. It is generally understood
that internal classes can change from one version of the framework to the other and
that no documentation (e.g., javadoc) or migration path is provided.

One of the classes the developer considers for reuse, org.eclipse.jdt.internal.

corext.util.TypeInfo, is contained in the org.eclipse.jdt.ui plug-in in Eclipse release
3.2. This class, along with several others, such as TypeInfoFactory, TypeInfoUtil and
OpenTypeHistory, provides services for searching and displaying Java type information
(e.g., a type name, package name, or access modifiers).

When Eclipse 3.3 is released, the developer loads the client project in the develop-
ment environment, which automatically tries to build the client program against the
new version of the framework. At this point, the compiler generates multiple com-
pilation errors, because the TypeInfo class is no longer accessible in Eclipse 3.3. The
developer then explores the source code of the new version of Eclipse in the hopes of
finding a suitable replacement for these missing methods, searching for a class with a
name similar to TypeInfo. Seeing a few classes named TypeInfo, the developer realizes
that they are defined in external libraries and that no similarly named classes provide
the required functionality. The developer then moves on to see if the missing class is
in the same package but under a different name. Again, no class is found with the
same functionality. Moreover, the TypeInfoFactory and TypeInfoUtil classes also have
disappeared from this package.

Having ruled out a simple refactoring, the developer then looks at other classes
that used to depend on TypeInfo and sees that some of them now refer to the org.

eclipse.jdt.core.search.TypeNameMatch class. Unfortunately, the developer finds that
this class is not a perfect replacement for TypeInfo, because TypeNameMatch resides in
another plug-in (org.eclipse.jdt.core), and its interface is much smaller (8 methods
declared in TypeNameMatch versus 23 methods in TypeInfo). At this point, the developer
still does not know how to replace one of the missing classes and it becomes clear that
reverse-engineering part of the framework will be necessary.

As illustrated by Figure 1, our approach, SemDiff, can make the process of adapt-
ing a client program to an evolving framework more efficient by (1) providing adaptive

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 19, Publication date: September 2011.



19:4 B. Dagenais and M. P. Robillard

Fig. 1. The SemDiff Recommendations View (bottom) displays the recommendations to replace the TypeIn-
foFactory.create() method and the Compare Editor (top) shows how the framework was adapted to its own
changes: the create() method was replaced by the TypeNameMatch constructor, which, in turn, was replaced
by the createTypeNameMatch() method.

change recommendations (bottom frame), and (2) providing a source code example that
illustrates how the framework was adapted to its own changes (top frame). In contrast
to current approaches that display a list of refactorings [Dig et al. 2006; Kim et al.
2005; Weissgerber and Diehl 2006] or name transformation rules [Kim et al. 2007]
and that require the user to figure out what the relevant refactorings are in a given
situation, SemDiff starts with a request to repair a broken call and returns a list of po-
tential replacements ordered by a confidence value. By providing examples extracted
from the framework’s source code, SemDiff can also help developers validate the rec-
ommendations and choose among alternatives.

3. SEMDIFF

To recommend adaptive changes when a framework method is removed, we hypoth-
esize that, generally, calls to deleted methods will be replaced in the same change
set by one or more calls to methods that provide a similar functionality. A change
set, also called commit or transaction, contains all the changes that were performed
by the framework developer and committed to a source control system like CVS.1
Usually, change sets are associated with only one or a few maintenance tasks, so we
assume that methods that are removed and added in the same change set are closely
related.

To find replacement methods, we must analyze the history of the framework.
Figure 2 provides an overview of the SemDiff implementation. SemDiff consists of a

1www.nongnu.org/cvs/
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Fig. 2. SemDiff overview.

Fig. 3. Using method call changes.

client component (the recommender) and a server component (represented by the
source repository analysis framework). We first present the main strategies under-
lying the recommender, describe how the server infers high level changes from the
source repository, and cover in detail the analyses performed by the server.

3.1 Adaptive Change Recommendations

Developers can send requests to the recommender to receive suggestions of adaptive
changes. With SemDiff, a developer selects a call that can no longer be resolved with
the new version of a framework (e.g., a call to a method of the TypeInfo class pre-
sented in Section 2), and queries the recommender for potential replacements. The
recommender then formulates recommendations by analyzing the high-level changes
inferred by the source repository analysis framework.

3.1.1 Using Call Differences. We use differences in the outgoing calls of a given method
during a framework’s history to find out how the framework was adapted when a
method was removed. For example, in Figure 3, method m1 is removed between two
versions. If we want to find a suitable replacement for m1, we first find all of the
methods where a call to m1 was deleted (e.g., methods caller1 and caller2 in Figure 3).
Then, we gather all calls that were added in these methods as part of the same change
set (e.g., m2 and m3). Since we expect that methods might be adapted along with
additional changes, we sort added calls by a confidence metric to provide a ranking
of the potential replacements. Assuming that we only look for change sets made
prior to a target version v, we define the confidence value of a method n that replaces
a call to method m with the following equations (v is an implicit parameter of all
equations).
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Fig. 4. Support and confidence of a replacement. The subscript numbers refer to corresponding change sets.

Removed(m) := {xi | x is a method that removed a call to m at version i}
Added(m) := {xi | x is a method that added a call to m at version i}
Added Callees(mi) := {c | m added a call to c at version i}
Callers(m) := {c | c calls m}

Potential Recommendations(m) :=
⋃

xi∈Rem(m)

Added Callees(xi)

Support(m, n) := |Removed(m) ∩ Added(n)|

Confidence(m, n) :=
Support(m, n)

Max
(⋃

c∈Potential(m) Support(m, c)
)

Figure 4 shows an example of each of these definitions in the context of requesting
a replacement for method m. The confidence metric of a recommendation n to replace
a method m is the ratio of the recommendation’s support to the maximum support for
all potential recommendations. The confidence metric is therefore a normalized value
with a range of ]0, 1] that is used to compare the recommendations.2 For example, if o
is the recommendation with the highest support, 3, and recommendation n has a third
of this support, 1, n will have a confidence of 0.33. Because the support is bounded
by the number of callers of the removed method (|Removed(m)| ≤ |Callers(m)|), we hy-
pothesize that the framework will have a sufficient amount of calls to its own methods
so pertinent recommendations can be discriminated from spurious ones. Section 4.3
shows how this hypothesis held in practice.

Recommendations that have the same confidence value are further sorted by their
similarity with the name of the queried method: the recommendation that has a name
with the longest subsequence common with the name of the queried method is pre-
sented first. The rationale is that methods with similar names probably exhibit a
similar behavior: this hypothesis forms the basis of Kim et al.’s approach [Kim et al.
2007].

2To be recommended, a replacement method must have a support of at least one, so the confidence value of
a recommendation is always strictly greater than zero.
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Fig. 5. Change chain.

When looking for a replacement for a method m, we search for the methods that
removed a call to m as opposed to all callers of m. Moreover, we do not need to take
into account whether method m still exists. This enables us to get recommendations
for methods that are replaced but that are not deleted yet (e.g., deprecated methods).
This is one difference with previous approaches that use the addition and deletion of
methods as the basis for detecting changes and refactoring [Godfrey and Zou 2005;
Kim et al. 2007, 2005; Weissgerber and Diehl 2006; Xing and Stroulia 2006].

As shown in Figure 4, SemDiff can compute recommendations from multiple change
sets: a call to method o was added by methods x and y in version 1 and by method z in
version 2.

In practice, our hypothesis that calls to a removed method are replaced by the callers
in the same change set might not hold for all framework evolution scenarios. We
now discuss the strategies that we have designed to take into account these possible
variations to our hypothesis and we also review the impact of these strategies on the
computation of the confidence value.

3.1.2 Change Chains. It is possible that during the course of a framework’s evolution,
a method is replaced several times, that is, it is part of a change chain. As illustrated
by Figure 5, a method might be renamed once in one version and renamed a second
time in another version. Additionally, because we study the evolution of a framework
at the change set level, it is probable that we will come across small changes that were
never accessible to client programs (e.g., a method name was misspelled and corrected
in the next change set, a developer reverted to the old version of a class, etc.).

To account for these situations, we must slightly modify the strategy defined above
to detect whether a method is part of a change chain. Indeed, we do not want to
recommend a method that changed subsequently and that is no longer accessible or
appropriate. One solution would be to automatically check if the recommended method
exists in the framework version used by the client program. Unfortunately, this is not
an adequate solution if the method is no longer used by the framework but was not
removed (e.g., the method was deprecated). We thus rely on a different heuristic to
determine whether a recommendation is part of a change chain. If we find that some
methods calling the recommended method removed a call to the recommended method
later, we conclude that our recommendation is probably in a change chain and the
initial recommendation might still be valid. If we find that all methods calling the
recommended method removed the call to the recommended method, we conclude that
this recommendation is part of a change chain and we discard the recommendation
because it is no longer relevant.

Once we have identified a recommendation as being part of a change chain, we
reapply the call difference analysis described above to find a more relevant recommen-
dation. This is illustrated in Figure 5, where our system would recommend replacing
a call to m1 by a call to m3. To improve the performance of our approach, SemDiff does
not attempt to find change chains for recommendations with a confidence value below
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Fig. 6. Callee and caller are deleted together.

a certain threshold (0.6): these recommendations are likely to be less useful to the
developer in the first place. We chose this threshold after trying values from 0.5 to 1.0
during early experimentation on the approach: we found that a value 0.6 offered the
best compromise between accuracy and performance.

Impact on the confidence value. During the computation of a recommendation, if
SemDiff finds that a method removed a call to the recommendation (e.g., caller1

removed a call to the recommendation m2 in Figure 5), SemDiff decreases the support
of the recommendation by one effectively decreasing its confidence value; once the
support drops to zero, we discard the recommendation. When a recommendation is
part of a change chain, the confidence value of the subsequent recommendations
(e.g., m3 is recommended to replace m2 in Figure 5) is computed as usual, that is, the
support of a subsequent recommendation is divided by the maximum support of all
recommendations for the query.

3.1.3 Caller Stability. Because our strategy only relies on the outgoing call relation-
ship, it is sensitive to the stability of callers throughout the framework’s evolution.
For example, Figure 6 shows a situation where both the requested method, m1, and the
caller, caller1, are deleted in the same change set. In this situation, the caller cannot
be used to find a replacement for the requested method. To cope with this issue, we
first need to find a replacement for the deleted caller and then, we can recommend the
methods that are called by the caller replacement (we remove the methods that were
previously called by the deleted caller). Figure 6 illustrates the case where caller1 was
replaced by caller2 and caller2 replaced a call to m1 by a call to m2. Method m3 is not
recommended because caller1 was already calling it. The ability to deal with unsta-
ble callers is a significant difference with Schäfer et al.’s approach that also analyzes
callers to find replacements [Schäfer et al. 2008].

When finding a replacement for a caller method, SemDiff can generate multiple rec-
ommendations (e.g., the method was split, there are truly multiple relevant replace-
ments, false positives, etc.). To reduce the impact of false positives, we first remove
from the potential replacements all recommendations that have a confidence value be-
low a certain threshold (0.6) and then, we perform the call difference analysis on each
of the remaining recommendations.

Impact on the confidence value. When computing the confidence value of a recommen-
dation, stable and unstable callers are considered equal. For example, in Figure 6,
the support of m2 would be one, even if the original caller, caller1 was unstable and
the replacement caller, caller2, came from a recommendation with a confidence value
potentially below 100%. The advantage of this strategy is that the computation of the
support is simpler and easier to understand: it represents the number of callers. The

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 19, Publication date: September 2011.



Recommending Adaptive Changes for Framework Evolution 19:9

Fig. 7. Components of the complexity of SemDiff’s algorithm.

disadvantage is that wrong replacement caller with a low confidence value might boost
the support of spurious recommendations. This problem is limited to a certain extent
by the use of the threshold discussed previously.

3.1.4 Spurious Call Removal. When finding a replacement for a method m1, SemDiff
looks for change sets where a call to m1 was removed because this is typically where
the framework will be adapted to a change concerning m1. It is possible though that
a call to m1 is removed in one place and added in another place in the same change
set (e.g., the caller was refactored, the caller was made more cohesive and the call to
m1 was moved elsewhere). In these cases, the framework is not being adapted to the
loss of m1 since it is still calling it elsewhere. To make sure our analysis does not take
into account these spurious call removals, SemDiff will ignore all change sets where
the requested method call (e.g., m1) was removed from one caller and added in another
caller.

Impact on the confidence value. When we ignore a change set where spurious call re-
movals happened, we potentially reduce the number of recommendations and decrease
the support of recommendations. While the former consequence reduces the number
of false positives, the latter consequence makes the confidence value more meaningful
by only considering callers where a relevant replacement happened.

3.1.5 Complexity. As shown in Figure 7, the main factors affecting the computational
complexity of SemDiff’s algorithm are the number of methods that removed a call to the
queried method (removed), the number of different added callees (acal), the maximum
change chain length (chain), and the maximum length of an unstable caller chain
(unstable).

The maximum number of recommendations (rec), can be approximated by multiply-
ing the number of methods that removed a call to the queried method by the number
of added callees. Assuming that searching for these methods is efficient, the number of
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recommendations represents the basic complexity of SemDiff ’s algorithm and is given
by Equation (1).

The effect of the spurious call removal on the complexity is given by Equation (2):
SemDiff needs to analyze the transaction of each method that removed a call to the
queried method (removed) to ensure that the call was not also added elsewhere in the
transaction. This strategy has a negligible impact on the complexity.

The strategy to detect change chains has a significant impact on the complexity
of SemDiff ’s algorithm. As shown in Equation (3), the number of recommendations
inspected is superpolynomial because we need to find recommendations for each rec-
ommendation in a change chain. For example, in Figure 5, SemDiff had to find a recom-
mendation to replace the recommendation m2 because it was part of a change chain.
In our experience with SemDiff, the length of a chain between two major releases of a
software system never exceeded two. In practice, we expect change chain lengths to be
small (e.g., below 10), so the algorithm should be polynomial. Moreover, to minimize
the impact of this strategy on the performance of SemDiff, we only consider recom-
mendations in a chain that have a confidence value superior to a given threshold (0.6).

Finally, the strategy to detect unstable callers, without change chain detection, also
makes the complexity of SemDiff ’s algorithm superpolynomial. This is because we
need to compute a set of recommendations for each unstable caller which potentially
has an unstable caller too. Once we have determined a list of potential replacements
for the unstable callers, we can consider the added callees. Because the strategy to
detect unstable callers can significantly impact the performance of SemDiff, especially
when combined with the change chains detection strategy, we limit the length of un-
stable caller chains to two. If the length of the chain exceeds that limit (e.g., the parent
of the parent of the unstable caller is unstable), SemDiff aborts the search and issues
no recommendation. This threshold has the additional advantage of limiting the im-
precision brought on by the unstable caller strategy.

In practice, we never encountered a recommendation for which SemDiff had to apply
both the unstable caller strategy and the change chain strategy. Because the complex-
ity of each strategy is superpolynomial, the combination of the two strategies would
also be superpolynomial. Considering the length of call chains in practice and the
thresholds we use to limit the computation of unstable callers, we conclude that the
algorithmic complexity of SemDiff ’s algorithm is polynomial in practice, but super-
polynomial in theory.

3.1.6 Viewing Recommendations. The recommendations produced by SemDiff are pre-
sented to the user in the Eclipse development environment and take the form of a
list of methods, ranked by their confidence value. The user can also double-click on a
recommendation to open the Eclipse compare editor with one example where the rec-
ommended method replaced the broken call. This allows the user to understand why
this particular recommendation was provided and see how the framework was adapted
to this change.

3.1.7 Current Limitations. A number of factors constrain the applicability of our ap-
proach. The most important limitation is that the framework cannot issue recommen-
dations for root methods, that is, methods that are never called within the framework.
Classes that are called back by other libraries or protected methods that are called by
a parent class not in the framework will hinder the ability of our approach to make
adaptive change recommendations. One solution to the problem of root methods is
to include in our analysis example programs that depend on the framework and that
were adapted to its various versions: this is the strategy taken by Schäfer et al. [2008]
We show in Section 5.2 that root methods are the main limitation of SemDiff.
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Although our approach can make multiple recommendations per request, it does
not group the recommendations together. For example, a call to method m1 might have
been replaced by a call to methods m2 and m3. Our approach will present these two
calls as two separate recommendations with, possibly, a different confidence value. To
help a user identify relationship between recommendations, SemDiff displays the code
where the changes happened: automatically inferring these relationships remains an
area for future work.

Finally, adaptive changes proposed by SemDiff might not be semantically equivalent
to features that need to be replaced, and blindly applying the recommended changes
without proper testing could lead to serious flaws. Other research projects currently
aim at generating test cases to ensure that the semantic of a program is preserved
when applying a refactoring [Daniel et al. 2007; Jagannath et al. 2009]: it is possible
that our approach could directly benefit from such developments.

3.2 Analyzing Source Code History

To provide adaptive change recommendations, SemDiff must first analyze a frame-
work’s source code repository by (1) retrieving the files and change data for each ver-
sion of the framework, (2) running several analyses to infer high level changes such
as structural and method call differences, and (3) storing these high level changes in a
database for future use by our recommendation system.

Source Repositories. Currently, SemDiff provides adapters to retrieve information
from CVS and Subversion (SVN)3 repositories. SVN has the concept of change set
embedded in its protocol, which makes it easy to retrieve and group files that were
changed together. In contrast, CVS does not group file changes and some preprocess-
ing of the repository log file is needed to infer change sets. We employed a technique
previously used to mine CVS repositories to retrieve the change sets [Weissgerber and
Diehl 2006; Zimmermann et al. 2005]: we group all log entries that occurred within
a certain time window (300 seconds) and that shared the same user and log message.
This concept of time window is essential to capture transactions that could span across
multiple seconds [Zimmermann and Weissgerber 2004].

The merging of branches is another issue that arises when analyzing software repos-
itories. This operation is not explicitly documented by either CVS or SVN. Detecting
merges is important because we do not want to analyze the same change twice: one in
the branched version and one in the merged version. To detect merges, we employed a
simple heuristic used in previous work on source repository mining [Weissgerber and
Diehl 2006; Zimmermann et al. 2005]: we ignored change sets involving more than
40 files.

Change Analysis. For each change set, SemDiff can run custom analyses to infer high
level information such as the removal or addition of methods from the raw line differ-
ence data provided by the repository. This high-level information is then used by our
recommender. Because we only retrieve the files that were added, removed or modified
in each change set, we always perform analyses on a subset of the program, which lim-
its the types of analysis that we can perform. For example, it might be impossible to
fully resolve the return type of a method called by a class in a change set, but declared
in a class outside the change set. Analyzing each change set (as opposed to analyz-
ing major revisions) potentially makes the analysis of the program evolution easier
because we can break down a nontrivial change into smaller and incremental changes
(i.e., change sets). Combining the granularity of the change set with the quality of full

3subversion.tigris.org
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Fig. 8. Class changes impacting method bodies.

program analysis by building the whole framework after having retrieved each change
set would be possible but not practical: project configuration (e.g., how to build the
project) can evolve over time and differs from one project to the others and perform-
ing full program analysis on thousands of change sets would take too much time to be
valuable.

We perform two analyses on every change set in the framework’s version history.
The first analysis, StructDiff, produces a list of all methods, fields, and classes that
were added, removed, and modified. To determine whether a method has been modi-
fied, StructDiff compares the abstract syntax tree of the two versions of the method: if
the two subtrees are not equal, StructDiff concludes that the method was modified. A
simple prefix tree walk is used to determine the equality of the subtrees: to be con-
sidered equal, two nodes must be at the same position in the tree, they must be equal
(e.g., same method call) and they must have the same children in the same order. Tree
matching is more precise than simple textual comparison because it considers iden-
tifiers, but ignores changes in comments and source format. Compared to the first
version of SemDiff [Dagenais and Robillard 2008], StructDiff now conservatively detects
that a change outside of a method body might have impacted the method. For ex-
ample, in Figure 8, the structure and the text of methods m1 and m2 did not change,
but the semantics are different because of the modified import statement and super-
class. StructDiff would detect that these two methods changed: in the case of m1, the
body refers to a modified import, List, and in the case of m2, the body refers to a super
method and a method that is not declared in Bar.

The second analysis, CallDiff, finds the calls that were added or removed between
two versions of each method identified by StructDiff. For example, in Figure 9, CallDiff
would indicate that between version 1.1 and version 1.2, the call PrintStream.println()
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Fig. 9. Outgoing call differences.

was removed and the calls Math.random() and PrintStream. print(double) were added.
Because we perform this static analysis on a subset of the program source, we must
rely on a custom parser and analyzer presented in Section 3.3.

Persisting changes. After the execution of the analyses for a change set, the results
are stored in a PostgreSQL database4 or an embedded HSQLDB database 5 and made
available to our recommender. Using PostgreSQL offers better performance, while
HSQLDB is easier to configure.

Performance and Scalability. The change analysis is only performed once on each
change set. When a new change set is committed, the change analysis can be per-
formed on this new change set without having to go through the previous change sets.
In practice, we found that half of the analysis time was spent on retrieving the source
file versions over the Internet. The number of files to download is limited to 40, the
threshold we use to detect branch merges.

Most of the remaining analysis time is spent executing partial program analysis
to perform the call difference analysis. Typically change sets with large files such as
generated parser classes take the most time: large files could potentially be explicitly
excluded to speed up the analysis. The total size of the program (e.g., lines of code
or number of classes) only impacts the performance of the analysis if we assume that
large programs have more change sets than small programs. The whole program is
never analyzed completely so its size is not a limiting factor. We provide the perfor-
mance data that we measured during our evaluation study in the next section.

3.3 Partial Program Analysis

With Java, most parsers and static analysis programs cannot reconstruct the complete
type hierarchy if they only receive as input a subset of the program source code, with-
out the dependencies and the rest of the program (in the form of source or binary). A
few parsers, like the one provided by the Eclipse Java Development Tool framework,
can construct abstract syntax trees (AST) from a subset of the program source code,
but the information they provide is incomplete. For example, in Figure 10, the Eclipse
parser would be able to recognize that in method doSomething(), there is a call to a
method named x at line 7, but it would not indicate its target, an object of type Y, be-
cause it is an unknown class. To enable the analysis of partial programs, we extended
the Eclipse Java compiler [Dagenais and Hendren 2008].

Our implementation of Partial Program Analysis first replaces every occurrence
of unknown types by a placeholder type: UNKNOWN. Then, it tries to infer the ac-
tual type of the placeholder types by analyzing how the various unknown types are

4www.postgresql.org
5hsqldb.org
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Fig. 10. Partial program analysis example.

used. For example, our analyzer would infer that the following methods are called
in doSomething(Y): Y.x(), Util.method2(Y,double), Foo.doThis(Z), Util.method3(), and
UNKNOWN.method4().

Although analyzing partial Java programs is inherently unsound (e.g., without the
whole program, it is sometimes impossible at compile time to determine whether an
expression is a package, a class, an internal class, or a field), we found that on average,
our technique correctly resolved 91.2% of the types when analyzing one class at a time
and only produced 2.7% of erroneous types [Dagenais and Hendren 2008]. In practice,
this level of precision means that most of the time, the inferred type is in the hierarchy
of the declared type, that is, the inferred type is a subtype, a supertype or the same
type as the declared type. For example, our analyzer infers that the method Util.-

method2() on line 9 returns an object of type Z, even if this method might be defined to
return a subtype of Z. It follows that the inferred result, Z, is not equal to the declared
type, but it is in its hierarchy. Inferring a hierarchy-related type is still more precise
than inferring that the return type is UNKNOWN or Object.

The recommender also needs to take into account that the type information of a call
might be incomplete. In the worst case, it might be impossible to know the target and
the parameter types of a call. This is the case of method m1 in the following example, if
we do not have the definition of myObj’s type.

myObj.myMethod().m1(myObj.myOtherMethod())

Polymorphism can also be an issue. In the next example, the calls at line 2 and 3
refer to the same method, but our partial program analysis would treat them as two
different calls, ArrayList.add(Object) and ArrayList.add(String), if we do not have the
definition of ArrayList.

1: List list = new ArrayList();
2: list.add(new Object());
3: list.add(new String());

This lack of accurate type information can be a serious problem for common method
names, such as add and remove. If we want to find a replacement for a method
add(Object) that is no longer accessible, we cannot search for all methods that removed
a call to a method named add with one parameter: we would probably retrieve a lot of
false positives coming from other irrelevant classes that defined a similar method.
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Currently, we try three matching criteria, starting from the strictest one, until we can
find calls. We first try to find methods that removed a call sharing the same name,
number of parameters, and target type as the call we want to replace. If we do not find
such methods, we try to match calls that share the same name, number of parameters,
and parameter types. Finally, if this still does not return any results, we then try to
find calls only by their name and number of parameters.

4. LEGACY-BASED EVALUATION STUDY

The main strategy underlying SemDiff relies on a number of hypotheses we made about
framework evolution. We designed a study to assess the validity of these hypotheses
and to evaluate the effectiveness of our approach. This study helped us answer the
following questions.

(1) Is the confidence metric we use able to discriminate relevant recommendations
from false positives?

(2) In addition to simple refactorings such as rename method, can SemDiff detect
other types of changes?

4.1 Study Design

To answer these questions, we performed a legacy study of one framework and three
client programs. We used SemDiff to adapt an old version of a client program to the
new version of the framework. We then compared our adaptation recommendations
to the historical (real) adaptation of the client program. To evaluate the complexity of
the changes that occurred during the framework’s evolution, we also used a refactor-
ing detection tool to analyze the framework’s history and provide recommendations to
client programs.

In summary, for each client program, we selected two versions (c1,c2): one that was
using an old version of the framework (f1) and one that was using the most recent
version (f2). We then tried to compile the c1 version of each client program with the
f2 version of the framework. For each method call in the client program that could not
be resolved, we used the SemDiff recommender and a refactoring detection tool to find
a suitable replacement for the broken method call. We then analyzed the c2 version of
the client program to see if the recommended methods were called.

Target systems. We chose the Eclipse Java Development Tool (JDT) platform as the
framework to analyze in our study. This framework is large enough to provide evi-
dence that our approach scales, its source history is publicly available, it is actively
maintained and has a large ecosystem of client programs. We chose to study two mod-
ules of this framework, the org.eclipse.jdt.core and org.eclipse.jdt.ui plug-ins from
version 3.1 to 3.3. These plug-ins are mainly responsible for the Java compiler and
Java editor in the Eclipse development environment and they went through a nonneg-
ligible evolution between these two releases. In our experience, client programs that
depend on JDT always depend on at least one of these two plug-ins. From release 3.1
to release 3.3, the jdt.core and jdt.ui plug-ins grew respectively from 222 to 261 kLOC
and from 256 to 311 kLOC. Additionally, 2,835 out of the 28,671 public and protected
methods of the jdt.core and jdt.ui plug-ins were removed between versions 3.1 and
3.3 and 7548 methods were added. Many features were implemented between these
two versions such as support for Java 6, inline refactoring in the editor, improved Java
parser, and new compiler warnings. We chose to study these plug-ins across three ma-
jor revisions (3.1, 3.2, and 3.3) to increase the odds of finding nontrivial changes and
change chains.
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Table I. Client Program Versions

Client Eclipse 3.1 Eclipse 3.3

Mylyn 0.5 2.0
JBoss IDE 1.5 2.0
jdt.debug.ui 3.1 3.3

Finding suitable client programs was a harder task. We needed client programs
that (1) depended on JDT, (2) had been adapted to the two versions of the framework
we studied (3.1 and 3.3), and (3) replaced a functionality that disappeared during the
framework’s evolution by a functionality provided by the last release of the framework.
We ran into several cases where the last condition was not met. For example, the
AspectJ Development Tool6 client program copied entire classes from JDT release 3.1
into its own code base instead of calling a new JDT functionality. Another JDT client
program, the Eclipse Modeling Framework,7 replaced a deprecated framework func-
tionality with its own implementation. We could not use such client programs because
they did not provide an oracle for the quality of the recommendations. However, such
dramatic adaptation strategies further motivate our work by providing anecdotal
evidence that adapting client code to new versions of a framework is a challenging
and costly endeavor: it is possible that the developers of these client programs would
have used the new JDT functionality if an easier migration path had been provided.

We found three client programs that met our study criteria: Mylyn [Kersten and
Murphy 2006], a task-focused environment, JBoss IDE, a development environment
for the JBoss web application server, and jdt.debug.ui, the Java debugging environ-
ment in Eclipse. Table I gives the client program versions used for Eclipse 3.1 and
Eclipse 3.3.8

SemDiff. We used SemDiff to analyze the source history of the Eclipse framework.
SemDiff processed 10,408 change sets for the two jdt plug-ins in the Eclipse CVS repos-
itory from January 2005 to July 2007, as Eclipse 3.1 and 3.3 were respectively released
on June 27, 2005, and June 25, 2007. Because work on Eclipse 3.2 might have begun
before the release of Eclipse 3.1 (e.g., in a branch), we started to study the framework
in January 2005 instead of June 2005.

Once we analyzed the framework’s source history, we tried to compile the first ver-
sion of the client programs with Eclipse 3.3. For each call to a framework method that
could not be resolved by the compiler, we ran the SemDiff recommender and noted its
recommendations. We then looked at the version of the client program that had been
adapted to Eclipse 3.3: if the client program called one of the top three recommenda-
tions for each broken call, we considered it to be a relevant recommendation.

RefactoringCrawler. We also used a typical refactoring detection tool to discriminate
nontrivial changes that occurred during the framework’s evolution from simple
refactorings. We chose RefactoringCrawler [Dig et al. 2006], as it was easy to use,
configurable, readily available, and representative of several refactoring detection
techniques; a more detailed comparison of such techniques is given in Section 6. In
essence, RefactoringCrawler takes two complete versions of a project as input and
gives a list of refactoring pairs (e.g., method m1 was renamed to method m2).

6www.eclipse.org/ajdt/
7www.eclipse.org/modeling/emf/
8In a previous study [Dagenais and Robillard 2008], we reported having analyzed JBoss IDE 1.1 and 1.5:
this was an error and it should have read 1.5 and 2.0.
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Following the tool author’s recommendations,9 we configured RefactoringCrawler to
raise the number of detected refactorings at the expense of a higher number of false
positives by lowering several threshold values. Indeed, we did not want to assess the
accuracy of the tool, but use it as a baseline to differentiate refactorings from nontrivial
changes. In addition to the jdt.core and jdt.ui plugins, we added the jdt.ui.tests and
jdt.ui.tests.refactoring to the set of plug-ins analyzed by RefactoringCrawler to in-
crease the incoming calls to the jdt.ui plug-in, which was required by this approach to
increase the odds of detecting refactorings. We combined in one result set the detected
refactorings from the following three version pairs: 3.1 to 3.2, 3.1 to 3.3, and 3.2 to 3.3.

We then followed the same procedure as we did for SemDiff: for each broken call in
the first version of a client program, we tried to find a refactoring involving the called
method. If we found such refactoring and the refactored element was used by the sec-
ond version of the client program, we considered that the refactoring detection tool suc-
ceeded in providing a relevant adaptive change and that this change was a refactoring.

4.2 Comparison with Prior Study

The methodology described in this section was used to replicate the study based
on code history described in a previous paper [Dagenais and Robillard 2008]. We
replicated this study because we have made important changes to SemDiff and Partial
Program Analysis that can impact the results. First, we reimplemented both the user
interface and the server component of SemDiff to improve the accuracy of the analyses
and to make it more usable for software engineers and researchers [Dagenais and
Robillard 2009]. Second, we also reimplemented Partial Program Analysis so that it
uses the Eclipse compiler as the backend instead of Polyglot [Nystrom et al. 2003],
effectively providing support for new Java 5 constructs (e.g., generics, enhanced for
loops). Specifically, the study described in this article replicated the previous study
with the following differences.

(1) The new version of Partial Program Analysis has more type inference rules and
handles fully qualified expressions more accurately. We expect this change to
decrease the number of unknown types present in the recommendations.

(2) As explained in Section 3.2, the new version of StructDiff detects when an im-
port statement or a superclass has been modified and conservatively reports as
changed any method that could be impacted by these modifications. We expect
to detect more call differences than in the previous version and the number of
requests for which SemDiff can provide a recommendation should increase.

(3) Although we included deprecated methods in our input set in the original study, a
close inspection revealed that all of these methods had associated comments pro-
viding a recommendation of the new method to use. In this case SemDiff does not
provide any added value (except in the unlikely case where the comments would
be wrong), so we excluded these methods from our analysis sample. These meth-
ods were the only ones for which RefactoringCrawler produced a relevant rec-
ommendation: consequently, the total number of correct recommendations from
RefactoringCrawler went from 6 to 0 in Table II.

(4) While replicating the original study, we found three new compilation errors that
we previously missed. Because the Java editor we used to review the client code
does not highlight all errors (e.g., when a type is not found, subsequent method
calls from this type are not highlighted as erroneous), we have to manually iden-
tify all erroneous method calls, a process that is error-prone. This change in-
creased our analysis sample.

9D. Dig. Personal communication, 25 August 2007.
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Table II. Number of Relevant Recommendations by SemDiff and Number of
Refactorings Detected by RefactoringCrawler

Client Compilation Errors Fixes found Refactorings
Errors in Scope by SemDiff found by RC

Mylyn 13 8 7 0
JBoss IDE 24 18 18 0
jdt.debug.ui 29 7(11) 7 0

Total 66 33(37) 32 0

4.3 Results

Table II shows the results of our study. For each client program, we list the number of
compilation errors related to the JDT framework (Compilation Errors), the number of
errors caused by unresolved method calls (Errors in Scope), the number of errors that
could be fixed based on the top three SemDiff recommendations (Fixes found by SemD-
iff) and the the number of errors associated with refactorings as detected by Refactor-
ingCrawler (Refactorings found by RC). The number of compilation errors represents
all compilation errors (e.g., import statement referring to an unknown class, unknown
parameter type when declaring a method, unknown method call, etc.). For example, in
Mylyn, there were 13 errors related to the JDT framework of which eight were caused
by unresolved method calls. SemDiff provided relevant recommendations for seven of
them while RefactoringCrawler detected no refactoring relevant to these errors.

We consider an error to be within the scope of our approach if the type of the error
is in the input domain of SemDiff (and RefactoringCrawler). Because SemDiff takes as
input a method and gives as output a list of methods, we only considered unresolved
method calls to be within the scope of our approach. Errors such as unknown import
statements cannot be provided as input to SemDiff so we did not try to fix them. Even
if method recommendations can be indirectly used to fix these kinds of errors, there
was not always an objective way to measure the success of our recommendations.

The two numbers in the Errors in Scope column for jdt.debug.ui represent two in-
terpretations of the scope of our approach. Although there were 11 errors that are
applicable to our approach, four could not be validated by following our experimental
methodology because the client program replaced the missing functionality by its own
implementation instead of using methods in the new version of the framework. In this
case, even if our approach (or RefactoringCrawler) provided the correct recommenda-
tions, we would not be able to assert this fact using the client’s history as an oracle.
We thus include seven as the number of adaptation problems for which there is an
objectively verifiable solution.

The repository analysis took approximately 11.5 hours on a Xeon 3.0 Ghz with 16
Gb of RAM and running Fedora 10 operating system. This analysis needs to be per-
formed only once before a user can make requests in different disconnected sessions.
On average, each request took 1 second to complete. Running the three analyses with
RefactoringCrawler took 4.2 hours.

Relevant recommendations. SemDiff found relevant recommendations for 97% of the
problematic calls in the client programs. For example, in Mylyn, SemDiff suggested two
relevant replacements with a confidence value of 1.0 for TypeInfoFactory.create(...)

which returned an instance of the TypeInfo class presented in Section 2. These
two replacements were a call to the JavaSearchTypeNameMatch constructor and a call
to the method SearchEngine.createTypeNameMatch(...), both returning a subclass of
TypeNameMatch.
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Fig. 11. Evolution of TypeInfo into JavaSeachTypeNameMatch.

Finally, in jdt.debug.ui, SemDiff was not able to provide the correct recommendation
for one method in Mylyn. This is a public method, OpenTypeHistory.contains(TypeInfo),
that was never called in JDT and that was likely provided to give a complete API
(other methods in this class include add and remove). As it happens, Mylyn also called
OpenTypeHistory.remove(TypeInfo), and this time, SemDiff could recommend a relevant
replacement: OpenTypeHistory.remove(TypeNameMatch). Changing the parameter type of
the contains method from TypeInfo to TypeNameMatch effectively fixed the broken method
in Mylyn. This example shows that SemDiff might not be able to recommend replace-
ments for all the methods in a class, but recommendations for the other methods might
be used by developers to indirectly fix broken methods. Additionally, the detection of
this change also indicates that the heuristics introduced to cope with the inevitable
inaccuracy of Partial Program Analysis succeeded to find a replacement to a method
with a common name.

Confidence value. In most cases, the confidence value was necessary to discriminate
relevant replacements from false positives because SemDiff produced an average of
13.7 recommendations per request. On average, there were 2.2 recommendations with
a confidence value of 1.0 per request. The support of the relevant recommendations
had an average of 2.3 methods. Because this low support was enough to distinguish
relevant recommendations from bad ones, we consider this to be evidence that, for
frameworks like JDT, our approach can work only by analyzing the code of the frame-
work itself and does not require a set of examples using the framework.

Nontrivial changes. RefactoringCrawler found 14,207 refactorings between JDT re-
leases 3.1 and 3.3. Although a subset of these reported refactorings were true pos-
itives, none were related to errors in the client programs we studied, which means
that the changes that broke the client programs were likely more complex than simple
refactorings (e.g., a method was both renamed and moved).10 This observation pro-
vides evidence that our approach works in the face of nontrivial changes. For example,
in Mylyn, the suggestion to replace a factory method involving the TypeInfo class with
methods related to TypeNameMatch was far from trivial: as illustrated by Figure 11, this
change spanned across the two jdt plug-ins and was part of a change chain. A devel-
oper would not have been able to locate the relevant replacement by searching for a
method with a similar name or by looking at the package where the original method
resided. Because this change was not mentioned in the Eclipse 3.3 release notes, it is

10RefactoringCrawler found many false positives, that is, refactorings that did not happen, because we
configured the tool to detect as many refactorings as possible. We did not count the number of false positives
because we only wanted to objectively find if a refactoring caused the compilation errors in the client
programs.
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likely that finding a relevant method replacement would have required a significant
investigation effort.

Another interesting recommendation was provided for the JBoss IDE: SemDiff rec-
ommended to replace the constructor of ListContentProvider with the constructor of
ArrayContentProvider. Although the former is located in the jdt.ui plug-in, the lat-
ter is located in the org.eclipse.ui plug-in, which was not even analyzed by SemDiff.
This shows that SemDiff can provide recommendations when a framework feature is
replaced by an external functionality. Being able to track changes that are outside the
analyzed framework could also enable us to recommend adaptive changes related to
a framework, but only by analyzing a subset of its client programs. This would make
our approach usable even if the framework’s source code and source history were not
publicly available.

Finally, to detect nontrivial changes, SemDiff used the three heuristics presented
in Section 3.1 several times when recommending adaptive changes to the three client
programs: change chains were detected in 18% (6 out of 33) of the requests, caller
replacements had to be found in 12% (4 out of 33) of the requests and change sets with
spurious calls were removed 79% (26 out of 33) of the time.

Summary. SemDiff was able to recommend relevant adaptive changes for 97% (32
out of 33) compilation errors that were caused by framework evolution. The fact that
RefactoringCrawler did not detect any refactoring that caused the compilation errors
in the client programs indicates that a developer would probably have struggled to find
a suitable replacement for most of the broken calls. Arguably, even if a developer had
found a replacement, the low cost of SemDiff on the client side (each request took an
average of 1 second) makes our approach more effective in most cases. On the server
side, SemDiff took less than four seconds to process each change set, which is typically
faster than the compilation of the framework or the execution of test suites in a con-
tinuous build environment. SemDiff could then be integrated with such environment
without significantly affecting the development process Alternatively, the repository
analyses could be performed after each minor releases.

4.4 Threats to Validity

The external validity of this study is limited by the fact that we only studied the evo-
lution of a subset of the Eclipse JDT framework and it is probably not representa-
tive of the code and evolution patterns of other frameworks. Multiple factors such
as change set granularity, method cohesion, and programming idioms vary between
software projects and can affect our approach. For example, the two first factors will
introduce noise while some programming idioms such as using long call chains (e.g.,
m1().m2().m3().m4()) are likely to decrease the precision of our call difference analysis.
Still, the impact of these factors on the results is mitigated by the strategies we devised
to prevent them (e.g., confidence value). Moreover, because 21 developers contributed
to jdt.core and jdt.ui, we can reasonably assume that the results we obtained were not
related to a particular developer profile.

We chose to study only two components of the JDT framework because these
components implement most of the features of the framework and account for 84% of
the source code in version 3.1 (478 KLOC out of 571 KLOC). Moreover, we wanted to
use one component of the JDT framework as a client so we could not include the whole
framework in our analysis. It is possible that we would have obtained different results
by considering all components of JDT or even all components of Eclipse. Typically,
when a method is deleted in one component, the other components depending on that
method are adapted in a later version. Because SemDiff computes recommendations
by analyzing the adaptations in any version, SemDiff could have captured these
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adaptations. It is possible though that many methods could have been adapted at the
same time resulting in additional noise. Because finding callers of a removed method,
as opposed to noise, was the main problem encountered by SemDiff, we believe that
analyzing only two components of JDT was an additional challenge to our approach
and not a major threat to the validity of this study.

We evaluated the relevance of our recommendations by analyzing the evolution of
client programs. Since we used historical data, we can only speculate on why the
methods we recommended were called by the client programs and we cannot assess
how the developers would have used our recommendations.

Finally, by using client programs and a refactoring detection tool, we limited the
need for personal judgment when assessing the relevance of a recommendation and
the complexity of a change. The choice of client programs is still subject to investigator
bias, but this risk is mitigated by the fact that the investigators had no control and
were not involved in the evolution of the selected client programs.

5. QUALITATIVE STUDY OF CHANGES

We pursued the evaluation of our approach by performing a detailed study of the
changes that occurred between two versions of two other frameworks. This study pro-
vides an answer to these additional research questions.

(1) What types of changes cause methods to be removed?
(2) How do SemDiff’s recommendations differ from other change detection

techniques?
(3) What types of changes are typically missed by SemDiff?

To answer these questions, we studied the evolution of two other systems that ex-
hibit different development styles and life cycles. We selected two consecutive major
releases of these systems and we computed a list of the public and protected methods
that had been removed between the two releases. Then, for each system, we randomly
selected 50 methods that we inspected to find the cause of the removal. We also looked
at these methods from the perspective of framework users who would need to adapt
their client program and we tried to find a suitable replacement. Finally, we compared
our findings with the results of SemDiff and two other change detection tools.

Inspecting 50 random method removals per framework, as opposed to the method
removals that broke a client program as in the previous study, has several implications.
The main advantage of this strategy is that it increases our analysis sample and the
chance to study different removal scenarios. For example, in the previous study, we
analyzed only 33 method removals because each client program was using a subset of
the JDT API and only 10% of the framework’s API broke between the two versions of
the framework. Conversely, the risk of this strategy is to study the removal of methods
whose impact on clients is not established.

5.1 Study Design

We selected two open source systems, jEdit and Nutch. These systems have differ-
ent development styles and life cycles. jEdit is a mature system with an extensive
source history and Nutch is a rapidly growing application that exhibits major changes
between releases. Even if these programs can be used as stand-alone applications,
they are also used as frameworks to respectively develop text editor plug-ins and Web
crawling applications.

For each framework, we selected two consecutive major revisions where more than
50 public and protected methods had been removed. Public and protected methods can
be used by client programs and each of these removed methods could be a potential
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Table III. Target Program Versions

Framework Version 1 Version 2 R. Methods

jEdit 4.1 4.2 448
Nutch 0.9 1.0 223

request for SemDiff. Table III shows the versions we studied for each framework, and
the number of public and protected methods removed between the two versions.

We randomly selected 50 removed methods from each framework.11 The sample is
small enough so that we can manually assess the cause of the removal for each method,
but it is also large enough to offer a wide variety of changes.

For each removed method in our sample, we tried to identify the cause of the change
and locate a suitable replacement from the perspective of a framework user. We used
the following methodology to analyze each removed method.

(1) Using the HistoryExplorer tool provided by SemDiff,12 we located all the change
sets where the method had been deleted and where calls to the method had been
deleted.

(2) For each change set, we inspected the commit comment and compared the source
files where the method had been removed.

(3) Using this information, we came up with a change rationale, that is, a small
explanation of the change.

(4) By manually analyzing the change sets and by looking at the source code of the
two releases of the framework, we tried to identify relevant replacements for the
removed methods.

(5) At the end of our analysis of both frameworks, we grouped the change rationales
into general categories of changes.

The inspection of the removed methods was a lengthy process that required on av-
erage 12 minutes per method. Although simple refactorings (e.g., method renaming)
were easy to identify using the Eclipse compare editor, many changes involved numer-
ous classes. Methods for which there was no replacement took the most time because
we wanted to be highly confident that there was truly no replacement. HistoryExplorer
provided us with the commit comments, the ability to compare two relevant versions of
a source file, and the list of transactions where methods and calls were added, removed
and modified.

Following this inspection, we analyzed the whole source history of both frameworks
using SemDiff. For each removed method, we made a request to SemDiff and compared
the recommendations with the list of replacements we manually computed.

Comparing with other change detection techniques. To answer our second research
question, we applied two other change detection techniques on both frameworks:
RefactoringCrawler [Dig et al. 2006] and Kim et al.’s approach to detect structural
changes (referred to as KEA) [Kim et al. 2007]. RefactoringCrawler and KEA are
techniques that significantly differ from SemDiff in their strategy to detect changes

11The jEdit repository also contains the source code of an external project, BeanShell, and the jEdit devel-
opers occasionally dump the source code of a new release of BeanShell in the repository. We excluded the
methods removed in BeanShell from our random sample: a study of the BeanShell repository would have
been necessary to accurately recommend replacements of BeanShell methods.
12www.cs.mcgill.ca/˜swevo/semdiff

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 19, Publication date: September 2011.



Recommending Adaptive Changes for Framework Evolution 19:23

and both techniques exhibited a high accuracy13 in their respective evaluation study.
Evaluating change detection approaches by systematically analyzing the removal of
program elements between two versions of a program is an evaluation strategy that
has been successfully used in the past [Kim et al. 2007].

RefactoringCrawler was presented in Section 4.1 and detects refactorings by com-
paring the structural and textual similarity of program elements. RefactoringCrawler
is representative of a family of change detection approaches derived from Origin Analy-
sis [Godfrey and Zou 2005] that rely on these program characteristics to find method
replacements. Because a study from the authors of RefactoringCrawler found that 80%
of API-breaking changes such as a method removal were caused by refactorings [Dig
and Johnson 2006], we expected RefactoringCrawler to detect a significant subset of
the changes that caused the method removals.

Kim et al.’s approach is based on the observation that changes can be expressed
with general transformation rules applied to the signature of program elements. One
of the advantages of this technique is that a single rule can explain the change of many
elements. For example, one rule might stipulate that all methods in the Class ABC be-
ginning with the token paint were renamed to methods beginning with the token draw.
We provide a more detailed explanation and comparison of various change detection
techniques in Section 6.

We executed RefactoringCrawler with two sets of parameters: the default parame-
ters and a set of parameters promoting the detection of many refactorings at the cost
of many false positives. These latter parameters were the same as the ones used in
our legacy-based evaluation study (Section 4.1). We executed the KEA tool with the
parameters found to be optimal in their evaluation study, that is, a seed threshold of
0.7 and an exception threshold of 0.34 [Kim et al. 2007].

Even if we had performed our inspection of method removals before executing these
approaches, we carefully reviewed the recommendations of the three approaches to
understand why each suggestion had been recommended and to ensure that we did
not miss something in our inspection. As it turned out, we revised the conclusion of
our inspection for six methods. The settings of this study were similar to the evaluation
studies of both KEA and RefactoringCrawler.

Finally, we did not use KEA in our previous study (Section 4) because the tool would
have required significant changes to replicate our experimental setup (e.g., analysis of
a subset of Eclipse plug-ins instead of the entire Eclipse platform). Additionally, in the
first study, we wanted to find if a refactoring caused a compilation error and our goal
was not to compare the recommendations of different approaches.

5.2 Results

The results of our study are presented in Table IV for jEdit and Table V for Nutch. The
first column gives the name of the recommender. The second column (Match) gives
the number of recommendations given by the recommender that matched our inspec-
tion. The third column (Match None) gives the number of method removals for which
neither the recommender nor our inspection found a replacement. The fourth column
(False Positive 1) gives the number of methods for which the recommendations given
by the recommender differed from our inspection. The fifth column (False Positive 2)
gives the number of method removals for which the recommender recommended a re-
placement but for which our inspection did not find a replacement. The sixth column
(False Negative) gives the number of method removals for which the recommender did

13For this section, we consider that accuracy represents the tolerance of an approach toward false positives,
that is, recommending a wrong replacement, and false negatives, that is, not recommending a replacement
when there is one.
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not find a replacement but for which our inspection found one. The seventh column
(Incomplete Match) gives the number of recommendations that partially matched our
inspection (there was no incomplete match in Nutch).

For example, the first row of Table IV indicates that for 20 method removals in
jEdit, SemDiff recommended the same replacement that we found during our inspec-
tion. For 14 method removals, SemDiff did not recommend a replacement and we did
not find a replacement during our inspection. Overall, 34/50 = 68% of SemDiff’s recom-
mendations or absence of recommendations matched our inspection. For one method
removal, SemDiff recommended a replacement, but we found during our inspection an-
other replacement (false positive 1). For ten method removals, SemDiff did not find a
method replacement, but we found one (false negative). Overall, 11/50 = 22% of Sem-
Diff’s recommendations did not match our inspection. Finally, SemDiff recommended
five replacements that we judged incomplete. For example, this was the case when
SemDiff recommended only one method, but we found that a method had been replaced
by many methods.

Because we had two recommendations from RefactoringCrawler for each method
removal, one from the default set of parameters and one from the custom set, we
merged the results and reported only the best one. For example, if one set of results
recommended a relevant replacement and not the other, we reported that Refactor-
ingCrawler had found a relevant replacement. The last row, Combined, reports the re-
sults if we combined the three approaches together and only kept the most accurate re-
sults of each approach (Match, Match None, or Match Incomplete). This assumes that
we could automatically determine the relevant recommendation if the recommenders
disagreed, a nontrivial task that is an area for future work.

The results for Nutch report on only 40 method removals. We found in our sample
that ten methods were callback methods that Nutch implemented to use an external
framework. These methods override the external framework’s methods and are never
called by Nutch itself. SemDiff cannot produce any recommendations for these methods
because they do not have any caller. Moreover, we believe that client programs based
on Nutch would not call these methods because they are expected to be executed in a
specific control flow, within the external framework Nutch uses. KEA and Refactor-
ingCrawler found a replacement that matched our inspection in seven and four cases
respectively and one of the ten callbacks was never replaced. Finally, Table V also
reports on methods without any caller in Nutch, but these methods are not part of the
external framework used by Nutch and could legitimately be called by client programs.
Such methods can be alternative constructors or getters and setters that are provided
for API completion, but that are never used in Nutch.

Table IV shows that SemDiff and KEA performed equally well for jEdit with 78%
(20+14+5/50) of recommendations that matched completely or partially our inspec-
tion. Although the numbers are the same for the two approaches, we show in Sec-
tion 5.2.2 that both approaches were complementary by providing recommendations
for different method removals. RefactoringCrawler did not perform as well with 52%
of recommendations matching our inspection. For Nutch, SemDiff performed slightly
better (15+13/40=70%) than KEA (65%) and RefactoringCrawler (48%). If we combine
Nutch’s normal methods with callback methods, KEA performed better (66%) than
SemDiff (58%) and Refactoring Crawler (46%). The next sections answer our three
research questions.

5.2.1 Change Types. While manually inspecting the method removals in our sample,
we investigated the cause of the removal and we came up with a change rationale. At
the end of our inspection, we grouped the change rationales into change categories.
Table VI shows for each change category the number of recommendations from the

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 19, Publication date: September 2011.



Recommending Adaptive Changes for Framework Evolution 19:25

Table IV. jEdit: Comparison of Manual Investigation with Recommenders’ Results

Inspection Match Match False False False Incomplete
Recommender None Positive 1 Positive 2 Negative Match

SemDiff 20 14 1 0 10 5
KEA 20 14 1 0 10 5
RC 14 12 1 0 23 0

Combined 26 14 0 0 5 5

Table V. Nutch: Comparison of Manual Investigation with Recommenders’ Results

Inspection Match Match False False False
Recommender None Positive 1 Positive 2 Negative

SemDiff 15 13 0 1 11
KEA 12 14 0 0 14
RC 8 11 0 3 18

Combined 23 14 0 0 3

Table VI. Results by Types of Changes

jEdit Nutch
Type Total S RC KEA Total S RC KEA

not replaced 14 14 12 14 7 6 5 7
generics 0 0 0 0 7 7 6 7
refactoring 21 16 13 19 10 6 8 8
import 0 0 0 0 7 7 0 0
complex 13 9 1 6 6 2 0 4
field 2 0 0 0 0 0 0 0
wicked 0 0 0 0 3 0 0 0

three recommender systems that matched our inspection. For example, we see that
out of 50 method removals in jEdit, 21 removals were caused by refactorings. Sem-
Diff (S) recommended a replacement that matched our inspection for 16 of these re-
movals, RefactoringCrawler (RC) produced 13 matching recommendations, and KEA
produced 19 matching recommendations. The callback methods are not included in
the Nutch section, but nine callback method removals were caused by refactorings and
one removal was caused by a “wicked” change, a type of change we explain below. The
numbers of each row were taken from the columns “Match” and “Match Incomplete”
in Tables IV and V. The numbers in the rows “not repl.” and “generics” were taken
from the column “Match None.” This categorization helped us understand which type
of changes were typically detected by each approach.

Not Replaced. Methods for which we found no equivalent replacement were classified
as being not replaced. For example, in Nutch, a setter method was removed because
the field it accessed had been removed. Because we might have missed a non-obvious
replacement, we considered with great care the suggestions of the three recommen-
dation systems, when they produced one. As it can be seen in Table VI though, the
number of false positives is very low for the two frameworks and in general, the
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recommender systems did not produce any recommendations for this type of change
type. This also shows that the three recommenders do not produce a lot of noise.

Generics. Some methods signature were changed to add generic types (e.g., from
m1(List) to m1(List<String>). When only generic types were added and the approaches
did not recommend other replacements, we reported this case under the column “None
None.”

Refactorings. Some methods were removed and replaced as part of the following
refactorings: parameter change (including return type), rename method, rename class,
rename package, move method, move class. Refactoring were the most frequent change
type accounting for 42% and 36% of the changes in jEdit and Nutch respectively.

Function Import. In Nutch, the class org.apache.nutch.util.mime.MimeType was re-
moved and replaced by a class from another library, org.apache.tika.mime.MimeType.
Seven method removals were related to this change and SemDiff pointed to methods
in the new imported class. Because RefactoringCrawler and KEA do not recommend
code outside of the framework analyzed, they did not recommend any replacements.

Complex. We classified as complex all the changes that involved many program el-
ements or that required a significant adaptation from the client program. For exam-
ple, in jEdit, the internal class DistributedSearch.Client was part of a redesign that
resulted in the creation of three classes that partially replaced the original internal
class: DistributedSearchBean, DistributedSegmentBean, and LuceneSearchBean. SemDiff rec-
ommended to replace a call to the constructor of DistributedSearch.Client by methods
from the three classes. KEA did not recommend anything for the constructor, but other
methods of DistributedSearch.Client were removed and KEA correctly recommended
replacement methods from DistributedSearch.Bean. SemDiff did not find any replace-
ment for these methods because they were not called by Nutch. RefactoringCrawler
did not recommend anything for these method removal cases. Another example of com-
plex changes happened in jEdit: a class was removed and replaced by a property file
and several calls to System.getProperty(). This change was not detected by any of the
three recommenders.

Method to Field. In jEdit, two methods were replaced by an access to a public field.
Because the three recommenders only recommend methods, they did not recommend
any replacement.

Wicked Changes. This series of changes were very difficult to understand and all
recommenders failed to locate a replacement. In Nutch 0.9, the classes Fetcher and
Fetcher2 were two similar application classes that could be invoked from the command
line (i.e., they had a main method) and that were not referenced in the rest of the
project. In version 1.0 of Nutch, the class Fetcher was removed and the class Fetcher2

was renamed to Fetcher with some minor modifications. To the recommenders, it ap-
peared that Fetcher2 had not been replaced and that Fetcher had never been removed.

By analyzing more frameworks, we would probably discover more types of changes
and further refine what we called “complex changes.” These seven types of changes
still enabled us to evaluate the accuracy of the three change detection approaches at a
finer level of granularity than when changes are aggregated at the system level.

5.2.2 Comparison between Approaches. We found SemDiff and KEA to be complemen-
tary because they provided recommendations for different method removals.
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For example, SemDiff was the only approach able to recommend a replacement for
the method imports in Nutch (MimeType). It was also the only approach to point to the
various relevant replacements when the class DistributedSearch.Client was removed
in Nutch.

KEA was the most successful approach in finding replacements for the callback
methods and for most refactorings. The callback methods and the refactored methods
missed by SemDiff all had in common one problem: they did not have a stable caller.
Either they did not have any caller or the calling chain was modified so heavily that
SemDiff’s unstable caller strategy did not work.

SemDiff and KEA also provided different recommendations for the same high-
level change. For example, in jEdit, a hierarchy of classes (e.g., DirectoryMenu)
was replaced by a general class, EnhancedMenu and several calls to BeanShell, a
dynamic scripting language used to configure the general class based on scripting
files. SemDiff recommended to replace the hierarchy of classes by calls to BeanShell
while KEA recommended to replace the hierarchy by EnhancedMenu. We judged that
these recommendations, taken separately, were incomplete. In another case, SemDiff
recommended to replace a call to a deleted constructor, SearchDialog(), by an existing
factory method, EnhancedDialog.showSearchDialog while KEA recommended to replace
the constructor by a new private constructor of the SearchDialog class. We judged
that SemDiff’s recommendation was the correct one because the private constructor
recommended by KEA could not be called by jEdit client programs and the callers of
the deleted constructor clearly called the factory method in the new version of jEdit.
In both cases, KEA could not have suggested SemDiff’s recommendations, because the
recommended methods already existed in the previous version of jEdit, and KEA can
recommend only new methods.

There was only one method removal for which RefactoringCrawler recommended
a valid replacement missed by SemDiff and KEA. The method DefaultInputHandler.

keyPressed() was renamed to DefaultInputHandler.handleKey(): RefactoringCrawler de-
tected this change because the textual representation of the two methods’ body was
highly similar. The calling chain of the original method changed significantly, so
SemDiff could not detect a replacement, and the name similarity of the two methods
was not high enough for KEA to recommend a replacement.

For recommendations of highly structured changes like refactorings, we found that
KEA and RefactoringCrawler provided a rationale that was more effective than Sem-
Diff’s rationale to understand and validate the recommendation. For example, to ex-
plain a method moved because of the renaming of a package, KEA would provide a
name transformation rule like “all methods from classes whose name contains the to-
ken Menu changed their package from org.gjt.sp.jedit.gui to org.gjt.sp.jedit.menu ,”
RefactoringCrawler would say that the queried method was moved from one class to
the other, and SemDiff would show that a caller replaced the removed method by the
recommended method. As opposed to SemDiff’s rationale, the name transformation
rule of KEA and some refactorings of RefactoringCrawler enabled us to clearly iden-
tify changes that impacted more than one method (e.g., a class or package renaming).

For complex changes, we found that SemDiff’s rationale had the added benefit of giv-
ing an example of how to use the recommendation. For example, Figure 12 shows
the rationale given by SemDiff when requesting a replacement for the constructor
SearchDialog. At the bottom of the screenshot, SemDiff indicates on the third line that
a call to the SearchDialog constructor has been removed in transaction 787 and re-
placed by a call to showSearchDialog(). By double-clicking on this line, SemDiff opens
the compare editor which shows two versions of a jEdit source file where the call to
SearchDialog was replaced, making it obvious for the user that this is a valid replace-
ment. Although the old constructor accepted only two parameters, the recommended
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Fig. 12. SemDiff explanation for a recommendation helps developers use the recommended method.

method takes three parameters: the example given by SemDiff provides a default value
that should be suitable for the user. We believe that in similar cases, showing an ex-
ample in a compare editor provides a stronger justification than giving a refactoring
name because it allows the user to see the change in its context.

5.2.3 Limitations. As explained in Section 3.1.7, we can analytically determine the two
types of limitations of SemDiff: either there is no stable caller for the removed method
(recommendation search limitation) or the replaced element is not a method call added
by the same caller in the same change set (replacement strategy limitation). Empirical
evidence shows that only one of these limitations is important in practice.

SemDiff could not find a relevant recommendation for 30 method removals out of
100 (false negatives); 27 of these false negatives were caused by the recommendation
search limitation, that is, the absence of a caller in the framework (e.g., a callback
method) or by a significant change in the calling chain. SemDiff could have recom-
mended a relevant recommendation for five of these 27 false negatives by making a
query to an alternative method: the overridden method in the parent class or the
constructor.

SemDiff could not find a recommendation for the remaining three false negatives
because the relevant replacements were either a field or a method call added in a new
caller. These two replacement strategies are currently not supported by SemDiff. On
the other hand, a quick search in HistoryExplorer for the file versions that removed
calls to these methods provided the relevant replacement.

Overall, the success of SemDiff depends on the number of methods without stable
callers. in the JDT study, we found that only one such method existed. In jEdit and
Nutch, 27 removed methods that we manually analyzed did not have a stable caller,
but 12 of these methods would not have been useful for framework users because they
were callback methods or part of a stand-alone application class (wicked method re-
movals). The low number of false negatives (27-12=15) and false positives (2) pro-
vide evidence that SemDiff is a good approach to recommend relevant replacements for
framework users, but it might not be suitable to systematically find a replacement for
all methods that were removed between two major releases of a framework.

As demonstrated by the “Combined” rows of Tables IV and V, combining the three
approaches could significantly improve the results, but it is clear that human interac-
tion is still necessary because there are changes (10% in jEdit and Nutch) for which
none of the approaches could recommend a relevant replacement. Based on our classi-
fication of the changes, we also believe that there are changes like the wicked method
removals that will always elude general change detection approaches.
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5.3 Threats to Validity

The threats to the validity of our study are investigator bias during the inspection of
the changes and limited external validity.

A manual inspection of the changes was necessary to find replacements that were
not in the scope of current change detection approaches, to classify the types of changes
and to evaluate the differences in the recommendations and rationales given by three
change detection approaches. Although such inspection is inherently subjective, sev-
eral factors contributed to the robustness of our inspection. First, the combined results
of the three recommenders matched 91% (45+37 out of 90) of our classification and we
provided strong evidence to explain why the remaining 9% (5+3 out of 90) could not be
fixed by the approaches (e.g., method replaced by a field). Second, the results of the rec-
ommenders are reported as matching or not our inspection (as opposed to correct and
incorrect results), hence limiting the potential bias of our evaluation. Third, our com-
parison of the three change detection approaches went beyond an evaluation of their
accuracy and we provided examples for each observation we made. Finally, the list of
inspected changes with our classification and the results of the three recommenders
will be available upon request for independent analysis.

This study considered only two open source systems: these systems are standalone
programs that are also used as frameworks, as opposed to pure libraries or frame-
works that cannot be executed alone. Except refactorings that roughly represented
40% of the changes in both systems, we found that the types of changes, and the abil-
ity of SemDiff to recommend a relevant replacement, varied greatly, especially if we
take into consideration the results of the study in Section 4. We did find three trends
that we believe would generalize to many systems. First, SemDiff produces very few
false positives. Second, most false negatives are caused by the absence of a stable
caller, a metric that could be conservatively computed on any given system. Third,
recommendations and rationales given by SemDiff differ from other change detection
techniques and complement them. As we found in a previous study [Robillard and
Dagenais 2008], open source systems vary widely in the way they evolve so we believe
that the trends we identified are more important than attempting to generalize the
accuracy of SemDiff over entire systems.

6. RELATED WORK

Supporting framework evolution is an active research area and various techniques
have been proposed with this goal.

Migration Path. A number of approaches have been proposed to document framework
changes and allow client programs to be automatically repaired. For example, trans-
formation rules [Chow and Notkin 1996] can accompany a framework to indicate how
calls to functions in the old framework version should be modified in order to work
with the new version. CatchUp! [Henkel and Diwan 2005] is a tool integrated in the
Eclipse development environment that captures refactorings explicitly applied (i.e.,
using Eclipse refactoring tools) by developers. The captured refactorings can then be
replayed in a client program to repair broken method calls. Projects such as Eclipse
also developed rules and guidelines to evolve APIs [des Rivières 2007]. For example,
these guidelines explain how to preserve contracts (e.g., postconditions) and binary
compatibility between old and new APIs. Finally, new versions of development envi-
ronments provide enhanced support for API evolution. For example, Eclipse 3.3 intro-
duced explicit support for saving and replaying refactorings in the form of Refactoring
Scripts.

As opposed to transformation rules, our approach is fully automated and does
not require the framework authors to explicitly describe how the client program
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should adapt to the framework. Our approach also captures more changes (e.g., non-
refactorings, imported functionality) than refactoring capturing and replaying tech-
niques as it is not limited to explicitly applied refactorings. Moreover, authors of the
client program do not need to search through a list of refactorings to find the one that
is relevant to a broken method.

Change Detection. Most change detection techniques refer to Origin Analysis
[Godfrey and Zou 2005] as the basis of their approach. Origin Analysis is a semi-
automated technique that aims at tracing back the source of a program element in a
previous version of the program to detect changes such as splitting and merging. Sim-
ilarly, if a change detection technique finds that a method e in version n-1 is the origin
of method f in version n, it will conclude that method e was refactored to method f.

To identify the origin of a program element, change detection techniques use a va-
riety of strategies based on program element characteristics (e.g., name, callers) to
assess the similarity of two elements across two versions. If the similarity of the pro-
gram elements is beyond a certain threshold, these techniques conclude that one is an
updated variant of the other.

More precisely, techniques such as UMLDiff [Xing and Stroulia 2006] analyze code
structure similarity (e.g., calls, hierarchy, accesses, etc.) between complete versions of
a program to detect high level changes such as refactorings. RefactoringCrawler [Dig
et al. 2006] is a similar but more lightweight alternative to this approach that also ana-
lyzes the code structure similarity and uses Shingle, a custom textual similarity analy-
sis, on two complete versions of a program to detect refactorings. A later implemen-
tation of Origin Analysis [Kim et al. 2005] fully automated the approach for Java, but
also reduced the number of change types that the technique detected to only consider
program elements renaming and move. Mining software repositories [Zimmermann
et al. 2005] is another technique that can be used to track changes: by analyzing a
program’s evolution and detecting code clone patterns (textual similarity), researchers
were able to detect refactorings [Weissgerber and Diehl 2006]. Other researchers also
used repository mining to predict the likelihood of a class to be refactored in the next
two months [Ratzinger et al. 2007] or to classify fine-grained changes that occurred
inside method bodies [Fluri et al. 2007]. Kim et al. [2007] proposed a technique for de-
tecting change patterns by leveraging the similarity of program element names. This
approach is used by LSdiff, a tool that represents systematic structural differences be-
tween two versions of a program as logic rules [Kim and Notkin 2009]. LSdiff can also
be used to detect potential inconsistencies in groups of related changes.

Schäfer et al. [2008] devised, in parallel with our work on SemDiff, an approach
that uses associative data mining on framework usage changes (such as method call
changes) and that can recommend more change patterns than SemDiff (e.g., a field ac-
cess should be replaced by a method call.) As opposed to SemDiff, this approach only
compares two full versions of a program instead of analyzing change sets. The coarser
granularity of the analyzed units of changes introduces more false positives in the re-
sults so Schäfer et al. must use filtering heuristics or look for specific change patterns
to reduce the noise in the results. Additionally, this approach requires stable callers,
that is, methods that use the framework but that keep the same signature between two
versions of the framework. In the presence of unstable callers, Schäfer et al.’s approach
will not be able to recommend a replacement. The absence of stable callers is not a sig-
nificant problem for SemDiff because changes are analyzed at the change set level so,
in practice, only a few methods change at the same time. In the case when a caller and
a callee are changed together, SemDiff can use the unstable caller strategy described
in Section 3.1.3. Schäfer et al. evaluated their approach on three frameworks and
they also used RefactoringCrawler to determine when a change had been caused by a
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Table VII. Comparison of Change Detection Approaches

Method Program Element
Characteristics

Versions

Origin Analysis name and structural
similarity

two complete versions selected manually

UMLDiff name and structural
similarity

full versions between two versions

S. Kim et al. name, structural, and
textual similarity

two complete versions selected manually

RefactoringCrawler structural and textual
similarity

two complete versions selected manually

Weissgerber et al. code clone differences all change sets between two versions

M. Kim et al. name similarity two complete versions selected manually

Schäfer et al. usage difference two complete versions selected manually

SemDiff call difference all change sets between any versions

refactoring. Although the precision of the results was high (average of 86.7%), Refac-
toringCrawler detected 35 refactorings out of 255 changes (14%) that were missed by
Schäfer et al.’s approach. Because the frameworks that we used to evaluate SemDiff
were different and because Schäfer et al.’s tool is not publicly available, we cannot
directly compare our results with theirs. We found that in the three frameworks we
analyzed, SemDiff had a precision of 98% and RefactoringCrawler only detected five
refactorings out of 133 changes (4%) that SemDiff missed. In summary, Schäfer et
al.’s approach and SemDiff are similar in their strategy of using usage changes to rec-
ommend replacements, but we believe that analyzing change sets as opposed to full
versions explains why SemDiff seems to produce more accurate results.

Table VII shows a comparison between the program element characteristics and the
program versions used by change detection approaches. The approaches are presented
in the chronological order in which a conference or journal publication first mentioned
the approach. The table only presents a high level view of the approaches and the
details vary significantly. For example, although both UMLDiff and M. Kim et al. ap-
proaches compute the name similarity of two program elements, UMLDiff computes
only the Longest Common Subsequence (LCS) while M. Kim et al. computes complex
transformation rules. Starting from origin analysis, Table VII shows that the trend
in change detection techniques has been to decrease the number of program element
characteristics used to link two elements, but empirical studies performed on these
approaches showed that the accuracy increased. Still, techniques based on many pro-
gram element characteristics can give an additional degree of confidence about the
origin of an element: if two elements in two versions of a program have a similar
name, a similar structure and a similar textual representation, it is highly probably
that they are the same element. This confidence is required by activities demanding
detailed traceability information, such as bug tracking.

Table VIII shows a comparison of the rationales given by the various approaches
and their limitations. The rationale summarizes how a user can understand the result
of the various approaches if they determine that a method m1 in version n-1 is the same
as method m2 in version n. Although some of the change detection approaches presented
in the tables can also detect changes in classes and packages, the rationale only focuses
on method changes. As shown in the table, rationales are often based on well-defined
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Table VIII. Rationale and Limitations of Change Detection Approaches

Method Rationale Limitations

Origin Analysis m1 has a name and a structure
similar to m2. This similarity cor-
responds to a well-defined splitting
or merging pattern.

threshold, deletion based, codebase,
function only

UMLDiff m1 has a name and a structure
similar to m2.

threshold, deletion based, codebase

S. Kim et al. m1 has a name, a structure and
a textual representation similar to
m2.

threshold, deletion based, codebase,
one-to-one

RefactoringCrawler m1 has a structure and a textual
representation similar to m2. This
similarity corresponds to a well-
defined refactoring.

threshold, codebase, one-to-one

Weissgerber et al. m1 has a textual representation
similar to m2. This similarity cor-
responds to a well-defined refac-
toring. This change occurred in a
change set.

threshold, change set based, deletion
based, codebase, one-to-one

M. Kim et al. m1 has a signature similar to m2.
There is a name transformation
rule that explains the change in
the two signatures.

threshold, deletion based, codebase,
method only

Schäfer et al. methods that used to call m1 are
now calling m2.

locality, stable callers

SemDiff methods that used to call m1 are
now calling m2. This change oc-
curred in a change set.

change set based, locality, stable
callers, method only

change patterns (e.g., rename refactoring) or temporality (e.g., the change happened
in a small change unit). The limitations column indicates the main factors that limit
the accuracy (false positives and false negatives) of the approaches in practice.

(1) Threshold. The approach relies on a user defined threshold to determine if a
similarity metric holds between two elements, typically missing large changes
that disfigure the elements (the elements are the same, but they do not look
alike).

(2) Deletion based. The approach only links elements that were deleted in one ver-
sion and added in another version, ignoring elements that are replaced by exist-
ing elements or deprecated, but not deleted, elements.

(3) Codebase. The approach only considers elements that are in the same code-base,
ignoring newly imported functions.

(4) Function/Method only. The approach only considers methods or functions, but
not classes, packages or fields.

(5) one-to-one. The approach only detects one-to-one changes and cannot be used to
detect mergings and splittings.

(6) Change set based. The approach only considers elements changed in the same
change set, ignoring replacements in other change sets.
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(7) Locality. The approach only considers usages that are replaced locally (e.g., in the
same caller or in the same class), ignoring usage that is removed in one element
and replaced in another element.

(8) Stable Callers. The approach only finds a replacement if the users (i.e., callers)
of the original program element did not change.

The table does not include limitations that do not significantly impact an approach.
For example, SemDiff uses thresholds to improve the performance of two strategies, but
since these strategies are rarely used, they generally do not affect SemDiff’s results.
Although M. Kim et al.’s approach does not explicitly find methods that were split, the
approach can generate multiple name transformation rules showing that one method
is related to many methods. All of these techniques provide some workarounds or
heuristics to reduce the negative effect of these limitations. For example, through
empirical studies, most approaches limited by thresholds suggested default values that
yielded the best false positive and false negative ratio [Kim et al. 2007]. Another
example is that SemDiff uses a strategy to find a replacement for unstable callers.

Typically, techniques based on Origin Analysis suffer from three main limitations:
they are based on thresholds, they only detect changes between deleted and added ele-
ments, and they can only recommend replacements in the codebase they analyzed. As
shown with the study presented in Sections 4 and 5, our approach does not suffer from
these three limitations because we do not try to assess the similarity of methods that
changed: we only analyze what happens to methods that were referring to the changed
methods. This leads to another family of limitations: locality and stable callers.

Framework Usage. Another family of approaches could potentially be used to support
framework evolution. Strathcona [Holmes et al. 2006] and FrUIT [Bruch et al. 2006]
are systems that mine a set of framework usage examples and recommend program
elements of potential interest for framework users based on the local programming
context. For example, if a developer is using class C and calling methods m1 and m2 from
a certain framework, framework usage tools will typically recommend other program
elements that are used along these classes and methods in the mined examples.

We could potentially use framework usage tools to recommend adaptive changes by
mining usage examples of the new framework version and running the tools on each
method in the client program that has a broken method call. The recommendations
would probably contain the correct replacements. One of the issues with these
approaches is that the data mining techniques they use usually need a fair number
of usage examples in order to produce accurate results: unfortunately, it takes some
time before an adequate number of usage examples become available when a new
framework version is released. In contrast, SemDiff uses only the usage examples
inside the framework itself to produce results.

7. CONCLUSION

We presented a technique to recommend adaptive changes for clients of framework
code that has evolved in a way that is not backward-compatible. Our approach involves
analyzing how the framework adapts to its own changes, and recommending similar
adaptations. Specifically, our technique extracts the differences in the outgoing calls
in each change set and recommends a set of method replacements accompanied by a
confidence value. A historical study of the Eclipse JDT framework and three of its
client programs showed that our technique can detect nontrivial changes, and that it
succeeded in providing correct recommendations for 97% (32 out of 33) of the cases of
missing functionality between Eclipse release 3.1 and 3.3. A qualitative study on two
other frameworks helped us refine our understanding of the types of changes detected
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and undetected by SemDiff and the difference between SemDiff and two other change
detection approaches. For example, as opposed to previous work on change detection
techniques, our approach can recommend methods located outside of the framework
when a functionality has been imported from external libraries. SemDiff does not suffer
from the limitations of previous change detection techniques, but it has its own type
of weaknesses. We conclude that analyzing outgoing call differences is an efficient
technique to track a framework’s evolution and repair dependent client programs.
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