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1. INTRODUCTION

Software systems often contain numerous groups of source code regions that
match each other with varying degrees of exactness. Such source code regions,
commonly known as code clones, have been reported to account for up to 30%
of the source code of large scale software systems [Baker 1995]. Code clones
surface in software systems for a number of reasons, including the difficulty
of factoring out functionality using programming language constructs, the re-
quirement to avoid dependencies between modules, the practice of writing code
by example [Lange and Moher 1989; Redmiles 1993], and the use of idioms for
framework extensions.

Code clones present two major obstacles to software maintenance. First,
code cloning may duplicate faulty code regions, resulting in the recurring-bug
problem, where resolved bugs seems to reappear as cloned siblings get exe-
cuted [Aversano et al. 2007]. The recurring-bug problem typically increases
the software maintenance effort because bugs have to be resolved multiple
times. Second, the presence of code clones in a system means that code that
realizes identical or similar logic is not colocated. This duplication of imple-
mentation logic often leads to a necessity to modify multiple sections of code
consistently [Geiger et al. 2006]. Oversights in consistently modifying clone
regions may lead to regression faults. For these reasons, much effort has been
spent on the detection and removal of code clones from software systems [Tairas
2008; Koschke 2008]. Technology to scan the source code of a system and iden-
tify clones of varying similarity is now readily available (see, e.g., Kamiya et al.
[2002]; Jiang et al. [2007a]; Basit and Jarzabek [2007]).

What should we do with code clones, once identified? Some researchers have
argued that, to achieve a good design, the code should “say everything once
and only once,” and thus have advocated the removal of clones through source
code refactoring [Fowler 2000, p. 56]. However, in recent years, the traditional
notion that code clones should be eliminated as a general rule has met with
resistance. In particular, Kim et al. challenged the belief that code clones nec-
essarily represent a clear and immediate negative quality factor for a software
system. In a study of programming practices in an industry setting, Kim et al.
found that “skilled programmers often created and managed code clones with
clear intent” [Kim et al. 2004, p. 187]. A later study of code clone genealogies
also provided evidence of clones that are difficult or impossible to refactor us-
ing standard techniques, and of clones that evolve into distinct code [Kim et al.
2005]. A different study by Kapser and Godfrey [2006] reported several situa-
tions where code duplication appears to be a beneficial design option, such as
the use of duplication in exploratory development or experimental changes to
core subsystems.

The difficulty to refactor certain code clones, and the potential of cloning
as a viable design option, have strengthened the call for clone management
tools. A handful of tools to manage clones formed through copy-and-paste op-
erations and to support consistent modification to clone regions have been
developed: for instance, CReN [Jablonski and Hou 2007], LAPIS [Miller and
Myers 2001], and CodeLink [Toomim et al. 2004]. However, tools such as CReN
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and LAPIS represent clone regions using line ranges or character offsets, and
rely exclusively on the Integrated Development Environment (IDE) to update
the location of the clone regions. Consequently, modifications that alter the
line ranges of a clone region, or refactorings, such as pulling up a method to
its superclass, may invalidate the clone relationships if performed outside the
host environment. Furthermore, techniques that capture copy-and-paste op-
erations for clone management are not beneficial to existing source code. To
be effective, clone management techniques require a representation that is ro-
bust to evolutionary changes and applicable to both existing and future source
code.

To this end, we introduce clone region descriptors (CRDs), a heuristic-based
representation for identifying cloned source code locations within methods us-
ing a combination of syntactic, structural and lexical information, and soft-
ware metrics about a clone region. CRDs go beyond simple lines of code-based
clone descriptions, and support the tracking of clone regions in different ver-
sions of a software system. We have developed a clone tracking system called
CloneTracker to support CRDs. Our system takes as input the output of a clone
detection tool and automatically produces CRDs to represent the clone regions
for different clone groups of interest to a developer. Using CRDs, CloneTracker
can automatically track clones of interest as the code evolves and notify de-
velopers of modifications to clone regions. This way, software developers can
specify clone groups they wish to track once and carry on with all of their
future modification tasks with the knowledge that modifications to specified
clone regions will be detected and supported. Alternatively, clone regions can
be inspected at any time to reason about their properties (e.g., to plan a refac-
toring). In brief, CRDs provide a representation to manage clone groups of
interest without having to reidentify or reclassify them in subsequent versions
of a system.

We evaluated the effectiveness and usefulness of CRDs using three clone de-
tection tools and five target open-source systems. Although CRDs are heuristic-
based, they were able to represent a large majority of the 16,350 clone regions
we analyzed. An additional study also indicated that CRDs are robust and an
effective representation for tracking a large majority of the clones across differ-
ent versions of a system. The contributions of this article include the following:

—a technique for representing and tracking clones using a combination of
the syntactic, structural, and software metrics of a clone region, and a tool
implementing this technique;

—a comparison of the precision of CRDs with respect to line-based representa-
tion of clone regions for three clone detection tools and five subject systems,
with insights on how CRDs perform for different clone detection techniques;

—an evaluation of the robustness of CRDs to evolutionary changes for several
versions of the subject systems, with clones successfully tracked across 40
versions of one of the systems.

The rest of the article is organized as follows. We present a real example of
clone evolution and explain the difficulties associated with tracking clones in
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Section 2. In Sections 3–4, we describe our clone tracking system, the details of
our clone region representation, and our technique for updating the clone model
as the corresponding software system evolves. We report on the evaluation of
our approach in Section 5, discuss related work in Section 6, and conclude in
Section 7.

2. MOTIVATION

We illustrate the present state of the practice for clone detection and the need
for advanced clone tracking techniques with a small case study of the jEdit
system.1

A developer working on a modification to release 4.0-final (63 kLOC) infor-
mally observes a number of code clones and decides to run a clone detection
tool on the system. Using SimScan,2 the developer sets a number of search op-
tions (e.g., Volume=medium, Similarity=fairly similar, Quality/Speed=fast)3

and runs the tool. After approximately 32 min (WindowsXP, Pentium4-3 GHz,
512 MB), the detection completes and returns a list of 251 clone groups compris-
ing between 2 and 137 clone regions (or individual clones). Each clone region
is represented in terms of a file name and a line range. Browsing the results,
the developer notices a clone group of potential interest: in class bsh.Reflect,
a large for block in method findExtendedConstructor is a clone of a similar
code region in method findExtendedMethod (see Figure 1).

A detailed study of this clone group provides evidence in direct support of
all three main results of the study of Kim et al.:

. . . clones impose obstacles during software development because
they often change similarly with their counterparts in the same
group . . . [Kim et al. 2005, p. 187].

Both regions changed consistently for version 4.2-pre2 (change of an exception
type), and for version 4.2-pre4 (major cleanup of the code that preserved the
clone relation).

. . . popular refactoring techniques [. . .] cannot easily remove many
long-lived clones . . . [Kim et al. 2005, p. 188].

Both regions are in methods that have a different return type (the method
shown in Figure 1(a) has return type Constructor, whereas the method shown
in Figure 1(b) has return type Method), which makes them locally unfactorable
using standard refactorings [Fowler 2000]. In addition, our clone group existed
for 15 versions of jEdit (from version 4.0-final to version 4.2-pre07 inclusive),
making it long-lived.

. . . we found that many clones were volatile . . . [Kim et al. 2005,
p. 188].

1www.jedit.org.
2blue-edge.bg/simscan.
3Volume, for the size of the region; Similarity, for the minimum similarity of the reported clone
regions; Quality/Speed, a tradeoff between the quality of the results and the speed of the search.
Higher speed is achieved by skipping statistically less significant areas of the search space.
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Fig. 1. Sample locally unfactorable clone group with two clone regions, both located in the
bsh.Reflect.java class of jEdit release 4.0-final.

Our clone group eventually disappeared4 in release 4.2-pre10. The disappear-
ance in release 4.2-pre10 was caused by a major modification in one of the clone
regions independently of the other, thus eliminating their clone relationship.
As claimed by Kim et al. [2005], and further illustrated by this example, there
are many situations in which it may not prove cost-effective or even possi-
ble to refactor clones. In our example, refactoring may not prove cost-effective
because the clone group eventually disappear, and not feasible because the
return types of the methods are different. In such cases, developers must man-
age clone groups as they evolve. This is no small task in a code base that
is in constant evolution. Specifically, without dedicated tool support, develop-
ers who wish to maintain and evolve code clones are faced with the following
challenges:

—Current clone detection technology produces descriptions of clone regions
in terms of ranges of lines of code. The information about the locations of
clone regions (i.e., the files and the positions of the clone regions within
these files) is therefore not always reusable in future tasks because the line
ranges and character-based representations are fragile, even to basic code

4A clone group identified in version v1 of a system is said to have disappeared in version vn, n > 1
if it has no clone regions in common with any of the clones groups identified in vn.
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modifications. Clone detection techniques must therefore be reapplied to
recover the locations of clone regions.

—A developer must perform clone detection on two versions of the code, and
successfully map identical clone groups in both versions in order to identify
inconsistently modified clones. This alternative is impractical for interac-
tive software development because, as illustrated earlier in this section,
a 63kLOC project required 32 min just to identify the clone groups using
SimScan.

—Although clone detection speed could be improved by using other tools, the
cost of manual clone classification—determining whether knowledge of a re-
ported clone group is actually important to developers—cannot be avoided.
Even a conservative clone classification effort of 30 s/clone group would re-
quire about 2 h to go through the list of 251 groups identified in jEdit.

We have developed CloneTracker to address these challenges. In the next
section, we present the details of our representation, heuristics, and algorithms
enabling this technology. We postpone the presentation of CloneTracker until
Section 4.

3. REPRESENTING CLONE REGIONS

One of the main requirements for our clone-tracking approach is to be able to
track clone regions independently of their location in a source file. Although
this can be achieved easily for clone regions that align with method boundaries,
it is much more difficult to do so for regions within methods since such regions
are typically not labeled or uniquely identified.5 One possibility is to store
the text of code clones and to track their location in different versions of the
code using code-matching techniques [Kim and Notkin 2006]. However, for our
purpose (rapid, interactive tracking of clone regions), we needed to investigate
alternative representations.

To gather insights about potential ways to describe clone regions, we manu-
ally inspected several clone regions from four different projects involving tens
of different developers (ConcernMapper [Robillard and Weigand-Warr 2005],
jEdit, JBossAOP,6 and FreeMind7). These clones were identified by SimScan,
an AST-based clone detector. While looking at these clone regions, we tried to
determine what unique characteristics of the clone regions could help us define
and locate them in a way that would resist a certain degree of change (textual
modifications before, after, and within the clone region, changes to the name of
the file in which the region is located, and changes from method refactorings).
To this effect, we made a number of observations:

(1) Clone regions are generally constrained within the boundaries of major code
blocks (e.g., method boundaries, conditional branches, looping blocks). For

5To align with method boundaries implies the entire body of a method is a clone region, whereas
to occur within a method implies a clone region is located within a code block such as a loop inside
a method.
6labs.jboss.com/portal/jbossaop/.
7freemind.sourceforge.net.
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Fig. 2. Definition of CRDs in extended BNF.

instance, 60% of the clone regions investigated were aligned with method
boundaries, and 40% of the clone regions were within methods. Of the
clone regions within methods, 23% were within loops, 57% were within
conditional branches, and 20% were within the try/catch/finally blocks.

(2) Some structural elements (e.g., loop-termination predicates, branching
predicates, exception lists) tend to be unique at a given level of nest-
ing. For instance, less than 5% of the clone regions investigated had
nonunique structural elements, and of the nonunique structural elements,
46% involved loop termination predicates and 54% involved branching
predicates.

Based on these insights and on our general experience inspecting clone re-
gions, we designed a technique for locating clone regions that uses a combi-
nation of the structural properties, lexical layout, and similarities of the clone
regions. In the rest of this section, we describe our clone region description
model, our algorithm for locating clone regions based on the model, and the
algorithm employed for updating the clone model.

3.1 Clone Region Descriptors (CRDs)

A Clone Region Descriptor (CRD) is an abstract description of the location of a
clone region in a code base. The idea is to provide an approximate location that
is independent from specifications based on lines of source code, annotations,
or other similarly fragile markers. Figure 2 shows our definition of a CRD in
extended Backus-Naur form (terminal symbols are in italics).

Essentially, a CRD represents the characteristics of each block in which a
clone region is nested. With CRDs, clone regions always align with blocks. At
the top level, a CRD consists of the name of the enclosing file (<file>), the name
of the enclosing class (<class>), a corroboration metric (<CM>—used for conflict
resolution in cases where a CRD refers to more than one code block—explained
below), and an optional method descriptor (<method>). When entire classes are
clones of each other, the method descriptor is not used. The method descriptor
consists of a canonical representation of the method’s signature (<signature>),
and zero or more block descriptors (<block>). When the clone region aligns
with method boundaries, there is no block descriptor. In other cases, block de-
scriptors describe blocks in which the region is nested (in the nesting order).
Finally, a block descriptor consists of a description of the block type (<btype>),
a string describing a distinguishing identifier for the block (<anchor>), and
the corroboration metric (<CM>). The different block types supported by
our clone model are listed as part of the <btype> nonterminal symbol in
Figure 2.
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Fig. 3. Sample clone region within a for block.

Different schemes are possible for the <anchor>. Our empirical data indicates
that the use of the textual representation of a distinctive statement associated
with the block is enough to track a vast majority of the clone regions (see
Section 5.1). For loops, we use the termination statement. For if statements,
we use the branching predicate. For switch statements, we use the switch
expression. For try blocks, we use the list of exception types caught in the
catch clauses associated with the block. For catch blocks, we use the type of
the exception caught. For synchronized blocks, we use the synchronization
expression. For instance, the CRD for code block A in Figure 3 is

packagename.DeleteManager.java,DeleteManager,5

delete(int),5

for,delete.size(),4

if,delete.get(i) instanceof ElementNode,2

In other words, this CRD points to the block corresponding to the if
statement with the “...instanceof...” predicate, nested within the for state-
ment with the “...delete.size()...” termination predicate, within the scope of
the delete(int) method, within the class DeleteManager, and within the file
packagename.DeleteManager.java. The numbers represent the corroboration
metric for each block.

Clone regions within a finally or an else code block are represented dif-
ferently because of the challenges they present. The finally and else code
blocks do not have an obvious <anchor> as described in the context of CRDs,
that is, a distinguishing identifier for a given code block. For instance, a loop
has a termination condition, an if-block has a branching predicate, but an else
block has no such identifiers. However, the finally and else code blocks are
never standalone, but are always defined in relation to a parent code block. The
finally block always has a try block as parent, and the else block has one
or more if/else code blocks as parent. We take advantage of this parent-child
relation in generating CRDs for the finally and else code blocks. For instance,
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Fig. 4. Sample clone region within a finally block.

the CRD for the finally code block, B, in Figure 4 is

packagename.SQLClient.java,SQLClient,35

executeQuery(String)

finally,SQLException,12

That is, this CRD points to the finally code block which is attached
to a try block that throws an SQLException, within the scope of the
executeQuery(String) method, within the class SQLClient, and within the
file packagename.SQLClient.java. As before, the numbers represent the cor-
roboration metric for each block. The CRD of a finally block whose parent try
block contains multiple exception handlers is the list of the types of exceptions
handled in the corresponding catch blocks, in their declared order. Therefore,
the anchor of a finally code block is simply the anchor of its parent try block,
with try replaced by finally to differentiate them. The CRD of an else block
with multiple if-then blocks is defined similarly—the anchors of its preceding
if-then blocks serves as its anchor.

3.1.1 Conflict Resolution Heuristics. The corroboration metrics are an im-
portant element of CRDs because, although CRDs effectively describe code
blocks, such a definition can sometimes refer to more than one block. Figure 5
shows an example of such a scenario.

Let us assume that we are interested in representing block Y using a CRD.
If our CRD only includes the fact that we refer to the for block with condition
“i<delete.size()” in method delete(), the reference is ambiguous since there
exists two such blocks (X and Y). We describe such an ambiguity as a conflict.
Conflicting code blocks require further information to distinguish them within
a nesting level.

To do so, we use a simple heuristic derived from our initial inspection of
code clones. Our observation was that when two or more code blocks at the
same nesting level have identical CRDs, there are usually nontrivial differences
in the logic implemented by each block. This is not surprising if we assume
that trivial differences can easily be parameterized and properly factored.
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Fig. 5. Example of two code blocks at the same level with identical anchors.

We thus take advantage of this observation and, for each block, generate a
number that reflects the overall structure of the block. This number is our
corroboration metric, and is used only when the lookup algorithm, presented
in Section 3.2, encounters an ambiguity (conflict) between two or more code
blocks.

Our corroboration metric is a combination of three code metrics of a
clone region: its cyclomatic complexity (number of linearly-independent paths)
[McCabe 1976], fan-out (number of method invocations), and decision density
(the proportion of the cyclomatic complexity to the number of lines of code
in the clone region) [Gill and Kemerer 1991]. Although rare, we encountered
cases with multiple code blocks having identical anchors, cyclomatic complex-
ities, and fan-outs at the same level of nesting in our initial experiments. The
decision density of the code block is therefore necessary to normalize the value
of the cyclomatic complexity of the code block, and hopefully disambiguate
such cases of conflict. Using the sum of these three metrics as our corrobo-
ration metric was enough to resolve 93% of the 1257 conflicts encountered in
our evaluation (see Section 5.1). In the event of a conflict between two or more
blocks at the same nesting level, we used the corroboration metric to select the
block with the metric value closest to the one recorded in the CRD. The con-
flict resolver requires assistance from the developer when more than one code
block is identified as being closest to that recorded in the CRD. The developer
is requested to select the code block matching the CRD from a list of potential
targets.

3.1.2 Generating CRDs. The support for generating CRDs of clone regions
from the output of clone detection tools was implemented in Eclipse. Each clone
group, as represented by the clone detection tool, includes the names of the files
that contain clones, and the location (i.e., the start and end line numbers) of
each clone region within their respective files. To generate the CRDs of the clone
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Fig. 6. An overview of the clone region lookup algorithm. Given the CRD of a clone region (CR),
the lookup-normal search assumes the CR exists at the location described by the CRD. If this
assumption is true, and there is a single code block matching the description of the CRD, then the
CR has been found. If there are two or more code blocks matching the description of the CRD, then
we call the lookup-conflict search to determine the most likely target. If the lookup-normal search
did not find the CR described by the CRD, we assume the CR has been moved by a refactoring and
call the lookup-refactored search. Lookup-refactored searches the entire code base, and proceeds
similarly as the lookup-normal search if one or more code blocks are found matching the CRD, or
terminates after all options are exhausted.

regions of a group, we obtain an abstract syntax tree (AST) representation of the
source code of each file. The functionality to parse Java files and produce ASTs
is provided with the standard Eclipse distribution, and is accessible through
an API call. We implemented a Visitor class that traverses the AST looking
for the node that fully encloses the start and end lines of a code region. The
search is terminated once a node that represents the clone region is found. The
components of a CRD, such as the anchors and corroboration metric, are all
generated during the traversal. This entire process takes a fraction of a second,
as will be described in Section 5.3.

3.2 Clone Region Lookup Algorithm

Given a CRD and a code base (which is not necessarily the one on which the
CRD was defined), we identify the corresponding clone region through a series
of automatic searches: lookup-normal, lookup-conflict, and lookup-refactored
(see Figure 6). These searches rely on an AST representation of the source
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code. We use the CRD of the clone region in Figure 3 to explain the features of
the search algorithms.

3.2.1 Lookup-Normal. This is used in cases where a clone region exists
at the location described by the CRD, and there is no need for conflict res-
olution. The lookup-normal search first retrieves the <file> (packagename.
DeleteManager.java) in which the clone region is located, and then obtains
the AST node of the enclosing <class> (DeleteManager). Next, lookup-normal
searches for the <method> (delete(int)) from the AST of the enclosing class.
Once an AST node corresponding to the method delete(int) is obtained,
lookup-normal traverses its subtrees looking for the code <block> described
by the CRD. Blocks are selected through a string comparison of their <anchor>
condition as specified in the CRD (e.g., the termination condition for for blocks).
In our example, lookup-normal would then search for the for block with ter-
mination condition “i<delete.size()” from the AST node of the enclosing
method. Finally, the if block with the predicate “delete.get(i) instanceof
ElementNode” is retrieved from the AST node of the for block.

The finally and else blocks are handled in a slightly different manner.
Given the CRD of a finally block, the lookup-normal search traverses the AST
looking for a try-catch block that matches the anchor description, and returns
its corresponding finally block. Similarly, for an else block CRD, it looks for
a sequence of if-then blocks that match the anchor description, and returns
its corresponding else block. Lookup-normal is used for a large majority of the
clone regions and terminates within a fraction of a second, as will be shown in
the section on evaluation.

3.2.2 Lookup-Conflict. This algorithm is used whenever two or more code
blocks matching the description of a CRD exists at a given location in the source
code. The lookup-conflict search is similar to the lookup-normal search with one
difference: when more than one code block is found at the location described
by a CRD, the conflict resolution heuristic explained in Section 3.1 is applied.
This algorithm computes the difference in the corroboration metric between
each of the potential targets and the value stored in the CRD, and returns the
target with the minimum absolute difference. Although stated independently,
lookup-conflict is needed whenever more than one potential target is encoun-
tered when searching for either a class, method, or code block, as in lookup-
refactored.

3.2.3 Lookup-Refactored. Code refactoring such as class renaming,
method renaming, or method movement may change the location of a clone
region. In such cases, a clone region no longer exists at the location described
by the CRD. The lookup-refactored search is used to recover the current lo-
cation of a clone region. The first step of the lookup-refactored search is to
identify the AST node for the type declaration enclosing the clone region. First,
it assumes that the <class> is in the <file>. When this is not the case (e.g.,
is a renamed file), it searches the entire code base for type declarations with
a name matching <class>. If a class is found, lookup-refactored then proceeds
as lookup-normal. If a class is not found and a <method> is not specified, we
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assume the class no longer exists and terminate the search. If a class is not
found and a <method> is specified in the CRD, we employ a heuristic to locate
the method described by the CRD.

The lookup-refactored search first assumes that the method has been moved
to a different class. It looks for all method declarations in the system with a sig-
nature matching <signature>. If a method is found, lookup-refactored then pro-
ceeds as lookup-normal. If a matching method is not found, lookup-refactored
assumes the method was renamed, and looks for all method declarations in the
system with the same parameter list as that described by the CRD. If none is
found, lookup-refactored further assumes the parameter list of the method was
changed, and looks for all method declarations in the system with the same
name as that described by the CRD. The result of this search is a list of poten-
tial method declarations. When more than one potential target is identified, the
lookup-conflict search explained above is applied. Once a method declaration
matching that described in the CRD is found, lookup-refactored then proceeds
as lookup-normal. Our heuristics do not support changes to both the method
name and parameter list since this would entail looking at every potential code
block, which is unrealistic for interactive development. Our clone region lookup
heuristics are similar to that employed by Xing and Stroulia [2005] in detect-
ing structural changes between subsequent versions of a system at the design
level. Whereas Xing and Stroulia used a UML representation of the compo-
nents of a system to detect structural changes between versions, we used the
structural properties, lexical information, and software metrics of code blocks
to track clones across versions.

3.3 Discussion

In our definition of CRDs, we made a number of design decisions to simplify the
approach at the cost of decreased robustness. First, our reliance on nesting lev-
els implies that changes that simply remove a nesting level while otherwise pre-
serving a clone relation will invalidate a CRD; however, lost clone relationships
will be reestablished once the model is updated as explained in Section 4.2. Sec-
ond, our definition of CRDs does not support anonymous classes. Finally, storing
anchors as strings implies that even small changes to the code in an anchor
will invalidate the CRD. Our initial assumptions were that the cases impacted
by such decisions would be rare enough to have a minimal impact on the over-
all usability of the technique. Section 5.1, which details the accuracy of the
clone lookup algorithm with the above characteristics, substantiates our initial
assumptions.

CRDs have been presented in the context of Java; notwithstanding, language
constructs such as loops, decisions, and exceptions are not unique to the Java
language. For instance, C++ has most of the constructs supported by our current
definition of CRDs and there are IDEs that provide AST parsing for C++. CRDs
can therefore be easily adapted to work for other object-oriented languages such
as C++, and even procedural languages with similar constructs.

We have implemented our CRD representation and the lookup algorithms in
a tool called CloneTracker. We present an overview of CloneTracker from the
perspective of a user of the system in the next section.
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4. CLONE TRACKING APPROACH

4.1 Clone Documentation, Clone Tracking, and Change Notification

Our clone tracking approach complements existing clone detection tools, refac-
toring technology, and clone management approaches by providing support for
reusing knowledge about the location of clones in source code, and support for
keeping track of clones when refactoring is considered costly, risky, not feasible,
or simply when the clones are intended to be short-lived. Our current version
of CloneTracker uses SimScan as the default clone detection tool, but also
provides support for other tools such as Simian8 and DECKARD [Jiang et al.
2007a]. CloneTracker is fully integrated with the Eclipse9 platform. Eclipse is
an integrated development environment with an architecture that supports the
addition of components, called plug-ins, that add to the environment’s function-
ality. The standard distribution of Eclipse includes a set of plug-ins that provide
extensive support for development in Java. CloneTracker is implemented as an
Eclipse plug-in.

With CloneTracker, a developer concerned about the presence of code clones
in a system sets the search options for the clone detector (for instance,
with SimScan the developer may select the following configuration: Volume=
medium, Similarity=fairly similar, Quality/speed=fast) and runs the tool. Sim-
scan outputs a description of the clone relationships in the system represented
as clone groups. The output is stored in a comma-separated-values file, and
each clone region is represented in terms of a file name and a line range. Clone-
Tracker provides a view to display the results of SimScan and to allow devel-
opers to indicate which clone groups to track. The results of the clone detection
tool are displayed as children of the Clone Detector node, and the documented
clone groups as children of the Clone Documentation node (see Figure 7).

After the clone detection process is completed, the developer must examine
each reported clone group to determine an appropriate step of action. Browsing
the results, the developer notices the locally unfactorable clone group in our
working example (Figure 1). The clone group is represented as Group148 in the
clone detection results. The developer reached the conclusion that eliminating
this clone group is risky—the clone regions are in methods with different re-
turn types—and selected clone management over refactoring. Group148 is then
transferred to the Clone Documentation node by the developer to initiate clone
management.

CloneTracker then automatically translates the location of all the clone re-
gions in the clone group into clone region descriptors (see Section 3), which
then form an active clone model. The clone model now describes clones in a way
that is resilient to refactoring changes such as file renaming, method renam-
ing, or changes to a method’s location. CloneTracker persists the clone model
as part of the corresponding Eclipse project, hence allowing the clone model to
be shared with other developers through a revision control system. On startup,
CloneTracker automatically detects and loads the model.

8www.redhillconsulting.com.au/products/simian/.
9www.eclipse.org.
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Fig. 7. The CloneTracker plug-in view and change notification features.

Developers may be aware of the presence of clones, but not sure about their
current location in the source code. If, at any point in the future, a different
developer with access to the clone model edits code in a clone region repre-
sented in the model, CloneTracker produces a notification that clone regions
are being edited. Change notification in CloneTracker is integrated with the
Eclipse warning mechanism. Our plug-in adds a warning to the Eclipse Prob-
lems View, and attaches an Eclipse warning marker at the beginning of the
clone region. The message of the warning describes the clone group to which
the modified region belongs. In our example, the developer is informed that the
modified code region has a cloning relationship with a region in the method
findExtendedConstructor, in the class Reflect, and is provided with QuickFix
options (Figure 7).

The ShowMe option takes the developer to the current location of other code
regions that have a cloning relationship with the region being modified, thus
eliminating the need to repeat the clone detection and clone classification
process for documented clone relationships. ShowMe is accomplished by high-
lighting the background of the clone group in the Clone Documentation node
as yellow (shown as grey in the illustration in this article) (Figure 7). The
Ignore/Resolved option is used to inform CloneTracker to ignore the clone re-
gion. Once selected, CloneTracker removes the marker from the clone region
and from the Eclipse Problems View for the duration of the Eclipse session.
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Modifications to regions of this clone group during the current session are not
communicated to the developer. CloneTracker also provides support for updat-
ing the clone model to reflect the most up to date status of clone relationships
in the current version of the source code. We discuss the approach for updating
the clone model in the next subsection.

4.2 Updating the Clone Model

Future modifications such as the copy-and-paste reuse of a clone region, or its
elimination, may invalidate the state of the documented clone relationships;
hence, updates to the clone model are necessary for it to remain accurate. To
provide this functionality, CloneTracker maintains a set of all the source code
files that were modified between commit operations to the source code reposi-
tory. These include files modified through edit operations by the developer, and
those modified when the update command is used to bring local copies up-to-
date with the newest versions on the server. We call the set of files modified
between commit operations the change-set, and the set of files formed when
the change-set is combined with the files tracked by the clone model the delta.
Update to the model is automatically triggered after a commit operation. This
begins clone detection on the files in delta, not the entire source code since
the objective is to determine how documented relationships have changed, and
not to look for new clones. Once clone detection is completed, CloneTracker
generates CRDs for all the clone regions identified in the delta, and performs a
two-phase comparison against the CRDs in the model to determine the status
of the documented clone relationships. The first phase compares clone groups
between versions, and the second phase compares clone regions within matched
clone groups.

4.2.1 Determining Clone Group Status. In the first phase, the plug-in com-
pares past and current clone group information, and assigns each group in the
model a status of either exists or disappeared based on the results of the com-
parison. A documented clone group is assigned the status exists if it has one
or more clone regions in common with a clone group in the delta; otherwise,
the documented clone group is assigned the status disappeared. Disappear-
ance may be due to refactoring or divergence of clone regions. CloneTracker
identifies disappeared clone groups with a Gx icon (Figure 8).

4.2.2 Group Evolution Pattern. In the second phase, the plug-in deter-
mines how clone groups with status exists have changed in the delta. This is
accomplished by comparing clone groups in the model against their counter-
parts in the delta (Figure 9). The changes are described using the clone group
evolution patterns introduced by Kim et al. [2005].

—Group unchanged. All the clone regions of the group remained unchanged in
the delta, and no new region was introduced.

—Group addition. At least one new clone region was introduced in its counter-
part in the delta (Figure 9). For example, in Figure 8 (Group41), the developer
is informed that a clone region in the class GUIUtilities has been cloned in
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Fig. 8. Updating the clone model.

Fig. 9. Evolutionary patterns of clone groups.

the class ReflectManager in the delta. CloneTracker identifies such groups
with a G+ icon, and the newly created clone regions with m+. Our tool in-
forms the developer not only which clone groups have changed, but also how
each group changed.

—Group subtraction. At least one clone region does not exist in its counterpart
in the delta. For example, a clone region was refactored or diverged from the
rest of the group. CloneTracker identifies such groups with a G− icon, and
the missing clone regions with m-. For example, in Figure 8, the developer is
informed that a clone region of Group90 in the class MarkersMenu no longer
exists in the current version of the source code.
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—Group substitution. An equal number of clone regions are found in the delta,
but some regions are not the same as in the documented model. CloneTracker
identifies such groups with a G∗ icon, the substituted region with m−, and
the replacement with m+.

Once completed, the developer can update the model to reflect the desired status
of the clones being tracked (e.g., the developer would update the clone relation-
ship of Group41 with the new relation in the delta). Our update model approach
only informs developers about the changes to the documented clone groups, but
provides no information about clone groups that might have been introduced
in newer versions of the code. To identify and track newly introduced clone
groups, developers would have to repeat the clone detection process presented
in Section 4.1.

5. EVALUATION

The techniques used to represent and track clone regions rely on a number of
heuristics. We conducted experiments and a study to evaluate the suitability of
our CRD representation, and our overall clone management approach. A com-
parison of the precision of CRDs to the line-based representations of multiple
clone detection tools is presented in Section 5.1. Section 5.2 reports on a study
that evaluates the robustness of CRDs in tracking clones across several ver-
sions of a system, and Section 5.3 reports on an experiment to determine the
suitability of the algorithms for generating and looking up CRDs in interactive
development.

5.1 Precision of CRDs

The basic tradeoff realized by CRDs is one of increased abstraction and ro-
bustness in the description of clone regions at the cost of decreased flexibility
and precision in the representation of the boundaries of the region. Specifi-
cally, although clone regions technically can be arbitrary, in our system they
must align with certain types of code blocks. This difference in representation
can introduce discrepancies between the actual clone regions (as identified by
clone detection tools) and the documented clone regions (as represented through
CRDs). How does the precision of CRDs compare to line-based representation
of clone regions for different clone detection tools? Is the precision of CRDs
consistent for different clone detection techniques? We conducted several ex-
periments using three clone detection tools and five subject systems, and report
the results in this section of the article.

5.1.1 Tools Used. To work with our current version of CloneTracker, a
clone detection tool must be able to detect clones in the Java source code and be
able to output cloning information in the file-name and line-range format to a
file, or provide an API for obtaining this information. We intended to evaluate
the precision of CRDs derived from tools implementing the major clone detec-
tion techniques, because different tools may identify clones differently. This
was not always feasible since some tools do not meet the requirement stated
above, and thus could not be integrated with CloneTracker. Other detection
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Table I. Description of Subject Systems Used in Evaluation

# Groups & % Within Code Blocks
System Version kLOC # Dev. SimScan Simian DECKARD
JMeter 2.3.2 53 >15 376(25%) 271(30%) 714(89%)
Hibernate 3.3.0 74 4 491(21%) 306(42%) 952(85%)
Eclipse PDE 20080630-1300 29 >5 281(32%) 169(40%) 698(96%)
DrJava stable-20080106 56 >50 106(8%) 106(38%) 67(73%)
Lucene 2.3.2 25 >11 102(20%) 116(39%) 247(97%)

techniques, such as those based on metrics [Mayrand et al. 1996] or program de-
pendency graphs [Krinke 2001], do not have publicly available tools. The tools
used in our evaluation included SimScan, release 1; Simian, version 2.2.24;
and DECKARD, version pre2008. SimScan is AST-based; Simian is text-based;
DECKARD is based on a parse tree representation of the code.

5.1.2 Subject Systems and Clone Groups. To find clones for this study,
we selected five Java-based open-source subject systems (JMeter, Hibernate,
Eclipse PDE, DrJava, and Lucene)10; see Table I. These systems all have a
recorded change history necessary to evaluate the robustness of CRDs, contain
a significant number of clone groups, and were developed by different devel-
opers. For these reasons, we consider that, taken as a whole, these systems
represent a reasonable diversity of Java programming styles.

Different tools provide different parameters, or similar parameters at dif-
ferent levels of granularity. For instance, SimScan uses “large,” “medium,”
and “small” to define the size of clone regions, whereas Simian uses an in-
teger value greater than 2. To standardize the results and make them com-
parable, we selected options that would report clones that are either Type 1
(exact copy without modifications, except for whitespace and comments) or
Type 2 (syntactically identical copy; only variable, type, or function identi-
fiers have been changed). As expressed by Koschke [2008], researchers have
yet to reach a consensus on a suitable similarity measure for Type 3 clones
(a copy with further modifications; statements have been changed, added,
or removed). We decided to avoid Type 3 clones since we could not conclu-
sively determine if all three tools provided search options for it. The search
options used for SimScan were Volume=medium, Similarity=fairly similar,
Speed/Quality=fast. The options used for Simian were ignoreIdentifier=true,
ignoreModifier=true, ignoreCharacterCase=true, ignoreVariableName=true,
ignoreSubtypeName=true, threshold=default. Threshold is the minimum
number of lines in the clone region, and the default value is 6. The op-
tions used for DECKARD were Similarity=0.96, Min-Tokens=50, stride=0.
Min-Tokens is the minimum number of tokens in the clone region, and
stride is used for indicating whether comparisons should occur at the level
of individual subtrees or subforests. Stride=0 means comparison should oc-
cur at the level of individual subtrees as this produces clones of greater
similarity.

10JMeter: jakarta.apache.org/jmeter; Hibernate: hibernate.org; Eclipse PDE: eclipse.

org/pde; DrJava: www.drjava.org; Lucene: lucene.apache.org.
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Fig. 10. Comparison of the overlap between the line-based representation of a clone region (CR)
and its representation in CRDs. In this case, we have an overlap with 11 overlapped lines, three
missed lines, and five extra lines, and a degree of overlap of 63%.

Table I reports the number of clone groups identified by the clone detection
tools for each subject system, and the proportion of the clone groups with clone
regions located within methods. For instance, SimScan identified 376 clone
groups in JMeter, and 25% of these groups contained clone regions located
within methods. The proportion of clone regions within code blocks varied
widely, but consistently for each system, across the clone detection tools, with
DECKARD at the top end, followed by Simian, then SimScan. This discrepancy
may be due to the differences in comparison techniques or the differences in
the precision and recall of the various tools; however, this was not the objective
of our evaluation. One point stands out despite these variations: the proportion
of clone regions within code blocks were significant enough to warrant their
own representation.

5.1.3 Methodology. To evaluate the precision of CRDs, we generated CRDs
automatically for each clone region of the groups in Table I. Next, we attempted
to map the CRDs back to the source code, and analyzed the overlap and cases
requiring conflict resolution between the initial regions, as reported by the clone
detection tools, and the regions as represented by CRDs. The overlap analysis
is made up of two components: first, whether or not there is an overlap, and
second, the degree of the overlap. There is an overlap between the line-based
representation of a clone region(CR) and its representation in CRDs if there
is at least one line in common (see Figure 10). The degree of the overlap gives
the percentage of the lines of a clone region correctly mapped by CRDs, and is
computed for each system as(

Average length of CRs
Average length of CRs + Average ML + Average EL

)

∗
(

Number of overlapped CRs
Total number of CRs

)
.

Missed lines (ML) represent the number of lines in the original clone region
that are not mapped by the CRD; extra lines (EL) represent lines not in the
original clone region but mapped by our CRD.
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Table II. Precision of CRDs Across Different Clone Detection Tools for JMeter

SimScan Simian DECKARD
# of CRs 1028 741 2559
# of Overlaps 1023 (99%) 738 (99%) 2526 (98%)
Avg. length of CR 21 9 12
Avg. ML per CR 2 2 2
Avg. EL per CR 3 7 2
Degree of Overlap 80% 50% 74%
# of Conflicts 23 15 245
# of Resolved Conflicts 21 (95%) 14 (93%) 216 (88%)

Table III. Precision of CRDs Across Different Clone Detection Tools for
Hibernate

SimScan Simian DECKARD
# of CRs 1345 849 3548
# of Overlaps 1330 (98%) 823 (97%) 3404 (95%)
Avg. length of CR 26 10 11
Avg. ML per CR 6 2 2
Avg. EL per CR 6 8 2
Degree of Overlap 67% 49% 70%
# of Conflicts 80 91 492
# of Resolved Conflicts 79 (98%) 89 (97%) 456 (92%)

Table IV. Precision of CRDs Across Different Clone Detection Tools for
Eclipse PDE

SimScan Simian DECKARD
# of CRs 835 504 2865
# of Overlaps 831 (99%) 497 (98%) 2836 (98%)
Avg. length of CR 17 8 9
Avg. ML per CR 2 3 2
Avg. EL per CR 1 4 2
Degree of Overlap 84% 53% 68%
# of Conflicts 23 52 178
# of Resolved Conflicts 22 (95%) 48 (92%) 168 (94%)

Specifically, for each clone region, we

(1) recorded the line range of the region, as reported by the clone detection
tool;

(2) used CloneTracker to generate a CRD for the region;
(3) used CloneTracker to find the code represented by the CRD, recording

whether this required resolving a conflict (at any nesting level);
(4) recorded the line range for the block represented by the CRD;
(5) verified overlap, and recorded the number of missed and extra lines.

5.1.4 Results. Tables II to VI summarize and compare the results for each
subject system for SimScan, Simian, and DECKARD. Table VII provides an
aggregate of the results for each clone detection tool over all systems. These
numbers have been rounded to the closest integer.
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Table V. Precision of CRDs Across Different Clone Detection Tools for DrJava

SimScan Simian DECKARD
# of CRs 470 321 153
# of Overlaps 466 (99%) 309 (96%) 146 (95%)
Avg. length of CR 24 9 18
Avg. ML per CR 1 2 3
Avg. EL per CR 2 9 7
Degree of Overlap 88% 44% 62%
# of Conflicts 0 7 4
# of Resolved Conflicts 0 (–) 7 (100%) 4 (100%)

Table VI. Precision of CRDs Across Different Clone Detection Tools for Lucene

SimScan Simian DECKARD
# of CRs 257 256 601
# of Overlaps 249 (96%) 226 (88%) 441 (73%)
Avg. length of CR 17 8 10
Avg. ML per CR 2 2 2
Avg. EL per CR 2 7 3
Degree of Overlap 78% 42% 49%
# of Conflicts 2 11 34
# of Resolved Conflicts 1 (50%) 10 (90%) 32 (94%)

Table VII. Aggregation of the Precision of CRDs for Each Clone Detection Tool

SimScan Simian DECKARD ALL
# of CRs 3935 2689 9726 16350
# of Overlaps 3899 (99%) 2612 (97%) 9353 (96%) 15864 (97%)
Avg. length of CR 21 9 12 14
Avg. ML per CR 3 2 2 2
Avg. EL per CR 3 7 3 4
Degree of Overlap 77% 49% 68% 68%
# of Conflicts 128 176 953 1257
# of Resolved Conflicts 123 (96%) 168 (95%) 876 (92%) 1167 (93%)

5.1.5 Is There an Overlap?. The second and the third row of each table
present the results of the overlap. The second row (# of CRs) of each table
presents the number of clone regions identified in the system by each clone
detection tool; the third row (# of Overlaps) presents the number of clone regions
for which the region mapped from the CRD overlapped with the original region.
The results of the overlap were consistent across all three clone detection tools
for JMeter, Hibernate, Eclipse PDE, and DrJava, with overlap ranging from
95% to 99%. Nonoverlapping regions for these four systems were primarily due
to unresolved conflicts and the limitations of CRDs as described in Section 3.2.
The results for Lucene, Table VI, were not as impressive as the other four
systems. The overlap for DECKARD, Simian, and SimScan were 73%, 88%, and
96%, respectively. CRDs are based on programming conventions and idioms
that did not occur as often in Lucene. For instance, we expect developers to
provide exception handlers (that is, catch blocks) for exceptions that might
occur within try blocks. However, over 15% of the clone regions identified by
DECKARD in Lucene were either within try blocks with no catch statements or

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 3, Publication date: June 2010.



Clone Region Descriptors • 3:23

for blocks with no termination condition. CloneTracker was therefore not able
to generate an anchor to uniquely identify these clone regions. This explains
the lower performance of CRDs for Lucene across the three clone detection
tools. Nevertheless, even with our initial heuristics, CloneTracker reported an
overlap for a large majority of the clone regions when the results are aggregated
for each clone detection tool: 99% of the 3935 regions identified by SimScan,
97% of the 2689 regions identified by Simian, and 96% of the 9726 regions
identified by DECKARD (see Table VII).

5.1.6 Degree of Overlap. The next four rows of each table report on how
closely overlapping clone regions matched. The fourth row (Avg. length of CR)
presents the average length of a clone region as reported by each clone detection
tool, in lines of source code. The average length of a clone region was 21 for
SimScan, 9 for Simian, and 12 for DECKARD. These values indicate that most
of the clones detected represented significant cases of code duplication. The fifth
row (Avg. ML per CR) presents the average number of missed lines, which was
consistently below three for each system, and for all the clone detection tools.
Missed lines are typically caused by a difference in the way CRDs and clone
detection tools represent clone boundaries. CRDs systematically skip method
headers (i.e., the whole declaration statement for a method before its curly
braces, which at times spans several lines), Javadocs, and block headers, and
start the clone region at the first curly brace; clone detection tools, on the other
hand, typically include method headers, Javadocs, and block headers as part
of the clone region. When the method or block header was on a separate line
from the first curly brace, it became a missed line in our experiment. We do
not consider this a problem since the method or block header is always in the
vicinity of the clone region, and thus, in the view of the developer. The sixth
row (Avg. EL per CR) presents the average number of extra lines, that is, the
amount of noise included as part of a clone region. These lines result from the
fact that clone regions have to be expanded to the closest enclosing block to
be described by a CRD. This value was mostly below three for SimScan and
DECKARD, but up to nine for Simian. This discrepancy can be explained by the
difference in clone detection approaches employed by these tools. Both SimScan
and DECKARD identify clones by transforming the code into a tree-based
representation, and comparing nodes for similarity, whereas Simian is purely
text-based, with no knowledge of the language syntax or structure. SimScan
and DECKARD therefore identify clones in a way that is more conceptually
related to the CRD representation than Simian. The seventh row presents the
average degree of overlap for each system. The degree of overlap for each system
hovered around 80%, 50%, and 70% for SimScan, Simian, and DECKARD,
respectively. This was expected given that the degree of overlap is derived from
both the missed and the extra lines, and as explained above the clones detected
by both SimScan and DECKARD are more closely related to CRDs than the
clones detected by Simian. Overall, clone regions represented by CRDs were
about 70% overlapped with the regions identified by SimScan and DECKARD,
but not Simian.
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5.1.7 Conflict Resolution. The last two rows of each table report on the
extent to which conflicts had to be resolved within a nesting level to find the
correct code block, and the extent to which our corroboration metric helped
in this operation. The seventh row (# of Conflicts) presents the number of
conflicts detected between CRD blocks at the same nesting level, and the last
row (# of Resolved Conflicts) presents the number of conflicts that were correctly
resolved. The results show that conflicts are uncommon (less than 8% of the
total 16,350 clone regions identified in the study required conflict resolution),
and even a simple metric can help disambiguate a majority (an average of
96% for SimScan, 95% for Simian, and 92% for DECKARD) of blocks with an
otherwise equivalent representation.

5.2 Evolution Study

To evaluate the robustness of CRDs, and their effectiveness in describing clones
in evolving software, we used CloneTracker to document clones in base versions
of Eclipse PDE, DrJava, and JMeter, and attempted to track these clones across
subsequent versions of the systems using the documented clone models. We
selected these systems because of their long version history, and also because
of the high number of clones in these systems that were not aligned with method
boundaries.

We randomly selected 30 clone groups not aligned with method boundaries
from each system, producing a total of 90 groups for the study. All clone groups
studied evolved as part of the changes performed to different versions of the
system. Each clone group was edited an average of eight times, with each clone
region having an average of two lines added, three lines deleted, and six lines
changed across multiple versions. In addition, two of the clone regions were
located in methods affected by refactoring, and the line ranges of each clone
region were modified several times during its evolution. We used CloneTracker
on the base versions to automatically generate CRDs for all the clone regions
studied. Then, using the generated clone models, we attempted to locate these
clone regions for subsequent versions of the systems (versions 20071002-0800
to 20080414-1300 of Eclipse PDE: 40 versions in total; versions 20030924-1641
to 20080124-1942 of DrJava: 29 versions in total; and versions 1.7.3 to 2.3.2 of
JMeter: 15 versions in total). Specifically, we sought answers to the following
questions: how stable are the anchors of CRDs? What kinds of modifications
are CRDs robust to? How effective are CRDs in tracking clones in evolving
systems?

To answer these questions, we produced an explanation for every group that
could not be located by CloneTracker. For instance, if a group was documented
in version v1, tracked successfully between versions v2 and v9, and could not
be located by CloneTracker in version v10, this may be because the clone group
disappeared in v10 or the anchor was changed. We define disappearance and
successfully tracked before discussing the results of the study.

—Disappearance. A clone group identified in version v1 of a system is said
to have disappeared in version vn, n > 1 if it was not located by Clone-
Tracker in version vn, and has no clone regions in common with any of the
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Table VIII. Evaluation of the Robustness of CRDs

Eclipse PDE DrJava JMeter All
# of Clone groups 30 30 30 90
Successfully tracked 27 (90%) 21 (70%) 24 (80%) 72 (80%)
Disappeared 6 (20%) 5 (17%) 17 (89%) 28 (33%)
Not successfully tracked 3 (10%) 9 (30%) 6 (20%) 18 (20%)

clones groups identified by a clone detection tool in vn. The same clone de-
tection tool, with the same parameter settings, is used to identify clones in
both v1 and vn. DECKARD was used for this study because it identified the
most clones within methods, and each case of disappearance was manually
verified.

—Successfully tracked. A clone group is said to have been successfully tracked
between versions v2 and vn of a system by CloneTracker if it was estab-
lished that it disappeared at version vt, t < n, or if all the clone regions of
the clone group were located by CloneTracker for every version between v2

and vn, inclusively. Otherwise, we say the clone group was not successfully
tracked.

The results of the study are presented in Table VIII. The third row (Success-
fully tracked) summarizes the robustness of CRDs for the different systems.
For instance, 90% of the 30 clone groups of Eclipse PDE were successfully
tracked by CloneTracker. Of those successfully tracked, 21 were tracked across
the 40 versions of Eclipse PDE, and six were tracked until they disappeared
from the system. The results for DrJava and JMeter were slightly different
with success rates of 70% and 80%, respectively, and a disappearance rate of
up to 89% for JMeter. The last row (Not successfully tracked) represents the
proportion of clone groups not successfully tracked by CloneTracker. The fail-
ure to track clones was primarily due to changes in the anchors of the clone
regions. For instance, the CRD below represents a clone region that was not
successfully tracked due to a change in the anchor of the enclosing if code
block.

org.eclipse.pde.internal.core.PluginPathFinder.java, PluginPathFinder

getFeaturePaths(String)

if, file.exists()

This clone region was tracked across seven versions, but in version 20071023-
0800 of Eclipse PDE, the anchor file.exists() was changed to file != null.
Since our current version of CloneTracker stores anchors as strings, this change
in the anchor of the if block prevented us from successfully tracking it. How-
ever, a majority of the anchors were reasonably stable as up to 80% of the
anchors in the clone regions studied remained unchanged throughout several
versions of our subject systems.

We also encountered two cases of method signature refactoring in the groups
studied, and CloneTracker was successful in tracking the clone regions affected.
For instance, after tracking two clone regions (one within the method find
ExtensionsForPlugin(String) and the other within findExtensionPoints
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Table IX. Execution Time for Generating and Looking-Up CRDs for Hibernate

# Clone Regions Total Time (ms) Avg. Time per Clone Region
Generate-CRDs 849 8067 0.009
Lookup-normal 756 (89% of 849) 4331 0.006
Lookup-conflict 91 (10% of 849) 1400 0.016
Lookup-refactored 2 (<1% of 849) 6062 3
Total cost 19,860 ms = 20 s

ForPlugin(String)) across seven versions, CloneTracker observed changes to
the method signatures, both occurring at version 20071029-1800 of Eclipse
PDE. The signature findExtensionsForPlugin(String) was changed to find
ExtensionsFor Plugin(IPluginModelBase), and the signature findExtension
Points ForPlugin(String) to findExtensionPointsFor Plugin (IPluginModel
Base). Using our search heuristics, CloneTracker was able to detect these
changes, and to identify the correct methods containing the clone regions.

In general, using CRDs and our clone tracking system allowed us to suc-
cessfully track 80% of the clone groups, not aligned with method boundaries,
throughout different versions of the subject systems. In each case where a
clone was modified, our system automatically would have warned the devel-
oper about the clone, supporting developers in their efforts to find, understand,
and modify the cloned regions.

5.3 Performance

We conducted another experiment to determine the cost of generating the CRDs
for clone regions, and to evaluate the suitability of the lookup searches in in-
teractive development. We generated CRDs for the 849 clone regions identified
by Simian in version 3.3.0 of Hibernate because Hibernate is the largest of our
subject systems, and Simian had the fastest clone detection time of 10 min (on
Windows Vista, Core2Duo-2.2Ghz, 2GB RAM). We then looked up the clone
regions in version 3.3.1 of Hibernate using the generated CRDs, and recorded
the time required for lookup-normal, lookup-conflict, and lookup-refactored.
The results of the experiment are summarized in Table IX.

The average time for generating the CRD of a clone region is below 0.01 s.
This includes the cost of generating an AST representation of the source file
in which the clone region is located, traversing the AST to the node enclos-
ing the clone region, and generating the anchors and corroboration metrics.
The lookup-normal row represents the case where a clone region exists at the
location described by the CRD, and does not require conflict resolution. This
represented a large majority of the clone regions for Hibernate (89% in total),
and also for all the 16,350 regions of the study presented in Section 5.1 (close to
90%). The average cost of lookup-normal is below 0.006 s. The lookup-conflict
row represents the case where two or more clone regions exist at the location
described by the CRD, thus requiring conflict resolution. The average cost of
lookup-conflict is three times greater than lookup-normal, but below 0.02 s. The
lookup-refactored row represents the case where a clone region is not at the
location described by the CRD, thus requiring the use of the lookup-refactored
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search heuristic. The cost of lookup-refactored is proportional to the number
of files in the system since the algorithm assumes the clone region might have
been moved to any file in the system. Hibernate contains 1092 files, and the
average cost is below 3 s. In general, it took about 20 s to generate the CRDs for
the 849 clone regions identified in one version of Hibernate and to lookup the
clone regions in a subsequent version. We conclude that the cost of generating
the CRD of a clone region, and of tracking a clone region given its CRD, is fast
enough to be used in interactive mode in a development environment.

6. RELATED WORK

The ideas and techniques investigated in our work on clone tracking intersect
with a broad spectrum of research projects on clone detection and analysis,
clone management, and source code representations.

—Clone detection. A vast body of work exists on techniques to efficiently detect
and analyze clones in source code, for instance, Kamiya et al. [2002], Jiang
et al. [2007a], and Basit and Jarzabek [2007]. Token-based clone detection
tools take as input the source code text of a software system, preprocesses the
text (e.g., to break lines into tokens and to remove nonessential differences
such as comments and white spaces), and then perform a similarity analysis
on the transformed input. In their presentation of the CCFinder tool, Kamiya
et al. [2002] provided a clear and thorough description of this type of clone
detection technology. Text-based techniques, such as Simian, compare entire
lines to each other, with little preprocessing of the text. Consecutive lines are
then grouped to form larger clone regions. Other clone detection approaches,
such as SimScan, transform the code into an AST, and perform a pairwise
comparison of the nodes in the AST to identify similar subtrees. DECKARD,
on the other hand, transforms the code into a parse tree, and represents
subtrees with numerical vectors. The numerical vectors are then clustered
using Euclidean distance, and subtrees with vectors in the same cluster are
reported as clones. Other clone detection approaches have been proposed
that use inputs such as the topology of a program dependency graph or code
metrics. We refer the interested reader to one of a number of annotated
bibliographies of the code clone literature [Tairas 2008].

—Clone genealogy analysis. Kim et al.’s [2005] empirical study of code clone ge-
nealogies provided an important part of the motivation for this research. For
their study, Kim et al. built a clone genealogy extraction tool. This tool uses
the CCFinder clone detector and reports, for a sequence of program versions,
how each clone region has evolved (changed, disappeared, etc.) with respect
to the other clone regions in the group. The mapping of clone regions between
versions is computed from an analysis of textual similarity using a module
that extends the diff utility program. Using their clone genealogy extraction
tool, Kim et al. tracked the evolution of code clones in two Java programs.
Their study led to the conclusions quoted and discussed in Section 2.

However, our work differs fundamentally from that of Kim et al. [2005]
both in the objectives and representation of clone regions. Kim et al. sought

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 3, Publication date: June 2010.



3:28 • E. Duala-Ekoko and M. P. Robillard

to understand the frequency and ways in which clones change, and the life
span of clones in a system. Our objective was to look for a better way of rep-
resenting and managing clone relationships in evolving software. To study
clone evolution, Kim et al. first ran the clone detection tool on every version
of their subject systems to identify clone groups. Then they matched simi-
lar clone groups from different versions using textual similarity measures
based on the entire text of the clone regions. Our representation, CRDs,
avoids the need to rerun clone detection to recover clones that have already
been documented, and uses a unique feature of the clone region, such as
the loop termination condition, not the entire text of the region, to track
clones.

—Bug detection. Jiang et al. [2007b] defined three types of inconsistencies
that might be introduced in systems when developers fail to appropriately
customize duplicated code regions in their new context, and proposed an
approach for detecting such inconsistencies. The proposed approach consists
of three major phases: first, clone groups are identified using a clone detection
tool; second, for each clone group, potential inconsistencies between clone
regions are identified; and finally, heuristics are employed to identify clone-
related bugs from these inconsistencies. In a different study of how clones
are maintained, Aversano et al. [2007] found that a nonnegligible number of
clones (18%) were not consistently modified, and modifications to 13 out of 17
bug fixes involving clones were not propagated to sibling clone regions. These
projects on the analysis of clone-related bugs further motivate the need for
clone management techniques, such as CloneTracker, that support change
notification.

—Clone management. Previous work on clone management has mostly focused
on techniques for simultaneously modifying clone regions. Miller and My-
ers [2001] proposed using simultaneous editing to simplify repetitive text
editing tasks. Their technique is implemented in LAPIS, a text editor with a
knowledge of Java, C++, and HTML syntax. With LAPIS, a developer has to
manually enter the regions to link, either through selection or by specifying
a text pattern. Regions in LAPIS are expressed in terms of character regions,
and therefore are not as resilient as CRDs to changes that occur out of the
supported environment. A technique similar to LAPIS, called linked editing,
has been proposed by Toomin et al. [2004]. The technique is implemented in
a tool called Codelink, that allows a user to manually select clone regions
and to link them. To track clones, Codelink stores a tokenized version of the
text in the clone regions, and employs token comparison techniques to locate
the clone regions for different versions. CRDs, on the other hand, rely on a
unique feature of the clone region, such as the loop termination condition,
not the entire text of the region, and are therefore relatively lightweight.

—Source code representation. A number of approaches have been proposed
that allow developers to specify a subset of the source code of a program
using abstract models that are resilient to a certain amount of changes in
the source code (e.g., Concern Graphs [Robillard and Murphy 2007], Aspect
Browser [Griswold et al. 2001], Intentional Views [Mens et al. 2002], and
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CME [Harrison et al. 2004]). Typically, such frameworks allow developers
to specify code of interest in terms of properties of the program (e.g., all the
callers of method m). Although they could be used to track clones that align
with the boundaries of coarse-grained elements (e.g., methods), they do not
provide the flexibility to tag specific blocks in the source code. In the context
of aspect-oriented programming (AOP), attempts have been made to identify
low-level constructs in programs, such as for loops [Harbulot and Gurd
2006]. Because the underlying goal of AOP is to impact crosscutting code,
such techniques focus on constructs that can describe classes of constructs
(e.g., all loops with a specific predicate), as opposed to individual regions.

7. CONCLUSION

The elimination of certain clone groups in the source code of a system is not
always feasible or practical. Such clone groups increase the risk of regression
faults if appropriate notification mechanisms are not available during the evo-
lution of the source code. We have developed CloneTracker, a tool capable of
automatically generating abstract representations for clone regions from the
output of a clone detection tool, detect modifications to tracked clone regions,
and notify developers about modifications to clones. Our system relies on the
concept of clone region descriptors (CRDs), which identify clone regions at the
granularity of code blocks using heuristics based on the structural properties,
lexical layout, and similarities of the clone region. In our evaluation of CRDs,
97% of the 16,350 clone regions we studied were successfully mapped back
to their corresponding line-based representation, with the average percentage
of overlapped lines reaching 70% for tree-based clone detection techniques. A
study of CRDs defined on evolving source code also showed we could track the
majority of the clone groups investigated, with 80% of the CRDs remaining
accurate for the entire lifetime of the clone regions tracked. We expect that
further adjustments are bound to provide mostly marginal improvements, as
the evidence we have collected so far indicates that CRDs are a practical and
robust representation for tracking code clones in evolving software. In our on-
going work, we are considering other possible applications of CRDs outside the
domain of code clones.
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