
A Data-Centric Study of Software
Tutorial Design
Deeksha M. Arya∗, Mathieu Nassif∗, Martin P. Robillard
deeksha.arya@mail.mcgill.ca, mnassif@cs.mcgill.ca, martin@cs.mcgill.ca
∗These authors contributed equally

Abstract—We investigate three tutorials on Android development to elicit design choices related to
their organization and content. We analyze organization styles related to the intended reading
sequence, use of code fragments, and reliance on external resources. We survey design variations in
the choice of topics covered by tutorials, for example deprecated or convenience APIs, and concerns
unrelated to the functional features such as development methodologies and best practices. We
provide insights about the impact of different design decisions on readers. For example, a clear
reading order provides an easier introduction to the technology for beginners, but focused,
independent sections can be more effective for an intermediate-level audience. We describe these
decision points and their trade-offs and propose guidelines to assist tutorial authors in making
explicit and informed decisions about the design of tutorials.

Developers routinely refer to introductory
tutorials when learning new APIs [9]. Effective
tutorials are thus a benefit to the technology
learners. In turn, they benefit organizations
that develop and promote the use of the
technology by raising community interest and
adoption levels [3].

How the design of tutorials can support
effective learning, however, remains an open
question. A glance at the offerings for popular
technologies shows a diversity of styles re-
lated to content selection and presentation. To
better understand the design dimensions for
software tutorials, we conducted a systematic
data-centric analysis of three tutorials aimed
at beginners to Android programming: The
App Basics tutorial from the official Android
Developer Documentation (AndroidOfficial),
Google’s Android Developer Fundamentals tu-
torial (GoogleCourse), and Vogella’s Android
Development tutorial (VogellaTraining) (see
Tutorials side bar).

We selected these tutorials because of their

cohesiveness, up-to-dateness, and authorita-
tiveness. We avoided the many tutorials that
consist of loosely structured collections of
poorly edited blog posts. We used this se-
lection process to elicit a variety of design
decisions made by professional writers, rather
than to gather a representative sample of tu-
torials. The systematic approach by which we
performed this selection is available in our on-
line appendix at https://zenodo.org/record/
4276356.

Despite their similar audience and pur-
pose, the tutorials differ in essential ways. We
observed radical variations in their division
into sections and their use of code fragments
and links to other documentation. The overlap
of topic coverage between tutorials was also
surprisingly low, hinting at different content
selection strategies.

Side Bar: Tutorials
AndroidOfficial is the set of introduction
documents under the “App Basics” header
from the Android platform [4]. It is the of-

IEEE Software Published by the IEEE Computer Society c© 2021 IEEE 1

https://zenodo.org/record/4276356
https://zenodo.org/record/4276356


ficial set of short references to get program-
mers started quickly on Android development.
GoogleCourse is the “Android Developer Fun-
damentals” tutorial created by the Google
Developers Training Team to accompany an
in-person course leading to an entry-level An-
droid certification [6]. VogellaTraining is the
set of training resources under the “devel-
opment starter” and “fundamental” sections
of the Android Development tutorials of the
Vogella training platform [10].

Design Decisions
We compared the organization and content

of the three tutorials, following Van der Meij
et al.’s discussion of the evolution of content
and presentation of software tutorials between
1980 and 2009 [8]. We observed several im-
pactful differences between tutorials, which we
articulate as eleven design decisions along five
dimensions. Table 1 summarizes these deci-
sions, with their rationales and trade-offs. Im-
portantly, different parts of the same tutorial
can realize different decisions.

For example, a tutorial creator hired to
document new features of an API may choose
to design the tutorial as a modular set of
independent sections for an audience already
familiar with the technology. They may use fo-
cused code fragments throughout each section
to keep the focus on the new features, and base
the content of the tutorial on external factors
such as popular feature requests to showcase
the value of the updated API.

In the remainder of this article, we discuss
each dimension in depth, including examples
of design variations from the three Android tu-
torials, and details of the process we followed
to analyze the tutorials.

Tutorial Organization
Table 2 reports structural properties of

the tutorials under study. Although the three
tutorials are not intended to be representative
of all tutorials, we compared them to eleven
other introductory Android tutorials to assess
how they fit among the range of available
tutorials (see the online appendix for the de-
tails of our sampling strategy). We found that,
except for an uncharacteristically high number

of hyperlinks, they do not exhibit unusual
properties.

Intended Reading Order
All three tutorials are designed to be read

in different manners. GoogleCourse’s content
is organized in a single sequence to read in a
prescribed order. This single sequence is easy
to follow for beginners who may not know in
advance what information is the most relevant.

In contrast, AndroidOfficial does not have
a clear reading order. Each document contains
only information related to a focused subject,
and delegates related information to other
documents. Thus, AndroidOfficial consists of
a complex network of 56 short documents
(with 5.2 sections on average, compared to
21.1 and 33.3 sections for GoogleCourse and
VogellaTraining) linked by 529 references to
each other. Decoupled documents can improve
their reusability in other learning frameworks,
according to Boyle [2]. They are also useful
to readers with specific information needs:
Readers can access the desired information
without wasting time on context built in prior
documents. Links to other documents provide
learning resources for related concepts if nec-
essary.

VogellaTraining, with its ten documents,
lies between AndroidOfficial and Google-
Course with regard to its reading sequence.
The largest document (103 sections and 8437
words, more than twice the size of the second
largest) covers a list of concepts that beginners
should read in sequence, similarly to Google-
Course. The other nine documents explore
in more details different fundamental aspects
of Android. These shorter documents share
similarities with AndroidOfficial’s documents,
as they can be read in any order and focus
on a specific concept. The combination of
both organization styles is a compromise that
grants readers the flexibility to explore differ-
ent aspects of the framework as they please,
after having been introduced to fundamental
notions relevant to all of these aspects.

Use of Code Fragments
The tutorials exemplify two approaches

for presenting code fragments to the reader.

2 IEEE Software



Table 1. Design dimensions, with sample decisions and their impact on the readers.

Decision When/Why Trade-Off
O
rg
an

iz
at
io
n

Structure of the tutorial components
Sequential sections forming
a single narrative

Provides beginners with an explicit
entry point and a measurable pro-
gression

Requires readers to go through sec-
tions that may be less relevant to
them

Modular set of
independent, focused sections

Allows more advanced developers to
only read sections that address their
information needs

Creates more complex dependencies
between sections that can be chal-
lenging to navigate

Context included in a code fragment
Complete compilable code
(e.g., entire files)

Encourages readers to clone the ex-
amples for a more participatory tu-
torial

Can distract from or hide the code
elements of interest

Short focused fragments
(e.g., few statements)

Focuses the discussion on relevant
code, e.g., when comparing different
approaches

Can become challenging for read-
ers to integrate many focused frag-
ments together

Links to external resources
Integral component of the
tutorial

Reduces tutorial creation and main-
tenance effort, and provides a broad
overview of the topic

All links:
Each additional link can distract
the reader, who needs to jump back
and forth between the tutorial and
external resourcesOptional supplement for

specialized topics
Allows readers to further their ex-
pertise and interest on a topic

C
on

te
nt

Main topic selection strategy
Selection based on external
factors

Tailors the tutorial content to
demonstrated information needs

Reduces the cohesiveness of topics,
compared to a baseline reflecting
the author’s perspective

Selection based on
interactions between topics

Describes how topics work together
to build more complex applications

Requires a lot of effort: the number
of interactions grows exponentially
with topics

Selection of additional topics
Implementations of broad
core topics

Provides concrete details to under-
stand a core topic in a specific con-
text

All topics:
Each additional topic lengthens the
tutorial, making it more expensive
to create and maintain, and more
daunting to readers who may want
to get coding quickly

Non-functional topics
(e.g., development tools)

Introduces beginners to good devel-
opment practices early

Peripheral topics (e.g.,
third-party libraries,
deprecated APIs)

Addresses varying needs of readers
working on specialized applications
or legacy systems

AndroidOfficial and GoogleCourse mostly
contain short code fragments that focus on the
statements of interest. In contrast, Vogella-
Training’s code fragments often display an
entire file, including more trivial information
such as the package and import declarations.
Despite these general tendencies, all three tu-
torials use both short and long code fragments
at some point, with the largest code fragment
having 2110, 1525, and 2368 characters respec-
tively for AndroidOfficial, GoogleCourse, and
VogellaTraining.

Code fragments that focus on a single
method do not overwhelm the reader with un-
necessary information. They convey a clearer

purpose. In contrast, showing the complete
content of a file provides context for the rele-
vant code. It thereby allows readers to follow
the evolution of code through several manipu-
lations and understand how different concepts
interact in a complete application.

Another interesting design decision, al-
though only observed in AndroidOfficial, is
to present equivalent code fragments in both
languages officially supported for Android de-
velopment, Java and Kotlin. The tutorial uses
a tabbing mechanism to show fragments in
the language the reader prefers. This design
can increase the audience of a tutorial, but
requires the additional cost of creating and

May 2021 3



Table 2. Properties of the three tutorials. A document refers to a web page, delimited into sections
by a header (HTML h1-h3 tags). We also compare our subjects to eleven other Android tutorials for
context.

Property Android-
Official

Google-
Course

Vogella-
Training Others (11)

Min. Mean Max.

Documents 56 33 10 4 38 109
Sections 292 697 333 16 252 712
Words 83 351 103 431 21 890 1559 30 925 104 441
... per document 1488 3134 2189 212 948 2984
... per section 285 148 66 32 135 240

Code fragments 338 430 174 2 222 711
Visible characters in code fragments 67 810 90 107 102 141 172 132 528 454 856
... per code fragment 201 210 587 86 607 905

Hyperlinks (excluding self-referencing) 1447 1800 64 3 237 847
... to other pages of the tutorial 529 2 4 0 42 124
... to advanced tutorial pages 110 0 2 1 92 340
... to API reference documentation 602 1018 0 0 4 29
... to other resources 206 780 58 1 98 606

maintaining pairs of equivalent code frag-
ments.

Links to External Resources
Resources found outside a tutorial can

complement the content of tutorials. These ex-
ternal resources can include pages of advanced
tutorials from the same website, official API
reference documentation, and other resources,
for example, blogs and third party libraries.

AndroidOfficial uses external resources to
lighten its content, allowing readers to go
through each document more quickly. It con-
tains 110 links to advanced tutorial pages
hosted on the same website. There are 602
links to API reference documentation in
AndroidOfficial, to avoid redundant descrip-
tions of API types. It also contains 206 links to
other resources, among which 163 links refer to
official documentation hosted on the Android
Developer website, such as graphical design
guides. This large number of links is represen-
tative of the Android documentation website,
which can be viewed as a large network of
learning resources, of which AndroidOfficial
is a subset. These external resources conve-
niently refer readers to additional concepts,
but can break the flow of the tutorial if readers
navigate back and forth between the tutorial
and external resources.

GoogleCourse also contains many links
(1798) to external resources. The 1018 links

to API reference documentation are due to
mentions of API types being systematically
linked to their reference documentation. The
remaining 780 links point to a variety of re-
sources, including websites of different tech-
nologies (e.g., the Mockito framework), Stack
Overflow posts, and coding exercises, often
under a “Learn more” header. This use of links
contrasts with AndroidOfficial, as external re-
sources are explicitly marked as supplemental
material. Hence, in GoogleCourse, the exter-
nal resources complement, rather than directly
support, the content of the tutorial.

VogellaTraining contains far fewer links to
external resources, amounting to 60 in total.
It contains zero references to the API doc-
umentation, and so often repeats text that
is already present in the official documenta-
tion. Without a method to synchronize up-
dates to the official documentation with the
content in the tutorial, VogellaTraining faces
the risk of containing inconsistent information
and becoming outdated [1]. The hyperlinks
that it does contain usually point to the
root page of documentation-hosting websites
rather than specific documents. Similarly to
GoogleCourse, these few links in the main text
of the tutorial encourage readers to remain
within the tutorial until its completion to limit
potential distractions. VogellaTraining even
includes programming exercises between the
more conceptual sections, limiting the need

4 IEEE Software



for readers to refer to an external resource for
practice material.

Tutorial Content
The lack of content presentation standard

for tutorials makes their investigation a dif-
ficult problem [5]. To provide an objective
definition of a tutorial content topic, we used
Stack Overflow tags as proxies for topics.

We retrieved tags that contain the sub-
string “android”. After removing irrelevant
tags, such as specific Android versions, we
obtained 393 topics, related to API types (e.g.,
android-intent), libraries (e.g., android-glide), and
generic concepts (e.g., android-camera).

For each of the 3 × 393 = 1179 tutorial–
topic pairs, we manually identified whether the
tutorial covers the topic, reporting the section
where the topic is covered (when applicable)
as evidence. We did not discriminate between
degrees of coverage, but considered passing
mentions as insufficient to cover a topic. All
authors independently annotated a distinct set
of pairs which included a common subset of
20 tutorial–topic pairs from each tutorial. On
this common subset, the annotators achieved
a pairwise agreement of 95% to 100% (Cohen’s
κ between 0.83 and 1.00) for AndroidOfficial
and GoogleCourse, and of 80% to 100% (Co-
hen’s κ between 0.49 and 1.00) for Vogella-
Training, which demonstrates the reasonably
low subjectivity of the task. The resulting
mapping between topics and tutorials, with
further methodological details, are available as
part of our online appendix.

This procedure produced a coverage inci-
dence matrix with three rows (tutorials) and
393 columns (topics), which provides valuable
insights into different strategies to select the
content of a tutorial. Figure 1 shows this
incidence matrix (middle section), in relation
with the popularity of each topic (top section).

Core and Additional Topics
We expected tutorials to cover a common

core of essential Android topics. However,
among the 393 topics, only 36 are covered by
all three tutorials. This intersection of topics
among tutorials is small in comparison with
the 184 topics covered by at least one tutorial

(20%). The 148 topics covered by one or two
tutorials are not equally distributed: Google-
Course covers 119 of them, while Android-
Official covers only 32 of these additional top-
ics.

The topics common to all three tutorials in-
clude the most basic aspects of Android devel-
opment. For example, it includes android-layout,
android-view, android-activity, and android-intent—the
four pillars of any Android app. It also in-
cludes android-ide, android-gradle-plugin, and android-
emulator to teach beginners to implement, build,
and run an application. Thus, all three tutori-
als cover at least the essential topics to develop
a basic application.

Topics covered only by AndroidOfficial re-
late to features of Android devices, even if
they may not be used by a majority of begin-
ners, such as android-gps, and android-strictmode.
In contrast, the many topics solely covered by
GoogleCourse include convenient API classes
(e.g., android-pendingintent) and third-party li-
braries (e.g., pocketsphinx-android), helping be-
ginners explore topics beyond those strictly
necessary to start a project.

VogellaTraining covers some deprecated
APIs, such as the popular tag android-
listfragment. The coverage of deprecated APIs
can be helpful for developers joining older
projects or if the classes are used in Android
projects despite the deprecation notice. A sur-
vey conducted by Lethbridge et al. revealed
that 81% of the 45 respondents agreed that
even though it may not be up to date, software
documentation can still be useful [7].

The inclusion in a tutorial of topics be-
yond the essential core to use the framework
constitutes a design trade-off. Comprehensive
tutorials that cover a broader range of top-
ics require additional effort from the authors
and may discourage readers by their increased
length. However, omitted topics can prevent
beginners from exploiting useful features.

Popularity of Topics
We use the number of Stack Overflow ques-

tions associated with each topic as a mea-
sure of how prevalent its related information
needs are among Stack Overflow users. The
incidence matrix in Figure 1 shows that tuto-

May 2021 5



Figure 1. Topics covered by each tutorial. The top section shows the popularity of each topic, measured by the
number of Stack Overflow posts tagged by the topic. The middle section indicates, for each 393 topics, which
tutorial covers it. The bottom section zooms in on the 50 most popular topics.

rials tend to cover popular topics. Android-
Official, GoogleCourse, and VogellaTraining
cover respectively 22, 37, and 28 of the 50
most popular topics, but only zero, one, and
two of the 50 least popular ones. However, all
three tutorials cover topics across the whole
range of popularity, and leave out some of
the most popular topics that are demonstrably
challenging for developers.

AndroidOfficial covers fewer of the popular
topics than the other two tutorials. For ex-
ample, it covers android-view, but not its more
popular subclass, android-recyclerview. It excludes
other popular topics that are not essential for
building applications, such as android-fragments
(third most popular). Thus, AndroidOfficial
remains strict in its goal to provide the mini-
mal information to build simple applications,
as opposed to GoogleCourse and Vogella-
Training, which are broader.

Tutorial authors cannot only rely on a
topic’s popularity to decide whether to cover
it, as popularity is not a perfect assessment

of relevance. Popularity depends also on the
complexity of the topic: prevalent but trivial
topics are less likely to generate questions
from developers. For example, retrieving meta-
data about an Android application using the
ApplicationInfo class is not very complex, but
is an important task for beginners to learn.
Introductory tutorials still need to cover these
prevalent topics, so a lack of popularity does
not indicate that the topic is irrelevant. Some
of the least popular topics are covered by all
three tutorials, including for example android-
applicationinfo, which is among the 150 least
popular topics.

Categories of Topics
Many of the covered topics are associated

with an API type from the Android Frame-
work (e.g., android-asynctask corresponds to the
type android.os.AsyncTask). Although such type-
related topics amount to only 34% of all
393 topics, they constitute the majority of
topics covered by GoogleCourse and Vogella-
Training (50% and 52%, respectively), and

6 IEEE Software



38% of the topics covered by AndroidOfficial.
The tutorials also cover many topics related
to the architecture and components of An-
droid, e.g., android-styles and android-manifest. Sim-
ilarly to type-related topics, these topics re-
veal that GoogleCourse and VogellaTraining
largely cover the functionality and behavior of
the API, as opposed to other relevant concerns
such as third-party libraries and development
tools.

Another common kind of covered top-
ics are Android features visible to end-users,
such as android-sharing, and android-orientation. For
example, AndroidOfficial, GoogleCourse, and
VogellaTraining uniquely cover android-keypad,
android-launcher, and android-button respectively.
We observed that this kind of topic was es-
pecially prevalent in topics uniquely covered
by AndroidOfficial.

Contrary to AndroidOfficial and Vogella-
Training, GoogleCourse covers external li-
braries such as android-espresso and android-glide.
Although it defers to their documentation for
a more extensive description, a short intro-
duction increases awareness of the Android
development ecosystem.

Finally, all three tutorials cover few topics
related to development methods and tools,
such as android-lint and android-monkey, ignoring
even official development tools such as android-
ndk and android-jetpack. This general bias against
development and maintenance concerns is sur-
prising, as beginners would benefit from learn-
ing good development practices.

Correlated Topics
As software technology is comprised of

multiple interacting components, cohesive tu-
torials cannot cover topics in isolation. For
example, Android activities and intents should
be discussed together, as intents are used to
switch between activities. To assess the co-
hesiveness of the tutorial contents, we looked
at pairs of topics that frequently co-occur,
i.e., are tagged on the same Stack Overflow
question. We considered the pairs of topics
that co-occur in at least 40 questions, which
cumulatively constitute over 75% of all co-
occurrences.

Figure 2 shows how many topics of each

pair are covered by each tutorial. Both
AndroidOfficial and VogellaTraining cover
only one topic in almost half of the corre-
lated pairs. Covering the other topic in these
pairs would convey a more cohesive and com-
plete perspective of Android programming,
but each additional topic can in turn create
a new correlated pair with only one covered
topic. Tutorial authors must carefully choose
when to stop adding related topics to avoid
overwhelming a reader. Consistently with the
previous observation of a small set of topics
covered by all tutorials, only 42 topic pairs
(6%) are covered by all three tutorials.

GoogleCourse and VogellaTraining both
cover the two topics of all but three of the
top 20 most frequently co-occurring pairs.
In contrast, AndroidOfficial covers only half
of the 20 most common pairs. This obser-
vation is consistent with the organization of
AndroidOfficial as short, decoupled sections.
In many cases, when a pair consists of a
broad topic and a more specific one, e.g.,
android-layout with android-linearlayout, Android-
Official typically only discusses the broader
topic. So AndroidOfficial provides an overall
introduction to the framework, but leaves out
specific instances of the different concepts.

Towards a Systematic Approach to
Tutorial Design

The design of tutorials has evolved over
time, for example, by introducing minimalist
documentation in response to work on im-
proved usability and readability of shorter,
focused texts [8]. This evolution is similar to
the evolution of software design, which is sup-
ported by conceptual frameworks and tools to
systematically assess and document design de-
cisions. However, contrary to software design,
no such system exists for tracking tutorial
design rationale.

Our investigation of the organization and
content of three introductory Android tuto-
rials has revealed many variation points in
tutorial design. We find that tutorial creators
must be careful in the design decision they
make, sometimes unconsciously, as they im-
pact how different audience will receive the
tutorial. Even carefully composed tutorials

May 2021 7



Figure 2. Topics pairs covered by each tutorial, showing only the 654 most common pairs, accounting for over
75% of all occurrences. The top section shows the popularity of each pair, the middle section indicates how many
topics of each pair is covered by each tutorial, and the bottom section zooms in on the 50 most frequent pairs
(stripping the android- prefix of each topic.)

can be poorly received if its content does not
match the information needs of its target audi-
ence. Thus, we propose a framework, captured
in Table 1, that authors can use to systemat-
ically review the design of their tutorials.

To illustrate how these guidelines can be
useful, we consider the case of a tutorial cre-
ator who is tasked to write a “Getting Started”
tutorial to present a novel unit testing library.
Their initial draft consists of a series of sec-
tions that cover all features of the library, with
one feature per section.

Upon reviewing our guidelines, the tutorial
creator may realize that their long draft can

discourage readers. Thus, they keep only the
description of the core features in a sequential
reading order for a quicker introduction. To
cater to advanced users, they can refactor sec-
tions about specialized features into optional
independent sections, excluded from the main
tutorial, and add “Additional Reading” boxes
at relevant places in the tutorial to link to
those sections. They can also decide to cover
additional topics based on external factors,
such as common testing patterns and features
of competing libraries. However, to keep the
main tutorial more cohesive, they can choose
to only place those topics in the optional

8 IEEE Software



sections.
While incorporating our guidelines in Ta-

ble 1, authors must balance trade-offs based
on the context and expectations of each tu-
torial. In the previous example, the tutorial
writer may have instead opted to avoid links
to optional sections altogether, to avoid possi-
ble distractions for beginners and reduce the
tutorial creation effort. Both strategies have
their merits. Although our study focused on
tutorials targeted at an audience of Android
programming beginners, our guidelines are ap-
plicable to different technologies and audience
expertise levels. The guidelines are thus of-
fered as a tool to stimulate additional reflec-
tion and encourage a systematic and informed
approach to tutorial design.

Acknowledgements
We are grateful to the participants of the

Winter 2020 seminar course on Topics in Mo-
bile Application Development at McGill Uni-
versity for contributing to a pilot study of this
project. This work is funded by NSERC.

REFERENCES
1. Deeksha M. Arya, Jin L. C. Guo, and Martin P. Ro-

billard. Information correspondence between types of
documentation for APIs. Empirical Software Engineer-
ing, 25(5):4069–4096, 2020.

2. Tom Boyle. Design principles for authoring dynamic,
reusable learning objects. Australasian Journal of Edu-
cational Technology, 19(1):46–58, 2003.

3. Barthélémy Dagenais and Martin P. Robillard. Creating
and evolving developer documentation: Understanding
the decisions of open source contributors. In Proceed-
ings of the ACM SIGSOFT International Symposium
on Foundations of Software Engineering, page 127–136,
2010.

4. Android Developers. Developer guides. https://
developer.android.com/guide. Accessed: 2020-06-03.

5. Adam Fourney and Michael Terry. Mining Online
Software Tutorials: Challenges and Open Problems. In
Proceedings of Extended Abstracts on Human Factors
in Computing Systems, pages 653–664, 2014.

6. Google. Android developer fundamentals. https://
google-developer-training.github.io/android-developer-
fundamentals-course-concepts-v2/index.html.
Accessed: 2020-06-03.

7. T. C. Lethbridge, J. Singer, and A. Forward. How
software engineers use documentation: the state of the
practice. IEEE Software, 20(6):35–39, 2003.

8. Hans Meij, Joyce Karreman, and Michaël Steehouder.
Three decades of research and professional practice
on printed software tutorials for novices. Technical
Communication, 56, 08 2009.

9. Michael Meng, Stephanie Steinhardt, and Andreas
Schubert. Application programming interface documen-
tation: What do software developers want? Journal of
Technical Writing and Communication, 48(3):295–330,
2018.

10. Vogella. Android development tutorials. https://www.
vogella.com/tutorials/android.html. Accessed: 2020-
06-03.

Deeksha M. Arya is a Ph.D.
student in Computer Science at
McGill University. She is inter-
ested in the software documen-
tation landscape and its role in
the education of software tech-
nologies for beginners. Deeksha
completed a M.Sc. in Computer

Science from McGill University in 2019. In her thesis,
she systematically analyzed the semantics between
corresponding sentences in API reference documen-
tation and tutorials. Her work provides insight on
the relatedness of the two documentation types and
informs technology to support this correspondence to
maintain information consistency. In 2014, Deeksha
received a B.E. in Information Science from the M.S.
Ramaiah Institute of Technology. Contact her at
deeksha.arya@mail.mcgill.ca.

May 2021 9

https://developer.android.com/guide
https://developer.android.com/guide
https://google-developer-training.github.io/android-developer-fundamentals-course-concepts-v2/index.html
https://google-developer-training.github.io/android-developer-fundamentals-course-concepts-v2/index.html
https://google-developer-training.github.io/android-developer-fundamentals-course-concepts-v2/index.html
https://www.vogella.com/tutorials/android.html
https://www.vogella.com/tutorials/android.html
mailto:deeksha.arya@mail.mcgill.ca


Mathieu Nassif is a Ph.D.
student in Computer Science at
McGill University. His research
focuses on the extraction, repre-
sentation, and manipulation of
knowledge in software systems
to optimize the contribution of
developers. Mathieu received a

M.Sc. in Computer Science from McGill University
in 2018. His thesis explored a flexible approach
to embed documentation directly in source code
to reduce the redundancy of information in soft-
ware systems while improving documentation qual-
ity. Mathieu received a B.Sc. in Mathematics from
Université de Montréal in 2016. Contact him at
mnassif@cs.mcgill.ca.

Martin P. Robillard is a
Professor of Computer Science
at McGill University. His re-
search investigate how to facil-
itate the discovery and acqui-
sition of technical, design, and
domain knowledge to support
the development of software sys-

tems. He served as the Program Co-Chair for the
20th ACM SIGSOFT International Symposium on
the Foundations of Software Engineering (FSE 2012)
and the 39th ACM/IEEE International Conference
on Software Engineering (ICSE 2017). He received
his Ph.D. and M.Sc. in Computer Science from the
University of British Columbia and a B.Eng. from
École Polytechnique de Montréal. Contact him at
martin@cs.mcgill.ca.

10 IEEE Software

mailto:mnassif@cs.mcgill.ca
mailto:martin@cs.mcgill.ca

	REFERENCES
	Biographies
	Deeksha M. Arya
	Mathieu Nassif
	Martin P. Robillard


