
Workshop on the Modeling and Analysis of Concerns in Software (MACS 2005)

Martin P. Robillard
McGill University, Montréal, Canada

martin@cs.mcgill.ca

Abstract
This report is a summary of the Workshop on the Modeling and
Analysis of Concerns in Software (MACS 2005) held at the 27th
International Conference on Software Engineering (ICSE 2005).
The main goal of the workshop was to bring together researchers
and practitioners with interest in techniques for modeling and ana-
lyzing the realization of concerns in software systems to support
software development and evolution. The workshop consisted of
an interactive combination of presentations and discussions. The
presentations and discussions were based on a collection of 16
short papers covering a wide range of approaches.

Keywords: Separation of concerns, software modeling, software
analysis.

Theme and Goals
Most software design, implementation, and modification activities
are organized, explicitly or implicitly, around the idea of concerns.
Concerns that arise during software engineering activities typically
include features, non-functional requirements, low-level mecha-
nism (e.g., caching), and many other concepts. Programming lan-
guage-supported constructs like modules, classes, and aspects
enable the encapsulation of certain concerns. Unfortunately, be-
cause of the limitations of programming languages, structural deg-
radation due to repeated changes, and the continual emergence of
new issues, the realization of concerns is often scattered and tan-
gled through the logical decomposition of numerous artifacts (re-
quirements, design diagrams, source code, etc.). Studies and
experience have shown that the scattering and tangling of con-
cerns increases the difficulty of evolving software in a correct and
cost-effective manner.

The goal of the MACS 2005 workshop was to bring together re-
searchers and practitioners with interest in techniques for model-
ing and analyzing the realization of concerns in software systems
to support software development and evolution, and to explore the
potential for integration and interoperability in concern analysis
and modeling techniques. Specific themes for the workshop in-
cluded:

• Concern modeling and representation environments
• Automated and interactive concern location approaches
• Concern mining techniques
• Concern visualization and reverse engineering techniques and

tools
• Advanced analysis and design techniques for separation of

concerns
• Code transformation and refactoring techniques for separation

of concerns

Workshop Organization
We solicited short papers describing ongoing work, new ideas, or
recent experience within the scope of the workshop. Each sub-
mission was reviewed by the organizers and by members of the
program committee. We selected papers for presentation at the
workshop based on relevance to the workshop themes and poten-
tial to generate interesting discussions. In total we selected three
papers for extended presentations and 13 papers for short interac-
tive presentations. The abstract of each paper appears in the
printed edition of Software Engineering Notes, and the full text of
each paper appears in the on-line edition.

Organization Committee
Martin Robillard, McGill University, Canada
Peri Tarr, IBM T.J. Watson Research Center, USA

Program Committee
Siobhán Clarke, Trinity College, Ireland
Yvonne Coady, University of Victoria, Canada
David Coppit, The College of William and Mary, USA
William Griswold, University of California, San Diego, USA
Rainer Koschke, University of Bremen, Germany
Juri Memmert, JPM Design, Germany
Gail Murphy, University of British Columbia, Canada
Harold Ossher, IBM T.J. Watson Research Center, USA
Arie van Deursen, CWI and Delft University, The Netherlands

Workshop Web Site
http://www.cs.mcgill.ca/~martin/macs2005

Summary of the Presentations1
The workshop was divided in four sessions. Each session was
intended to explore a specific theme and compare and contrast
different approaches associated with or exemplifying the theme.

Concern Modeling
The first session grouped the presentation of different concern
modeling approaches and focused on exploring the costs and
benefits of modeling concerns at different levels of abstractions.

Just-In-Time Concern Modeling. Martin P. Robillard and Gail C.
Murphy. After the workshop introduction, Martin Robillard briefly
described the concept of just-in-time concern modeling and its
support in the FEAT tool. Just-in-time concern modeling refers to
the idea of modeling concerns only when developers first encoun-
ter them as part of a program modification task.

1 Some of the text in this section is edited from material (talks,
papers, notes) provided by the workshop participants. Significant
portions are indicated in quotes.

Concern Modeling in the Concern Manipulation Environment.
William Harrison, Harold Ossher, Stanley Sutton Jr., Peri Tarr.
Stan Sutton presented a brief tour of the Concern Modeling Envi-
ronment (CME) and of the different perspectives on concern mod-
eling offered by CME.

A Model of Software Plans. Robert R. Painter, David Coppit. In
the first extended presentation of the workshop, David Coppit
presented the idea of mitigating scattered concerns through soft-
ware plans. Software plans are an “approach for dealing with
fine-grained concern tangling.” The editor-based approach sup-
ports a document model that explicitly represents concerns in
source code and dependencies between blocks of code.

Mapping Concern Space to Software Architecture: A Connector-
Based Approach. Jing Liu, Robyn R. Lutz, Jeffrey Thompson. Jing
Liu described an approach to model concerns in the architectural
design, and illustrated the idea with a case study of a cardiac defi-
brillator product line.

Separating Architectural Concerns to Ease Program Understand-
ing. Vladimir Jakobac, Nenad Medvidovic, Alexander Egyed.
Alex Egyed described and illustrated concern modeling at the ar-
chitectural level using the ARTISAn program understanding
framework.

Visualization and Transformation
The second session grouped presentations on the topics of concern
visualization and concern modeling for the purpose of program
transformation. The goal of the session was to explore the trade-
offs involved in obtaining intended modularity through visualiza-
tion versus transformation.

ActiveAspect: Presenting Crosscutting Structure. Wesley Coelho,
Gail C. Murphy. In the second extended presentation of the work-
shop, Wesley Coelho described a technique for presenting cross-
cutting structure and a tool, ActiveAspect, that supports the
technique. With ActiveAspect, “crosscutting structure can be pre-
sented in a diagram view without excessive complexity using a
combination of user interaction and automated abstraction tech-
niques.”

Concern Management for Constructing Model Compilers. Nao-
yasu Ubayashi, Tetsuo Tamai. Naoyasu Ubayashi described As-
pectM, a modeling language designed for the management of
modeling-level aspects. AspectM improves the separation of con-
cerns pertaining to model transformations in model-driven archi-
tecture-based development.

A Model-Driven Approach to Enforce Crosscutting Assertion
Checking. Jing Zhang, Jeff Gray, Yuehua Lin. Jeff Gray outlined
a “two-level aspect weaving approach to enforce contracts over
different abstraction levels.” The approach illustrated some of the
challenges of weaving assertion-checking code into high-level
domain models.

Pattern Transformation for Two-Dimensional Separation of Con-
cerns. Xiaoqing Wu, Barrett R. Bryant, Jeff Gray, Marjan Mernik.
Xiaoqing Wu described an approach for two-dimensional separa-
tion of concerns allowing developers to transform code back and
forth between an object-oriented implementation of the Inheri-
tance design pattern and an aspect-oriented implementation of the
Visitor design pattern. This approach allows “the same software

to be evolved along different dimensions”, enabling developers to
choose the most appropriate dimension for a given task.

Concern Mining
The third session focused on the presentation and discussion of
approaches to elicit or locate concerns in existing artifacts.

Using Language Clues to Discover Crosscutting Concerns. David
Shepherd, Tom Tourwé, Lori Pollock. For the third extended pres-
entation of the workshop, David Shepherd described an approach
to automatically identify scattered concerns based on an analysis
of the natural language clues found in source code. The proposed
approach uses the technique of lexical chaining to locate sets of
semantically related terms and their location in source code. Such
sets have the potential to denote scattered concerns.

Locating Crosscutting Concerns in the Formal Specification of
Distributed Reactive Systems. José J. Pazos-Arias, Jorge García-
Duque, Martín López-Nores, Bélén Barragáns-Martínez. José
Pazos-Arias presented an approach for the “semi-automatic identi-
fication of crosscutting concerns at the requirements level.” The
approach is intended to improve the incremental process of pro-
ducing specifications for a distributed system.

Separation of Concerns in Software Product Line Engineering.
Mazen Saleh and Hassan Gomaa. Mazen Saleh described an ap-
proach and tool supporting the separation of concerns in the con-
text of software product lines. The approach supports “automatic
customization of target applications” based on a feature model
expressed through a feature description language.

An Exploration of How Comments are Used for Marking Related
Code Fragments. Annie T.T. Ying, James L. Wright, Steven
Abrams. Annie Ying reported on an empirical study of comments
in source code. The main observation of the study is that “pro-
grammers mark related code fragments by comments” that either
reference related code explicitly or that are similar to other com-
ments located near related code. The conclusion of the study sup-
ports the intuition that comments contain valuable clues that can
be used to identify and understand scattered concerns.

Concern Analysis
The final session of the workshop focused on concern analysis
techniques.

An Approach to Aspect Refactoring Based on Crosscutting Con-
cern Types. Marius Marin, Leon Moonen, Arie van Deursen.
Marius Marin “argued for the importance of organizing generic
crosscutting concerns by distinctive properties”. He proposed the
idea of categorizing crosscutting concerns into types. This ap-
proach has the potential to help reason about applicable refactor-
ings than can applied to the crosscutting concerns to improve their
modularity.

Separation of Concerns for Evolving Systems: A Stability-Driven
Approach. Haitham S. Hamza. Haitham Hamza proposed an
analysis for early separation and modeling of concerns intended to
maximize the stability of a design to reduce the likelihood that
scattered concerns will emerge. The approach relies on software
stability models and formal concept analysis.

Concern Patterns and Analysis. Juri Memmert. Juri Memmert
showed that patterns can be found in the realization of concerns

across different software engineering artifacts produced in differ-
ent phases of the software life-cycle, and how such patterns can be
indicative of problems, such as ripple change effects, that will
impact the development process.

Summary of the Discussions
In each session the interactions centered on the clarification and
discussion of the different approaches presented. In the final ses-
sion a general discussion took place where the participants fo-
cused on defining the term “concern” in the context of software
engineering and on synthesizing the workshop.

Defining Concerns for Software Engineering
The participants first agreed that the notion of a concern in soft-
ware engineering is a very general one and that it changes based
on the context in which concerns are considered. Nevertheless, a
consensus was rapidly reached in support of the observation that
there are two perspectives to the notion of a concern. First, a con-
cern is a conceptual area of interest or focus for a stakeholder of a
software project (e.g., a developer). This definition is necessarily
vague as it pertains to notions in people’s mind, which may be
approximate and incomplete. In the second perspective, the term
“concern” also refers to the concrete manifestation of conceptual
concerns (e.g., in source code, design diagrams, or other artifacts).
After converging on a definition of a concern as a conceptual area
of interest and its manifestation in a software project, the discus-
sion focused on the issue of mapping or representing a concern’s
manifestation. In other words, how does one reliably associate a
conceptual concern with its concrete manifestation? Many ap-
proaches can be used to achieve this goal, including a number of
approaches presented at the workshop. While there is currently no
consensus on the best way to meet this goal, there was neverthe-
less agreement on the importance of the question for the purpose
of modeling and analyzing concerns in software.

Synthesis of the Workshop
During the first session the different presentations illustrated the
need for techniques to help developers model concerns at different
levels of abstraction, from source code to architectural design.
One opinion expressed by a number of participants is that con-
cerns in the code should be reflected in higher-level artifacts. This
observation opened a discussion on traceability and on the poten-
tial for concern modeling techniques to facilitate traceability be-
tween different artifacts of the software development process.

The presentations of the second session led to a brief debate on the
respective goals of concern visualization and transformation tech-
niques. Simply put, the question is as follows: given a concern
whose realization is scattered, should we use a visualization tech-
nique to view and modify it as a single entity, or should we physi-
cally transform the code to encapsulate the concern in a single
module? There is no clear answer, and the general consensus was
that visualization and transformation approaches are complemen-
tary. For example, a visualization approach can be used to under-
stand transformed code, and a transformation approach can be
used to refactor a concern into its own module based on an analy-
sis performed with a visualization technique.

The third session focused on concern mining techniques. With
two presentations on the analysis of comments and identifiers
found in source code, the participants realized the importance of
natural language clues for the automatic detection of scattered
concerns. As a corollary, the importance of heuristics for auto-
mated concern mining approaches was also noted. One open issue
emerging from the discussions in the third session is how to bridge
the gap between the approximate concern models produced by
automated or interactive concern location techniques and the for-
mal models used for code transformation.

The final session on concern analysis emphasized the need to
clearly understand the nature of scattered concerns and the poten-
tial benefits that can be derived from concern models, including
early diagnosis of structural problems in a software system and
support for refactoring.

Conclusion
The workshop brought together over 25 researchers and practitio-
ners with interest in techniques for modeling and analyzing the
realization of concerns in software systems to support software
development and evolution. Sixteen presentations described on-
going work covering an impressive range of approaches that span
multiple phases of the software life-cycle (requirements, design,
and implementation), and operate at different levels of abstraction
(from architectural design to source code). In addition to the
ideas, techniques, and tools described, many of the presentations
reported on case studies illustrating the different types of concerns
that arise during the life of a software project. Taken together, the
projects presented and discussed at the workshop form a window
on an active field of research at the intersection of many of the
traditional sub-disciplines of software engineering. The workshop
resulted in a better understanding of the area of concern modeling
and analysis and of the open issues in this area. The specific out-
come of the workshop includes a definition of the term “concern”
in the context of software engineering, 16 papers describing prom-
ising concern modeling and analysis techniques, and a record of
open issues for the research community.

