
Types of collaborative work in software engineering

Pierre N. Robillard a,*, Martin P. Robillard b

a �Ecole Polytechnique de Montr�eal, Department of Electrical and Computer Engineering, Laboratoire de Recherche en g�enie logiciel, C.P. 6079,

Suc. Centre-ville, Montr�eal, Que., Canada H3C 3A7
b The Department of Computer Science, University of British Columbia, 201-2366 Main Mall, Vancouver, BC, Canada V6T 1Z4

Received 3 September 1999; received in revised form 8 September 1999; accepted 22 October 1999

Abstract

This paper is an account on work distribution analyzed from the collaboration point of view. It presents a new classi®cation of

the collaborative work in software engineering project. Four types of collaborative work are de®ned derived from empirical

measurements of activities. Mandatory collaborative works are formal scheduled meetings. Called collaborative work is de®ned

when team members call a meeting to solve a problem, which is most often technical. Ad hoc collaborative work is de®ned when

team members work on the same task at the same time and individual work occurs when a team member works on its own on a task

related to the project. Data are extracted from the logbook ®lled out by four team members working on an industrial project that

lasts 19 weeks. The characteristics of each type of collaborative activity are described and a quantitative breakdown of how people

spend their time in collaboration within a single project is presented. Ó 2000 Elsevier Science Inc. All rights reserved.

Keywords: Software project; Collaborative work; Team work; Measurements and software engineering

1. Introduction

An understanding of the work patterns is needed for
eventually supporting that work through computers,
internet and collaborative systems. Software engineering
is knowledge intensive (Robillard, 1999) and a large
project is mostly done by a team of people. Collabora-
tive work is often a key issue in software engineering.
Various aspects of teamwork that have been studied by
the social science community among many subjects are
the group stress created by members working on mul-
tiple projects (Ancona and Caldwell, 1990), the problem
of measuring and evaluating teamwork (Christ and
Muckler, 1993), and the aspect of technology and time
in group communication (McGrath, 1990).

Collaborative work and team structure are also
studied in software engineering from various viewpoints.
Researchers in software engineering, showed interest in
team internal relationships and for the interactions be-
tween teams and their environment. For example,
(Bendifallah and Scacchi, 1989) demonstrated that work
structures map to task and conclude that in software

activities, the most critical variable for team structuring
concerns the underlying work structure. (Burke et al.,
1995) investigated the development of various group
characteristics in both face-to-face meetings and in dis-
tributed meetings over time. Other researchers focused
their attention on formal review meetings. For example,
(Johnson and Tjahjono, 1997; Adam and Johnson,1997)
investigated the cost/bene®t ratios of meeting-based re-
views versus non-meeting-based ones. (Porter et al.,
1997) studied the e�ects of developer activities on In-
spection intervals, and (Seaman and Basili, 1997, 1998)
studied communication in code inspections. Although
the previous studies in empirical software engineering
were able to provide insight into the group dynamics
involved in the development of software, most of them
only focused on a particular activity, namely, software
reviews. The ®rst contribution of this paper is thus to
present and interpret data concerning all the team ac-
tivities involved in a software development process and
to contrast them with the more individual activities.

This paper presents data based on a de®ned software
process. Few case studies in empirical software engi-
neering also provide information about software pro-
cesses. (Bradac et al., 1994; Perry et al., 1994) presented
the relative time spent by software developers in the
various tasks they execute. However, these studies

The Journal of Systems and Software 53 (2000) 219±224
www.elsevier.com/locate/jss

* Corresponding author. Tel.: +1-514-340-4238; fax: +1-514-340-

3240.

E-mail address: pierre-n.robillard@polymtl.ca (P.N. Robillard).

0164-1212/00/$ - see front matter Ó 2000 Elsevier Science Inc. All rights reserved.

PII: S 0 1 6 4 - 1 2 1 2 (0 0) 0 0 0 1 3 - 3

illustrate the proportion of time the developers invest in
activities such as writing speci®cations, coding, and the
like, without concern about what time is spent working
individually versus what time is spent doing teamwork.
Teamwork activities in software engineering course
environment have been studied under the aspect of
process, activities and relationship to professional en-
vironment (Robillard, 1995, 1996; Robillard and Ro-
billard, 1998). A second contribution of this paper is to
present data illustrating what tasks in software devel-
opment involve more teamwork as compared to tasks
where more individual work is needed.

This paper reports on a project that has the following
®ve characteristics:
1. It is a case study rather than a controlled experiment.
2. The data are extracted from the logbook of the par-

ticipants. The logbook has been required in this orga-
nization for many years. The participants are not
®lling out the logbook for the purpose of this study
and the data from the logbook have been validated.

3. All participants are professional software engineers
with some years of experience, which is in contrast
to the studies done with students or juniors.

4. Participants are not aware that this kind of study is
performed so there are no arti®cial behaviors.

5. Many kinds of teamworks are studied. This is di�er-
ent from studies that are focused on a speci®c type of
meeting, for example, inspection.
Section 2 describes the major characteristics of the

project. Then, the processes used by the team are de-
scribed; the measurement tools are presented and data
are presented. We are aware that the data presented in
this paper are based on speci®c projects and that a word
of caution is required before generalizing the conclu-
sions. However, we believe that the new classi®cation
scheme derived from the data analysis is of general in-
terest and is not speci®c to this project.

2. Project description

The goal of the project was to design and implement a
simulator of Petri Net (Marsan, 1990). This simulator is
integrated into a modeler, which is distributed world-
wide. Requirements are well de®ned and the task is to
design and implement the simulator. The project was
developed in a Windows environment in C++. An ob-
ject-oriented methodology was used. The project was
successful, all requirements were implemented and test-
ed, the documentation was appropriate and the schedule
and the budget were respected.

The project has well-de®ned requirements for the
design and implementation of computational algorithms
and there is no input or output interface. All data are
transmitted to and from ®les. The software engineering
process is de®ned. All team members are required to ®ll

out a daily time log. They have been informed that the
daily time log is for research purpose only. The data
from the logbook have been validated. The data will not
be available to the human resources or the management
people to evaluate performance or productivity. How-
ever, they do not know the subjects of the research
conducted. Some meetings have been videotaped and
are the subject of research on speci®c collaborative ac-
tivities (Robillard et al., 1998; d'Astous et al., 1998).

The teams used a de®ned software development ap-
proach. The main characteristics of software develop-
ment processes are:
· A systematic approach to software development.
· The use of appropriate software engineering stan-

dards and CASE tools.
· The use of reviews for each step of the software devel-

opment process (Freedman and Weinberg, 1990).
· Preparation of the appropriate documentation for

software development.
The software process used is inspired from the Ca-

pability Maturity Model (CMM) key practices and is
based on the (IEEE Standards Collection, 1994) list in
Table 1.

The ®rst phase of the industrial project, which cor-
responds to the ®rst release, lasted 19 weeks and re-
quired four full-time software engineers. Two software
engineers had a degree in computer engineering and one
a degree in computer science. The coordinator had a
MasterÕs degree in software engineering. Their profes-
sional experience ranged from 2 to 7 years. They used a
democratic team approach, with one of the team mem-
bers acting as the coordinator.

The team members share a large room subdivided
into cubicles. A nearby small meeting room was avail-
able on request. All team members were dedicated to the
project on full time basis. Except for a 1 h mandatory
meeting once a week the team members were free to
schedule their own meeting activities. The project was
typical of the projects conducted in this organization for
many years with the same high level management.

3. De®nition of the measures

This section describes the approach used to gather
information on the team activities. The time spent by an
individual on each activity is captured by ®lling out, on

Table 1

List of standards used to de®ne the process

IEEE std 829 Software Test Documentation

IEEE std 830 Software Requirement Speci®cations

IEEE std 1008 Standards for Software Unit Testing

IEEE std 1016 Recommended Practice for Software Design

Description

IEEE std 1058 Software Project Management Plan

IEEE std 1074 Developing Software Life cycle Processes

220 P.N. Robillard, M.P. Robillard / The Journal of Systems and Software 53 (2000) 219±224

a daily basis, an activity record once the activity has
ended. All the records are stored in the same database
(Access). An activity record is made up of eight ®elds,
which are de®ned in Table 2.

Each individual was responsible for ®lling out his
own logbook. One team member was responsible for
collecting the completed logbooks of teammates every
week and integrating them into the team database. All
the data presented in this paper were obtained through
analysis of the logbooks.

This measuring process seems straightforward and
easy. However, it took us many projects to develop re-
liable measuring mechanisms. The major di�culty is in
de®ning unambiguously the phases, activities and tasks.
To do that requires a de®nite process and good project
planning.

4. Four types of collaborative activities

Teamwork is made of a variety of activities where the
collaborative nature of the work may vary from one
activity to the other. We found that the team activities
could be divided into four types of collaborative activ-
ities. Mandatory, Called, Ad hoc, and Individual:
· Mandatory collaborative activities are formal meet-

ings scheduled on a regular basis. They are usually
planned long in advance and participants are re-
quired to attend.

· Called collaborative activities occur when two or more
team members decide to get together to do some tech-
nical work. Usually these meetings are not scheduled
long in advance and only participating members will
attend.

· Ad hoc collaborative activities occur when two or
more team members work on the same subject at
the same time and share on ad hoc basis comments,
or information on what they are doing.

· Individual activities occur when a team member is
working on a task that is not shared at the same time
by other team members and is then unlikely to inter-
act on this subject with other team members.

Fig. 1 shows the relative time spent in each type of
collaborative activity for the duration of the whole
project. The mandatory activities are composed of the
short meetings required by the project leader to syn-
chronize the various tasks. It is interesting to note that
even if it is named a team work almost 41% of the time is
spent in Individual activities. The same amount of time
(41%) is spent on Ad hoc collaborative activities. Finally
only 14% of the total time is spent on formal Called
technical meetings.

Fig. 2 shows the distribution of the collaborative
activities for each week of the 19 weeks of the project
duration. It is observed that the Individual activities
form cycles, which are preceded by Ad hoc collaborative
activities. It seems that the team members are working
together to de®ne various tasks and then they work on
an individual basis to complete the task. There is a
straight decrease in Mandatory activities as the project
progresses. Called collaborative activities are more in-
tense in the middle of the project.

Fig. 3 shows the distribution of duration for each
collaborative activity. Most of the Mandatory activities
(80%) last less than 1 h. The Called collaborative ac-
tivities are mostly (70%) in the 1±2 h range. Ad hoc
collaborative activities are clearly preferred for tasks of
long duration (3±5 h) while Individual activities are kept
for smaller tasks. More studies are required to con®rm
the individual behavior. Intuitively, we had expected
longer individual tasks. This could be a side e�ect of the
team cohesion or it could be related to the small size of
the team. However, we suspect that such behavior is
likely to improve the quality of the product.

Fig. 4 shows the number of participants for each type
of collaborative activity. The Called and Ad hoc col-
laborative activities are often assumed (60% of the time)
by two of the teammates. The Mandatory collaborative
activities are usually conducted with the full team as
expected. Since there are few Mandatory activities, see
Fig. 1, the 3±4 meetings that were not fully attempted
account on a relative basis for 40% of the meetings.

Fig. 5 shows that all the participants (P1±P4) have
almost an equivalent involvement in each of the col-
laborative activities. In that sense this project was truly a

Table 2

De®nition of the ®eld of the records for the logbook

TIME Clock time. It is captured automatically

ID Identi®cation of the team member

DURATION Time spent on the given activity (multiples

of 15 min)

NB Number of team members involved in the

given activity

PHASE Name of the phase of the process

ACTIVITY Name of the activity being measured

TASK Name of the task as de®ned in the planning

of the project

COMMENTS Any comments that are relevant to the

activity record

Fig. 1. Relative time spent in the collaborative activities.

P.N. Robillard, M.P. Robillard / The Journal of Systems and Software 53 (2000) 219±224 221

Fig. 2. Weekly distribution of the collaborative activities.

Fig. 3. Collaborative activities duration.

Fig. 4. Number of participants for each type of collaborative activity.

222 P.N. Robillard, M.P. Robillard / The Journal of Systems and Software 53 (2000) 219±224

team project even if 80% of the activities were not what
is usually identi®ed as team activities since Individual
and Ad hoc collaborative activities are usually not
considered as team activities. We do not observe any
signi®cant di�erent involvement pattern for the team
coordinator (P3). This may be due to the small size of
the team and the democratic team structure.

5. Conclusion

This analysis of team membersÕ logbooks showed that
the team project could be seen as made of four types of
collaborative activities. The Mandatory and Called col-
laborative activities are easy to identify and their mean-
ing is straightforward. It is interesting to observe that
these formal meetings account together for less than 20%
of the time spent by the team members. More studies,
which could be focused on the content of the meeting, are
required to determine if these face-to-face meetings can
be held through electronic communications. The man-
datory meetings can be seen as a mechanism to syn-
chronize the team members on the project. It is observed
that when synchronization is no more required in the last
weeks of the project, for example, mandatory meetings
are reduced to the minimum. This study suggests that the
frequency of mandatory meetings should be adjusted to
the needs for team synchronization.

Called collaborative activities meetings are in fact
working meetings. In these meetings team members
discuss analysis, validate design or do problem-solving
activities. These meetings are usually scheduled but with
a very short notice (few hours to one day or two).

On-going researches, based on protocol analysis and
methods used in cognitive psychology, are trying to
understand the detail activities of these meetings
(d'Astous et al., 1998). Preliminary data indicated that
there are ®ve types of exchanges: cognitive synchroni-
zation, which occurs when participants make sure they
share a common representation of a given subject,
evaluation, which occurs when participants judge the

value or give their opinion on a particular subject and
their acceptance, elaboration of alternative solutions,
which occurs when a participant proposes a new solu-
tion to the subject under study, con¯ict resolution,
which occurs when participants have an argument about
a given subject, and management, which occurs when
participants are planning the ongoing working session
or the forthcoming meetings.

We found these meetings important for the quality of
the product based on the topics that have been dis-
cussed. Most of these meetings were technical review
meetings where team members validate a design com-
ponent or a piece of code. Some of the meeting works
could probably be done from remote site and electronic
communications. However, preliminary studies of the
content of these meetings indicate that the contributions
of face-to-face activities are signi®cant.

Ad hoc collaborative work is a new type of activity
that has been created to describe the collaborative ac-
tivities observed when people are working at the same
time, in the same room and on related tasks. The ex-
change is truly informal and sporadic. Most of the time
a teammate is interrupting his work to answer a
question from a fellow teammate. In that sense, the Ad
hoc collaborative activity is di�erent from the Called
collaborative activity where the teammates involved
agree in advance to a planned meeting. Ad hoc col-
laborative activities are signi®cant but very di�cult to
measure. We observe that some people will use elec-
tronic mail to ask questions and provide answers even
if they are sitting at the next desk. We do not know yet
the importance of face-to-face meeting in the Ad hoc
collaborative activities. We have little information on
the content and the usefulness of these exchanges.
Nevertheless, they account for more than one-third of
the working time.

Finally the Individual activity is fully autonomous
and can be probably done in remote location. We still
have to ®nd the extent of the relationship between the
Individual activities and the Ad hoc collaborative ac-
tivities.

Fig. 5. Involvement of each participant in each type of collaborative activity.

P.N. Robillard, M.P. Robillard / The Journal of Systems and Software 53 (2000) 219±224 223

A practical conclusion is that people need to com-
municate in a team project. These communications take
various forms and channels. We found that the formal
channels expressed by the Mandatory and Called col-
laborative activities are not the most important in terms
of time spent. It seems that the Ad hoc collaborative
activities may play a major role in team communications
dynamics. First, it is important in terms of time spent in
this channel of communications: on project basis it ac-
counts for 41% of the activities and on personal basis it
is often the longest working session. Second, it seems to
have a signi®cant impact on the individual activities:
they are mostly done by two teammates and often pre-
cede long individual working session.

This study, based on the observation of teamwork, is
one of the ®rst steps in trying to understand the dy-
namics of teamwork. We believe that such studies are a
prerequisite to implementing distributed teamwork
based on Internet tools. This study also stresses the
point that face-to-face meeting can have various forms
and formal meetings are only one component of team-
work.

We all agree that the people are the most important
assess of software development project, however we
know little about the mechanism and the value of the
people interaction.

Acknowledgements

We are grateful to DMR Consulting Group Inc. for
providing the industrial project. This work was sup-
ported in part by National Sciences and Engineering
Research Council of Canada under grant A0141.

References

Adam, A.P., Johnson, P.M., 1997. Assessing software review meetings:

results of a comparative analysis of two experimental studies. IEEE

Trans. Software Engrg. 23 (3), 129±145.

Ancona, D.G., Caldwell, D.F., 1990. Information technology and

work groups: The case of new product teams. In: Kraut, R.E.,

Galegher, J., Egido, C. (Eds.), Intellectual Teamwork: Social

Foundations of Cooperative Work. Lawrence Erlbaum Associates,

London.

Bendifallah, S., Scacchi, W., 1989. Work structures and shifts: An

empirical analysis of software speci®cation teamwork. In: 11th

International Conference on Software Engineering. pp. 260±270.

Bradac, M.G., Perry, D.E., Votta, L.G., 1994. Prototyping a process

monitoring experiment. IEEE Trans. Software Engrg. 20 (10),

774±784.

Burke, K., Chidambaram, L., Locke, J., 1995. Evolution of relational

factors over time: {A} Study of distributed and non-distributed

meetings. In: Proceedings of the 28th Annual Hawaii International

Conference on System Sciences. Vol 4: Information Systems ±

Collaboration Systems and Technology Organizational Systems

and Technology. pp. 14±23.

Christ, R.E., Muckler, F.A., The measurement and evaluation of

collective unit training and performance. In: Proceedings of the

Human Factors and Ergonomics Society 37th Annual Meeting,

vol. 2, 1993, p. 1170.

dÕAstous, P., D�etienne, F., Robillard, P.N., Visser, W., 1998. Types of

dialogs in evaluation meetings: an analysis of technical-review

meetings in software development. In: International Conference on

the Design of Cooperative Systems. Cannes. pp. 25±33.

Freedman, D.P., Weinberg, G.M., 1990. Handbook of Walkthroughs,

Inspections and Technical Reviews, fourth ed. Little Brown and

Company.

Johnson, P.M., Tjahjono, D., 1997. Assessing software review meet-

ings: {A} controlled experimental study using {CSRS}. In:

Proceedings of the 1997 International Conference on Software

Engineering. pp. 118±127.

Marsan, A., 1990. Stochastic petri nets: An elementary introduction.

In: Rozenberg, G. (Ed.), Advances in Petri Nets. Springer, Berlin,

pp. 1±29.

McGrath, J.E., 1990. Time matters in groups. In: Kraut, R.E.

Galegher, J., Egido, C. (Eds.), Intellectual Teamwork: Social

Foundations of Cooperative Work. Lawrence Erlbaum Associates,

Hillsdale, NJ.

Perry, D.E., Staudenmeyer, N.A., Votta, L.G., 1994. People organi-

zations and process improvement: two experiments to discover how

developers spend their time. IEEE Software 11 (4), 36±45.

Porter, A.A., Siy, H.P., Votta, L.G., Jr., 1997. Understanding the

e�ects of developer activities on inspection interval. In: 19th

International Conference on Software Engineering. pp. 128±138.

Robillard, P.N., Robillard, M.P., 1998. Improving academic software

engineering projects: a comparative study of academic and industry

projects. Ann. Soft. Engrg. 6, 343±363.

Robillard, P.N., dÕAstous, P., D�etienne, F., Visser, W., 1998.

Measuring cognitive activities in software engineering. In: 20th

International Conference on Software Engineering. pp. 19±25.

Robillard, P.N., 1995. Experience in teaching team software design. In:

Sixth World Conference on Computers in Education. Birmingham,

UK, pp. 441±453.

Robillard, P.N., 1996. Teaching software engineering through a

project-oriented course. In: Ninth Software Engineering Educa-

tion. pp. 85±94.

Robillard, P.N., 1999. The role of knowledge in software. Commun.

ACM 42 (1), 87±92.

Seaman, C.B., Basili, V.R., 1997. An empirical study of communica-

tion in code inspections. In: Proceedings of the 19th International

Conference on Software Engineering. pp. 96±106.

Seaman, C.B., Basili, V.R., 1998. Communication and organization:

an empirical study of discussion in inspection meetings. IEEE

Trans. Software Engrg. 24 (7), 559±572.

Software Engineering, 1994. IEEE Standards Collection, The Institute

of Electrical and Electronics Engineers, Inc.

Pierre N. Robillard, Ph.D. is a full-time professor in software engi-
neering in the department of Electrical and Computer Engineering at
the �Ecole Polytechnique de Montr�eal in Montr�eal, Canada. His main
research interest lies in software processes and the cognitive aspects in
software engineering.

Martin P. Robillard, M.A.Sc. is completing Ph.D. studies in software
engineering at the University of British Columbia in Vancouver,
Canada.

224 P.N. Robillard, M.P. Robillard / The Journal of Systems and Software 53 (2000) 219±224

