
Revisiting Turnover-Induced Knowledge Loss in

Software Projects

Mathieu Nassif and Martin P. Robillard

School of Computer Science

McGill University

Montréal, QC, Canada

Email: {mnassif, martin}@cs.mcgill.ca

Abstract—In large software projects, tacit knowledge of the
system is threatened by developer turnover. When a developer
leaves the project, their knowledge may be lost if the other
developers do not understand the design decisions made by the
leaving developer. Understanding the source code written by
leaving developers thus becomes a burden for their successors.

In a previous paper, Rigby et al. reported on a case study
of turnover-induced knowledge loss in two large projects,
Chromium and a project at Avaya, using risk evaluation methods
usually applied to financial systems. They found that the two
projects were susceptible to large knowledge losses that are more
than three times the average loss. We report on a replication of
their study on the Chromium project, as well as seven other large
and medium-sized open source projects. We also extended their
work by studying two variations of the knowledge loss metric,
as well as the location and persistence of abandoned files.

We found that all projects had a similar knowledge loss
probability distribution, but extreme knowledge loss can be more
severe than those originally discovered in Chromium and the
project at Avaya. We also found that, in the systems under study,
abandoned files often remained in the system for long periods.

I. INTRODUCTION

Each significant change a developer contributes to a soft-

ware’s source code captures some knowledge. This knowledge

becomes important when a modification must be made to

the code to avoid changes that violate the original design or

introduce bugs.

Modern version control systems, such as Git, can attribute

each line of code to the series of developers who modified

it. Using tools such as git-blame, it is possible to identify

the last developer who touched any given line of code. If this

last developer left the project, the knowledge associated with

the current form of this line can become inaccessible. In this

sense, if no other developer still in the development team is

familiar with a code fragment, the intrinsic knowledge related

to this fragment can be lost, and further maintenance may

require additional effort to regain this knowledge.

We are interested in understanding the evolution of such

knowledge loss through time. In this paper, we refer to knowl-

edge loss as the number of files that have been written mostly

by developers who left the development team (see Section II

for a precise definition). We focus on very high losses because

of the threat they represent for software projects.

The idea of knowledge loss is not limited to the software

domain. For example, Delta Air Lines saw many of its

experienced mechanics leave in the 1990s [1]. In the short

term, Delta was able to save on personnel cost, but the

remaining mechanics were not as efficient, leading to an

overall increase in costs and decrease in customer satisfaction.

Modeling knowledge loss has the potential to assist decision

makers in mitigating rare but damaging events caused by the

sudden departure of important personnel.

An initial quantitative knowledge loss model was introduced

by Rigby et al. [2]. They adapted two metrics, value at risk

and expected shortfall [3], from the financial risk modeling

domain to software development. To assess the metrics, they

conducted a study on two large software projects: the open-

source Chromium web browser project and a proprietary

telecommunication system developed at Avaya. This initial

study found that (1) the historical loss distribution was posi-

tively skewed, leading to larger unusual losses than one would

naively expect, (2) the two projects were susceptible to losses

more than 3.6 times the average loss, at least 5% of the time,

and (3) the actual knowledge loss differed from simulations

where the leaving developers are chosen at random, suggesting

that developers with more contributions were less likely to

leave the projects.

This paper reports on a study that is an independent repli-

cation of the original research by Rigby et al., in which we

completely re-implemented, tested and expanded their original

approach. This work aims at exploring more deeply the

possible analyses that can be supported using the knowledge

loss model, and understanding its limitations. We make the

following contributions: first, we validated the three claims

mentioned in the previous paragraph with eight medium and

large projects, including Chromium. Second, we devised and

evaluated two variations of knowledge loss computation: we

modified the periods over which knowledge loss was com-

puted, and we weighted each file in a project proportionally

to their size (the original approach counted each file equally).

Finally, we studied the persistence of abandoned files and their

location in the structural organization of our target projects.

The rest of this paper is organized as follow. Section II

defines the model of knowledge loss introduced by Rigby et

al., and the modifications we made. Section III explains the

methodology we followed. Section IV presents our results, and

limitations and threats to validity are discussed in Section V.



We discuss related work in Section VI and conclude in

Section VII.

II. MODELING KNOWLEDGE LOSS

The main modeling objective is to quantify knowledge loss

in an efficient, reliable and scalable way. To achieve this

objective and consistently with the original approach, we rely

on the assumption that only the last developer who modified a

line understands the line. Although this is a strong assumption,

it does not overly threaten the model because the measure is

aggregated over entire files, and the threshold for a file to be

abandoned is high (90% of the lines).

A. Original Knowledge Loss Model

Rigby et al. define a leaver as a developer who is no longer

involved a project. To categorize leavers, they looked at the

commit history, and considered each developer as a leaver after

the last commit they made. They only looked at commits at

least one year old, so that recently leaving developers would

have been absent from the commit history for at least one year.

In each code file of a software system, for any fixed date,

each line can be attributed to the last developer who modified

this line using the git-blame function (or its equivalent in

other version control systems). A line is considered abandoned

at a certain date if it is attributed to a leaver. Rigby et al.

consider a file as abandoned if at least 90% of its lines

are abandoned. Once abandoned, a file has three possible

futures: it can be recovered, if active developers make new

modifications on the file after it has been abandoned; it can

be deleted, thus reducing the burden of future maintenance; or

it can stay abandoned.

For example, let us assume a developer D makes 200

commits to a project, at times T1, . . . T200, and never commits

any code after T200. We consider D to be a leaver starting

at time T200. If at time T1, D created a new file, and no

other developer changed it since, the file will be considered

abandoned from time T200 until more modifications to the file

bring the ratio of abandoned lines back under 90%.

For a given period of time, knowledge loss represents

the number of files that have been abandoned during this

period. Therefore, files are included in the knowledge loss

calculation only at the time they are abandoned, unless they are

recovered and abandoned again. Knowledge loss is reported

as an absolute number of files, as opposed to a proportion,

because in large projects, ratios would be overly impacted by

the very large magnitude of the denominator.

Based on the definition of knowledge loss, we can compute

its empirical probability distribution using the software history.

In addition to the mean and median, we use two other statistics,

adapted from financial risk management, to get a sense of how

large unusual losses can be. The first additional statistic is the

knowledge at risk (KaR), computed for a fixed confidence level

α ∈ (0, 1). The original study used α = 95%, and we retained

this value for our replication.

The knowledge at risk corresponds to the α percentile of

the knowledge loss distribution. For example, in Figure 1 we

Number of Abandoned Files

0 200 400 600 800

Fig. 1. Representation of the knowledge at risk and expected shortfall on the
Chromium knowledge loss probability distribution

see that the 95th percentile of the distribution corresponds to

685 files (vertical dotted line), which means that overall 685

files or more were abandoned during 5% of the time periods.

The knowledge at risk represents a lower bound of the value

of unusually large losses. It does not capture the characteristics

of the probability distribution for the higher losses. To get

a better estimation of what happens at the right end of the

distribution, the expected shortfall (ES) estimates the size of

such losses. It is the expected value of the highest 1 − α

part of the distribution. For example, in Figure 1, considering

only the position of the vertical dotted line would give us no

information about the form of the shaded area. The expected

shortfall provides this information by taking the expected value

in this zone: we find that in the 5% worst cases, the average

of the knowledge loss is 700 files.

Note that without modifying the definition, the knowledge

at risk and expected shortfall can be computed both for

continuous and discrete distributions. Although the knowledge

loss is intrinsically a discrete variable (an absolute number of

files), instead of using histograms, we extrapolate a continuous

probability distribution from our empirical data, as in the

original approach. We do so to make more realistic estimates,

and to avoid over-fitting our observations.

B. Limitations and Modifications from the Original Model

The model originally described by Rigby et al. has some

limitations that we addressed in this study.

a) Period length: The original experiment focused only

on quarters, i.e., three-month periods.1 One could be interested

in computing knowledge loss for other time periods. We ad-

dress this limitation by computing and comparing knowledge

loss for three-month and two-week periods. We introduce this

variation in the case study to assess the usability of the metrics

with shorter time periods. We do not use larger periods because

beyond one quarter the proportional decrease in number of

data points limits the applicability of the approach.

1The original paper erroneously stated that a quarter is a four-month period.
After communication with one of the original authors, we confirmed that they
used proper quarters.



b) File weights: The original model does not consider the

size of the abandoned files. Although the size of a file is not a

direct indication of its complexity, it can easily be presumed

to be related to the amount of knowledge captured by the file.

Therefore, abandoning a large file should have more impact

on the knowledge loss of the system than abandoning a series

of small files.

We address this issue by computing a weighted knowledge

loss, and comparing it to the the unweighted knowledge loss.

To compute this variation, once we have determined which

files are abandoned, instead of returning a count of those files,

we attribute a weight to each file, including files that are not

abandoned, and return the sum of the weights of the abandoned

files. This weight is proportional to the length of the file, and

all weights of all files add up to the number of files in the

project. For example, let us assume a project has three files, A

(10 lines), B (20 lines) and C (30 lines). The average length

of the three files is 20 lines. If we determine that file C is

abandoned, we would return a weighted knowledge loss of
30

20
= 1.5, instead of the original value of 1 abandoned file.

Therefore, the number returned by the metric can be regarded

as an “equivalent number of average files”, in the sense that

it can represent either many small files, or a lesser number of

larger files. The length of the file is calculated as its number

of lines, because the file abandonment threshold is based on

lines, rather than characters or bytes.

c) Location and persistence of abandoned files: The

original approach does not take into consideration what

happens to abandoned files. It only considers how much

knowledge is lost at each stage. It would be sensible to also

investigate whether all abandoned files fall into a few modules,

or are scattered throughout the project, and for how long they

remain abandoned in the project. While all abandoned files

can represent a technical debt that accumulates in the project,

the strategies to mitigate the cost of abandoned files could be

different if they are found in abandoned modules, or if they

are scattered.

We address this issue by computing heat tree maps of

abandoned files for each project in the state in which they

were at the end of the last period (quarter) we analyzed. These

maps show where the abandoned files are located in terms of

the modular decomposition of the system.

We also compute the proportion of abandoned files that

remain abandoned for every number of quarters, to get an idea

of the impact of abandoned files. A file will remain abandoned

until it is recovered (due to new modifications) or deleted.

III. DATA COLLECTION AND ANALYSIS

In this replication study, we re-implemented the empirical

and simulated loss distribution computations from the original

approach by Rigby et al., and evaluated them on a set of eight

open source projects. We followed as closely as possible the

original methodology, modifying it only slightly to make it

easier to generalize it across the selected projects. We further

expanded the approach in three new dimensions, described

in Section II-B. The data generated for this study is publicly

available for download [4].

A. Original Approach

Rigby et al. used two large software projects, the

Chromium2 web browser and a proprietary project from

the telecommunication company Avaya. Their first step was

to inspect the two projects to link the different usernames

and emails used by a single developer. For Chromium, this

step was done using the name aliasing tool by Canfora et

al. [5]. They also removed from the projects any third party

library used. For Chromium, the developers use a dedicated

third_party folder to group all third party code.

They downloaded the whole commit history, and excluded

the last year of both projects to discriminate leavers from

developers who did not commit in the last year. They also

excluded the first two years of the commit history because the

project had been migrated.3

They partitioned the commit history of both projects into

quarters, and evaluated knowledge loss for each quarter, ob-

taining 8 and 17 knowledge loss measures for the Avaya

project and Chromium, respectively. They extrapolated a

knowledge loss probability distribution from these measures,

and computed the mean, median, knowledge at risk and

expected shortfall for both projects.

In addition to studying the historical knowledge loss dis-

tribution, the authors of the original study performed Monte

Carlo simulations for the impact of alternate developer de-

parture scenarios. For each quarter, they discriminated core

from non-core developers. The core developers are the most

active developers who collectively contributed to 80% of the

project. This separation is used to make sure high turnover

of transient developers would not bias the simulations. They

then kept the same knowledge distribution among developers,

i.e., the attribution of lines to developer was kept constant,

and computed knowledge loss that would have happened if

a different group of developers left the project. For each

simulation, they kept the number of core and non-core leavers

equal to the historical numbers. Only the identity of the leavers

changed. They performed 1000 simulations and reported the

distribution of the simulated knowledge loss for each quarter.

B. Modifications to the Original Methodology

In addition to expanding the original model as mentioned in

Section II-B, i.e., by varying the length of the intervals over

which knowledge loss is computed, introducing a weighting

function and evaluating the evolution of abandoned files in

the project, we adapted the original approach to make the

methodology more consistent across all projects.

Because the Chromium project uses the email address as

username, Rigby et al. only needed to match the emails,

2The original paper uses the term Google Chrome to refer to this project. In
this paper, we will use the name Chromium to avoid confusion with Google’s
proprietary version. The project analyzed is the same.

3A migration causes the git-blame function to erroneously attribute
all lines to the developer who made the migration commit.



but this is not true in general for all projects. Therefore, we

matched developers based on both emails and username. Fur-

thermore, we found two instances where the name aliasing tool

could not match names and emails, both in the same project.

We manually corrected these instances to avoid inaccuracies

in the distribution of knowledge loss.

To detect the third party code in our evaluation, we created

a list of folder names likely to contain third party files, and

we removed anything from the list from further considera-

tion. This list is composed of third_party, lib, library,

include, plugin, plug-in, doc and documentation. The

last two elements are related to documentation rather than third

party code, but we also excluded all documentation from our

analysis. This list is case insensitive, but otherwise the folder

name must match exactly one of the elements of the list. We

used such a list, rather than manually inspecting all projects,

to make our approach more generalizable.

Finally, we slightly modified the original approach when

partitioning the history into three-month periods. We did not

use the regular quarters, i.e., from January 1st to March 31st,

etc. Instead, we aligned the end of the last time period with

the date exactly one year before we cloned the repositories,

and defined the time period sequence by working backward in

time from that date. We made this decision for simplicity of

our implementation, because we wanted to easily change the

length of the periods, and there is no standard partitioning of

the years into periods of two weeks. For the remainder of this

paper, we will refer to any three-month period as a quarter.

As in the original study, we excluded the first two years

from the history of each project, including the projects that

were not migrated, to exclude the initial development phase.

The method used to extrapolate the loss distributions is

not mentioned in the original paper, so we used the default

probability density function extrapolation method from the R

programming language. This method uses a Gaussian kernel,

with Silverman’s “rule of thumb” for the bandwidth. [6]

C. Data Collection

We also extended Rigby et al. study by considering more

projects. We designed a randomized sampling strategy to

select projects from GitHub,4 a popular git repository hosting

service.

We searched GitHub for projects meeting the following

conditions.

1) Popularity score of at least 100 stars,

2) Modified by at least 50 contributors,

3) Larger than 100 Mb (medium) or 1 Gb (large),

4) At least 500 code files,

5) Created before January 1st, 2013.

These thresholds were selected to ensure we studied large,

mature projects histories. We excluded small projects to avoid

knowledge loss distributions only dependent on one or two

developers, in which case sophisticated analysis such as the

knowledge at risk would not be useful.

4https://www.github.com

We manually vetted the list and removed any repository

which, while it passed the initial filters, did not correspond

to an active software project. For example, our requirements

would not filter out a repository that was migrated to another

repository a long time ago, and was not kept up-to-date.

After applying those filters, we were left with around 1000

medium-sized projects, and fewer than 60 large ones. We

randomly selected four projects of the first group, and three

of the second group. We also added the Chromium project to

compare with the original results, ending up with four projects

in each group.

The final selection of projects for this study is provided

in Table I. It includes projects from different domains and

written in different languages. It ranges from Linux OS to

lesser known projects. Although we do not make any claim

that this sample is representative of any larger set of projects,

it provides a diverse set of distinct cases for our repeated-case

study.

IV. RESULTS

In the first part of this section we report on the replication

of the empirical and simulated knowledge loss distributions.

We pursue with the two variations we proposed, biweekly and

weighted knowledge loss, and finish with the location and

persistence of abandoned files.

A. Loss Per Quarter

Figure 2 shows the empirical quarterly knowledge loss

distribution of all eight projects, and Table II shows the value

of the different metrics we computed, as well as the number

of quarters used to compute these metrics.7

The loss distribution for Chromium (Figure 2f) is similar to

the one shown in the original paper (Figure 2 of Rigby et al.’s

paper). For Chromium we found a median, mean, knowledge

at risk and expected shortfall of 194, 268, 682 and 700 files

respectively, whereas the values for Rigby et al.’s study of

the same statistics are 132, 194, 444 and 709 files. These

differences are plausible given that we have different periods.

Most of the graphs are very similar. They have a high peak

near small values, which decays quickly, and there are often

a few values at the very far right. This shows that unusually

high losses happened with a notable frequency.

Two of the graphs stand out from the others. First, the

Chromium distribution (Figure 2f) shows a similar trend

than the others, but without any extreme values. Second, the

Gitlab CE distribution (Figure 2d) is almost symmetrical, only

slightly positively skewed. We can see from Table I that Gitlab

5We used the Raspberry Pi repository (https://github.com/raspberrypi/linux)
for our study, because it was randomly selected first. This explains the late
creation date.

6Although there is a repository for Chromium on GitHub, this repository
does not contains the actual code, which is hosted on the Google source
repository. Therefore, we did not include the star rating of the GitHub
repository in this table.

7In these distributions and the following, the labels of the axes have been
removed as we are mostly interested in the shape of the distributions rather
than the exact values. For a better understanding of the magnitude of the
losses, the reader can refer to the corresponding tables.



TABLE I
SUMMARY OF THE SELECTED PROJECTS

Project Creation Size Files Dev. Stars Language Domain Source Link

Medium

GIMP Jan 1997 324 Mb 3200 210 645 C Image editor https://github.com/GNOME/gimp
Assimp May 2008 133 Mb 600 152 1651 C++ 3-D modeling library https://github.com/assimp/assimp
TrinityCore Oct 2008 823 Mb 12 000 334 3535 C++ Gaming framework https://github.com/TrinityCore/TrinityCore
Gitlab CE Oct 2011 232 Mb 1500 1124 18 696 Ruby Git hosting platform https://github.com/gitlabhq/gitlabhq

Large

Linux5 Jan 2007 1.6 Gb 35 000 6974 3540 C Operating system https://github.com/raspberrypi/linux

Chromium Jul 2008 6 Gb 30 000 6511 –6 C++ Web browser https://chromium.googlesource.com/chromium/src/
Kodi Sep 2009 1.4 Gb 4000 525 5647 C++ Media player https://github.com/xbmc/xbmc
Apereo CAS Jul 2010 1.3 Gb 900 99 2332 Java Authentificaion service https://github.com/apereo/cas

(a) GIMP (b) Assimp (c) TrinityCore (d) Gitlab CE

(e) Linux (f) Chromium (g) Kodi (h) Apereo CAS

Fig. 2. Quarterly knowledge loss distribution. The number of files is shown on the x-axis, and the y-axis is the value of the probability distribution function.
Note that all axis have different scales.

TABLE II
MEDIAN, MEAN, KAR, ES OF THE QUARTERLY HISTORICAL LOSS

Project Median Mean KaR ES Periods

GIMP 0 6 25 65 68
Assimp 1 4 11 25 23
TrinityCore 23 66 177 298 21
Gitlab 9 9 16 17 9

Linux 233 297 577 1218 27
Chromium 194 268 682 700 22
Kodi 76 134 397 1069 18
Apereo CAS 0 9 41 103 15

CE is the youngest project of all. Therefore, a possible cause

of the shape of the distribution could be that there has not

been any extreme event yet.

The median loss, mean loss, knowledge at risk and expected

shortfall of each project are shown in Table II. We can see that

the knowledge at risk and the expected shortfall are between

1.8 and 4.6 (KaR) and between 1.9 and 11.4 (ES) times the

mean loss, validating the magnitude of the original paper,

where the ratios were 2.3 and 3.6, but showing that they can be

even worse than the original approximations. There does not

seem to be a difference between smaller and larger projects

since in both groups there are projects where the knowledge at

risk and expected shortfall are low (Gitlab CE and Chromium)

or high (GIMP and Apereo CAS) relatively to the mean loss.

Findings: We validated the results from Rigby et al. regarding

the shape of the distribution and the magnitude of the ratio

between the expected shortfall and the mean. However, for

most of the projects, this ratio is higher than what is observed

with Chromium.

B. Simulated Knowledge Loss

The second set of replicated results are the Monte Carlo

simulations. Figure 3 shows the results of the simulations for

each quarter. For each graph, the vertical line shows the 90%

confidence interval, ranging from the 5th quantile to the 95th

quantile. Thus, the knowledge at risk is the top of the vertical

line. On the vertical line, the dot represents the average value

of the simulated knowledge loss. Over the line, a triangle



TABLE III
MEDIAN, MEAN, KAR, ES OF THE BIWEEKLY HISTORICAL LOSS

Project Median Mean KaR ES Periods

GIMP 0 1 1 12 442
Assimp 0 1 3 9 146
TrinityCore 1 11 55 122 136
Gitlab 0 2 6 12 57

Linux 33 57 193 382 183
Chromium 29 46 144 219 144
Kodi 2 21 60 293 114
Apereo CAS 0 1 3 22 93

represents the expected shortfall. Finally, a cross indicates the

historical knowledge loss for each quarter.

The graphs of GIMP, Gitlab CE and Kodi (Figures 3a, 3d

and 3g) are similar in the sense that for most of the quarters,

the simulated knowledge loss remains low, but for a few

isolated quarters, the graphs show a high peak. In contrast, the

other graphs show a smoothly varying simulated knowledge

loss distribution. This difference shows that, at least for GIMP,

Gitlab CE and Kodi, exceptionally high knowledge losses

happened with notable frequency.

Comparing the historical knowledge losses with the distri-

butions of the simulated knowledge losses, we can see that

simulated losses generally overestimate the historical losses,

except for Linux, where the simulations seem to be well-

balanced. This goes with the original claim that simulations

may overestimate the knowledge loss, possibly because highly

invested developers are less likely to leave a project.

The Linux project stands out in the simulations. First, the

bias that can be observed in the other simulations does not

appear for this project. Also, the values of expected shortfall

are much higher than the knowledge at risk, implying a

particularly long tail (even more than the other projects) in

the knowledge loss distribution. Further research would be

necessary to understand the longer tail and absence of bias

in Linux.

Findings: As was observed in the original study, simulations

can overestimate knowledge loss. In addition, we were able to

identify different patterns from the simulations.

C. Loss Per 2-Week Period

Next, we analyze the effect of using shorter time periods

to compute knowledge loss. Figure 4 shows the empirical

distribution of biweekly knowledge loss, and Table III shows

the value of the different metrics we computed, as well as the

number of periods used to compute these metrics.

Again, the graphs show a long tail distribution. This gives us

more confidence in our results for the quarterly distributions

obtained with fewer data points, because we can observe a

similar behavior.

Comparing the probability distribution for 3-month and 2-

week periods, we see that the extreme values in the biweekly

distributions are more distant relative to the mean than in the

quarterly distributions. This is expected as a consequence of

the central limit theorem, as the quarterly distributions are

TABLE IV
MEDIAN, MEAN, KAR, ES OF THE QUARTERLY WEIGHTED HISTORICAL

LOSS

Project Median Mean KaR ES Periods

GIMP 0 5 27 56 68
Assimp 0 2 11 15 23
TrinityCore 9 27 86 92 21
Gitlab 3 4 11 13 9

Linux 209 257 505 1089 27
Chromium 197 250 655 741 22
Kodi 42 110 472 824 18
Apereo CAS 0 5 21 55 15

roughly the sum of six biweekly distributions. The Chromium

(Figure 4f) and Gitlab CE (Figure 4d) distributions are now

more similar to the other distributions.

Comparing the knowledge at risk and expected shortfall to

the mean leads to similar conclusions than with the quarterly

distributions, but with a larger difference between the mean

and the knowledge at risk. In this case, the knowledge at risk

can be up to 15 times higher than the mean, and is never less

than 4.8 times the mean. Therefore, when planning in terms of

weeks rather than months, one should expect higher extremes.

Findings: Our results for the biweekly loss distribution validate

that the insights obtained in the other experiments are reliable,

despite the lower number of empirical data points. Also, it

confirms that biweekly knowledge loss is susceptible to more

extreme events, relative to the mean, than quarterly losses.

D. Weighted Knowledge Loss

We continue with the weighted knowledge loss per quarter.

Figure 5 shows the empirical distribution of weighted knowl-

edge loss for all projects, and Table IV shows the metrics

computed over these distributions.

We can see from our results that weighting the files ac-

cording to their size has an impact on the knowledge loss

distributions.

First, the knowledge losses are generally smaller than previ-

ously. This is shown by the magnitude of the different metrics.

This may be due to the fact that small files are more easily

abandoned than large ones, possibly because large files have

more contributors, or because they mostly represent core files

that need to be updated frequently.

Additionally, the TrinityCore, Gitlab CE and Chromium

distributions (Figures 5c, 5d and 5f) have a different shape.

The TrinityCore distribution is smoother. It does not have the

typical high peak and a few extreme values on the far right.

On the other hand, the Gitlab CE and Chromium distributions

seem to be more skewed than previously. These differences

show that taking into account the size of the file can have a

notable impact on the knowledge loss metric. It also shows

that the bias introduced by file size variability is not the same

for every project.

Findings: Unweighted file counts do not take into account the

variance in the amount of knowledge contained in different

files. Such considerations can create a noticeable difference in



●
●●
●
●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●
●●●●

●

●●

●

●●●●●●●●

(a) GIMP

●

● ● ● ●

● ●

●

●

●

●

●

●
● ●

●
● ●

●

● ●
●

(b) Assimp

●

●
● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

(c) TrinityCore

● ● ●

●

●

●

●
●

(d) Gitlab CE

● ● ● ●
●

●
●

●
●

● ● ●
● ● ●

●
● ●

●
●

●
● ●

●
●

●

(e) Linux

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

(f) Chromium

●

●

●

●
●

● ● ● ●
●

●

● ● ●
● ● ●

(g) Kodi

●
●

●

●
●

●
●

●

●

● ●
●

●
●

(h) Apereo CAS

Fig. 3. Simulated quarterly knowledge loss for all projects. Each distribution is represented by a vertical bar. The x-axis shows the time, and the y-axis shows
the number of files. In each distribution, the full line represents a 90% of the data, the triangle shows the expected shortfall, and the dot shows the mean.
The cross shows the historical value.

(a) GIMP (b) Assimp (c) TrinityCore (d) Gitlab CE

(e) Linux (f) Chromium (g) Kodi (h) Apereo CAS

Fig. 4. Biweekly knowledge loss distribution for all projects. The number of files is shown on the x-axis, and the y-axis is the value of the probability
distribution function. Note that all axis have different scales.

the results. This finding suggests that more effort should be

put in defining a good weighting function to obtain a better

quantification of knowledge loss.

E. Distribution and Persistence of Abandoned Files

The heat tree maps representing the proportion of aban-

doned files in each folder of the projects in the last quarter

used in the previous analyses are shown in Figure 6. For each

figure, a rectangle represents a folder of the project, and nested

rectangles represent nested folders. The area of a rectangle

is proportional to the number of files in the folder, and its

color represents the proportion of files that are abandoned in

the folder, from 0% (light shade) to 100% (dark shade). To

improve the clarity of the figures, we considered only up to

five nested folders (three for Linux and Chromium). All files

in deeper sub-folders were included in the fifth (resp. third)

sub-folder.

The aspect of the tree maps varies from a project to another.

GIMP, Assimp and Apereo CAS (Figures 6a, 6b and 6h)

show a low proportion of abandoned files for almost all

folders, and only a few folders that are almost completely

abandoned. On the other hand, TrinityCore, Gitlab CE and

Chromium (Figures 6c, 6d and 6f) show a more uniform

proportion of abandoned files, without any folder standing out



(a) GIMP (b) Assimp (c) TrinityCore (d) Gitlab CE

(e) Linux (f) Chromium (g) Kodi (h) Apereo CAS

Fig. 5. Quarterly weighted knowledge loss distribution for all projects. The equivalent number of average files is shown on the x-axis, and the y-axis is the
value of the probability distribution function. Note that all axis have different values.

(a) GIMP (b) Assimp (c) TrinityCore (d) Gitlab CE

(e) Linux (f) Chromium (g) Kodi (h) Apereo CAS

Fig. 6. Proportion of files abandoned in each folder of each project. Each rectangle represents a folder of the projects, with nested rectangles being subfolders
of the outer rectangle. The size of each rectangle is proportional to the number of files it contains, and the color represents the proportion of abandoned files
among them (darker shades correspond to higher proportions).

as completely abandoned. The two other projects, Linux and

Kodi (Figures 6e and 6g) are between the two extremes, with

abandoned files spread out in many folders, but with also some

folders with very high proportions of abandoned files.

To evaluate the persistence of the abandoned files, we

computed the ratio of abandoned files that persisted (i.e., were

not deleted or recovered) for at least N quarters, for any N .

The results for all projects are shown in Figure 7. Note that

some lines are shorter than others. This is a consequence

of shorter histories. The longest line, associated to GIMP,

expands beyond the scale of the figure.

Looking at the persistence plot (Figure 7), we can see that

only Apereo CAS seems to get rid of abandoned files quickly.

For all the other projects, at least 25% of the abandoned files

persist for two years or more. For five of them, more than one

half of the abandoned files persisted at least two years.

Findings: A large proportion of abandoned files remained in

the systems for many years. The knowledge loss model is

fine-grained enough to detect different patterns in the location

of file abandonment. Understanding such patterns can help

mitigate the impact of knowledge loss on future development.



0 4 8 12 16 20 24 28

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

Age (quarters)

gimp

assimp

gitlab

trinity

linux

chromium

kodi

apereo

Fig. 7. Ratio of Abandoned Files that Persisted Through N Quarters. To
obtain each point, the set of all files that have been abandoned at any point
in the history of the project is taken, and we exclude from this set all files
abandoned in the last N − 1 quarters. We then compute the ratio of files
among this trimmed set that persisted through at least N quarters.

V. LIMITATIONS AND THREATS TO VALIDITY

A. Limitations

The metrics presented in Rigby et al.’s work [2] and reused

in this paper aim at creating a robust analytical turnover risk

profile, but is only a first step in creating better structures to

understand large unexpected turnover and ideally to inform

recovery actions. In this sense, there are still limitations to the

metrics presented.

First, knowledge loss is an abstract concept that may not

be perfectly captured by any product or process metric. Using

the last developer who changed a line of code as a proxy for

knowledge is only a rough approximation of which files in a

project are abandoned. There are people in a project that may

not produce a lot of commits, but still have a very detailed

knowledge of one or many modules, such as reviewers or

documentation experts. However, obtaining precise estimations

of knowledge for these roles is out of the scope of this paper.

Second, each line of a file is treated equally, which means

that a line with a single bracket is treated as if it captured

as much knowledge as a line with a complete statement,

which is a strong assumption. While other code units can

be presumed to be more accurate proxies for knowledge,

previous work has shown that the number of lines of code

is highly correlated with many other code metrics, including

the number of operators or variables [7]. Additionally, lines

can be counted reliably and unambiguously across languages,

whereas statements would require a language-dependent code

analysis to be used.

Third, we grouped the files by folder to evaluate whether

projects tend to lose files in chunks or spread across all

folders, under the assumption that a folder would represent

a meaningful design unit of the project.

Fourth, the knowledge loss model only shows how many

files are abandoned in a given period. It does not show what

happen to those files once they are abandoned.

Fifth, the simulated loss distributions rely on the strong

assumption that each developer (among the core or the non-

core group) has the same probability of leaving a project.

Such an assumption may generate a biased knowledge loss

distribution. Despite the strength of this assumption, it is

required to make a generalizable simulation.

Finally, computing the loss distribution of very large

projects, like Chromium, over their whole history is compu-

tationally expensive. This is due to the need to blame every

changed file of the project multiple times, so the larger and

older a project is, the longer it will take. This limitation can

become problematic if the knowledge loss model is to be used

by real-world teams.

More generally, given the intractable number of factors

impacting large software projects, knowledge loss models are

not likely to be reliable for predicting rare events and their

consequences. Rather, we see their value in supporting an

understanding of the present dynamics of knowledge flow in

a software project. While this paper focuses on large turnover

events as an example of analysis that can be made from the

model, the bulk of the distributions are also insightful, and

will be the subject of future work.

B. Threats to Validity

We applied the method from Rigby et al. to eight open

source projects to verify whether the original results could

be applied to other projects. However, we cannot assert that

the claims are generalizable. We can only offer insights about

which ones are more reliable. We also limit the scope of our

study to popular, open source, mature projects. We leave the

study of other types of projects to future work.

We performed many of our analyses on small numbers of

data points, and the object of our study was to understand rare

events. Therefore, we could not compute statistics that would

have high confidence values. For example, for all projects

except GIMP, we could only use fewer than 30 quarters,

after removing the first two years. To mitigate this threat, we

computed additional analyses using two-weeks periods and

simulations. The similar results across different projects also

adds to the reliability of our findings.

We also followed the assumption that a developer is leaving

a project after their last commit. This assumption may be

incorrect in many situations, for example if the developer

takes a new role in the project, such as a reviewer. Similarly,

a developer who left the project, only to come back many

years later, would be considered active by our analysis during

their time outside the project. However, this assumption was

necessary because open-source projects do not typically have

publicly available rosters of active developers.

Finally, the username and email grouping phase can in-

troduces errors if it is not done properly. In this study, we

manually verified the output of our automatic grouping phase,



but an ideal solution would be able to verify exactly the

identity of each developer.

VI. RELATED WORK

This study builds on previous efforts to quantify knowledge

loss in software projects. We independently replicated and ex-

panded the results by Rigby et al., [2] described in Section III.

Similarly, Izquierdo-Cortazar et al. [8] studied abandoned code

at the line-level, on four open-source projects. They show

the potential of their model by profiling the evolution of the

abandoned lines for each project.

Understanding the evolution of knowledge in a software

project integrates the more general objective of understanding

the social dimensions of software development, to complement

traditional code analyses [9]. The study of knowledge loss

in software projects intersects two complementary lines of

inquiry in software engineering: research on the impact of

turnover in development teams and research on expertise

modeling for software developers.

A. Impact of Turnover

Robles and Gonzalez-Barahona [10] studied the patterns

of developer turnover and code ownership in open-source

software. They found several patterns, e.g., code gods, that can

offer insights about how developers chose to leave a project.

Such patterns could help improve the accuracy of the Monte

Carlo simulations we performed. Foucault et al. [11] studied

the impact of internal and external turnover. They found that

external turnover led to a lower software quality, but they did

not find a statistically significant correlation between internal

turnover and software quality.

A common scenario used to evaluate the sensitivity of

software projects to developer turnover is the “truck factor”

(also, “bus factor”). This metric evaluates how likely the

project is to become unsustainable after many developers leave

the project at once, as if they were hit by a truck. Torchiano

et al. [12] studied this metric and proposed a threshold for

the number of developers that could leave the project before

it becomes unsustainable. Cosentino et al. [13] developed a

tool to address the difficulty of computing the truck factor for

large projects.

Since developer turnover is inevitable in any long term

project, studies have looked at ways to mitigate its negative

effects. In addition to evaluating the impact of turnover on

software success, Hall et al. [14] investigated the relation

between the motivation of developers and turnover rates. They

found that low motivation levels lead to high turnover, and thus

suggest factors to increase motivation of developers in order

to improve software success. Pee et al. [15] compared prior

works on the mitigation of the negative effects of turnover,

and found two of them, succession planning and the use of

knowledge repositories, to be useful.

In contrast to this previous work, this paper presents a dif-

ferent approach to evaluate the impact of turnover, based on a

quantification of the knowledge left behind leaving developers.

It presents a new perspective that can be complementary to the

previous ones.

B. Expertise Models of Software Developers

Several techniques have been developed to identify experts

among the team of developers of a software project. McDon-

ald and Ackerman developed Expertise Recommender [16],

a technique using multiple heuristics, including looking

at the last developer who modified a code fragment.

Mockus and Herbsleb developed another technique, Expertise

Browser [17], to find experts. Both of these techniques mine

the histories of the software projects to compute their expertise

model.

More recently, Fritz et al. [18] developed and evaluated a

degree-of-knowledge model based on both change histories

and interactions with source code elements. They showed

that their degree-of-knowledge model can be used to improve

existing expertise recommendation approaches. Bird et al. [19]

studied the effect of the distribution of code ownership,

and found that high levels of code ownership, which would

translate to higher expertise, correlates with higher software

quality, as measured by the number of defects.

The knowledge loss model parallels this work as it is

another attempt to evaluate expertise in a project. However,

the objective of the model is not to identify experts, but to

evaluate the transfer of knowledge itself.

VII. CONCLUSION

As open source projects become larger and more popular,

they become unsustainable by any single developer, and their

maintenance relies on the common effort of tens, hundreds or

even thousands of developers. However, every modification by

a developer binds some of the developer’s knowledge to the

file. When the developer leaves the project, this knowledge is

lost, as even proper documentation cannot fully capture the

rationale of every single decision made by the developer.

We reported on the replication of a previous case study by

Rigby et al. which profiled the knowledge loss induced by

developers who leave a software project. We validated three

of their original claims: (1) the knowledge loss probability

distribution is positively skewed, (2) projects are susceptible

to large unexpected losses, to an even higher degree than

what was observed by Rigby et al., and (3) simulated loss

distributions from random departures are greater than the

historical losses. Additionally, we found that the model was

robust to a change in the length of the interval used when

computing losses, and that counting each file equally in the

knowledge loss model can overestimate the losses. Finally, we

found that the model is fine-grained enough to detect patterns

in the location of abandoned files, and that over 25% of the

abandoned files remain in the system for at least two years.

ACKNOWLEDGMENT

The authors are grateful to Peter Rigby for clarifying some

of the technical aspects of the initial study. This work was

funded by NSERC.



REFERENCES

[1] S. Parise, R. Cross, and T. H. Davenport, “Strategies for preventing a
knowledge-loss crisis,” MIT Sloan Management Review, vol. 47, no. 4,
p. 31, 2006.

[2] P. C. Rigby, Y. C. Zhu, S. M. Donadelli, and A. Mockus, “Quantifying
and mitigating turnover-induced knowledge loss: Case studies of Chrome
and a project at Avaya,” in Proceedings of the 38th ACM/IEEE Inter-

national Conference on Software Engineering, 2016, pp. 1006–1016.
[3] A. J. McNeil, R. Frey, and P. Embrechts, Quantitative risk management:

Concepts, techniques and tools. Princeton University Press, 2015.
[4] M. Nassif and M. P. Robillard, “Replication package for ‘Revisiting

Turnover-Induced Knowledge Loss in Software Projects’,” in
Proceedings of the 33rd IEEE International Conference on Software

Maintenance and Evolution, 2017, Artifact description. [Online].
Available: http://www.cs.mcgill.ca/∼swevo/knowledgeloss/

[5] G. Canfora, L. Cerulo, M. Cimitile, and M. Di Penta, “Social interactions
around cross-system bug fixings: The case of freebsd and openbsd,”
in Proceedings of the ACM/IEEE 8th Working Conference on Mining

Software Repositories, 2011, pp. 143–152.
[6] B. W. Silverman, Density estimation for statistics and data analysis.

CRC Press, 1986, vol. 26.
[7] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting

fault incidence using software change history,” IEEE Transactions on

Software Engineering, vol. 26, no. 7, pp. 653–661, 2000.
[8] D. Izquierdo-Cortazar, G. Robles, F. Ortega, and J. M. Gonzalez-

Barahona, “Using software archaeology to measure knowledge loss in
software projects due to developer turnover,” in Proceedings of the IEEE

42nd Hawaii International Conference on System Sciences, 2009, pp. 1–
10.

[9] N. Bettenburg and A. E. Hassan, “Studying the impact of social inter-
actions on software quality,” Empirical Software Engineering, vol. 18,
no. 2, pp. 375–431, 2013.

[10] G. Robles and J. M. Gonzalez-Barahona, “Contributor turnover in libre
software projects,” in Proceedings of the IFIP International Conference

on Open Source Systems, 2006, pp. 273–286.
[11] M. Foucault, M. Palyart, X. Blanc, G. C. Murphy, and J.-R. Falleri,

“Impact of developer turnover on quality in open-source software,”

in Proceedings of the 10th Joint Meeting on Foundations of Software

Engineering, 2015, pp. 829–841.

[12] M. Torchiano, F. Ricca, and A. Marchetto, “Is my project’s truck factor
low?: theoretical and empirical considerations about the truck factor
threshold,” in Proceedings of the 2nd ACM International Workshop on

Emerging Trends in Software Metrics, 2011, pp. 12–18.

[13] V. Cosentino, J. L. C. Izquierdo, and J. Cabot, “Assessing the bus
factor of git repositories,” in Proceedings of the 22nd IEEE International

Conference on Software Analysis, Evolution and Reengineering, 2015,
pp. 499–503.

[14] T. Hall, S. Beecham, J. Verner, and D. Wilson, “The impact of staff
turnover on software projects: the importance of understanding what
makes software practitioners tick,” in Proceedings of the ACM SIGMIS

CPR conference on Computer personnel doctoral consortium and re-

search, 2008, pp. 30–39.

[15] L. G. Pee, A. Kankanhalli, G. W. Tan, and G. Tham, “Mitigating
the impact of member turnover in information systems development
projects,” IEEE Transactions on Engineering Management, vol. 61,
no. 4, pp. 702–716, 2014.

[16] D. W. McDonald and M. S. Ackerman, “Expertise recommender: a
flexible recommendation system and architecture,” in Proceedings of

the ACM Conference on Computer-Supported Cooperative Work, 2000,
pp. 231–240.

[17] A. Mockus and J. D. Herbsleb, “Expertise browser: A quantitative ap-
proach to identifying expertise,” in Proceedings of the 24th International

Conference on Software Engineering, 2002, pp. 503–512.

[18] T. Fritz, J. Ou, G. C. Murphy, and E. Murphy-Hill, “A degree-of-
knowledge model to capture source code familiarity,” in Proceedings of

the 32nd ACM/IEEE International Conference on Software Engineering,
vol. 1, 2010, pp. 385–394.

[19] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, “Don’t
touch my code!: examining the effects of ownership on software quality,”
in Proceedings of the 19th ACM SIGSOFT Symposium and the 13th

European conference on Foundations of Software Engineering, 2011,
pp. 4–14.



Replication Package for

“Revisiting Turnover-Induced Knowledge Loss in

Software Projects”

Mathieu Nassif and Martin P. Robillard

School of Computer Science

McGill University

Montréal, QC, Canada

Email: {mnassif, martin}@cs.mcgill.ca

I. INTRODUCTION

We provide a replication package containing all data gen-

erated during our study on turnover-induced knowledge loss.

This package contains the relevant data to compute knowl-

edge loss from eight open source projects. It can be down-

loaded from our website, http://www.cs.mcgill.ca/∼swevo/

knowledgeloss/.

The replication package consists mainly of a Data folder

containing one subfolder for each project. The following

eight projects have been studied (the name of the associated

subfolder are indicated in parentheses).

• Assimp (assimp)

• Apereo CAS (cas)

• Chromium (chromium)

• GIMP (gimp)

• Gitlab CE (gitlabhq)

• Linux (linux)

• TrinityCore (trinitycore)

• KODI (xbmc)

Along with the Data folder are a copy of our paper, a

README file explaining how to read the data, and a Procedure

file explaining how to reproduce the data.

II. CONTENT

Each subfolder contains the following files.

source.url: URL link to the GitHub repository hosting the

project. For Chromium, which is not hosted on GitHub, this

file links to the source repository, and the additional file

documentation.url links to the documentation page.

authors.csv: List of all authors that participated to the

project. Authors are identified by their email used to commit.

periods 2weeks.csv and periods 3months.csv: List of

epoch timestamps respectively 2 weeks and 3 months apart.

Each line corresponds to one author. Multiple emails will

appear on the same line if they are likely to correspond to

the same person.

commits authors.csv: List of all commits to the project,

with its author.

commits files.csv: List of all commits to the project, with

the list of files modified in the commit.

leavers 2weeks.csv and leavers 3months.csv: List of all

developers who left the project between the corresponding

timestamp and the previous.

newcomers 2weeks.csv and newcomers 3months.csv:

List of all new developers for each period.

ownership 2weeks and ownership 3months folders:

These folders contain the git-blame information. Each

folder contains a list of csv files identified by the period

timestamp. Each of these files contains the condensed

git-blame information; it shows only the number of lines

attributed to each author.

III. REPRODUCING THE RESULTS

The replication package contains a file Procedure.txt

describing how to reproduce our results. This file contains,

when possible, the Git commands we used, and a detailed

explanation on how to parse their output.

Generating the ownership information is computationally

expensive. Depending on the number of files and commits

in the targeted project, it can take from hours to days to

compute. Fortunately, this task is highly parallelizable, so it

can be completed more quickly on a network of computers.

The other files can be generated more quickly. It should take

a modern computer no more than a few minutes for each file.


