
In Proceedings of the 22nd IEEE International Conference on Software Maintenance, pp. 479–482.
IEEE Computer Society Press, September 2006. c© IEEE, 2006.

Tracking Concerns in Evolving Source Code: An Empirical Study

Martin P. Robillard
School of Computer Science

McGill University
Montréal, QC, Canada
martin@cs.mcgill.ca

Abstract

The association between the description of a concern
(e.g., a feature) and the code that implements it is valu-
able information that can degrade as the code of a system
evolves. We present a study of the evolution of the imple-
mentation of a concern in 33 versions of an open-source
text editor. We represented the implementation of the con-
cern using concern graphs, a model that was designed to be
resilient to source code evolution. The study showed how
the concern graph model supports tracking a concern’s im-
plementation in an evolving system, as well as inferring
high-level past changes and assessing the stability of the
concern’s implementation.

1. Introduction

Source code modifications often address concerns, or
features, whose implementation is scattered across a num-
ber of modules. In such cases, developers often have to
spend a significant amount of effort investigating the sys-
tem to identify all the code locations which may be asso-
ciated with the change. When repeated changes address
a same scattered concern, the continual re-investigation of
the code can translate into inefficiencies of the software de-
velopment process.

One way to mitigate this problem is to use annotations
or artifacts to document how various parts of the source
code relate to different concerns. A variety of tools can
help developers view and navigate this knowledge to ease
software development tasks. One challenge with this ap-
proach, however, is that every time a system is modified,
the concern documentation is at risk of becoming invalid.

We are currently developing and evaluating ways to
model concerns that can withstand the destructive effects
of source code evolution. In one of our approaches, con-
cern graphs [7], we represent the implementation of a con-
cern in a way that makes it possible to automatically detect
when the description of a concern is no longer consistent

with the code, and to provide support for automatically or
semi-automatically updating the concern description.

To investigate the practical benefits of this technique, we
studied the modifications to a feature over 33 versions of an
open-source text editor, spanning over four years of devel-
opment history. Overall, the study showed how concern
graphs enable the tracking of concern code over a chang-
ing implementation. The study also showed that by analyz-
ing how concern representations become inconsistent over
time, we can potentially infer the high-level nature of past
changes to the code, and assess the stability of a concern’s
implementation.

The contributions of this paper include an experimen-
tal design for studying how the implementation of a con-
cern evolves using concern graphs, a historical study of a
concern’s evolution that can serve as a benchmark for as-
sessing other concern modeling techniques, and a series of
proposed heuristics for automatically inferring high-level
past changes to source code.

2. Background
A concern graph is an artifact that represents the imple-

mentation of a concern in source code by documenting the
relations between the different program elements involved
in the concern’s implementation (fields, methods, etc.). 1

In the concern graph framework, a concern is a named
collection of fragments. A fragment represents a basic re-
lation between program elements that are relevant to a con-
cern’s implementation. The definition of a fragment in-
cludes an intension and its corresponding extension. We
define intension as a structural query involving a pro-
gram element. For example “C.f accessed by ALL”
is an intension stating that we are interested in all the
methods accessing field C.f. In contrast, an extension is
an exhaustively-specified list of elements (e.g., C.m1(),
C.m2(),...). In a fragment, the extension consists of the

1For the purpose of this paper, we present a simplified version of
the concern graph framework. For additional details, see an extended
overview [6] and the complete report [7].



list of elements corresponding to the range of the intension.
In our example, this would mean all the methods actually
accessing field C.f in a specific version of a system. In
some cases, a fragment must capture a relation between two
specific elements (e.g., A.m1() calls B.m2()). In this
case the “intension” actually includes a range specification
(B.m2()), and the extension is simply that range element
(B.m2()). However, by experience, most fragments tend
to involve an intension with a free (unspecified) range. We
call such fragments intensional fragments. The set of par-
ticipants for a concern is the set of all elements found in
fragment intensions and extensions.

By combining an intension and its extension in a frag-
ment, whenever the program evolves, the intension can be
projected onto new versions of the program to determine
if the generated extension still corresponds to the stored
extension. Inconsistencies between the generated and the
stored extensions indicate modifications that invalidate the
concern graph (a concern graph inconsistency). To repair
a concern graph inconsistency, we can update the fragment
by replacing the stored extension with the generated exten-
sion. We call this operation synchronizing the fragment.

In practice, concern graphs are created and used with an
Eclipse2 plug-in called FEAT [7]. FEAT augments Eclipse
with a number of search facilities for program investiga-
tion (e.g., to obtain all the accessors of a field) that allow
a user to add the entire results of a search as a fragment
in a concern (the intension is the query and its extension
is the query results). Every time source code in an Eclipse
project associated with a concern is modified (or when a
concern graph is loaded), FEAT re-projects the intension
of each fragment and checks the resulting extension for in-
consistencies with the stored extension.

3. A Study of jEdit

We studied the potential benefits of combining inten-
sions and extensions to track concerns in evolving source
code by conducting an exploratory analysis of the develop-
ment history of an open-source project.

3.1. Study Questions

For this study, we were interested in documenting a case
of concern evolution to use as a benchmark for studies of
software maintenance, and to answer the following ques-
tions: a) How does the combination of intensions and ex-
tensions help us track the code implementing a concern?,
and b) What else can the analysis of intensions and exten-
sions tell us about the evolution of a concern’s implemen-
tation?

2www.eclipse.org

3.2. Target System and Concern

As our target system we chose the jEdit text editor.3

jEdit is developed in Java and comprises between 60 and
92 kLOC (depending on the version considered). It is a
mature project whose history spans over four years.

The concern we chose to investigate is a feature allowing
users to “mark” lines in a file. Using items in a top-level
“Markers” menu or shortcut keys, jEdit users can add and
remove markers, jump to markers, set the marker color, etc.
The implementation of this feature is scattered throughout
at least eight Java files. We will refer to this feature and its
implementation as the MARKERS concern.

3.3. Methodology

We analyzed the evolution of the MARKERS concern in
jEdit by creating a concern graph representing the imple-
mentation of MARKERS in an early version of the system,
and by sequentially loading and adapting the concern graph
on each subsequent tagged version of jEdit available in its
public CVS repository.

To create our initial concern graph, we checked out ver-
sion 4.0-pre1 from the jEdit CVS repository into an Eclipse
project. We then performed a regular expression search on
the term “marker”. From the results, we culled the false
positives and used FEAT to explore program dependencies
to and from the elements found. During the exploration of
the code with FEAT, we built a concern graph representing
the MARKERS concern.

The initial concern graph comprises 35 fragments, of
which 24 are intensional. For example, the intensional
fragment Buffer.markers accessed by ALL speci-
fies that all the methods accessing field markers of class
Buffer are involved in the implementation of the MARK-
ERS concern.

For each of the 35 fragments, the extension is gener-
ated automatically by FEAT and appended to the concern
graph definition. In total, the MARKERS concern graph for
version 4.0-pre1 involves 60 participants defined in 11 dif-
ferent classes.

To complete the study, we checked out subsequent ver-
sions of jEdit in chronological order and analyzed, for
each, the impact of the changes on the MARKERS concern.
Specifically, given version vn, its successor vn+1, and a
concern graph Cn valid for version vn, we:

1. Recorded the number of participants in Cn whose
code had changed between vn and vn+1. We ob-
tained this number by comparing each compilation
unit in vn+1 declaring a participant in Cn and ana-
lyzing whether there were code changes in the lexical
scope of the participant. We refer to these units of
change as changed participants.

3www.jedit.org



2. Loaded Cn on version vn+1 and recorded each frag-
ment whose extension was inconsistent between vn

and vn+1.

3. Repaired Cn by synchronizing fragments, removing
invalid fragments, and adding new fragments corre-
sponding to new MARKERS code, as appropriate. This
last step results in the creation of a new concern graph
Cn+1, which we used for the following version.

We followed this method on the 33 non-identical ver-
sions of jEdit available, from version 4.0-pre1 (November
2001) to version 4.3-pre3 (1 January 2006). As a result we
were able to analyze 32 version differences.

3.4. Quantitative Results

Figure 1 presents a synthesis of the evolution of jEdit
and of the MARKERS concern during the period covered by
our study. On the figure, the line plots the size of the total
jEdit source code in LOC (right vertical axis) as a function
of time (horizontal axis). On the size graph, each diamond
represents a jEdit version. As the graph shows, jEdit has
significantly grown in the period covered by our study, go-
ing from 60 kLOC in 2001 to 92kLOC in the last version
(4.3-pre3, 1 January 2006).

In addition to general information about the evolution
of jEdit, Figure 1 includes information specific to the evo-
lution of the MARKERS concern. Below each diamond, a
column indicates the number of changed participants (with
respect to the previous version, left axis). For example, the
third bar from the left corresponds to version 4.0-pre4. Its
height of 14 indicates that between version 4.0-pre4 and the
previous version (4.0-pre3) there were 14 changed partici-
pants. In general, analysis of the number of changed par-
ticipants shows that almost every version of jEdit contains
some changes to fields or methods involved in the imple-
mentation of MARKERS. Finally, the diameter of the cir-
cles in Figure 1 represents, for each version, the number of
inconsistent fragments detected when loading the concern
graph on the code of this version. The numbers vary from
2 to 21.

In our case, only 10 of the 32 version differences stud-
ied caused inconsistencies to appear in the concern graph.
Such a low ratio is expected as concern graphs only capture
the essential structure of concerns as can be represented by
non-local relations between fields, methods, and classes.
As such, any modification that does not affect the relations
captured by a concern graph will not alter the quality of the
information that it represents. In the case where modifica-
tions result in observable changes at the level of concern
graphs, we found that the inconsistencies detected could be
very useful in reasoning about the implementation of the
concern.

3.5. Qualitative Analysis

For a majority of versions differences, we were able to
associate a group of inconsistencies with a single, high-
level change. When possible, we documented our obser-
vations as heuristics for inferring the nature of a change.
We describe four illustrative heuristics.

In the following descriptions, we refer to the extension
of a fragment as stored in the concern graph as the stored
extension (Es) and the extension generated by projecting
the intension on the source code as the generated extension
(Eg). An inconsistency is detected whenever Eg �= Es.
For an inconsistent fragment, an element e can be either
extraneous (e �∈ Es ∧ e ∈ Eg), missing (e ∈ Es ∧ e �∈ Eg),
or invalid (e ∈ Es∧e does not exists in the program version
used to generate Eg).4

Heuristic 1 (Element Move) For a fragment: if an ele-
ment e of class C is missing and an element e′ of class
C′ is extraneous, and e and e′ have the same name, then e
was probably moved to class C ′.

Heuristic 2 (Element Rename) For a set of fragments F :
if, ∀f ∈ F , an element e is invalid and an element e ′ is
extraneous, e was probably renamed to e ′. Confidence in
this heuristic increases with the cardinality of F .

Heuristic 3 (Code Block Move) For a set of fragments F :
if, ∀f ∈ F , a method m is missing but valid and a method
m′ is extraneous, a code block was probably moved from
m to m′. Confidence in this heuristic increases with the
cardinality of F .

Heuristic 4 (Pull Down Method) For a fragment: if an
element e of class C is missing and an element e′ of class
C′ is extraneous, and e and e′ have the same name, and C ′

is a subclass of C, then e was probably pulled down into
class C′.

3.6. Concern Change Assessment

Analyzing concern graph inconsistencies can also help
assess the relative stability of different parts of the code
relating to a concern. One way to assess the (in)stability of
a concern’s implementation is to count the number of times
a given fragment became inconsistent as the results of the
evolution of a system.

In our study, analyzing this data allowed us to draw two
conclusions. First, a very stable class can be used by very
unstable code. For example, one class in jEdit went through
only six revisions but the two most unstable fragments of
MARKERS were defined on members of that class.

Our second conclusion is that users of aspect-oriented
programming languages should be careful when specifying

4Note that given e, Es, Eg , invalid → missing. However, the addi-
tional qualification can be useful.



0

5

10

15

20

25

1-Sep-01 1-Sep-02 1-Sep-03 31-Aug-04 31-Aug-05

Date

Nu
m

be
r o

f C
ha

ng
es

50000
55000
60000
65000
70000
75000
80000
85000
90000
95000

LO
Cjedit-4-3-pre3

1-Jan-2006

jedit-4-0-pre1
5-Nov-2001

Figure 1. The evolution of the MARKERS concern in jEdit.

pointcuts intensionally as our study produced evidence that
the extension corresponding to an pointcut-like intension
may be in a constant state of flux. For example, one method
of MARKERS went through nine different sets of callers
through the history of jEdit.

4. Related Work

A number of approaches have been proposed that al-
low developers to specify a subset of the source code of a
program using different mechanisms based on intensional
specifications (e.g., [1, 3, 5]). By contributing this empiri-
cal study, we provide a case of concern evolution that can
be reused to facilitate the evaluation of research on concern
tracking and evolution.

A number of approaches have also been proposed for in-
ferring past refactorings or high-level changes from a sys-
tem’s change history (e.g., [2, 4, 8]). These approaches
involve different heuristics that are based on input data that
is different from the one we use (concern graphs). How-
ever, such research can also benefit from standard evalua-
tion scenarios that are based on empirical data, such as the
one provided in this paper.

5. Conclusions

We presented a study of a concern’s evolution over four
years of development history. The study explored the rela-
tion between textual differences in the source code of a con-
cern and inconsistencies in high-level models representing
this code (concern graphs). The study provided evidence
that combining intensional source code descriptions with
their corresponding extensions can support automated rea-
soning about the concern’s evolution and facilitate tracking
the implementation of a concern, as well as assessing its
stability.

Based on our current support for inconsistency analysis
in FEAT, we are currently designing a way to automati-
cally encode, detect, and execute the heuristics presented

in this paper. We hope to increase the level of automa-
tion with which we can track concern code in evolving
software, with the long-term goal of simplifying the main-
tenance of concerns or features whose implementation is
scattered throughout the system.

Acknowledgments
Imran Majid and Ashar Aziz first identified the markers feature as
an interesting concern in jEdit. Thanks to Brian de Alwis, Jean-
Sébastien Boulanger, Gail Murphy, and the anonymous reviewers
for comments on this paper. This work was supported by NSERC.

References

[1] M. Chu-Carroll, J. Wright, and D. Shields. Supporting aggre-
gation in fine grained software configuration management.
In Proc. Int’l Symp. Foundations of Software Engineering,
pages 99–108, 2002.

[2] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding refactor-
ings via change metrics. In Proc. Conf. Object-oriented Pro-
gramming, Systems, and Applications, pages 166–177, 2000.

[3] W. Harrison, H. Ossher, S. Sutton Jr., and P. Tarr. Concern
modeling in the concern manipulation environment. Techni-
cal Report RC23344, IBM Research, 2004.

[4] J. I. Maletic and M. L. Collard. Supporting source code dif-
ference analysis. In Proc. 20th Int’l Conf. Software Mainte-
nance, pages 210–219, 2004.

[5] K. Mens, T. Mens, and M. Wermelinger. Maintaining soft-
ware through intentional source-code views. In Proc. 14th
Int’l Conf. Software Engineering and Knowledge Engineer-
ing, pages 289–296, 2002.

[6] M. P. Robillard. Tracking and assessing the evolution of scat-
tered concerns. In Proc. AOSD Workshop on Linking Aspect
Technology and Evolution, 2006.

[7] M. P. Robillard and G. C. Murphy. Representing concerns
in source code. ACM Transactions on Software Engineering
and Methodology, 2006. To Appear.

[8] Z. Xing and E. Stroulia. Recognizing refactoring from
change tree. In Proc. 1st Int’l Workshop Refactoring, pages
41–44, 2003.


