
DScribe: Co-generating Unit Tests and Documentation

Alexa Hernandez
alexa.hernandez@mail.mcgill.ca

School of Computer Science

McGill University

Montréal, QC, Canada

Mathieu Nassif
mnassif@cs.mcgill.ca

School of Computer Science

McGill University

Montréal, QC, Canada

Martin P. Robillard
martin@cs.mcgill.ca

School of Computer Science

McGill University

Montréal, QC, Canada

ABSTRACT

Test suites and documentation capture similar information despite

serving distinct purposes. Such redundancy introduces the risk

that the artifacts inconsistently capture specifications. We present

DScribe, an approach that leverages the redundant information

in tests and documentation to reduce the cost of creating them

and the threat of inconsistencies. DScribe allows developers to de-

fine simple templates that jointly capture the structure to test and

document a specification. They can then use these templates to

generate consistent and checkable tests and documentation. By

linking documentation to unit tests, DScribe ensures documenta-

tion accuracy as outdated documentation is flagged by failing tests.

DScribe’s template-based approach also enforces a uniform style

throughout the artifacts. Hence, in addition to reducing developer

effort, DScribe improves artifact quality by ensuring consistent con-

tent and style. Video: https://www.youtube.com/watch?v=CUKp3-

MjMog

CCS CONCEPTS

• Software and its engineering→ Documentation; Software

testing and debugging; Maintaining software.

KEYWORDS

test generation, documentation generation, maintainability.

ACM Reference Format:

Alexa Hernandez, Mathieu Nassif, andMartin P. Robillard. 2022. DScribe: Co-

generating Unit Tests and Documentation. In 44th International Conference

on Software Engineering Companion (ICSE ’22 Companion), May 21–29, 2022,

Pittsburgh, PA, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/10.

1145/3510454.3516856

1 INTRODUCTION

Software projects encode information in multiple forms: not only

source code but also extensive test suites and documentation. While

each artifact serves a different purpose, the information they cap-

ture is similar. Source code implements the project’s specifications,

while test suites and documentation validate and explain them,

respectively. Such redundancy introduces the risk of artifacts incon-

sistently capturing specifications, a common problem that limits

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9223-5/22/05. . . $15.00
https://doi.org/10.1145/3510454.3516856

their usefulness [7, 16]. Redundancy also exacerbates the repeti-

tiveness of testing [15] and documentation [8] effort, especially in

cases where many functions exhibit similar specifications.

To illustrate the problem, we use the format(Object, StringBuilder)

method from Log4j2’s PatternConverter interface which has over 35

implementations and more than 100 unit tests (release 2.14.1). The

method transforms and appends information from an Object to a

StringBuilder. For each implementation, at least one usage example

should be tested and documented. These usage examples constitute

a significant amount of redundant information that must be kept

consistent. Without traceability links, this is an effort-intensive [14]

and error-prone [2] process. As such, it is not surprising that doc-

umentation and unit tests are frequently out-of-date and incom-

plete [1, 4].

We developed DScribe, an approach that leverages redundant

and repetitive information in artifacts to reduce the effort required

to create them and the threat of inconsistencies. Rather than pro-

ducing multiple representations of a specification, DScribe allows

developers to define specifications once using simple templates.

With a single line of code, developers can use templates to generate

tests and documentation in a consistent and streamlined fashion.

DScribe is fully supported by a publicly available tool for Java.

DScribe’s template-based approach enforces a uniform style

throughout the tests and documentation, reducing the cognitive

load required to understand them [11]. By generating documenta-

tion from the same source as tests, DScribe also solves the docu-

mentation traceability problem and ensures that documentation is

accurate since outdated documentation is flagged by failing tests.

DScribe does not aim to replace manual testing but to streamline

testing and documenting boilerplate specifications, allowing devel-

opers to focus on complex, component-specific specifications.

This demonstration presents an overview of DScribe, which is

described in detail in our prior work [12]. We also introduce a

new Eclipse plug-in that facilitates using DScribe.1 We present

two scenarios for using DScribe with universal and project-specific

specifications. To support our scenarios, we released six predefined

templates on DScribe’s GitHub site.2 These templates reduce the

adoption cost of DScribe. Finally, we summarize four studies from

our prior work that confirm DScribe’s potential to reduce developer

effort and inconsistencies [12].

2 DSCRIBE

We first present an overview of DScribe. Then, we describe an

Eclipse plug-in that enhances the user experience of DScribe.

1https://www.cs.mcgill.ca/~martin/DScribeUpdateSite
2https://github.com/prmr/DScribe

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Hernandez et al.

1 /∗∗ e.g., when $field$ is $value$, $expected$ is appended to the StringBuilder ∗/

2 @Template("Format")

3 @Test

4 public void format_When$field$Is$value$_Append$expected$() {

5 LogEvent event = Log4jLogEvent.newBuilder().set$field$($value$).build();

6 StringBuilder sb = new StringBuilder();

7 $class$ converter = $class$.newInstance($params$);

8 converter.format(event, sb);

9 assertEquals($expected$, sb.toString());

10 }

Figure 1: Template for the formatmethod. The documentation

fragment is on line 1 and the code skeleton spans lines 3 to

10. Surrounding dollar signs ($) denote placeholders.

2.1 The Approach

To use DScribe, developers create templates that jointly capture

how to test and document a specification. DScribe templates asso-

ciate a code skeleton with a documentation fragment. As an example,

Figure 1 depicts a template to test and document Log4j2’s format

method. The code skeleton, spanning lines 3 to 10, defines a re-

current structure for tests. It includes the boilerplate code for the

arrange, act, and assert sections [5]. Information that depends on a

particular test case, such as the expected value, is abstracted using

placeholders, e.g., $expected$. The documentation fragment on line

1 describes the behavior under test using free-form text in a header

comment. In this case, it illustrates a usage example by referencing

the code skeleton’s placeholders, e.g., $field$. In general, documen-

tation fragments can capture any kind of documentation, including

preconditions, exceptional behavior and behavior summaries, as

they are defined using free-form text. Line 2 assigns “Format” as

the template’s name.

To test and document a particular behavior for a method, devel-

opers invoke a template by providing the use-case–specific infor-

mation required to capture the behavior completely. Developers

invoke templates by adding a Java annotation to the focal method.

Each template is associated with an annotation that has the same

name and one member per placeholder. For example, to test and

document an implementation of format that appends a LogEvent’s

thread ID to the StringBuilder, one would annotate it with @Format:

@Format(field="ThreadId", value="1", params="null", expected="\"1\"")

The above template invocation defines values for each place-

holder in the Format template, except $class$. The $class$ placeholder,

along with the $method$ placeholder, are predefined in DScribe.

Their values are derived directly from the focal method and its

declaring class, freeing users from specifying them. DScribe swaps

placeholders for invocation values with minimal transformation,

ensuring generation is as transparent as possible for developers.

Hence, if the value provided is a String literal, as is the case for

$expected$, it must be surrounded by double quotes.

DScribe integrates the generated assets into existing artifacts. To

avoid corrupting manually-written documentation, DScribe marks

the generated documentation fragments with the custom Javadoc

tag@dscribe. This tag differentiates generated andmanually-written

fragments, making it easy to replace only generated documenta-

tion. Similarly, to avoid disrupting manually-written tests, DScribe

automatically moves the annotation used to invoke the template

Figure 2: DScribe Eclipse plug-in. On the left is the “Run

DScribe” command (top) and the generated documentation

fragment (bottom). On the right is the dialog that appears

after running DScribe and the generated unit test.

from the focal method to the generated unit test. It also improves

user experience by helping users discern the template invocation

responsible for a test.

2.2 The DScribe Eclipse Plug-in

There are different ways to run DScribe—as a Java jar file, as an

Eclipse project, or using the more user-friendly DScribe Eclipse

plug-in. After invoking templates, developers can use the plug-in

to generate assets for a production class. To do so, one would right-

click on the class in Eclipse’s Project Explorer view and then select

the “Run DScribe” command, as shown in Figure 2. To generate

assets for multiple classes at once, one would select all of the classes

in the Project Explorer view before performing the command.

When asset generation is complete, a message dialog appears to

inform users (see Figure 2). The dialog lists all classes for which

DScribe has added or modified assets, as well as any errors that

occurred. The asset generation process is not CPU-intensive; for

example, it generates assets for an invocation of the Format template

without a perceivable delay on a Windows 10 laptop with Intel i7-

10510U CPU and 16 GB RAM.

3 USAGE SCENARIO

In this section, we present two usage scenarios of DScribe—namely,

generating assets for universal and project-specific specifications.

3.1 Universal Specifications

DScribe facilitates testing and documenting universal specifica-

tions—specifications that appear in most software projects, regard-

less of their domain or features. Examples include specifications

about exceptions, equals contracts, and clone contracts. In addition

to recurring across projects, universal specifications can also exist

in abundance within a project. For example, our previous work iden-

tified over 800 specifications about exceptions in just eleven classes

of Apache Commons IO [12]. Creating and maintaining a unit test

and documentation fragment for each is laborious and error-prone.

Without tool support, developers often fail to evolve both artifacts

consistently [2]. As evidence, 85% of the identified specifications

about exceptions were not tested or correctly documented [12].

Developers can leverage DScribe to reduce the effort required to

generate assets for universal specifications. Instead of creating, or

cloning, 1 600 repetitive assets (800 tests and 800 documentation

DScribe: Co-generating Unit Tests and Documentation ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

1 /∗∗ Throws $exType$ when $state$ ∗/

2 @Template("AssertThrows")

3 @Test

4 public void $method$_When$state$_Throw$exType$() {

5 assertThrows($exType$, () −> $factory$.$method$($params$));

6 }

7

8 /∗∗ Performs a shallow copy of the object. ∗/

9 @Template("ShallowClone")

10 @Test

11 public void clone_ReturnShallowCopy() {

12 $class$ initial = $factory$;

13 $class$ cloned = initial.clone();

14 assertNotSame(initial, cloned);

15 assertEquals(initial, cloned);

16 }

Figure 3: Two of the six predefined templates.

fragments), developers can write short annotations requiring only

use-case–specific information. Moreover, by linking documentation

to tests, DScribe ensures that assets are consistent, as failing tests

instantly flag outdated documentation. Our finding that 97% of

the identified inconsistencies in Commons IO were preventable by

DScribe confirms its ability to enhance asset consistency [12].

Given the prevalence of universal specifications, their templates

can be created as a part of a testing strategy and shared across

projects. Tominimize duplicated effort andDScribe’s learning curve,

we created six templates for well-known universal specifications.

Figure 3 displays two such templates, one to capture specifications

about exceptions, the other to test and document a shallow imple-

mentation of clone. These templates reduce the adoption cost of

DScribe and can easily be adapted to comply with a team’s style

conventions. Once developers master the predefined templates,

they can design new ones tailored to project-specific concerns.

3.2 Project-Specific Specifications

As project-specific patterns emerge in manually-written tests,

developers can design ad hoc templates to generate assets for them.

Testing the format method introduces one such project-specific pat-

tern. Even the Log4j2 developers noticed the repetition and applied

two techniques to mitigate it. However, both have drawbacks that

DScribe avoids. Nevertheless, their use confirms the demand for

tools to reduce the repetitiveness of testing activities.

3.2.1 Alternative Approaches. To reduce the repetition involved

in testing the format method, developers used copy-pasting and

helper functions. While both approaches expedite testing recurrent

specifications, they do so at the expense of test quality.

The use of copy-pasting is apparent from the copy-paste-misadapt

error [10] marked with a dashed underline in Figure 4. One may

infer that the developer copied the test from theNanoTimePatternCon-

verterTest class to the ThreadIdPatternConverterTest class and correctly

adapted all code elements except the method name. This error is not

uncommon as copy-pasting often introduces hard-to-spot semantic

bugs [6] which degrade the code’s quality.

The second approach resembles DScribe in that it uses helper

functions, instead of templates, to abstract the common structure

of similar tests. The helper functions also take as input test-case–

specific information. An example helper function is testReplacement

from the EqualsReplacementConverterTest class. Instead of duplicating

code, various unit tests in EqualsReplacementConverterTest consist of

a single call to testReplacement. By separating a test’s structure from

its definition, this approach obscures the purpose of a test.

Unlike the above approaches, DScribe reduces repetition while

maintaining asset quality. DScribe generates high-quality unit tests

that are self-evident. It can even improve readability by ensuring

that tests and documentation adhere to a consistent style. These

benefits come in addition to DScribe’s main value proposition: to

generate consistent and checkable documentation at no extra cost.

3.2.2 Designing Templates. To create a DScribe template, develop-

ers start by analyzing patterns in existing tests. First, they identify

the code elements that are common across the tests. These elements

will comprise the template’s code skeleton. For example, both for-

mat tests in Figure 4, along with several others, follow a similar

recipe. They start by instantiating a LogEvent, StringBuilder, and Pat-

ternConverter instance. Then, they call format, passing the LogEvent

and StringBuilder instances as parameters. Finally, they use JUnit’s

assertEquals to validate the results. This sequence of code elements

forms the code skeleton in the Format template (Figure 1).

Next, developers identify the code elements that vary between

tests. These elements will become the code skeleton’s placehold-

ers. For example, the LogEvent field that we set depends on the

test (ThreadId vs. NanoTime). Thus, we replace it with the $field$

placeholder in the Format template. Finally, developers add a text

fragment documenting the behavior that the code skeleton vali-

dates. The fragment in the Format template uses the code skeleton’s

placeholders to capture a usage example of format.

In retrospect, the Format template could have captured 52% (59

of 114) of the format specifications. This would have significantly

streamlined testing while adding helpful usage examples which do

not currently exist. We could make the template more applicable

by adding extra placeholders to generalize its structure—however,

the more placeholders, the more work required to invoke templates.

Also, general templates tend to require calls to helper functions as

placeholder values, which may degrade readability. These are just

a few of the design decisions developers must make when creating

templates. By giving developers complete creative freedom, DScribe

empowers them to meet their needs effectively.

4 EVIDENCE OF EFFECTIVENESS

In previous work [12], we conducted four studies to assess DScribe’s

ability to reduce testing and documentation effort and prevent

inconsistencies between artifacts. This section summarizes those

studies, focusing on findings relevant to DScribe’s applicability.

Usefulness Study: We performed a case study to evaluate the

degree of information inconsistency in a mature project, Apache

Commons IO, and assess DScribe’s potential to avoid them. We

used a unit of specification as our unit of analysis and focused solely

on thrown exceptions to make the study tractable. We considered

an exception specification unit (ESU) to be inconsistent if there was

any divergence in its associated artifacts (code, documentation, or

tests), including cases where an artifact omitted the ESU.

We analyzed all 293 public, non-deprecated methods in the root

package. For each, we identified all ESUs present in the source code,

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Hernandez et al.

public class NanoTimePatternConverterTest {

@Test

public void testConverterAppendsLogEventNanoTimeToStringBuilder() {

final LogEvent event = Log4jLogEvent.newBuilder().setNanoTime(1234567).build();

final StringBuilder sb = new StringBuilder();

final NanoTimePatternConverter converter = NanoTimePatternConverter

.newInstance(null);

converter.format(event, sb);

assertEquals(“1234567”, sb.toString());

}

}

public class ThreadIdPatternConverterTest {

@Test

public void testConverterAppendsLogEventNanoTimeToStringBuilder() {

final LogEvent event = Log4jLogEvent.newBuilder().setThreadId(1).build();

final StringBuilder sb = new StringBuilder();

final ThreadIdPatternConverter converter = ThreadIdPatternConverter

.newInstance(null);

converter.format(event, sb);

assertEquals(“1”, sb.toString());

}

}

Figure 4: Two Log4j2 test classes with differing code elements underlined. The dashed underlined marks a copy-paste error.

documentation, and/or test suite. For each ESU, we noted whether

it was consistent and invoked a template to capture it.

The study showed that information inconsistencies are prevalent

in Commons IO, with 85% of the identified ESUs being inconsistent.

DScribe templates could capture 97% of the identified inconsis-

tencies using only five templates. Hence, templates can be highly

reusable, leading to a low cost of creation. Overall, the study sub-

stantiated DScribe’s potential to avoid future inconsistencies.

Comparison Study:We recruited four annotators to assess DScribe’s

ability to yield high-quality tests. The annotators compared the

quality of the unit tests produced by DScribe in the usefulness

study against three baselines: the original Apache Commons IO

test suite and tests produced by two state-of-the-art test generation

techniques—EvoSuite [3] and Randoop [13]. We measured the qual-

ity of a test using two well-established properties—readable and

focused [9]. Each annotator evaluated 20 tests per test suite for a

total of 320 tests. The study revealed that DScribe generates tests

that are more readable and focused than the baselines.

Validation Study: Using a multi-case study, we assessed the gen-

eralizability of the findings from the usefulness study beyond ex-

ception handling. Specifically, we assessed the extent to which unit

tests from three Apache Commons projects (Math, Lang, and Con-

figuration) capture information worth documenting. We randomly

sampled 370 tests uniformly from the population of 9397 tests. For

each test, we identified the focal method and noted whether the

test captured any units of specification about it. For each unit of

specification, we noted whether the documentation captured it.

Overall, 42% of the sampled tests captured information worth

documenting, but about half of that informationwas undocumented.

DScribe prevents this by generating documentation from the same

source as unit tests (i.e., template invocations). The study also un-

veiled a novel use case for DScribe, which we use in this demon-

stration: using templates to document usage examples.

Limitations Study:We performed a qualitative multi-case study

to elicit the limitations of a template-based approach for test gen-

eration. We analyzed five open source projects that differ in their

development style, target audience, and application domain: Free-

mind, Eclipse Platform UI, Weka, Apache Tomcat, and Hibernate

ORM. For each test, we identified technical factors that impact the

generation of similar tests from templates.

The study revealed eight such factors, one of which is Different

Units Under Test: the current version of DScribe assumes that each

test targets a single method, making it impossible to generate tests

that focus on a class or field. Another factor is Constrained Resources:

tests that rely on constrained resources often include unique opera-

tions to handle the resource, impeding the use of templates that are

not specifically designed for the resource. One mitigation strategy

is to use setup and teardown methods. Our prior work [12] discusses

these factors in detail to help developers decide whether DScribe

meets their needs.

5 CONCLUSION

We introduced DScribe, a novel template-based approach to co-

generate unit tests and documentation, along with an Eclipse plug-

in that facilitates DScribe’s use. Developers can use DScribe to

streamline testing and documenting recurrent specifications, whether

universal or project-specific. In addition to reducing developer

effort, the template-based generation enhances the quality of a

project’s artifacts by ensuring consistency in content and style.

ACKNOWLEDGMENTS

We are grateful to the external annotators for helping with the

comparison study. This work was funded by the Natural Sciences

and Engineering Research Council of Canada (NSERC) and the

Fonds de recherche du Québec – Nature et technologies (FRQNT).

REFERENCES
[1] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez,

Laura Moreno, Gabriele Bavota, and Michele Lanza. 2019. Software Documenta-
tion Issues Unveiled. In In Proceedings of the 41st IEEE/ACM International Confer-
ence on Software Engineering. 1199–1210. https://doi.org/10.1109/ICSE.2019.00122

[2] Barthélémy Dagenais and Martin P. Robillard. 2014. Using Traceability Links to
Recommend Adaptive Changes for Documentation Evolution. IEEE Transactions
on Software Engineering 40, 11 (2014), 1126–1146. https://doi.org/10.1109/TSE.
2014.2347969

[3] Gordon Fraser and Andrea Arcuri. 2013. Whole Test Suite Generation. IEEE
Transactions on Software Engineering 39, 2 (2013), 276–291. https://doi.org/10.
1109/TSE.2012.14

[4] Daniel Gaston and James Clause. 2020. A Method for Finding Missing Unit Tests.
In In Proceedings of the 36th IEEE International Conference on Software Maintenance
and Evolution. 92–103. https://doi.org/10.1109/ICSME46990.2020.00019

[5] Jeff Grigg. 2012. Arrange Act Assert. http://wiki.c2.com/?ArrangeActAssert
[6] Patricia Jablonski and Daqing Hou. 2007. CReN: A Tool for Tracking Copy-

and-Paste Code Clones and Renaming Identifiers Consistently in the IDE. In In
Proceedings of the 2007 OOPSLAWorkshop on Eclipse Technology EXchange. 16–20.
https://doi.org/10.1145/1328279.1328283

[7] Mira Kajko-Mattsson. 2005. A Survey of Documentation Practice within
Corrective Maintenance. Empirical Software Engineering 10, 1 (2005), 31–55.
https://doi.org/10.1023/B:LIDA.0000048322.42751.ca

[8] D.V. Luciv, D. V. Koznov, G. A. Chernishev, A. N. Terekhov, K. Yu. Romanovsky,
and D. A. Grigoriev. 2018. Detecting Near Duplicates in Software Documentation.

DScribe: Co-generating Unit Tests and Documentation ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

Programming and Computer Software 44 (2018), 335–343. https://doi.org/doi.org/
10.1134/S0361768818050079

[9] Robert C. Martin. 2009. Clean Code – a Handbook of Agile Software Craftsmanship.
Prentice Hall.

[10] Petru-Florin Mihancea and Roger Scott. 2019. CodeSonar (R) Extension for Copy-
Paste-(Mis) Adapt Error Detection. In In Proceedings of the 35th IEEE International
Conference on Software Maintenance and Evolution. 386–389. https://doi.org/10.
1109/ICSME.2019.00065

[11] Isaac Moreira Medeiros Gomes, Daniel Coutinho, and Marcelo Schots. 2019. No
Accounting for Taste: Supporting Developers’ Individual Choices of Coding
Styles. In In 19th International Working Conference on Source Code Analysis and
Manipulation. 86–91. https://doi.org/10.1109/SCAM.2019.00018

[12] Mathieu Nassif, Alexa Hernandez, Ashvitha Sridharan, and Martin P. Robillard.
2021. Generating Unit Tests for Documentation. Transactions on Software Engi-
neering (2021).

[13] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.
Feedback-Directed Random Test Generation. In In Proceedings of the 29th
IEEE/ACM International Conference on Software Engineering. 75–84. https:
//doi.org/10.1109/ICSE.2007.37

[14] P. Runeson. 2006. A survey of unit testing practices. IEEE Software 23, 4 (2006),
22–29. https://doi.org/10.1109/MS.2006.91

[15] Brent van Bladel and Serge Demeyer. 2021. A comparative study of test code
clones and production code clones. Journal of Systems and Software 176 (2021),
110940. https://doi.org/10.1016/j.jss.2021.110940

[16] Andy Zaidman, Bart Van Rompaey, Arie van Deursen, and Serge Demeyer. 2011.
Studying the co-evolution of production and test code in open source and indus-
trial developer test processes through Repository Mining. Empirical Software
Engineering 16, 3 (2011), 325–364. https://doi.org/10.1007/s10664-010-9143-7

