
Constructural Software Documentation

Mathieu Nassif and Martin P. Robillard
School of Computer Science

McGill University
Montréal, Canada

{mnassif, martin}@cs.mcgill.ca

Abstract—Software projects capture information in artifacts
that include production code, test suites, and documentation. Be-
cause different artifacts serve different purposes, some artifacts
can include redundant information, encoded in different formats.
To mitigate this redundancy, we propose an approach to explicitly
encode in unit tests information that will be automatically
extracted and added to the documentation of the software. We
implemented this approach in the form of an Eclipse plug-in that
binds unit tests written with JUnit to the header comments of
the tested methods.

Index Terms—Constructural documentation, Unit testing, Au-
tomatic documentation, Documentation extraction, Javadoc

I. INTRODUCTION

Writing tests and documentation often involves encoding

information that is already present in production code, but in

a different format. For example, consider Google Guava [1]’s

Optional class, which either holds a non-null reference, or is

empty (the reference is absent). An associated testing class,

OptionalTest, contains the unit test testGet_absent, shown

in Figure 1, which tests the method get(). This unit test

conforms to many testing conventions: the last segment of

the test name, absent, identifies the state of the instance under

test, and the try-catch statement is a testing pattern to ensure

that a method throws a specific type (or subtype) of exception.

1 public void testGet_absent() {
2 Optional<String> optional = Optional.absent();
3 try {
4 optional.get();
5 fail();
6 } catch (IllegalStateException expected) {
7 }
8 }

Fig. 1. Example of a unit test from Google Guava

Simply by looking at this test, a reader can learn that

when get() is called on an Optional instance that is absent,

an IllegalStateException is thrown. This information is

documented in the header comment of get(): @throws Il-
legalStateException if the instance is absent [...]

While writing the same information in two different formats

is redundant effort, it is necessary to support those using the

API without access to the production or testing code. Yet,

the manually-written constraint is brittle: if the behavior of

the method changes, the modification will be detected by the

failing test, but the documentation can silently become incon-

sistent. Hence, redundant information represents an additional

burden on two levels: when creating the redundant artifacts,

and when maintaining them.

To alleviate the burden due to redundant information in

documentation, we propose an approach to generate docu-

mentation based on some explicit structure in unit tests. The

approach leverages well-defined constructs, such as conven-

tions for test names as seen in the example above. This

approach both provides a framework for developers to actively

embed information by using these specific constructs, and

supports the generation of human-readable documentation.

Thus, it integrates writing tests and documentation into a

single, streamlined approach: a combination we call con-
structural documentation. By removing the need to write

low-level information that is already captured by unit tests,

constructural documentation can allow documentation writers

to focus their effort on less trivial information, such as high-

level abstractions or architectural designs.

Unlike many other documentation generation

approaches [2]–[6], our approach does not infer information

from already written code. In contrast, it provides a way for

developers to explicitly incorporate information using agreed-

upon constructs, an idea closer to literate programming [7],

but at a strictly verifiable level. Some behavior-driven

development [8] frameworks, such as JBehave, achieve a

similar result by inserting documentation elements in testing

code, but none of them directly identify arbitrary code

constructs as a form of documentation. With our approach,

we introduce the idea of constructural documentation in the

context of unit tests and API documentation. We believe this

idea should be explored further, and our work aims to be a

first step in this direction, outlining the potential of this idea.

II. PRELIMINARY STUDY

To understand the potential of a constructural documentation

approach in different contexts, we performed a multi-case

study on the testing code of five Java software systems

from different domains and organizations: Freemind, Eclipse

Platform UI, Weka, Apache Tomcat, and Hibernate ORM.

This study aimed at finding the technical factors that act as

enablers or obstacles for embedding constructural documen-

tation in unit tests, in order to better estimate the benefits or

drawbacks of using our approach in different scenarios. We

focused on technical aspects, i.e., properties of the code of

a snapshot of the systems. We left other factors, such as the

development process, out of the scope of this study.

308

2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-
Companion)

2574-1934/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE-Companion.2019.00128

The results of our study show several factors contributing

to or hindering constructural documentation. For example, we

found that recurring local variable names, with a more general

meaning, are more informative in the context of constructural

documentation than very specific names. In contrast, code

that diverges from the well-established structures, and thus

hinders constructural documentation, is often found in tests

relying on constrained resources, such as a connection to an

external server. A more ambiguous finding was the use of

helper methods: in some contexts, they allowed developers

to hide complex assertion structures, while in other contexts,

too much information was hidden, negatively impacting what

information could be extracted from the unit test.

III. OVERVIEW OF THE APPROACH

The development of our approach was guided by the fol-

lowing two principles. First, the documentation generated from

unit tests should not be inferred. Rather, it must be explicitly

embedded by developers. This ensures that the generation

process is transparent, thus easy to control for false positives or

negatives, and that the generated documentation can be traced

back to its source. Furthermore, a transparent process can also

motivate test writers to use a more consistent coding style. The

second design principle is for the approach to be usable with

any coding style. The approach should avoid prescribing a

fixed style that would not match the conventions of a team

or become a burden in the evolution of the system when new

conventions are adopted.

As part of our approach, we introduce a new terminology

to discuss constructural documentation: A shape represents

a well-defined, parameterized structure of code, and a shape
instance is its instantiation in a particular fragment of code.

For example, in Figure 1, the try-catch statement, with an

empty catch block, is an instance of a common shape to

verify that a statement throws an exception. Just like geometric

shapes can be assembled to form meaningful figures, code

shapes can be assembled into a construct, which is a set of

one or more shapes that represents a self-contained meaning.

In Figure 1 shows a construct composed of the exception-

handling shape mentioned above combined with the another

shape instantiated in the test’s name, that indicates when an

exception can be thrown by Optional.get. This information,

embedded in source code constructs, is called constructural
information. Thus, constructural documentation is both the

action of embedding constructural information in source code

and its result, i.e., the documentation generated from this

information.

Given our design principles for constructural documenta-

tion, our approach requires an initial configuration that defines

the different shapes and constructs to target. This configuration

encodes the different conventions prescribed by the develop-

ment team, and their meaning. Once configured, a tool scans

all unit tests of a test suite to identify the shapes present in each

test, as well as the focal methods [9] of the tests. If possible,

the shapes are assembled into one or more constructs, each of

which is associated with a function to generate an information

fragment (whose format depend on the implementation of the

approach), based on the shape instances captured. So far, this

first phase generates a set of information fragments to be

associated with different methods in production code. Finally,

the information fragments are grouped by focal method and

aggregated together, then synthesized into proper documenta-

tion fragments to inject into the documentation.

IV. PROOF OF CONCEPT: DSCRIBE

To validate the potential of our approach, we implemented

it in the form of an Eclipse plug-in, called DScribe, which

targets unit tests written with the JUnit framework. DScribe

generates human-readable documentation injected directly in

the header comments of the production code methods. This

implementation also explores some of the implementation

tradeoffs of constructural documentation.

Readability was a main priority that guided our implementa-

tion. Hence, we designed DScribe to avoid generating clutter in

the documentation by grouping similar constraints. This goal

led to the following format of the information fragments: they

consist of combinations of predicates, themselves subdivided

into objects and conditions, so that similar parts can be easily

assembled. Finally, DScribe is configured using a single text

file and simple patterns to define shapes and functions to

generate the information fragments.

We tested our implementation on two test classes of Weka.

We manually refactored the unit tests to apply a consistent and

explicit style, and wrote a 72-line configuration file. DScribe

was able to analyze the unit tests almost instantaneously, and

produce documentation fragments such as After calling this
method, the content of the object is the same as array, where

array is the name of the parameter of the method.

REFERENCES

[1] Google Inc. Guava: Google Core Libraries for Java. [Online]. Available:
https://github.com/google/guava

[2] M. Sulír and J. Porubän, “Generating Method Documentation Using Con-
crete Values from Executions,” in Symposium on Languages, Applications
and Technologies, 2017, pp. 3:1–3:13.

[3] P. W. McBurney and C. McMillan, “Automatic documentation generation
via source code summarization of method context,” in Proceedings of the
22nd International Conference on Program Comprehension, 2014, pp.
279–290.

[4] C. Le Goues and W. Weimer, “Specification mining with few false
positives,” in International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, 2009, pp. 292–306.

[5] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-
Shanker, “Automatic generation of natural language summaries for java
classes,” in Proceedings of the 21st International Conference on Program
Comprehension, 2013, pp. 23–32.

[6] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,
“Towards automatically generating summary comments for java meth-
ods,” in Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering, 2010, pp. 43–52.

[7] D. E. Knuth, “Literate Programming,” The Computer Journal, vol. 27,
no. 2, pp. 97–111, 1984.

[8] M. Soeken, R. Wille, and R. Drechsler, “Assisted behavior driven devel-
opment using natural language processing,” in Proceedings of the Inter-
national Conference on Modelling Techniques and Tools for Computer
Performance Evaluation, 2012, pp. 269–287.

[9] M. Ghafari, C. Ghezzi, and K. Rubinov, “Automatically identifying focal
methods under test in unit test cases,” in IEEE 15th International Working
Conference on Source Code Analysis and Manipulation, 2015, pp. 61–70.

309

