
TaskNav: Task-based Navigation
of Software Documentation

Christoph Treude∗, Mathieu Sicard†, Marc Klocke†, and Martin Robillard†
∗Departamento de Informática e Matemática Aplicada, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil

Email: ctreude@dimap.ufrn.br
†School of Computer Science, McGill University, Montréal, QC, Canada

Email: {mathieu.sicard, marc.klocke}@mail.mcgill.ca, martin@cs.mcgill.ca

Abstract—To help developers navigate documentation, we in-
troduce TaskNav, a tool that automatically discovers and indexes
task descriptions in software documentation. With TaskNav, we
conceptualize tasks as specific programming actions that have
been described in the documentation. TaskNav presents these
extracted task descriptions along with concepts, code elements,
and section headers in an auto-complete search interface. Our
preliminary evaluation indicates that search results identified
through extracted task descriptions are more helpful to devel-
opers than those found through other means, and that they
help bridge the gap between documentation structure and the
information needs of software developers.
Video: https://www.youtube.com/watch?v=opnGYmMGnqY

I. INTRODUCTION AND MOTIVATION

Software documentation is disseminated in many differ-
ent forms, written by different individuals for different pur-
poses [16]. While the emergence of social media has pro-
moted the availability of software documentation for a wide
variety of topics [13], there is often a mismatch between the
needs of documentation users and the knowledge provided by
documentation writers. Although documentation often follows
a hierarchical structure with sections and subsections, this
organization can only enable effective documentation use if
section headers are adequate cues for the information needs
of the users.

Search engines are insufficient for enabling effective navi-
gation of software documentation because they require users
to use search terms that match the vocabulary used by the
documentation writers. To close this vocabulary gap [9], search
engines often employ an auto-complete feature, based on
query stream mining [1], ontologies [9], or concepts extracted
from the corpus using statistical methods [2]. None of these
approaches are applicable to specialized search systems for
software documentation as corpora are too small to train
statistical models and query streams are not available or not
representative of specific search needs in a constantly evolving
documentation landscape.

To overcome these issues, we introduce TASKNAV, a task-
based search engine for software documentation. TASKNAV
automatically analyzes a documentation corpus (typically an
online tutorial) and detects every passage that describes how
to accomplish some programming task. Our task-detection

This work was conducted while Christoph Treude was a postdoctoral
researcher at McGill University.

approach relies on natural language processing (NLP) tech-
niques. We define a task as a specific programming action
that has been described in the documentation. For example,
a task for a developer in Java could be “get iterator for
collection”. TASKNAV surfaces these task descriptions in an
interactive auto-complete search interface, along with auto-
matically extracted concepts, code elements, and section titles
(see Figure 1).

TASKNAV can automatically analyze and index any doc-
umentation corpus based on a starting URL and some con-
figuration parameters, such as which HTML tags should be
ignored. Documentation users can benefit from TASKNAV by
taking advantage of the task-based navigation offered by the
auto-complete search interface. For documentation writers,
TASKNAV provides analytics that show how documentation
is used (e.g., top queries, most frequently read documents,
and unsuccessful searches). Researchers can benefit from the
data accumulated by TASKNAV’s logging mechanism as it
provides detailed data on how software developers search and
use software documentation.

II. TASKNAV

In this section, we describe TASKNAV’s task extraction
algorithm as well as the interactive auto-complete interface.

Task Extraction. We conceptualize tasks in software doc-
umentation as verbs associated with a direct object and/or a
prepositional phrase, such as “get iterator”, “get iterator for
collection”, or “add to collection”. To extract task descriptions
from software documentation, we make use of the grammatical
dependencies between words, as detected by the Stanford NLP
parser [8].

In the first step, we remove markup from the HTML files
and preprocess the resulting text files to account for the unique
characteristics of software documentation not found in other
texts, such as the systematic use of incomplete sentences and
the presence of code terms. In particular, we prefix sentences
that start with a verb in present tense, third person singular,
such as “returns” or “computes”, with the word “this” to
ensure correct parsing of partial sentences, such as “Returns
the next page number”. In addition, we prefix sentences that
start with a verb in present participle or gerund, such as
“adding” or “removing”, immediately followed by a noun,

https://www.youtube.com/watch?v=opnGYmMGnqY


12

3

4

Fig. 1. TASKNAV screenshot. (1) Project selection, (2) auto-complete, (3) highlighted search result, (4) full-text search results

with the word “for” to ensure correct parsing of partial
sentences, such as “Displaying data from another source”.

We further configure the NLP parser to automatically tag
all code elements as nouns, as suggested by Thummalapenta
et al. [14]. In addition to code terms explicitly tagged with tt
or code tags in the original HTML, all words that match one
of about 30 regular expressions are masked as code terms. The
regular expressions are available in our online appendix.1 The
resulting sentences are then parsed using the Stanford NLP
toolkit.

To extract task descriptions, TASKNAV makes use of the
grammatical dependencies—relations between words in a
sentence—identified by the Stanford NLP toolkit. Because
tasks can be described in different grammatical ways (e.g.,
“returning an iterator”, “return iterator”, “iterator returned”,
and “iterator is returned”), dependencies between words in
active and passive voice have to be considered. In addition,
context might be important, e.g., whether an iterator is returned
or whether the documentation instructs the user to “not return
iterator”. Furthermore, the iterator might be specified using
additional words, such as “list iterator”, and prepositional
phrases might make the task description more specific, such
as “return iterator of collection”. Our approach also detects
multiple task descriptions if tasks are intertwined using con-
junctions. For example, the partial sentence “return list or
iterator” would result in two task descriptions: “return list”
and “return iterator”.

1http://cs.mcgill.ca/∼swevo/tasknavigator/

To ensure that general verbs, such as “contain”, are not used
to define a task, we filter task descriptions to only include those
for which the verb is a programming action. A handcrafted list
of about 200 programming actions is available in our online
appendix. Similarly, we handcrafted a list of generic objects,
such as “this” and “it”, to avoid extracting task descriptions
such as “return this”. Finally, task descriptions are normalized
by using the base form of the verb (e.g., “return” instead of
“returning”).

In addition to task descriptions, TASKNAV extracts concepts
using a well-recognized technique for collocation detection [7,
Chapter 5], code elements using HTML tags and regular
expressions, and section titles using HTML header tags.

User Interface. TASKNAV suggests the extracted task de-
scriptions along with concepts, code elements, and section
titles in an interactive auto-complete search interface. Figure 1
outlines the search process enabled by TASKNAV. First, the
user selects which projects to include in a search (1). Projects
are organized in a hierarchy where the first level represents
the technology (e.g., Java), the second level represents the
author or web domain of the documentation (e.g., Oracle),
and the third level represents the subject (e.g., JUnit). These
descriptors are specified whenever a new project is added to
TASKNAV. Multiple projects can be selected for any search,
and TASKNAV remembers a user’s project selection.

When the user starts typing a search query (2), an auto-
complete list opens and shows task descriptions, concepts, sec-
tion titles, and code elements that contain all words that have
been typed so far. The words do not have to appear in the order

http://cs.mcgill.ca/~swevo/tasknavigator/


in which they were typed. Once the user runs the search query,
results are presented on the left side of the screen. For each
result, the title (and possibly sub-title) of the corresponding
section is shown as a link, and the paragraph that matched the
query is displayed underneath the title. When the user selects
a result by clicking on either the title or the button next to the
matching paragraph, the corresponding document is opened
on the right side of the screen. The paragraph that matched
the query is highlighted, and the document is automatically
scrolled to that paragraph (3). Underneath the search results
based on its index, TASKNAV displays search results based
on traditional full text search using Apache Lucene (4). In
addition to the search functionality, TASKNAV includes user
interfaces for indexing new documentation and for analytics.

III. EXAMPLE SCENARIOS

In this section, we describe two example scenarios to
highlight TASKNAV’s functionality, using the Java Tutorials
from Oracle as documentation corpus.

Converting Time Zones. We first describe the scenario
depicted in Figure 1. The user has to manage different time
zones in a Java program and uses TASKNAV for help. After
typing “time zone” into TASKNAV’s search field, several task
descriptions, concepts, and section titles are suggested. The
user realizes that the documentation writers have used different
vocabulary to refer to the task of converting between time
zones, such as “change time zone to different time zones” and
“convert between time zones”. This is also a good example of
the variety of grammatical structures that TASKNAV supports
for task descriptions: “convert between time zones” consists
of a verb and a prepositional phrase, “change time zone to
different time zones” consists of a verb, a direct object, and
a prepositional phrase, and another task description, such as
“specify time zone”, consists of a verb and a direct object.

After choosing the query “convert between time zones”
from auto-complete, the user selects the one search result that
was generated based on TASKNAV’s index, as shown in Fig-
ure 1-3. The corresponding web page is automatically scrolled
to the paragraph from which the task description was extracted,
and the paragraph is highlighted: “In Java you can convert
between time zones using the java.util.Calendar class.
Here is an example”. Now the user can continue by investi-
gating the code snippet following the paragraph.

Avoiding Thread Interference. For the second scenario,
we assume that the user wants to solve a problem concerning
thread interference. After typing “thread in” into the search
field, the auto-complete suggestions shown in Table I appear.
Just from looking at the auto-complete suggestions, the user
now knows that avoiding thread interference is described using
the verb “prevent” in the documentation. After selecting the
corresponding entry from auto-complete, three search results
are displayed since the task “prevent thread interference” is
described more than once in the documentation: The section
on “Synchronization” refers to its own subsection “Synchro-
nized Methods” using the sentence “Synchronized Methods
describes a simple idiom that can effectively prevent thread

TABLE I
AUTO-COMPLETE SUGGESTIONS AFTER TYPING “thread in”

Tasks
introduce thread interference
prevent thread interference
use ThreadLocalRandom instead of Math.random()
run threads in program
prevent thread interference without resorting
use background thread instead of event-dispatching thread
create instance of Thread
run code in thread
execute in thread
introduce thread contention

Concepts
initial thread

Titles
Threads in Applets
Initial Threads
Threads

interference and memory consistency errors.” In that section,
the sentence “Synchronized methods enable a simple strategy
for preventing thread interference and memory consistency
errors” contains the task description, whereas the tutorial
on “Atomic Variables” contains the sentence “Replacing the
int field with an AtomicInteger allows us to prevent
thread interference without resorting to synchronization, as in
AtomicCounter”, followed by a code snippet. TASKNAV
associated all three sentences with the task description “pre-
vent thread interference”.

IV. PRELIMINARY EVALUATION

We deployed a prototype of the TASKNAV web application
at a web development company in Montréal, Canada. During
a two-week field study in which six professional developers
(P1–P6) used the tool as part of their normal ongoing work,
we recorded all their interactions and we asked them “Was this
what you were looking for?” on every other click on a link
for a search result, giving “yes” and “no” as answer options
in a pop-up window.

Table II shows the results of the field study. For each
participant P1–P6, it shows the number of queries entered
by the participant. The last columns show the number of
clicks on search results along with how often the answer to
“Was this what you were looking for?” was “yes” or “no”,
respectively. A total of 83 search results were selected during
the field study, and the participants answered whether the
result was what they were looking for in 37 cases. Fifteen
of the answers were positive and 19 were negative. The
results divided up by the different indexed elements clearly
indicate the usefulness of task descriptions: out of 10 answers
about task-related search results, 8 were positive, while most
answers about search results related to code elements and
section titles were negative. This difference is statistically
significant (Fisher’s exact test, p < 0.05). The difference
between results derived from task descriptions and section
titles is particularly noteworthy: section titles are meant to help
developers navigate the documentation, yet the corresponding
results received overwhelmingly negative feedback, while task
descriptions stood out as the most useful way to navigate



TABLE II
RESULTS OF THE FIELD STUDY

queries clicks (relevant / not relevant)
tasks concepts code titles

P1 20 3 (1/0) 0 (0/0) 2 (0/1) 4 (0/1)
P2 19 6 (1/1) 0 (0/0) 8 (1/2) 3 (2/0)
P3 11 5 (2/0) 0 (0/0) 8 (2/1) 3 (0/2)
P4 40 9 (3/1) 0 (0/0) 11 (0/6) 12 (0/4)
P5 12 1 (1/0) 1 (1/0) 3 (0/0) 0 (0/0)
P6 4 1 (0/0) 0 (0/0) 3 (1/0) 0 (0/0)
sum 106 25 (8/2) 1 (1/0) 35 (4/10) 22 (2/7)

documentation. The results also indicate that concepts—used
in other domains for populating auto-complete fields [2]—
were hardly considered by the participants in the field study.

Additional details of the evaluation are available else-
where [15]. TASKNAV is currently deployed at McGill Uni-
versity and in use by undergraduate students.

V. RELATED WORK

While information extraction in other domains is often
limited to detecting concepts, our focus on tasks was motivated
by previous work on the importance of tasks in software
development [6]. Task extraction from natural language doc-
uments has been the object of research in areas outside of
software engineering. Scerri et al. presented a technology
for the automatic classification of email action items based
on a model that considers five linguistic, grammatical and
syntactical features. Their model is rich enough to capture
action-object tuples, such as “request data” [10]. Kalia et
al. went a step further to present an approach for automat-
ically identifying task creation, delegation, completion, and
cancellation in email and chat conversations, based on NLP
techniques and machine learning. They distinguished between
four types of tasks: create, delegate, discharge, and cancel [5].
Compared to our approach, these models do not allow for more
complex tasks such as “get iterator for collection”, but they
are richer in terms of who does an action and whether this
action is requested, suggested, or demanded—which is less
relevant in software documentation.

TASKNAV is also related to textual feature location, and in
particular the work by Shepherd et al. [11], [12]. Similar to
our work, their approach is based on the notion that actions
in software development can be represented by verbs and
nouns correspond to objects. Their tool, Find-Concept, allows
developers to create source code queries consisting of a verb
and a direct object. Find-Concept then expands the queries
using NLP and knowledge of the terms used within the source
code to recommend new queries. Our work differs from Find-
Concept and other query expansion tools, such as the work by
Hill et al. [4] or Haiduc et al. [3], in several ways: In query
expansion tools, the initial query needs to be a complete query.
TASKNAV only needs two characters to trigger auto-complete
suggestions, thus allowing developers to use the system even
if they do not know how to phrase the complete query yet.
Our task descriptions are also more precise by incorporating
prepositions and prepositional objects in addition to verbs and
direct objects.

VI. CONCLUSION

To help bridge the gap between the information needs of
software developers and the structure of existing documenta-
tion, we have developed TASKNAV, a tool that automatically
extracts task descriptions from software documentation and
suggests them in an auto-complete interface. Our preliminary
evaluation indicates that task descriptions can be extracted
from software documentation automatically, and that they can
help developers navigate software documentation.

TASKNAV is now deployed and in operation at McGill
University, and it will be released to the general public in
early 2015.

REFERENCES

[1] M. Barouni-Ebrahimi and A. A. Ghorbani. On query completion in
web search engines based on query stream mining. In Proc. of the
Int’l. Conf. on Web Intelligence, pages 317–320, 2007.

[2] S. Bhatia, D. Majumdar, and P. Mitra. Query suggestions in the absence
of query logs. In Proc. of the 34th Int’l. Conf. on Research and
Development in Information Retrieval, pages 795–804, 2011.

[3] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, and
T. Menzies. Automatic query reformulations for text retrieval in software
engineering. In Proc. of the 35th Int’l. Conf. on Software Engineering,
pages 842–851, 2013.

[4] E. Hill, L. Pollock, and K. Vijay-Shanker. Automatically capturing
source code context of NL-queries for software maintenance and reuse.
In Proc. of the 31st Int’l. Conf. on Software Engineering, pages 232–242,
2009.

[5] A. Kalia, H. R. M. Nezhad, C. Bartolini, and M. Singh. Identifying
business tasks and commitments from email and chat conversations.
Technical Report HPL-2013-4, HP Laboratories, 2013.

[6] M. Kersten and G. C. Murphy. Using task context to improve program-
mer productivity. In Proc. of the 14th Int’l. Symp. on the Foundations
of Software Engineering, pages 1–11, 2006.

[7] C. D. Manning and H. Schütze. Foundations of statistical natural
language processing. MIT Press, 1999.

[8] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and
D. McClosky. The Stanford CoreNLP natural language processing
toolkit. In Proc. of the 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations, pages 55–60, 2014.

[9] P. Mika, E. Meij, and H. Zaragoza. Investigating the semantic gap
through query log analysis. In Proc. of the 8th Int’l. Semantic Web
Conference, pages 441–455, 2009.

[10] S. Scerri, G. Gossen, B. Davis, and S. Handschuh. Classifying action
items for semantic email. In Proc. of the 7th Int’l. Conf. of Language
Resources and Evaluation, pages 3324–3330, 2010.

[11] D. Shepherd, K. Damevski, B. Ropski, and T. Fritz. Sando: An exten-
sible local code search framework. In Proc. of the 20th Int’l. Symp. on
the Foundations of Software Engineering, pages 15:1–15:2, 2012.

[12] D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. Vijay-Shanker. Using
natural language program analysis to locate and understand action-
oriented concerns. In Proc. of the 6th Int’l. Conf. on Aspect-oriented
Software Development, pages 212–224, 2007.

[13] M.-A. Storey, C. Treude, A. van Deursen, and L.-T. Cheng. The impact
of social media on software engineering practices and tools. In Proc. of
the Workshop on Future of Software Engineering Research, pages 359–
364, 2010.

[14] S. Thummalapenta, S. Sinha, D. Mukherjee, and S. Chandra. Automat-
ing test automation. Technical Report RI11014, IBM Research Division,
2011.

[15] C. Treude, M. Robillard, and B. Dagenais. Extracting development
tasks to navigate software documentation. IEEE Trans. on Software
Engineering, 2015. To appear.

[16] C. Treude and M.-A. Storey. Effective communication of software
development knowledge through community portals. In Proc. of the
8th joint meeting of the European Software Engineering Conf. and the
Symp. on the Foundations of Software Engineering, pages 91–101, 2011.


