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ABSTRACT

Numerous techniques involve mining change data captured in soft-
ware archives to assist engineering efforts, for example to identify
components that tend to evolve together. We observed that impor-
tant changes to software artifacts are sometimes accompanied by
numerous non-essential modifications, such as local variable refac-
torings, or textual differences induced as part of a rename refactor-
ing. We developed a tool-supported technique for detecting non-
essential code differences in the revision histories of software sys-
tems. We used our technique to investigate code changes in over
24000 change sets gathered from the change histories of seven
long-lived open-source systems. We found that up to 15.5% of
a system’s method updates were due solely to non-essential differ-
ences. We also report on numerous observations on the distribution
of non-essential differences in change history and their potential
impact on change-based analyses.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement

General Terms

Measurement, Experimentation, Algorithms

Keywords

Mining software repositories, software change analysis, differenc-
ing algorithms

1. INTRODUCTION

Source code repository systems have been in use since the 1970s
to keep track of the different versions of a system’s artifacts and,
by extension, of the changes made between versions [22]. Numer-
ous techniques now involve mining change data captured in soft-
ware archives to assist software engineering efforts. For example,
mining change data has been used to measure code decay in aging
systems [5], to predict defects in modules [10, 16], and to detect
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non-obvious relationships between code elements [8, 23, 25]. We
refer to approaches operating on change data as change-based ap-
proaches.

Typical version control systems store changes as line-based tex-
tual deltas between committed code files. In contrast, change-based
approaches generally aim to operate on more meaningful represen-
tations of change, such as, for example, the individual methods that
were updated as part of a developer commit to the repository. More
meaningful representations of software changes support more ac-
curate reasoning about software development activity and effort.

A critical problem for change-based approaches is thus to bridge
this conceptual gap between the low-level deltas stored in version
control systems and the abstractions used to represent software de-
velopment activity. A first step, implemented by most modern
change-based approaches, is to ignore trivial low-level changes,
like those induced by white spaces or other formatting-related mod-
ifications. The general assumption behind this strategy is that these
groups of low-level differences are less likely to yield meaningful
abstractions of the actual development effort behind a code change.
For example, many change-based approaches ignore trivial updates
when determining the set of methods that were modified as part of
a code commit.

As part of our ongoing investigation of software archives, we ob-
served that many additional kinds of minor (or non-essential) code
changes can also cause change-based approaches to infer inaccu-
rate high-level representations of software development effort. For
example, every time a developer performs a rename refactoring, all
methods that include references to the renamed element will also
be textually modified; a naive abstraction of these non-essential
rename-induced statement updates can then result in a bloated high-
level representation of the change that appears to span many lines
of code, methods, and files, despite corresponding to a single devel-
oper modification (that is generally a very simple tool-assisted op-
eration). Given the growing importance of change analysis in soft-
ware engineering, our long-term goal is to enable change-based ap-
proaches to incorporate information about the essentiality of code
changes into their analyses. With this information, change-based
approaches will be able to more precisely select the individual low-
level modifications they use to derive their high-level representa-
tions of development activity or effort.

We investigated the potential impact of non-essential differences
on the abstractions that are typically analyzed by many change-
based approaches. In particular, we sought i) to characterize the
prevalence of non-essential differences in change history, and, ii) to
measure their impact on the code churn and method updates asso-
ciated with code commits, two facets of code change that are con-
sidered in existing empirical studies involving change data [5, 16]
and change task oriented analyses [25].



Analyzing change history to detect the kinds of non-essential dif-
ferences mentioned above is far from trivial. An automated detec-
tion of non-essential differences requires both a characterization of
structural changes occurring within statements and an analysis of
their impact on the underlying system. In addition, to avoid recon-
structing an entire program snapshot for every committed change,
the impact of changes must be determined given only a change
set, or group of files that were co-committed by a developer [24].
We know of no existing tool that supports this type of precise sub-
statement-level change analysis on partial programs (change sets).
For example, although existing standalone syntactic- or token-based
differencing techniques can be used to process change sets and de-
tect cases of reference replacements within statements, none use
type resolution to precisely infer reference replacements that were
induced specifically by rename refactorings.

We developed tool support for detecting non-essential differences
in change sets mined from change history. Our technique identifies
cases where a modified program statement was updated by one or
more predefined types of fine-grained differences. The non-essen-
tiality of candidate statement updates is then verified by resolv-
ing and operating on the types of relevant sub-expressions within a
statement update. For example, our technique detects cases where
a statement was modified only because it contained references to
one or more renamed program entities. We investigated the preci-
sion of our technique and found that 98.8% of the method updates
it identified as non-essential were accurately classified.

We used our technique to analyze over 24 000 change sets from
the revision histories of seven long-lived open-source Java systems.
Based on the systems studied, our investigation found that between
2.6% and 15.5% of all method updates in a system’s change his-
tory consisted entirely of non-essential differences. We also ob-
served that these non-essential method updates can have a signifi-
cant impact on the kind of higher-level recommendations produced
by certain well-known change-based approaches. Specifically, we
observed that non-essential method updates can interfere with the
recommendations that might be produced by a standard method-
pair association-rule mining analysis in 26% of the cases where
the analysis makes at least one recommendation. Furthermore, we
found that the overall quality of the recommendations produced in
these cases was significantly improved after non-essential method
updates were no longer taken into consideration. These and addi-
tional insights regarding the prevalence of non-essential difference
in change histories are important to keep in mind when making de-
cisions based on change data.

This paper contributes a tool-supported differencing technique
for identifying non-essential code modifications in change histo-
ries, and a number of high-level observations characterizing the
prevalence of non-essential differences and their possible impact
on change-based approaches. Our observations are supported by a
detailed empirical investigation of over 24 000 change sets from the
revision histories of seven, long-lived, open-source Java systems.
Readers can download a version of our tool and the experimental
data behind our observations from our website. !

2. MOTIVATING EXAMPLE

Our motivation for studying non-essential differences stems from
our previous work on change task clustering, where we noticed that
non-essential method updates often generated meaningless associ-
ations between change sets [21].

We illustrate the concept of non-essential differences and their
potential for interfering with higher-level information extracted by
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change analyses with an actual change set retrieved from the re-
vision history of AZUREUS, a highly downloaded media sharing
application.” The change set includes modifications to 77 methods,
among other structural changes. The modified methods are spread
out across 55 classes, which are themselves spread out across 24
packages. The method modifications all involve structurally mean-
ingful updates to method invocations, if statement conditions, or
variable assignments. In all, over 700 lines of code are affected by
the change, none of them whitespace or documentation-related. All
of this information can be readily extracted using currently avail-
able automated differencing techniques.

As the change appears to be quite large, to span a significant
number of elements, and to feature non-trivial structural changes,
analyses operating at any of these levels of abstraction might infer
that the change is likely to introduce a bug [16] or be symptomatic
of a decaying system [5]. Other analyses might mine the many
pairwise associations between the modified methods and eventually
detect non-obvious dependencies between them [25]. However, the
developer who committed the changes characterizes the commit in
another way. Their commit comment reads: “[Renamed] az3 con-
stants class to ConstantsV3 to make it easier on my brain.” Indeed,
the developer renamed the Constants class to Constantsv3 and
then committed all files that were trivially modified because of ref-
erences to the Constants class.

Based on this manual assessment, automated interpretations of
this change set based on lines, fine-grained structural differences,
or the set of updated methods, are likely to yield an inaccurate in-
terpretation of the software development activity or effort behind
the change, and may thereby yield incorrect conclusions about po-
tential bugs, system complexity, or non-obvious associations be-
tween methods and change sets. In this case, a detection of rename-
induced and other non-essential differences would have supported
a more meaningful abstraction of the change set.

3. NON-ESSENTIAL DIFFERENCES

Existing tool-supported techniques can analyze change sets and
detect and eliminate trivial differences such as whitespace- and
documentation-related modifications [7]. Our goal is to measure
the impact of non-essential differences on change-based approaches.
We define non-essential differences to be low-level code changes
that are i) cosmetic in nature, ii) generally behavior-preserving,
and iii) unlikely to yield further insights into the roles of or rela-
tionships between the program entities they modify. We keep our
definition open-ended to emphasize that the true “essentiality”” of
code changes still depends on the individual contexts in which they
are studied. We focus on ones that are unlikely to capture meaning-
ful information about the development effort behind a change.

To help catalog the kinds of non-essential differences we studied,
we refer to two versions of the same code, shown below.

// Version N
Object field = ...

// Version N+1
Object m_field = ...

void sample () {
1 List 1 = ...
2 l.add(this.field);
3. m(l.size());
4 return;

} }

void sample () {
java.util.List list = ...
list.add(m_field);
int size = list.size();
m(size);

The two versions of the sample method exhibit a number of dif-
ferences. In the first line of version N, the local variable 1 is re-
named to 1ist and its declared simple type modified to its equiv-
alent fully-qualified type. In the second line, a trivial instance of
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the this keyword is removed. The second line is also textually al-
tered by the effects of a rename refactoring of the field attribute.
The third line is modified by a local variable extraction refactoring
that stores the input expression to m in a temporary variable size.
Finally, in the fourth line, a redundant return keyword is deleted.
Although all of these program differences may be of interest in
certain situations, we believe that they are unlikely to contribute
relevant information for many change-based approaches seeking to
measure meaningful software development effort. It would be un-
likely, for example, for a developer to perform the kinds of mod-
ifications affecting the sample method to advance the implemen-
tation of a cohesive change task, such as developing a new feature
or fixing a complicated bug. We further justify this reasoning by
considering each type of non-essential difference in isolation.

Trivial Type Updates

Textual updates to an entity’s declared type are non-essential if the
actual declared type is not affected by the update. Specifically, a
trivial replacement of a type’s simple name with its fully-qualified
name does not affect how the declared entity is handled at runtime.
We note that such changes cannot be detected without type resolu-
tion, since without type bindings, it would not be obvious whether
List refers to java.util.List or some other List type, e.g.,
java.awt.List.

Local Variable Extractions

Developers may improve the readability of code by using tempo-
rary variables to store expressions and using those variables instead
of the expressions in a single subsequent program statement. Such
local variable extraction refactorings are cosmetic in nature, have
no effect on a program’s behavior, and do not need to be performed
in the context of a related change task.

Rename-Induced Modifications

Whenever a developer renames a program entity (i.e., class, field,
method, parameter, or local variable), any code statement refer-
encing that entity will be textually modified as part of the rename.
These secondary textual changes are generally not relevant when
studying program differences, as they are only a necessary by-
product of existing program structure, which must be adapted to
avoid compilation or runtime errors. In fact, many IDEs, e.g. E-
clipse, even help developers perform rename refactorings by auto-
matically updating all references to renamed entities. These kinds
of automated reference updates are thus far less likely to contribute
meaningful insight about the development effort behind a change
than the actual renaming of the code element itself. Therefore, we
consider the actual renaming of the code element to be an essen-
tial change, but argue that the textual reference updates induced by
that renaming are non-essential. This argument echoes one made
in previous work by Neamtiu et al., which presents a differencing
technique that reports rename refactorings and all corresponding
rename-induced updates as a single difference between program
versions [17].

Trivial Keyword Modifications

In our investigations of Java code history, we encountered cases
where developers redundantly insert or delete instances of the this
keyword. In Java, prepending the this keyword to a program en-
tity only affects program behavior in a limited number of cases.’
In the sample method, the deletion of the this keyword has no

3Speciﬁcally, the this keyword is required to reference a field inside scopes found
to declare a local variable sharing the same name as the field.

effect on the behavior of that method. While changes involving the
this keyword might improve readability, they can be considered
non-essential in most contexts. In this category we also currently
also include trivial insertions or deletions of return statements at
the end of void-returning methods and trivial insertions or dele-
tions of default super invocations occurring at the top of default
constructors. In Java, such modifications have no effect on a pro-
gram’s behavior. We do not currently include other keyword up-
dates, such as those involving affecting the visibility, modifiability,
or overridability of a code entity.

Local Variable Renames

Developers may rename local variables only to increase the over-
all readability of the code. While a cosmetic change of this nature
might be interesting for a study of code readability, in the general
case it is typically unimportant to a change task or bug fix. In those
cases where a variable name update truly does imply a change in
the role of the variable, then this role change will be accompanied
by other essential code changes, e.g., modifications to method in-
vocations or control flow involving that variable.*

Whitespace and Documentation-Related Updates

Whitespace and documentation-based modifcations are already ig-
nored by other change analysis tools, such as CHANGEDISTIL-
LER [7]. In our investigation of non-essential differences, we took
steps to eliminate these modifications from our input data. We
thus only report on the prevalence and possible impact of the non-
essential differences outlined above.

4. DETECTION TECHNIQUE

All of the non-essential differences outlined in Section 3 occur
within programming language statements or expressions. Conse-
quently, to detect them in change history requires analyzing changes
at a level of granularity finer than statement differences. Detecting
the non-essential differences in our catalog also requires resolving
the type bindings of expressions within statements, a technically
challenging task given that the files analyzed are not part of a com-
plete and compilable system.’ For example, to detect trivial this
keyword insertions requires an analysis that detects not only the
additional this keywords, but also verifies that no type bindings
were altered by their insertion. Detecting non-essential changes
in version histories thus requires a differencing technique that is
both fine-grained (working at the level of expressions within state-
ments) and type-sensitive (to reason about the impact of changes on
the program behavior). Although existing change analysis tools al-
ready support fine-grained differencing of individual program state-
ments, we know of no change differencing tool that is both fine-
grained and type-sensitive at the expression (sub-statement) level.

To detect non-essential differences, we therefore developed a
mining technique that is both fine-grained and type-sensitive; we
implemented our technique in a tool called DIFFCAT. Similar to
existing change analysis tools, DIFFCAT takes a group of co-com-
mitted source files retrieved from a software repository (a change
set) and returns as output a description of the various structural
modifications characterizing that change set. In addition to previ-
ous techniques, however, our technique also uses type resolution
to further identify and label structural changes that are also non-
essential. For example, DIFFCAT detects and labels cases where

4 . . . .

In very rare cases, a variable renaming might cause the variable to shadow an ex-
isting variable. In these cases, our differencing technique classifies the rename as
non-essential and the resulting method update as essential.

5 . .
Software archives do not store enough meta-data to systematically regenerate a fully
built system to match each individual change in isolation.



a program statement was modified only by the trivial insertion of
one or more this keywords. DIFFCAT is currently implemented
to handle Java code stored in CVS and SVN repositories.

4.1 Reused Components

Working with program references requires type bindings, or ways
of resolving possibly ambiguous references to a program element
to the corresponding fully-qualified element name. Type bindings
are generally unavailable when working with partial programs, or
collections of code files with missing dependencies, like those re-
trieved as part of a change set from typical version repositories such
as CVS or SVN. Missing dependencies make it difficult to unam-
biguously identify the individual program entities being referenced
in various statements, thus restricting the amount of information
that can be inferred about those statements.

To help recover missing bindings, we use Partial Program Analy-
sis (PPA). PPA is a general technique for resolving bindings in par-
tial programs. In the case of Java, a recent implementation of PPA
has been shown to recover over 90% of missing bindings in par-
tial programs [2]. For example, using PPA allows change analyses
to confidently determine whether a newly inserted this keyword
affects the element reference to which it was prepended.

Our reused PPA implementation works with Abstract Syntax Tree
(AST) representations of Java code. AST representations of Java
files can easily be constructed using existing tool-support, such as
the Eclipse-based JDT-CORE plug-in. Consequently, given PPA’s
AST-based output, we decided to detect non-essential differences
using AST-differencing to more easily incorporate PPA-inferred
type bindings into our differencing technique. We decided against
using a other kinds of differencing techniques, e.g., token-based
ones, to avoid the conceptual challenge of working with multiple
program representations.

To further facilitate our detection of fine-grained non-essential
differences between ASTs, we use CHANGEDISTILLER, a state-
of-the-art tool that identifies statement-level structural changes be-
tween Java AST pairs [6, 7]. We enhanced the output computed
by CHANGEDISTILLER with PPA-inferred bindings and performed
additional processing to detect non-essential differences.

4.2 Identifying Modified Statements

CHANGEDISTILLER expresses differences between two source
code files as edit scripts, or sequences of edit operations (e.g., in-
sertions, deletions, or updates) involving structural entities at vary-
ing levels of granularity. In particular, CHANGEDISTILLER does
not express program updates at granularities finer than individual
program statements. Instead, it relies on a measure of textual sim-
ilarity between statement versions to detect cases where a state-
ment was modified, rather than inserted or deleted. This means
that, given a high enough textual disparity between statements,
CHANGEDISTILLER flags unmatched statements as deletions or
insertions, rather than updates. Although high textual disparity be-
tween candidate statement pairs is generally a good indication that
the pair corresponds to an insertion-deletion pair and not a modi-
fied statement, in some cases, high textual disparity between ver-
sions of modified statement can also arise because of non-essential
differences, e.g., rename refactorings involving textually dissimilar
names. For example, if a developer renames a field called o1d to
newValue and a local variable called val to arg, then the follow-
ing assignment statement pair

this.old = val; //vl newValue = arg; //v2

exhibits a high degree of textual disparity, despite being function-
ally identical. Given that all of the non-essential differences out-

lined in our catalog occur within modified statements, we were re-
quired to address this challenge to avoid mislabeling a potentially
large amount of non-essential differences.

4.3 Approach

We observed that the challenge described in Section 4.2 typi-
cally arises because of rename refactorings. Rename refactorings
can increase both the textual disparity between individual program
statements and the general difficulty of operating on AST-based
representations of code change. For example, discovering the non-
essential statement update outlined above is more difficult than dis-
covering the same update minus the effects of rename refactorings:

this.old = val; //vl old = val; //v2

because the latter update exhibits a higher degree of textual similar-
ity, making it easier to identify it as a statement update in the first
place. Furthermore, the latter update only textually differs because
of this keyword deletions, which, in our setting, makes it easier
to detect and verify the non-essentiality of the statement update.

Our technique for detecting non-essential differences is based
on the realization that the effects of rename refactorings should be
eliminated when differencing source files. We thus use a two-phase
tree-differencing technique to identify fine-grained modifications
between source files and to label those that are non-essential. In the
first phase, we use CHANGEDISTILLER and our own analyses to
detect rename refactorings. We then roll back those renames in the
files we analyze by resetting the textual descriptors of all renamed-
affected program references to display their old names. We then re-
run CHANGEDISTILLER on the modified files and further process
the detected updates to identify those that were affected only by the
non-essential differences outlined in our catalog.

4.4 Implementation

We reuse infrastructure provided by SEMDIFF [3], a change anal-
ysis tool for studying framework evolution. SEMDIFF retrieves and
represents change sets as collections of file pairs. Each file pair cor-
responds to the two versions of a file found to have been modified
as part of the change set. Each file-pair is provided to DIFFCAT as a
pair of ASTs. With DIFFCAT, we then identify fine-grained struc-
tural differences (including non-essential ones) through a sequence
of nine high-level operations. In the description of this sequence,
we assume that identified differences are stored in a set, which we
refer to as changes. We proceed as follows:

1. We run PPA on all input ASTs to resolve type bindings in
statements and expressions.

2. We use CHANGEDISTILLER to identify structural differences
between AST pairs. We collect all method and field rename
refactorings from these differences.

3. We add to the list of rename refactorings by detecting re-
names of classes and local variables, as well as additional
cases of field renames.

4. We process AST pairs representing renamed classes to detect
rename refactorings within the renamed classes themselves.

5. All detected rename refactorings are stored in changes.

6. Using the renames in changes, we traverse the ASTs of each
modified file pair to roll back the textual identifiers of all
element references affected by a rename.

7. We re-run CHANGEDISTILLER on the modified AST pairs
and collect all reported structural differences.

8. We process the structural differences and identify those that

are non-essential. We store all structural differences in changes.



9. We reconcile changes inferred in Step 2 that were no longer
reported in Step 7 because of our rename rollback. We label
these changes as non-essential and add them to changes.

We provide additional details about our procedure below.

Detecting Class Renames

CHANGEDISTILLER does not identify class renames. We detect
these by detecting class insert-delete pairs sharing a high proportion
of identical field and method signatures (> 0.5).

Detecting Field Renames

CHANGEDISTILLER detects field renames by comparing their dec-
laration statements using the Levenshtein similarity measure. In
certain cases, CHANGEDISTILLER is unable to recognize a renamed
field because of a high textual disparity between its declaration
pairs. We try to augment the number of detected field renames
by iterating over all possible field insert-delete pairs within each
class and checking whether references to the old field were always
replaced by references to the new field. We check this condition
in all statement updates found in Step 2. We note that our analy-
sis rejects a field insert-delete candidate if even a single statement
update does not satisfy our criterion.

Rename Reconciliation

Step 9 is necessary to properly identify rename-induced non-essen-
tial differences that were eliminated by the rename rollback in Step
6. For example, the rename-induced statement update

old = val; //vl newValue = val; //v2

will be detected in the first CHANGEDISTILLER pass because of
the textual disparity between the o1d and newvalue entity. How-
ever, after rename rollback, the two statements will be textually
equivalent and the update will no longer be detected by CHANGE-
DISTILLER in the second pass. To cope with this, we collect all
statement-based structural differences from Step 2 and verify whether
these were again detected in Step 7. If a change was no longer
detected in the second phase, we conclude that the change was re-
name-induced and add it to our list of detected changes. Without
this additional step, our procedure would miss these updates.

5. EMPIRICAL STUDY

We sought to understand the potential impact of non-essential
differences on higher-level abstractions of software development
effort. To this end, we used DIFFCAT to analyze change sets from
seven open-source Java systems and to collect essential and non-
essential differences between committed file-pairs. We then deter-
mined i) the relative code churn associated with non-essential dif-
ferences and ii) how often change sets include methods that were
modified only by non-essential differences. We used our results
to estimate how non-essential differences would interfere with the
information measured by change-based approaches.

5.1 Setup

Table 1 describes the systems used for our evaluation. Columns
in the table include the number of change sets studied for each sys-
tem (Chg. Sets) and the number of days spanned by those change
sets (Days). We studied the same systems as those analyzed in a
prior study on change clusters [21] to help us assess the effects of
non-essential differences on the results of client analyses. We stud-
ied all change sets that occur within the ranges reported in Table 1.

We used DIFFCAT to determine the differences within change
sets. Like other differencing tools, DIFFCAT does not report any

Table 1: Characteristics of Target Systems

System First Last Days Chg. Sets
Ant 6 Dec 2001 17 Jul 2007 2,048 3,853
Azureus 12 Nov 2003 14 Jul 2004 244 3,103
Hibernate 4 Dec 2003 19 Aug 2005 623 3922
JDT-Core 17 Jan2002 15 Jul 2003 544 4192
JDT-UI 20 Aug 2001 15 May 2002 268 3081
Spring 1 Feb 2004 6 Feb 2006 736 3627
Xerces 17 May 2001 8 Nov 2007 2366 2681
Total 6463 24459

differences arising from white spaces. We also ignored all differ-
ences affecting comments and Javadocs, i.e., we did not consider
whitespace-, documentation-, or comment-based differences in any
of our results. We used the remaining differences to compute each
change set’s total code churn (LOC added, deleted, or modified)
and to identify the methods that were modified by each change set.
We then identified all non-essential differences to compute non-
essential code churn and to identify which methods were modified
only by non-essential modifications.

We computed code churn by considering the LOCs involved in
each reported structural difference. Our code churn measure thus
differs slightly from that which would be computed by purely line-
based differencing techniques. For example, because of our rename
rollback, DIFFCAT may identify that a LOC was updated, while
other differencing techniques may report this difference as a LOC
insertion-deletion pair. We chose to use DIFFCAT to compute churn
to obtain the most precise estimate of the true churn arising from
non-essential differences.

A change set was considered to modify a method if it updated the
body of that method via one or more structural differences (i.e., we
never considered documentation-related differences as updates to a
method). For simplicity, we refer to the number of methods found
to have been updated by a change set as the number of method
updates for that change set. We labeled a method update as non-
essential if the method update consisted only of non-essential dif-
ferences. All other method updates were considered essential. The
total number of method updates for a system corresponds to the
total number of method updates found across all change sets.

We explicitly tracked method signature refactorings throughout
our evaluation, i.e., we did not treat methods modified by such
refactorings as method insertion-deletion pairs. If a method’s sig-
nature and body were both updated by a change set, then we in-
cluded the refactored method within the set of method updates for
that change set. If only the method’s signature was updated, then
we did not include the method within the method update count for
that change set. We did not include method deletions or insertions
within the method update count because our investigation focused
on the modified methods for each change set.

We ran PPA and CHANGEDISTILLER on their default settings.

5.2 Prevalence of Non-Essential Differences

Table 2 records the overall code churn for each target system
(in KLOC). The table shows the total number of code lines that
were deleted (-), inserted (+), or modified (~) for each system. It
shows how many of the modified lines were caused by three ma-
jor classes of non-essential differences detected by our approach:
differences induced by renames (R), trivial keyword updates (K),
and local variable refactorings (L). The “L” column aggregates lo-
cal variable extractions, local variable renames, and trivial updates
to local variable declared types. The combined non-essential line
modifications are reported in the final column (Non Ess.). The per-



Table 2: Code Churn in Target Systems (in KLOC)

Table 3: Method Updates in Target Systems

System - ~ + R K L NonEss. Total Non-Essential R-Induced Keyword Local
Ant 113 35 301 6.8 8 4 8.0(229%) Ant 17792 2759 (15.5%) 2227 531 110
Azureus 49 95 108 2.6 0 1 27(2.8%) Azureus 8731 229 (2.6%) 227 1 5
Hibernate 63 35 196 29 0 2 31(89%) Hibernate 15881 1153 (7.3%) 1136 6 52
JDT-Core 47 16 73 1.8 6 2 260163%) JDT-Core 8837 673 (7.6%) 542 133 98
JDT-UI 72 23 100 13 0 .1 14(6.1%) JDT-UI 9681 426 (4.4%) 424 0 13
Spring 43 27 126 3.8 6 2 4.617.0%) Spring 11047 1715 (15.5%) 1508 216 74
Xerces 62 15 196 1.0 .0 1 1.1(7.3%) Xerces 8409 256 ( 3.0%) 250 6 5
Total 449 246 1100 202 2.0 13 23.59.6%) Total 80378 7211 (9.0%) 6314 893 357

centages displayed in this column correspond to the proportion of
all modified code lines (~) that were found to be non-essential.
Table 2 helped us derive the following observation:

Between 2.8% and 22.9% of modified code lines were updated
only via non-essential differences.

This suggests that for some systems, non-essential differences can
significantly increase line-modification-based abstractions of change.

From the table, we also see that across the target systems, a com-
bined 246 kLOC were modified. We see that 23.5 (9.6%) of the
total 246 modified kLOC were modified only by non-essential dif-
ferences. Based on previous definitions of total code churn [16], we
also see that only 23.5 (1.7%) of the overall (1 100 + 246 =) 1 346
churned kLOC were modified only by non-essential differences,
because the large number of added code lines dwarfs the impact on
existing, changed lines. This suggests that the kinds of non-essen-
tial differences studied in our investigation do not affect measures
of total code churn (that include added and modified lines).

Table 2 also enabled us to infer the following property:

Out of the non-essential differences currently detected by our
approach, most were induced by rename refactorings or up-
dates involving trivial this keywords.

In particular, of the 23.5 non-essential KLOC reported in the table,
86% consisted of rename-induced statement updates, 9% of trivial
keyword updates, and the remaining 5% of local variable refac-
torings. A further breakdown of the individual non-essential differ-
ence classes revealed that more than 99% of non-essential keyword
updates consisted of trivial this keyword insertions and deletions,
over 90% of all detected local variable refactorings consisted of
local variable renames, and that almost no variable refactorings
(< 1%) involved trivial local variable type updates.

Non-Essential Method Updates

Table 3 records the total number of method updates that were de-
tected for each target system. The table shows the total number
of method updates (Total) and the number of those updates that
were induced entirely by non-essential differences (Non-Essential).
It also records how often different classes of non-essential differ-
ences contributed to a non-essential method update. We recorded
this number for rename-induced updates (R-Induced), keyword up-
dates (Keyword), and local variable updates (Local). We note that
the sum across the individual columns is higher than the total num-
ber of non-essential updates because some non-essential method
updates involved multiple classes of non-essential differences.
From the table, we see that out of a combined 80 378 method
updates across the target systems, 7211 (9.0%) were non-essential.

Table 4: Non-Essential Methods in Change Sets

System Total Non-Essential R-Induced Keyword Local
Ant 2579 283 (11.0%) 263 86 39
Azureus 2866 65 (2.3%) 63 1 4
Hibernate 3024 303 (10.0%) 295 6 35
JDT-Core 2015 175 (8.7%) 153 33 45
JDT-UI 2152 145 (6.7%) 143 0 14
Spring 2400 454 (18.9%) 396 100 62
Xerces 2037 77 ( 3.8%) 73 5 5
Total 17073 1502 (8.8%) 1386 231 204

The table also enabled us to make the following observation:

In the individual systems analyzed, between 2.6% and 15.5%
of all method updates were non-essential.

This suggests that for some systems, non-essential differences can
distort method-based abstractions of change span.

Distribution of Non-Essential Method Updates

Table 4 shows how many of the analyzed change sets included
non-essential method updates. The table records the total number
of change sets that included modifications to at least one method
(Total). The remaining columns record the number of change sets
found to include at least one non-essential method update (Non-
Essential), one non-essential method update featuring a rename-in-
duced non-essential difference (R-Induced), a keyword difference
(Keyword), or a local variable refactoring (Local).

From the table, we see that out of 17073 change sets found to
modify at least one method, 1502 (8.8%) included at least one
non-essential method update. The table also enabled us to make
the following observation:

In some systems, non-essential differences distorted method-le-
vel change representations of over 10.0% of change sets.

This suggests that non-essential differences can impact method-le-
vel representations of a non-negligible number of change sets.

We next observed that method updates in smaller change sets
were less likely to be non-essential than method updates in larger
change sets. For example, we found that only 2.6% of method up-
dates within “small” change sets (e.g., those modifying 1 to 3 meth-
ods) were found to be non-essential. This ratio increases to 7.8%
for “regular” change sets (e.g., those modifying 4 to 19 methods)
and 14.2% in “large” change sets (e.g., those modifying 20 or more
methods). We observed similar proportions for other ranges. This
data enabled us to draw the following conclusion:



Non-essential differences had the highest impact on method
level representations of larger change sets.

This observation is important because it means that change-based
approaches could both eliminate a majority of non-essential method
updates and mitigate their most significant relative impact on me-
thod-level representations by using alternate differencing strategies
for larger change sets. For example, we found that aside from
featuring high densities of non-essential method updates (14.2%),
change sets modifying 20 or more methods also contained an over-
all majority (55.9%) of all detected non-essential method updates.
Change-based approaches could exploit this general observation
when scanning change sets by first using a lightweight differencing
technique to compute a change set’s method level change span and
then switching to a more sophisticated differencing technique only
in cases where the measured change span exceeds a certain thresh-
old, e.g., 20. This kind of strategy is advantageous because larger
change sets tend to appear relatively infrequently in change history
(e.g., in the data we analyzed, only 2.4% of all change sets modify
20 or more methods), which means change-based approaches could
avoid the computational burden of partial program analysis in most
cases, while still detecting a relevant proportion of non-essential
method updates within change sets.

Finally, we observed that non-essential method updates were in-
terleaved with other essential method updates in a majority (79%)
of cases. This result corroborates findings of a previous investi-
gation by Murphy-Hill et al., which showed that developers often
interleaved refactorings with other modifications [15]. These obser-
vations suggest that in cases of interleaved changes, a fine-grained
detection of non-essential differences can help change-based ap-
proaches obtain precise representations of the meaningful software
development work behind a change (as opposed to capturing the
effects of tool-assisted refactorings or trivial keyword insertions).

5.3 Impact of Non-Essential Differences

To help us further asses the possible impact of non-essential dif-
ferences on the results of existing change-based approaches, we
implemented a simple method-pair association rule mining analy-
sis similar to that of Zimmermann et al. [25] and evaluated how
the quality of the recommendations produced by our analysis was
affected by the kinds of method updates used to train the analysis.
Specifically, we sought to compare the quality of the recommenda-
tions produced when all method updates were used to learn rules
against their quality when only essential updates were used.

Our analysis takes as input a given sequence of change sets,
records the methods that were modified as part of each change
set, and then uses this information to produce recommendations
for a developer. Specifically, similar to Zimmermann et al.’s ROSE
tool [25], our analysis supports developers who have modified some
initial method m; as part of some change set ¢ and who would like
to find additional methods m; that also need to be changed along
with method m;. Our analysis helps developers by inferring rules
(m; — my;) from which we can return a ranked list of methods
m; that were found to have been frequently co-modified with m; in
prior change sets Hy, := to,...,tx—1. We rank recommendations
(m;) for a change set ¢, based on the confidence of the inferred rule
(m; — m;). We use their support values as tie breakers. Finally,
we also filter out recommendations with confidence lower than 0.1
and cap the number of recommendations at ten [25].

To compare the quality of the recommendations produced by our
analysis when trained using all methods (the regular setup) against
their quality when we train it only on essential methods (our pro-
posed setup), we compared several metrics used by Zimmermann

Table 5: Recommendation Quality
Setup Tot Rec Feedback Prec L3 Only Err

Reg 93576 10214 0.219 0.442 0.220
Prop 81162 9242 0.242 0.475 0.183

et al. in their evaluation [25]. To compute these metrics, we re-
played the change history intervals of our seven target systems (see
Table 1) and determined which ranked recommendations m; our
analysis would have made for method updates m; in ¢ w.r.t. rules
learned up until then from Hj,.% We then recorded whether m; was
also updated as part of i and used this to tag each ranked seed-re-
commendation pair (m;, m;) in ¢y as either “helpful” or not. This
produced two sets of non-empty ranked recommendation lists for
38 047 different seed methods. We found that the recommenda-
tions were different in 10 218 cases, or for 26.9% of those 38 047
seed methods where there was at least one recommendation. We
then compared the quality of the recommendations for these 10 218
cases.
Our metrics allowed us to to make the following observation:

For those changed methods for which at least one recommenda-
tion was made by our analysis, removing non-essential method
updates improved the overall precision of the recommendations
by 10.5% and decreased their recall by 4.2%

Table 5 presents this observation in more detail. For each setup,
the table records the total number of recommendations made by
our approach (Tot Rec), the number of method changes for which
at least one recommendation was made (Feedback), and the pro-
portion of recommendations that were found to have been help-
ful (Prec). It also records the proportion of changed methods for
which at least one helpful recommendation was found in the top
3 recommendations (L3) and the proportion for which no helpful
recommendations were made (Only Err).

From the table, we see that the precision of the approach im-
proved by (.242/.219 ~) 10.5% and its total number of helpful
recommendations decreased from (.219 x 93576 =) 20501 to
(.242 x 81162 =)19 631, or by around 4.2%. We also see that the
proportion of changed method for which at least one helpful recom-
mendation was found in the top three recommendations increased
by (.475/.442 =) 7.5% and that the proportion for which only er-
roneous recommendations were made decreased by (.22/.183 =)
20.2%. Hence, given this general reduction in the number of false
positives produced by our approach, and despite the slight loss in
recall, we argue that the overall quality of the recommendations
produced by our association analysis was improved after we re-
moved non-essential method updates from consideration.

5.4 Precision of the Detection Technique

We performed a manual inspection to verify the precision with
which DIFFCAT identified rename refactorings and non-essential
method updates. We focused on non-essential method updates,
rather than all reported non-essential differences, because erroneous
classifications of method updates are more likely to have a negative
influence on the representations used by change-based approaches
than erroneous classifications of isolated statement updates.

To select change sets for a given system, we first sorted the sys-
tem’s change sets according to the number of non-essential method
updates they contained. We then went down this list in descending

6We only considered essential method updates as candidate seeds to eliminate all spu-
rious methods that were only indirectly modified via one or more rename refactorings,
and hence not legitimate candidate seeds for our experiment.



Table 6: Characteristics of Selected Change Sets

System CS NEMs CR MR FR PR VR
Ant 29 1386 0 46 813 208 103
Azureus 4 113 2 28 3 2 31

Hibernate 33 580 30 134 52 88 24
JDT-Core 16 336 1 10 47 135 74
JDT-UI 23 213 29 57 14 42 28

Spring 51 857 44 240 134 469 43
Xerces 11 132 13103 26 18 1
Total 167 3617 119 618 1089 962 304

Table 7: Precision of the Technique (in %)

System NEMs CR MR FR PR VR
Ant 99.9 nfa 956 999 100 90.3
Azureus 100 100 100 100 100 83.9

Hibernate 99.7 96.7 888 94.0 909 70.1
JDT-Core 99.1 100 60.0 957 100 &9.1

JDT-UI 933 724 737 500 476 679
Spring 97.7 931 867 978 919 884
Xerces 977 100 98.1 962 944 100
Total 98.8 899 885 987 928 855

order and selected all change sets until we had accounted for half
of all the non-essential method updates within the system. In this
way, we limited our manual inspection to 167 change sets across
the seven systems.

Table 6 records, for each system, the number of change sets stud-
ied (CS) and the number of non-essential method updates that were
detected by DIFFCAT. It also records the number of class, method,
field, parameter, and variable rename refactorings (CR, MR, FR,
PR, VR) that were detected by DIFFCAT. We investigated the cor-
rectness of these reported refactorings and non-essential method
updates. We assessed reported rename refactorings by carefully in-
specting all available code, the relative placement of inserted and
deleted entities within code, documentation, and the commit com-
ment of each change set. We used our rename classifications to
judge the correctness of rename-induced statement updates that
were detected by DIFFCAT. We used the correctness of rename-
induced statement updates and other non-essential differences to
judge the correctness of each non-essential method update. Based
on our manual investigation, we were able to assert that:

DIFFCAT correctly classified non-essential method updates
98.8% of the time.

Table 7 presents the precision of our detected entity renames and
non-essential method updates in more detail. The table displays the
proportion of correct classifications for each of the results reported
in Table 6. From the table, we see that the overall precision of
our approach for rename detection ranges from 85.5% (variable
renames) to 98.7% (field renames). The table also shows that our
approach identified non-essential method updates within individual
systems with a precision ranging from 93.3% to 100%.

The precision of non-essential method updates was higher than
that of detected rename refactorings because only a small num-
ber of all erroneously classified insertion-deletion pairs actually re-
sulted in erroneously classified statement updates, and only a few
of those statement updates were sufficiently isolated within meth-
ods to cause an entire method update to be erroneously classified.

5.5 Discussion

Non-Essential Differences

The true “essentiality” of code differences, method updates, and
pairwise method associations is tied to the specific goals of indi-
vidual change-based approaches. We believe that accounting for
the kinds of non-essential method updates detected by our approach
will be most useful for change-based approaches that aim to ana-
lyze only specific classes of software development effort, such as
effort related to feature implementations or bug fixes. The ulti-
mate goal of our research is to enable change-based approaches
to more precisely select the low-level modifications on which they
base their higher-level change representations.

Our current catalog of non-essential differences did not include
a number of additional fine-grained differences that may be con-
sidered non-essential in some contexts. For instance, change-based
approaches might also be interested in ignoring updates involving
trivial final keywords in local variable declarations, redundant
class casts, or other updates to code that are less likely to pro-
vide meaningful insight into the kind of development work that is
of interest to these approaches. Ideally, change-based approaches
should be able to parameterize their change representations to in-
clude only those code changes that are most relevant for their anal-
yses. Because the types of non-essential differences that can be
detected is open, it should be noted that the numbers we report are
an underestimate of all the possible non-essential changes that may
exist in the histories of the software systems we studied. More-
over, we did not attempt to estimate the recall of our technique. In
general, we designed the technique to be precise (i.e., to character-
ize differences as non-essential only in the presence of strong evi-
dence). For this reason, hard-to-classify differences that may turn
out to be non-essential in practice would not have been included in
our results, further contributing to our numbers representing a low-
er-bound estimate of the prevalence of non-essential differences.

Our empirical investigation produced a number of observations
about non-essential differences that we believe are relevant to a va-
riety of change-based approaches. For example, we observed that
between 2.6% and 15.5% of a system’s method updates can be de-
scribed exclusively in terms of non-essential differences, and that
these kinds of method updates interfere with a non-negligible num-
ber of frequent pairwise method associations supported by change
data. Eliminating non-essential method updates should thus have a
positive impact on the results of change-based approaches seeking
to detect meaningful associations between method pairs. Based on
other observations, we also expect non-essential method updates to
be most relevant for change-based approaches that do not specif-
ically pre-filter large or modification-intensive change sets from
their analyses.

Generalizability of the Results

Our investigation focused on seven open-source Java systems. We
expect our observations on non-essential differences to most read-
ily generalize to other systems of similar size and developed using
similar development practices as those used by the developers of
our studied target systems. The systems we analyzed are all devel-
oped in association with major open-source software distributors
(Spring, Apache, JBoss, and Eclipse), except for AZUREUS, the
development of which is coordinated by a digital media technol-
ogy company (Vuze). All analyzed systems included code com-
mits from between 10 to 23 contributors, except for JDT CORE,
which included commits from just six. The sizes of the investigated
projects are in the order of between 100 and 500 kLOC. Our re-
sults may therefore not generalize to projects featuring significantly



larger code bases or development teams, or those following more
tightly regimented development practices. Systems developed in
other programming language may not exhibit similar proportions
of non-essential differences as those reported in our investigation.

6. RELATED WORK

Our investigation of non-essential differences in change history
complements existing research that seeks to increase the precision
with which software changes can be abstracted and incorporated
into software engineering tools.

Differencing Tools

Our research is related to existing general-purpose differencing tools
that operate on various program representations (e.g., text or Ab-
stract Syntax Trees) and at different levels of granularity (e.g., lines
or element references) to align code elements between program ver-
sions [12]. In contrast, our goal is to identify changes between code
elements and to also classify them in terms of their relevance to
higher-level representations of development effort.

Our differencing tool builds specifically on CHANGEDISTILLER,
a tool-supported differencing technique that identifies statement-
level differences between ASTs [7]. Like other tools, CHANGE-
DISTILLER ignores whitespace-related differences and identifies
documentation-related updates. Our approach extends its technique
by using type resolution to detect non-essential differences.

Other tools have also focused on eliminating spurious textual
differences between programs. For example, similar to our work,
Neamtiu et al. developed an AST-based differencing technique that
compares program snapshots and detects rename refactorings and
rename-induced statement updates [17]. In contrast, we describe
a more general category of change that includes rename-induced
updates and other non-essential differences. We also detect such
changes in individual change sets, not between snapshots.

Our use of partial program analysis [2] to infer type bindings and
support program differencing at the granularity of referenced pro-
gram elements echoes previous work by Dagenais and Robillard on
framework evolution [3]. However, instead of operating on differ-
ences between call graphs to detect call-change relations, we work
with fine-grained modifications to detect non-essential differences
occurring at the sub-statement level.

Code Clone Detection

Our work on detecting non-essential differences complements re-
search on code clone detection. Similar to clone detection, our
aim is to detect pairs of code fragments (e.g., methods) that are
identical modulo non-essential differences. In particular, all of the
non-essential differences currently detected by our approach are or
could be used by existing code clone detectors to detect similar pro-
gram fragments [1]. However, the converse is not true, i.e., clone
detectors generally ignore additional kinds of differences that we
consider to be essential. For example, a clone detector might de-
tect code fragments that differ only by the insertion of an addi-
tional method invocation or updated variable assignment, whereas
we consider such updates to be essential.

Higher-Level Structural Patterns

Our detection of non-essential differences complements existing
approaches that summarize groups of low-level changes in terms of
higher-level patterns. Such approaches include performing origin-
analysis to detect method splits [9], refactoring detection tools [4],
or research on identifying recurring bug fixes in change data [18].
Our work complements these approaches by classifying specific

groups of low-level changes as non-essential differences. Further-
more, although we currently partly rely on CHANGEDISTILLER to
detect rename refactorings, we could also extend our current detec-
tion of non-essential differences to incorporate renames detected
by other tools. Other work with goals similar to our research in-
cludes Kim and Notkin’s approach for discovering groups of low-
level changes exhibiting logical high-level structural patterns [13].
The abstraction of changes used by their tool (LSDIFF) could also
be used to help change-based approaches ignore groups of system-
atic updates involving only non-essential differences. However, L-
SDIFF currently processes only coarse-grained differences between
programs and is implemented to handle program snapshots, not
change sets. A detection of fine-grained type-resolved structural
differences within change sets could enable LSDIFF to extend its
rule generation to cover broader classes of changes and enable it to
operate on individual developer commits.

Impact of Code Changes

Our detection of non-essential differences is related to approaches
that measure the possible impact of changes on the underlying sys-
tem. These approaches can warn developers about changes that are
likely to introduce bugs [14] or affect program behavior [19]. Our
differencing technique complements these approaches by identify-
ing low-level changes that are unlikely to introduce bugs or require
extensive re-testing.

Differential symbolic execution (DSE) also identifies a poten-
tially unlimited number of classes of non-essential method updates
by identifying updates that have no impact on a method’s symbolic
execution summary, e.g., trivial keyword insertions [19]. Alterna-
tively, a detection of non-essential changes could help DSE ignore
certain groups of modified methods.

Significance of Low-Level Change Types

Our investigation of non-essential differences is related to a previ-
ous case study by Fluri and Gall, which showed that an interpreta-
tion of a change set’s “significance” is tied to the particular repre-
sentation with which its low-level deltas are represented [6]. Sim-
ilarly, we also measured how higher-level change representations
can be impacted by different low-level change characterizations.
In their work, Fluri and Gall specifically contrasted a purely line-
based representation of change significance against one based on
their taxonomy of fine-grained structural differences. In contrast,
we compared non-essential modifications against fine-grained struc-
tural differences and by evaluating impact in the more concrete
terms of a method level representation, as opposed to a general
notion of significance. Furthermore, their proposed significance
measure of individual change types is partly based on their likeli-
hood of inducing changes in other entities. In contrast, our notion
of non-essential imposes stricter conditions on individual changes
that are partly based on type bindings and on the likelihood that the
change is relevant to higher-level representations of software devel-
opment effort. We also implemented a novel differencing technique
to detect non-essential differences, which we used to further char-
acterize their impact in an empirical investigation of a large number
of change sets retrieved from multiple open-source systems.

Classifications of Development Activity

Our investigation of non-essential differences is related to existing
approaches characterizing the development activity behind changes.
These include an approach by Robbes and Lanza for eliciting high-
er level properties of changes made during development sessions [20].
As part of this approach, all development activity is directly moni-
tored, a strategy that could also be adapted to identify non-essential



differences as they happen. Other approaches include the use of
machine learning on commit metadata (e.g., commit comments)
to classify large commits into different maintenance categories, in-
cluding code cleanups [11]. Detecting non-essential changes within
change sets could result in a more precise classification of code
cleanups than one based on commit metadata alone.

7. SUMMARY

Numerous techniques involve mining change data captured in
software archives to assist software engineering efforts. We de-
scribed non-essential differences, or minor modifications stored in
software archives that can cause inaccuracies in high-level inter-
pretations of software development effort. We developed a differ-
encing technique that detects non-essential differences in change
histories and used our technique to conduct an empirical investiga-
tion of change data retrieved from seven open-source Java systems.
Our evaluation found that between 2.6% and 15.5% of all method
updates consisted entirely of non-essential modifications, and that
these affected the association rules that can be mined from change
data. These observations should be kept in mind when interpreting
insights derived from change histories.
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