
Moving into a New Software Project Landscape

Barthélémy Dagenais†∗, Harold Ossher‡, Rachel K. E. Bellamy‡, Martin P. Robillard†,
Jacqueline P. de Vries‡

School of Computer Science† IBM T.J. Watson Research Center‡
McGill University P.O. Box 704

Montréal, QC, Canada Yorktown Heights, NY 10598
{bart,martin}@cs.mcgill.ca {ossher,rachel,devries}@us.ibm.com

ABSTRACT
When developers join a software development project, they find
themselves in a project landscape, and they must become familiar
with the various landscape features. To better understand the nature
of project landscapes and the integration process, with a view to im-
proving the experience of both newcomers and the people responsi-
ble for orienting them, we performed a grounded theory study with
18 newcomers across 18 projects. We identified the main features
that characterize a project landscape, together with key orientation
aids and obstacles, and we theorize that there are three primary
factors that impact the integration experience of newcomers: early
experimentation, internalizing structures and cultures, and progress
validation.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management

General Terms
Human Factors

1. INTRODUCTION
Software developers working on a project effectively inhabit a

project landscape. They are familiar with its features, such as the
product architecture, the team communication strategies and the de-
velopment process, and they know the shortcuts and the commonly-
traveled paths. Newcomers are explorers who must orient them-
selves within an unfamiliar landscape. As they gain experience,
they eventually settle in and create their own places within the
landscape. Like explorers of the natural landscape, they encounter
many obstacles, such as a culture shock or getting lost without help.

We conducted a qualitative study to better understand what proj-
ect landscapes look like and how newcomers explore them. Think-
ing of a project as a landscape, and integration of newcomers as
the process of settling into that landscape, changes what we per-
ceive to be important and helps us see new ways of aiding new-
comers. From a newcomer’s perspective, it emphasizes the pro-
∗This research was conducted while the author was working at the
IBM T.J. Watson Research Center.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE 2010 Cape Town, South Africa
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

cess of learning about a project, and how that process unfolds over
time. From the perspective of someone helping newcomers set-
tle in, the landscape metaphor reveals the need to show them the
commonly-traversed routes, to help them learn to interpret aspects
of the landscape unique to the project, and to introduce them to
the customs of the people who inhabit the landscape. It also sug-
gests that if the community wants to be welcoming to newcomers,
they need to be tolerant of cultural faux-pas, be sensitive to mis-
steps caused by a newcomer’s lack of understanding, take the time
to understand why newcomers get lost in their landscape, and add
readily-interpretable signposts. Such signposts are especially im-
portant at cross-roads, i.e., places with choices where others have
tended to get lost. Identifying what counts as a cross-roads and
what characterizes the parts of a project that need signposts can be
aided by studies such as that presented here.

Specifically, we were interested in answering three main research
questions: what are the key, prominent features in a project land-
scape, what orientation obstacles do new team members face, and
what orientation help can be provided? We interviewed 18 devel-
opers and team leaders across 18 projects at IBM during the last
year to answer these questions.

Following these interviews, we theorized that there are three
main factors that impact how newcomers settle into a project land-
scape: early experimentation, internalizing structures and cultures,
and progress validation. We also identified the landscape features
that newcomers learned while moving into new project landscapes
and we observed how the features facilitated or hindered the new-
comers’ integration. When we presented the results of our study to
seven of the participants, they all agreed that the factors accurately
represented their experiences as newcomers and that application of
our findings would have eased their integration.

In the past, studies on project integration have been performed
with new employees joining their first software development proj-
ects [2, 15]. Because these studies were performed with junior and
recently-hired developers, many of the difficulties they encountered
related to the newness of the corporate culture and the difference
between academic and industrial environments. We were interested
in understanding specifically the project landscape, independently
of the circumstances related to the first-time transition of personnel
into an industry environment. To this end, we focused this study
on developers with varying degrees of experience in the field and
within their company who were joining on-going projects in the
company. We reported preliminary results at a workshop [6].

The contributions of this paper include a theory, grounded in em-
pirical data, of how newcomers integrate into a project landscape,
and a characterization of project landscapes as seen by newcomers.

We begin by summarizing the method we used to perform this
study, in Section 2. We characterize project landscapes by present-

1

ing the main features and their roles in the integration of newcomers
in Section 3, and describe the three factors impacting the integra-
tion of newcomers in Section 4. We present how we evaluated the
credibility and quality of our results in Section 5, then cover the
related work in Section 6 and conclude in Section 7.

2. METHOD
2.1 Grounded Theory

We based our study on grounded theory as described by Corbin
and Strauss [4]. Grounded theory is a qualitative research approach
that employs theoretical sampling and open coding to formulate a
social theory “grounded” in the empirical data. For an exploratory
study like ours, grounded theory is well suited because it proposes
to start from general research questions and refine the questions,
and the instruments, as the study progressed. For example, as op-
posed to traditional sampling techniques (e.g., random sampling),
grounded theory involves refining our sampling criteria through-
out the course of the study to ensure that the selected participants
were able to answer the new questions that had been formulated.
Analysis of the data, collected through interviews in our study, was
performed using open coding: we assigned codes to sentences or
paragraphs and we defined them as the study progressed. We then
used axial coding: we went through the codes and linked them to
categories usually found in a grounded theory study [5, p.161]: fac-
tors, context (aids and obstacles in our study), and consequences.
Finally, the goal of a grounded theory study is to produce a theory,
i.e., a coherent set of hypotheses laid in the context of a process,
that originates from empirical data. Because the use of grounded
theory is relatively recent in software engineering [7], we briefly
highlight in Section 5 the criteria that are generally used in other
fields to evaluate the quality of such studies.

2.2 Data Collection
We started this study by sending an informal survey to the IBM

QSE (Quality of Software Engineering) mailing list. We asked
what mechanisms currently exist in IBM to introduce employees
to software projects. Nineteen managers, directors, and architects
responded and mentioned a wide variety of mechanisms (e.g., men-
tor, document repository, wiki) and problems (e.g., newcomers must
learn on their own). Following this informal survey, we focused our
efforts on experienced software developers joining ongoing proj-
ects.

We used three instruments to collect data about the integration
experiences of newcomers. First, we sent a short questionnaire to
potential participants asking about their projects (e.g., project age
and type, when they joined the project, frequency of team meetings)
and their level of experience (e.g., time at IBM, programming expe-
rience). The responses helped us select the participants who would
be most likely to provide answers to our questions as they became
more precise. We then asked each selected participant to draw a
sketch of their project such as could be used to introduce another
developer, with similar skills, to the key aspects of the participant’s
job. This sketch made the participants think about their project and
prepared them for the third instrument, a one-hour semi-structured
phone interview. Most of the questions were initially derived from
the results of our informal survey. At the end of the interview, we
asked the participant to describe their sketch, effectively walking
us through their project landscape. We also used the sketch to elicit
specific answers (e.g., why did you draw the release schedule?).

In accordance with the grounded theory approach, all instru-
ments evolved as the study progressed. For example, our inter-
view guide contained eight general questions, such as “What was
your first day’s experience like?” and “Can you describe some spe-

IBM Proj. IBM Proj.
Exp. Age Domain Exp. Age Domain
(yrs) (yrs) (yrs) (yrs)

0 <5 Mgmt. Tools <5 <10 Storage
0 <5 Web App. <10 <1 Dev. Tools
0 <15 Dev. Tools <10 <5 Dev. Tools
0 <5 Dev. Tools <10 <1 Dev. Tools

<5 <1 IT Tools <10 <10 Mgmt. Tools
<5 <10 Dev. Tools <30 <5 Mainframe
<5 <5 IT Tools <30 <15 Mainframe
<5 <5 Web App. <30 <5 Dev. Tools
<5 <5 Dev. Tools <30 <5 Storage

Table 1: Participants

cific examples that show how you found what you needed to get
started on the project.” As we learned more about the various is-
sues participants encountered, we modified the general questions
and appended more specific questions.
Participants and Projects. Most of our participants were experi-
enced developers who had recently joined an ongoing project (at
least 6 months old). These selection criteria resulted from the first
four interviews, where we learned that developers new to IBM were
unsuitable for this study because they focused on organizational
rather than project-specific issues; and new projects were unsuit-
able for this study because they were in the process of forming their
project landscape. The participants were recruited from a wide va-
riety of sources, ensuring a broad spectrum of participants. The
intent of this study was to look for similarities across the sample,
not differences between sub-groups. Almost all the newcomers we
approached were eager to participate and were interested in the re-
sults, an observation that provides anecdotal evidence of the impor-
tance of project integration issues.

A benefit of the grounded theory approach is that by forming
our selection criteria as we went, we were able to focus on a nar-
rower set of research questions, purposely leaving other important
questions for future work. In developing this focus, we could then
ensure that future interviews covered a wide variety of participants
and projects, allowing us to uncover aspects of a project landscape
that were not specific to just one type of project or participant.

Table 1 shows that our 18 participants (3 women and 15 men) and
projects exhibited great variability with respect to IBM experience,
project age, and product type. We focused on developers, but also
interviewed two team leads and one test lead. Our participants had
all joined their projects in the prior 1 to 12 months, except for one
team lead who joined his project two years ago. Most participants
were in teams developing products, but one worked on building a
custom application for a customer. Most team members were col-
located, though almost all projects were distributed to some degree.
Participants came from eight countries on three continents: North
America (13), Europe (3), and Asia (2). The number of developers
per team ranged from 4 to 80. All participants were told that their
answers would be reported only in aggregated form.

2.3 Analysis
Each interview was transcribed, and then coded several times by

one author. Eventually, the codes were associated with categories
prescribed by grounded theory (factors, context, consequences) and
emerging categories (e.g., the landscape features). The results of
each interview were discussed with the other authors, who jointly
identified the concepts worth investigating. At the end of our study,
we also listed the landscape features drawn in each sketch. We
found that the features drawn in the sketch were almost always
the same features mentioned in the interview; the list of the most
commonly-drawn features thus confirmed our interview findings.

2

2.4 Evaluation
Following our analysis, we re-interviewed some participants to

validate our findings. We checked whether our findings resonated
with the participants’ experiences, and whether they were helpful
and presented at the appropriate abstraction level: not so specific as
to match only one participant and not so general as to be useless and
uninteresting. Due to time constraints, we could only re-interview
seven participants. We randomly selected participants from three
categories of newcomers: two junior (<=1 year of IBM experience),
three senior (>1 year of IBM experience), and two team leads. The
categories ensured that we would validate our findings with a rep-
resentative sample of participants, and the random sampling de-
creased potential investigator bias in the evaluation. We sent a two-
page document presenting our findings to each participant and we
asked open-ended questions regarding their experiences with re-
spect to our findings. The seven participants found our findings to
be helpful and representative of their experiences (see Section 5).

3. PROJECT LANDSCAPE FEATURES
Interviewing newcomers whose integration experiences were still

fresh in their minds allowed us to identify the key landscape fea-
tures they had to learn, the key orientation aids they used, and the
key obstacles they encountered. Features repeatedly encountered
by newcomers probably include the major features in the land-
scapes. Knowing the effect of these features on the newcomers’
integration experiences can also lead to the establishment of better
orientation aids and reduction of obstacles.

We summarize the importance of the landscape features, aids and
obstacles on the integration of newcomers in Table 2. Features are
listed at the left, grouped into categories discussed below. For each
feature, the next two columns show the number of participants who
drew that feature in their sketches and who referred to it as im-
portant in their interviews. Because our questions evolved as the
study progressed, these numbers should not be interpreted as the
frequency with which these features were encountered by partici-
pants. A quantitative study with a larger sample would be a natural
step to evaluate the importance of the features, aids and obstacles.

Additional columns show orientation aids and obstacles, grouped
according to the integration factors described in Section 4. Only the
most important aids and obstacles we encountered are shown in the
table and discussed in the text. The entries in these columns show
(1) which aids helped and (2) which obstacles hindered learning
about features, and, conversely, which features (3) contributed to
orientation aids, facilitating the integration experience, or (4) con-
tributed to obstacles, hindering the experience. An example of (1)
is that the second aid, walkthroughs, helped newcomers learn about
the low-level design and runtime behavior of their product, among
other things. An example of (3) is that the development processes
of some teams prescribed daily meetings, which, in turn, helped
newcomers learn about the role and expertise of their colleagues,
among other things. Many of the interactions shown in the table
are described in the text, but not all, due to space constraints.

We briefly explain the role of each landscape feature in the in-
tegration of newcomers in the rest of this section, and we provide
further insight into how the orientation aids and obstacles are re-
lated to the three integration factors in Section 4.

3.1 Product
The product being produced is central to the project landscape.

Interestingly, however, only a single feature of the product, low-
level design and runtime behavior, generally played a crucial role
in the integration of the newcomers; the other aspects were learned
relatively easily or did not significantly affect integration.

Software Architecture. Newcomers sought to understand the ar-
chitecture mostly to get a broader view of their project, rather than
because their tasks impacted or were directly impacted by the ar-
chitecture. Without a good understanding of the architecture it was
hard for newcomers to determine where their tasks fitted in the
broader product and if their changes were complying with the ex-
isting architecture. Teams tried to help participants understand the
architecture by having a team member present an overview of the
architecture within the first days of their integration, but it was only
through exploration, i.e., questions, technical meetings and experi-
mentation, that newcomers finally understood this feature.
Low-level Design and Runtime Behavior. The majority of tasks
given to newcomers dealt with the intricacies of the low-level de-
sign and the runtime behavior of particular components of the prod-
uct. Newcomers had to learn this feature to ensure that they under-
stood the impact and correctness of changes they made. Unfor-
tunately, this feature was often the least documented, not even a
simple overview was available, so newcomers had to ask technical
questions, actively search for code examples, and rely on trial and
error, a time-consuming activity.
Design and Implementation Rationale. Newcomers who had to
fix bugs or modify or use legacy code whose authors were no longer
available sought to understand the rationale behind the code by ask-
ing questions. For example, a colleague of participant P141 told
him that the bug report he was working on was an intentional bug:
the feature had been implemented that way to comply with a stan-
dard. The issue tracking system of teams having a strict procedure
for issue management was helpful for recovering design rationale.
Product/Domain. Newcomers were usually able to do their tasks
without a complete understanding of the requirements in the prod-
uct’s domain. Nonetheless, newcomers who did not know the do-
main before joining their team reported that greater understanding
led to feelings of comfort and confidence that they were doing their
job efficiently and properly. These newcomers sought to acquire a
deeper understanding of the domain by reading documentation and
searching for learning material, but did not always succeed.
Technologies Used. Newcomers learned about technologies used
in their project (e.g., programming language, libraries) in a variety
of ways, such as reading books or reference manuals or browsing
tutorials and code examples. Only one participant mentioned that
he needed a course to learn about a technology. In general, partic-
ipants did not encounter significant difficulties while learning new
technologies, thanks to their previous experience and education, an
observation that corroborates Begel and Simon’s findings [2].

3.2 Processes and Practices.
The processes and practices adopted by the team to build a prod-

uct affect how newcomers explore the project landscape and deter-
mine the characteristics of the trails left by the team members.
Development Process. All our participants belonged to agile teams
with iterations consisting of activities such as planning, coding, and
testing. Newcomers needed to learn the specifics of the process to
better understand the expected outcomes (e.g., a beta release) and
how they would achieve them (e.g., one day of planning, a certain
number of weeks on development and the last two weeks on test-
ing). Newcomers also needed to learn which step in the process
their team was working on to understand how sensitive their work
was, and the motivation behind certain tasks (e.g., why are we test-

1Identifiers are associated with quotes for traceability and to distin-
guish between participants. To preserve anonymity, identifiers and
genders were assigned randomly and are not shown in Table 1.

3

Orientation Aids Obstacles

M
en

tio
ne

d
in

 S
ke

tc
h

R
ef

er
re

d
to

 in
 In

te
rv

ie
w

C
od

e-
O
rie

nt
ed

 ta
sk
s

W
al
kt
hr
ou

gh
s

T
ec

hn
ic
al
 M

ee
tin

gs
D
et
ai
le
d
H
is
to
ry
 (
B
ug

 &
 S
ou

rc
e)

D
ai
ly
 M

ee
tin

gs

C
od

e
R
ev

ie
w
s

S
cr
ee

ns
ho

ts
Q
ue

st
io
nn

ai
re
s

S
el
f-
do

cu
m
en

tin
g

P
re
vi
ou

s
E
xp

er
ie
nc

e
E
xa

m
pl
es

M
en

to
r

Q
ue

st
io
ns

 to
 C
ol
le
ag

ue
s

Lo
ng

 ID
E
 In

st
al
la
tio

n

U
pf
ro
nt
 C
ou

rs
es

U
ni
qu

e
T
oo

ls
In
ad

eq
ua

te
 D
ev

el
op

er
 D
oc

.
In
ad

eq
ua

te
/N
o
F
ee

db
ac

k
S
en

si
tiv
e
T
as

ks
un

pr
of
es

si
on

al
/n
o
fe
ed

ba
ck

Product
Software Architecture 11 16 � � � � � � � — — — — —
Low-level Design & Runtime Behavior 2 14 � � � � � � � � � � — — —
Design & Implementation Rationale 1 8 � � � � � — — —
Product/Domain 11 15 � � � �

Technologies Used 12 18 � � � � � � —
Processes and Practices

Development Process 8 18 ���� �/����� � �/� �

Task Process 5 14 � � ���� � � � � � — — �

Development Environment and Tools 3 18 � � � � � � � —/� — —

Software Configuration Management 3 8 � ���� � ���� � —/� — —

Team

Roles and Expertise 6 13 � � � � �

Formal Meetings 1 17 ���� ����

Communication Strategies 5 17 ���� ���� ���� �/��/� � � �

Assistance/Mentoring Culture 1 13 ���� ���� ���� ���� ���� ���� ���� � � � � �

Physical Layout 4 13 ���� ���� � �

Documentation

Developer-Oriented Documentation 4 14 ���� ���� ���� � �

Learning Material 0 8 ���� ���� ���� � �

Repository, Indexes, and Search 1 9 � � �

Context

Organization 2 8 � � �

Inter-Team Organization 9 11 � � �

� Orientation aids that helped learning. How to read: walkthroughs helped learn about low-level design and runtime behavior, etc.

— Obstacles that hindered learning. How to read: long ide installation hindered the learning of the architecture, etc.

���� Landscape Features that acted as orientation aids. How to read: assistance/mentoring culture supported/contributed to walkthroughs, etc.

� Landscape Features that contributed to obstacles. How to read: poor assistance/mentoring culture contributed to long IDE installation, etc.

Early experimentation Progress validation

Internalizing structures and cultures Cross-Factor

Table 2: Landscape Features related to Orientation Aids and Obstacles

ing now?). Although newcomers learned about the specifics of the
process mostly by participating in, or observing, the planning of
current and subsequent iterations, newcomers like participant P12
noted that: “for the process, it would have been useful to have a
half-hour [at the beginning] to just explain that up front... I learned
as I was going, which is not as easy as I think having it initially.”
Task Process. Each team has a particular way of performing cod-
ing tasks and some teams even have different coding processes and
inter-team dependencies for different parts of the product. For ex-
ample, P5 mentioned that the tools used for testing and issue man-
agement and the person performing the code review depended on
the parts of the system she was working on. Newcomers benefited
from their previous experience as software developers to learn their
way around the task process, but as P5 said, guided exploration was
often the most efficient orientation aid: “They started me out [on
a] small coaching: ‘... You’re going to make this change; this is
how you’re going to test it; These are the tools that you’re going to
need.’ She sat down with me and she helped me work through.”
Development Environment and Tools. Installing and configur-
ing the development environment often caused newcomers to get
lost and it also slowed the progress of the newcomers in learning
about the product. Tools unique to the team posed particular is-
sues, especially when there was little documentation or help avail-
able, because the newcomers had to rely on trial and error to learn
them. Waiting time before getting a fully-working development en-
vironment ranged from one week to two months and reasons varied

widely: a long time to get purchase authorization or the proper cre-
dentials, severely outdated and incomplete installation documenta-
tion, and configuration problems. “I lost like a week or so, but I
think it is the time that it takes when you don’t know [how] to do
the configuration. ... It was confusing, but not difficult” [P6]. Dif-
ficulties learning this feature were eased when a colleague served
as a guide to the installation of the tools, or there were up to date
instructions or the tools were already set up for the newcomers.
Software Configuration Management. Source control was cou-
pled with issue management in seven projects and newcomers had
to learn both systems concurrently, both how to use them and what
the associated team policies were. The amount of coupling var-
ied from informal conventions (e.g., provide the bug number in the
commit comment) to tool-supported coupling (e.g., every commit
must be associated with a documented issue through the develop-
ment environment). Tool-supported coupling and strict issue man-
agement policies provided useful trails that contributed valuable in-
formation to help newcomers learn about the other features of the
landscape (e.g., implementation rationale of a method explained in
a bug report). Newcomers benefited from their previous experience
for the general usage of the SCM systems and generally learned the
specifics for their projects during their first tasks.

3.3 Team
The inhabitants of a project landscape have various roles and

communicate in ways that are specific to their project. Newcomers

4

must learn about the inhabitants and discover the most efficient way
of getting information and help from them.
Roles and Expertise. In the projects we studied, newcomers sought
to learn three dimensions of the roles and expertise of their col-
leagues: (1) seniority, (2) components for which responsible, and
(3) technical fields in which expert (e.g., web client or modeling
technologies). Understanding this feature is important as newcom-
ers need to determine who to ask and who to trust. As P6 said: “It
depends who you ask and what you ask. ... For example, if I will
ask something about the architecture of the project and I go with
with the guy that is experienced in Java, then I will have lost an
hour trying to explain what I’m asking, ... what I need from him.”
Formal Meetings. The frequency and type of meetings held by the
team is determined by the development process and the team cul-
ture. For example, the scrum agile methodology prescribes daily
meetings, whereas P15’s team held only one-way formal meetings
where the team members would report their progress to the man-
ager to update the schedule. Five participants told us that it was in
their first team meetings that they learned more about the roles of
their colleagues (who answered what questions) and the develop-
ment process. The form of these meetings makes a big difference
to how helpful they are to newcomers; meetings that consisted only
of team members reporting on their progress or answering ques-
tions from the client, without being allowed to answer questions
from other developers, were unhelpful. On the other hand, scrum
meetings where newcomers could ask questions and get proactive
suggestions based on their progress reports were very helpful.
Communication Strategies. Many communication strategies were
used by teams, including live or phone communication, email and
instant messaging. Each team favored one or more in particular.
For example, P12 asked most of his questions to his mentor in per-
son, whereas P18 used mostly instant messaging for questions.

Communication strategies influence the richness of the interac-
tion between newcomers and their team members. Participants who
used live or phone communication reported in several instances that
they received additional useful information beyond what they had
asked for. P5 learned more by visiting her colleague’s office than
by asking a question over instant messaging: “I just tried talking to
people [about the books they use], visiting in their offices. I also
take a quick look to see what kind of references they have and so,
that’s how I found out. And I ask their opinion about those books.”
Assistance/Mentoring Culture. Teams with a proactive approach
to mentoring and assisting newcomers make integration easier. For
example, is was easier to settle in when existing team members an-
swered the questions of the newcomers, and frequently enquired
about their progress, assigned a mentor or a “buddy” to the new-
comers, and walked the newcomers through their first tasks. Teams
that wait for the newcomer to generate and ask questions make it
harder to quickly feel at home. Unsurprisingly, we found this land-
scape feature to be the most influential in how pleasant and efficient
(for the newcomer) the integration experience was.
Physical Layout. Is the team collocated, and if so, does the team
work in cubicles, shared offices, or private offices? Collocated
teams showed evidence of presenting a richer communication chan-
nel, as experienced by P5, quoted above. Three other participants
shared an office with their mentor or buddy, and they all reported
asking questions in person, benefiting from the richness of this
channel.

3.4 Documentation
The many types of documents produced during the life-time of a

project can help newcomers learn about the project landscape.

Developer-Oriented Documentation. Developer-oriented docu-
mentation encodes the knowledge of the team, such as the low-level
design of the project, and the installation, configuration, testing and
build procedures. Without such documentation, the knowledge re-
mains tacit, and newcomers must rely on other means to obtain it
(e.g., communication with team members or trial and error). While
this feature of the project landscape should provide a map for new-
comers, we found that it often fails to include the appropriate level
of detail, such as design, examples and rationale. With such de-
tails, this documentation is very valuable to newcomers, even if not
completely up to date.
Learning Material. Learning material, such as courses or presen-
tations, was useful to newcomers, but only when it addressed con-
cepts relevant to their tasks (e.g., code structure) and when it was
immediately applicable, so they would not forget it. Three partici-
pants said that they would have liked some time to review learning
material once they had acquired more hands-on experience with
their project to get a deeper understanding of the product.
Repository, Indexes, and Search Capability. The documents in a
project are stored in one or many repositories (e.g., network folder,
teamroom, collaborative web site, version control system), with
differing access permissions. Developers often put documents in
their personal space or in the code repository. The indexing and
search capabilities of repositories vary, but they are usually limited
to searching based on title and keywords within a single repository.

3.5 Context
A project landscape is part of a broader context, and, as partic-

ipant P2 said, newcomers seek to understand how their project fits
“in the big picture”.
Organization. A project landscape is part of a software com-
pany, an organization within the company, and a physical location.
At IBM, the integration of newcomers is not standardized across
the various organizations and the amount and quality of resources
available to newcomers vary considerably. For example, P16 had to
attend to a two-week course, but P3 joined his team on the first day.
Participants new to the organization all reported that it slowed their
initial experimentation, because they had to find their way around
the organization first (e.g., administrative rules and policies).
Inter-Team Organization. At IBM, many teams typically con-
tribute to a product, and newcomers sought to understand the orga-
nization of the teams to get a more complete view of their project
or to determine their own responsibilities. For example, newcom-
ers wanted to know which team owned which component, what
code the newcomer could change, who to ask questions about the
code, or who was using the code the newcomer was writing (im-
pact management). Understanding the responsibility of their team
in relation to the responsibilities of other teams in the organization
helped newcomers understand the scope of their jobs.

4. INTEGRATION FACTORS
Further analysis and categorization of the orientation aids and

obstacles for each of the landscape features encountered by the
newcomers suggests a theory about project integration. It holds
that three interacting factors primarily account for how, and how
effectively, newcomers settle into a project landscape.

First, through early experimentation with small, product-related
tasks, newcomers experience the project landscape directly and get
a glimpse of the tacit knowledge shared by team members. This
prepares them for further exploration, and provides them with the
practical context needed to gain an understanding of complex land-
scape features.

5

Second, by gradually internalizing the various structures and
cultures within the project landscape, newcomers can navigate more
efficiently and begin to make significant contributions that better
define their roles in the project. Because knowledge about the
structures and cultures is often tacit, newcomers must rely on land-
scape features such as rich communication with team members or
the trails and signposts left by them, such as detailed source and
bug history and code examples.

Finally, frequent progress validation allows newcomers and their
colleagues to check that the newcomers are proceeding in the right
direction, are becoming more efficient, and are not about to get
stuck or lost. Good progress validation makes the difference be-
tween newcomers who get stuck for long periods of time and new-
comers who do not hesitate to ask questions.

These three factors continue to impact newcomers until they are
fully settled in the project landscape. Our participants considered
that they became fully integrated once they had gone through most
of the phases in the development process and made a significant
change to the project landscape, such as adding an important fea-
ture or improving the team’s communication structure.2 At the end
of the study, we judged that 12 of the 18 participants had efficient
(e.g., using cost-effective learning strategies) and pleasant (no un-
necessary stress) experiences settling into their project landscapes.

Table 2 shows the orientation aids and obstacles related to each
integration factor, and hence the landscape features that were im-
portant for each factor. Four of the orientation aids mentioned by
newcomers seemed to be crucial to their integration: previous expe-
rience, examples, mentor and questions to colleagues. These relate
to all three factors, and are shown as cross-factor aids in the table.
For example, mentors often guided newcomers through the code to
get them started, answered their questions about structures and cul-
tures, and enquired regularly about their progress. We hypothesize
that these aids are particularly important precisely because they are
related to all three integration factors. These four aids are men-
tioned throughout the following sections on the integration factors.

4.1 Early Experimentation
When we asked participants what information was the most valu-

able in bringing them up to speed, half of them replied similarly
to P1: “For me, it’s really being able to compile your sources
to run the product ... from that point on, you can easily try to
change things yourself, get some experience.” Participants said
they learned more efficiently by experimenting with the code than
by attending courses or reading documentation. This comes as no
surprise: it is common knowledge that the best way to learn about
a physical landscape is to experience it, and researchers have found
that experience and mistakes provide the basis for efficient learning
in adult education [10]. Early experimentation led to early feedback
by team members, an aid that was especially necessary in software
development projects because the landscape was constantly chang-
ing and the learning material and aids became outdated quickly,
issues not specifically addressed in adult education theories.

We found evidence that it is possible to deliver code and con-
tribute to the project very early in the integration. For example,
P11 committed a bug fix at the end of his first day, and P14 sub-
mitted a bug fix during his first week even though he had no prior
experience with the development environment or the programming
language. Newcomers used code and design examples to guide
their exploration, and said that these helped them to learn about

2In some contexts, developers are not expected to make significant
changes to the structure of their projects. That was not the case for
the participants in our study, however.

new technologies and their product, and to accomplish their tasks.
They found examples mostly in the product’s code and by search-
ing the web. They typically copied example code and modified it.

Early experimentation rarely lasted more than two weeks, but it
made the difference between successful exploration with strong re-
lationships and initial feedback, and a solitary journey fixing com-
pilation errors and reading mostly unhelpful documentation. How-
ever, we observed that applying this principle is challenging in soft-
ware development projects because of various obstacles (see Sec-
tion 3.2).
General Directions vs. Concrete Exploration. As discussed in
Section 3.4, attending courses and reading general documentation
up front are seldom ideal. There are exceptions. Courses were
appropriate for P6, who could not experiment without background
training because he knew nothing about the problem domain or the
programming paradigm. Reviewing documentation before starting
work on code was also helpful to P17, because the documentation
presented both high-level and low-level details of the product, in-
cluding code and extension examples. However, all too often new-
comers were pointed towards this kind of general documentation
for the wrong reasons: the manager believed that it was the most
appropriate learning activity, the team had not prepared for the par-
ticipant’s first days with them, or the newcomer could not experi-
ment with the code (e.g., waiting for access authorization).

In contrast, newcomers assigned to code-oriented tasks on their
first day oriented themselves more quickly, because they immedi-
ately started learning about landscape features such as the low-level
design and the task process. This naturally sparked questions, lead-
ing to further learning. Examples of tasks appropriate for a new-
comer were fixing a bug, adding a simple feature, and writing unit
tests. For junior developers, or when the team was in the midst of
a critical life-cycle phase, a small programming project outside the
team’s direct development path was best.
Initial Guidance. The development environment is a key land-
scape feature, but newcomers often struggled to get to the point
where they could use it to perform even a simple task, as reported
in Section 3.2. Having a team member act as a guide can reduce
the newcomer’s wasted time and frustration. We encountered three
types of walkthroughs: (1) installing the development environment
and compiling the product’s code, (2) providing an overview of
the code, and (3) performing a complete task. The walkthrough of
participant P14 was particularly efficient: “On the first day of the
project I had a meeting with the team members where I was given
instructions on where to go, how to download the source code and
how to get it set up, how to test the product.”

When newcomers talked about walkthroughs, it became clear
that no tool or map could replace the richness of information pro-
vided by a human guide. Walkthroughs were good occasions for
colleagues to provide tips and tricks and answer questions, and they
also helped to build relationships with newcomers. We believe that
tools that help with exploration of the project landscape can com-
plement, but should not replace, human guides.
Early Feedback. When newcomers experimented early with the
product’s code in the context of a task, their exploration had a well-
defined goal so they could quickly report on their progress and get
feedback, a relationship that we explore more deeply in Section 4.3.
This feedback was essential in correcting small mistakes that could
have blocked progress. For example, once P12 realized that he
could not complete the test case he had been assigned, he imme-
diately mentioned it to his mentor, who found that the test case
document was outdated and corrected it. Newcomers who were
prevented from experimenting with the system early on also missed

6

opportunities to ask questions and get early feedback during team
meetings, as they tended only to listen.

4.2 Internalizing Structures and Cultures
Once newcomers had performed some early experimentation,

they began to internalize the structures and cultures within the proj-
ect landscape by acquiring a deeper understanding of the tacit knowl-
edge of their team about the product and the organization (Sec-
tions 3.1 and 3.5), and to build stronger relationships with the team
(Section 3.3). Newcomers who had done this successfully felt that
they could handle most tasks with confidence, even if they did not
know everything about their project. P17 said: “I think I know,
maybe five percent of the product. I can adapt and learn it and I
know how it works overall. And when I have a bug, I know where
to look and what to do. And if there is a feature, I know where to
implement it.” In contrast, the newcomers who struggled the most
to internalize the structures and cultures of their projects had the
most unpleasant integration experiences. Whenever a new task was
assigned they felt totally lost and unable to find their bearings. For
example, P6 was assigned a critical task two months after he joined
his team and, at the time of the interview, he had no idea how long
it would take or how he would be able to complete the task.

Internalizing the structures and cultures took considerable time
and effort, and newcomers were generally less supported in their
long-term learning activities than in their early experimentation.
Although developers, in general, are expected to learn by them-
selves, we found that small aids, such as technical meetings and
good examples, could make the learning process more efficient.
Tacit Knowledge. Internalization of structures and cultures is par-
ticularly challenging because much of the knowledge that must be
acquired is not recorded explicitly. We found two orientation aids
that, coupled with trial and error, most helped newcomers with this.

The first orientation aid was the trails left by team members as
they traversed the landscape as part of their regular work. These
trails were captured in a detailed bug and source history. Newcom-
ers used these to recover the design rationale of particular pieces
of code by looking at the bugs and the associated source files and
discussions. Newcomers like P1 also used the trails left by team
members to locate feature implementations: “... seeing the bugs
that are closed so you can see the corresponding changes to it. That
already gives you quite a bit so you see, okay this bug is about that
feature, you have a look at the source corresponding that gives you
an easy start to find out where are things located.”

Unfortunately, issue tracking systems could not support the in-
vestigation of newcomers when the descriptions of bugs and fixes
were trivial (e.g., “Bug Fixed”) or when the issue tracking system
did not link the issues to the code changes. Issue tracking systems
were also less useful for newcomers who had to create new features
or who had complete code examples available.

Another aid to the acquisition of tacit knowledge was technical
meetings between newcomers and their colleagues to discuss the
project structures. Participant P3 found these meetings to be the
fastest and the best source of information: “[My mentor] invited us
in one of those rooms, showing us, ... the most common scenarios
for the clients... So she [went] through every single button, what it
does. We asked questions, and stuff like that. She showed us the
source code ...” P12 had informal meetings with his mentor when
she came by his desk to answer questions; she would often not just
answer the questions, but also walk P12 through the solution and
look at the current code to give pointers. Successful meetings had
three characteristics in common: (1) they happened frequently (at
least once a week), (2) they were related to the current tasks of
the newcomers, who could then use the newly-acquired knowledge

immediately, and (3) newcomers could ask questions during them.
Timing. The order in which newcomers encounter resources (e.g.,
documents, courses) or perform tasks largely determined their use-
fulness. P11: “... it’s possible someone explained [the architecture]
to me very well on the first day; but without having too much of a
context to put it in, it didn’t really hit home until later... Someone
says, ’Oh yeah, we provide the services’, but really, when they say
the word services, it didn’t really link in my mind with this partic-
ular IT service, Java interface and that’s what they’re talking about.
So maybe if instead of getting this information on the first day, I
got it a week or two later, (...) it would have connected in my mind
with a lot of things I’d already seen and made more of an impact.”

Technical meetings also had to be properly timed, since some
questions arose only later in the integration experience. For exam-
ple, P15 attended many architectural meetings early on and could
watch recordings of them later, but he eventually had many unan-
swered questions, by which time team members who could have
answered them had moved to another project.

Because the correct timing of the orientation resources seemed
to depend on many variables (e.g., previous experience, learning
capacity, complexity of the project, quality of the resources), we
believe that the best way to get it right is to encourage frequent
progress validation. If the team is well aware of the progress of the
newcomer, it should be able to recommend the pertinent resources
at the right times. We explore this factor in Section 4.3
Relationships. Newcomers sought to build strong relationships
with team members. Additionally, newcomers learned about the
interests and expertise of their colleagues to know where to direct
questions (i.e., who knows what) and who to trust.

All four newcomers who were working remotely voiced their
concern about not being able to build strong relationships with their
colleagues. Physically meeting colleagues and frequently commu-
nicating with them was key to building relationships in distributed
teams. For example, P1 and P7 mentioned that they could really
start to work and learn about their product once they had met their
colleagues in person. In contrast, because of travel budget cuts,
participant P14 never met his colleagues in person, which he said
hindered the building of durable relationships.

4.3 Progress Validation
Throughout early experimentation and internalizing the struc-

tures and cultures of their projects, newcomers needed to validate
their progress, to avoid going too far in the wrong direction or being
immobilized, not knowing how to proceed. Frequent progress val-
idation created an environment where newcomers were at ease to
ask questions and were encouraged to report on their progress. All
newcomers told us that they preferred to try to resolve issues and
find answers to their questions on their own first, but newcomers
like P12, who were on teams employing frequent progress valida-
tion, had a pragmatic approach to problem solving: “So it depends
what I’m working on and the progress I’m making that’ll help me
determine when it’s time to ask somebody or when I should keep
looking. I think you get to a point where you’re just wasting time
and so it’s better in that case just to ask for help.” In contrast, par-
ticipants like P11, who were in teams with less progress validation,
tried as hard as they could to answer a question before asking a
colleague: “I tried to answer by myself as much as I could. I think
I would always try to at least ‘bang my head’ against the question
for a little while before I went to a colleague just because even if I
couldn’t get the answer, the act of trying to get the answer myself
was good learning experience”. These newcomers would typically
stay stuck on a problem for a few hours to a few days.

7

Frequent progress validation also increased the occasions to re-
ceive proactive suggestions of pointers or useful shortcuts. New-
comers appreciated these pointers more than the pointers that were
presented en masse in a document or meeting at the beginning of
their integration. Participants without frequent progress validation
and such proactive suggestions had problems because they missed
important information they did not know they had to know. Lack
of progress validation during sensitive tasks also exacerbated these
problems.

We found two types of progress validation aids: feedback from
the team and mechanisms allowing newcomers to validate their
own progress.
Team Feedback. Newcomers frequently asked questions to vali-
date their progress. For example, P18 asked questions of his col-
league to ensure that he was following the release process correctly.
Newcomers asked many questions about issues that hindered their
progress: documentation that looked outdated, incorrect behavior
of the product, error messages, etc. Participants P16 and P12 also
mentioned that sometimes, when they asked a question, their col-
leagues would enquire about their progress.

Daily scrum meetings were effective for progress validation. Par-
ticipant P2 said: “We had these daily scrums and we would basi-
cally say, ‘What are you doing, what are you working on, what did
you do yesterday? Did you have any road blocks or anything, is
there anything that anybody knows about that can help me or con-
tribute?”’ Daily meetings ensured that newcomers would not stay
stuck on a problem for more than a day. They were thus benefi-
cial to newcomers who hesitated to ask for help or who tried to
solve problems on their own for too long. Because newcomers also
reported what they were about to do, team members could pro-
vide proactive comments. Finally, because all members reported
on their progress, newcomers learned more about the roles and ex-
pertise of their colleagues.

Newcomers who submitted code and design for review found
this progress validation practice useful for two main reasons: con-
fidence that what they had done was correct, and pointers and hints
on how to better use the product’s code. Newcomers thus discov-
ered unexplored but relevant parts of the landscape.

In certain conditions, however, code reviews in particular and
feedback in general were not helpful and could even be frustrat-
ing for newcomers. For example, P14’s code was sometimes re-
viewed by colleagues who were strong-minded and would only ac-
cept code that was similar to the code they had in mind; these re-
views involved a lot of rework, yet P14 believed that his solution
was equivalent to that proposed by the reviewers. P7 was merely
told to “read the book.” Regular meetings in some teams were not
useful to newcomers because the newcomers only answered ques-
tions and reported on their progress without getting any feedback.

Many newcomers also experienced a “floating period” at the be-
ginning of their integration. This is typically a period for them to
explore the product on their own and do their own experiments,
with no well-defined goal or hard deadline. All participants who
experienced a floating period mentioned that they appreciated hav-
ing the time to familiarize themselves with the product. We found,
though, that the newcomers who were set clearer goals with clearer
deadlines had more efficient starts: because they had a goal to
achieve, they asked questions when they encountered a problem
and they could report on their progress, receiving useful feedback.
Self Checking. Feedback from team members was essential for
newcomers because it came from people who knew the project
landscape well. In addition, we found five orientation aids that
enabled newcomers to validate their progress on their own.

Some participants used examples from their product as a way
of validating their progress. For example, participant P8 had to
implement the support for a new device, so he looked at the support
for other devices to better understand the overall architecture and
ensure that his design would conform to it.

Documents with screenshots allowed newcomers to ensure that
they were using tools properly or that the features they were im-
plementing conformed to the requirements. Participant P2 said:
“Screen shots make an easy visual checkpoint for the reader to
know, ‘Hey if what I am doing on my screen looks like this then
I know that I am walking down the right path.’ If you just put tex-
tual instructions, sometimes you could be three, four steps ahead
before you realize that you made a mistake somewhere.”

Determining if a document was outdated was challenging for
newcomers, because they knew little about the past and current
states of the project. One participant used the source history (Sec-
tion 3.2) to validate the relevance and accuracy of documents. Upon
realizing that a tutorial was outdated, he browsed the source history
of the product for the appropriate versions of the referenced classes.

Another mechanism was questionnaires included in documenta-
tion. For example, the documentation explaining the architecture
of the product participant P6 worked on contained a questionnaire
to assess the knowledge of the reader. P6 found this useful because
it enabled him to identify the areas that he did not understand well.

Finally, newcomers sometimes documented all the steps they
went through while performing a task, to assess their own progress
and to make sure that they would not forget what they had just
learned. Additionally, the newcomers were creating orientation
aids for future use, and felt they were contributing to the team.
Participant P7 said: “As we did learn things, we tried to build a
common place for other people to go look so other people wouldn’t
have to reinvestigate what somebody else on the team had figured
out”. Unfortunately, this process was time-consuming and could
produce documents that became outdated quickly. To improve cost-
effectiveness, seasoned team members could help newcomers de-
cide which steps are worth documenting.

5. QUALITY AND CREDIBILITY
When evaluating the validity of qualitative research, many re-

searchers prefer to use the terms quality (are the findings innova-
tive, thoughtful, useful?) and credibility (are the findings trustwor-
thy and do they reflect the participants’, researchers’, and read-
ers’ experiences with a phenomenon?) [5, p.202]. For these re-
searchers, the concept of validity is often associated with quanti-
tative research; the usual threats to validity are inconsistent with
qualitative research. In grounded theory, investigator bias is not a
threat, but a required attribute: the investigator is the one selecting
the participants, refining the questions, and developing the theory.

Corbin and Strauss provide ten criteria to evaluate the quality
and credibility of grounded theory research [4, p. 305]. We review
three criteria and explain how we fulfill them.
Fit. “Do the findings fit/resonate with the professionals for whom
the research was intended and the participants?” This criterion ver-
ifies that we did not “invent” anything and that we accurately re-
ported what the participants told us. It also requires that the level
of abstraction at which we report our findings is general enough to
represent the experience of all participants, but not so general that
the results become meaningless.

To ensure a good fit, as we formulated our theory and categorized
the landscape features, the obstacles and the aids, we tied each find-
ing to at least one participant so it was possible at any moment to
link an observation to a quote from a participant.

8

We also re-interviewed seven participants at the end of the study,
presenting our findings and asking them if the findings resonated
with their integration experiences. We asked for concrete examples
showing why their experiences fit within the three factors, or why
they did not. All participants said that the three factors, with their
aids and obstacles, effectively represented their integration expe-
riences. Most participants pointed out a few specific obstacles or
aids that had been significantly helpful (or unhelpful) as they were
settling into their projects. Two participants also mentioned that
our findings matched previous integration experiences of theirs.
Applicability or Usefulness. “Do the findings offer new insights?
Can they be used to develop policy or change practice?” Through
the lens of the education literature, our findings are not particularly
surprising: e.g., researchers have theorized for a long time that ex-
perimentation is an important concept in adult learning [10]. To
the best of our knowledge, however, there are very few studies that
have been performed on software engineers, especially senior soft-
ware engineers, joining an ongoing project. The fact that managers
in our initial survey had different stances on the integration of new-
comers, and that the integration experiences of newcomers varied
greatly, also indicates that some of our findings would be new and
useful to them.

Two of the seven participants who participated in our evaluation
interviews asked us if they could distribute the two-page summary
of our findings to teams around them. They told us that it would
have been helpful if their teams had read this summary before they
had joined because their teams could have avoided the usual pitfalls
(e.g., long IDE installation) and adopted helpful practices (e.g., fre-
quent progress validation with feedback).
Variation. “Has variation been built into the findings?” Variation
demonstrates that a phenomenon is complex and that the findings
accurately represent that complexity. We did not have to specifi-
cally ask for counter-examples during our interviews because the
background of the participants and their projects were so different
that variation occurred naturally. When we encountered a situation
that did not seem to fit our theory, we always tried to understand the
cause of this situation. For example, we explained why, in some sit-
uations, a course might be preferable to early experimentation.

6. RELATED WORK
There exists a large body of research on knowledge transfer,

newcomer integration in organizations, and information needs in
software engineering maintenance tasks. However, to the best of
our knowledge, there is no other study addressing the issue of soft-
ware developers who are not new to an organization and who join
an ongoing project.

Begel and Simon observed eight graduate students during their
first months of work at Microsoft [1, 2]. They found that most
of the difficulties encountered by the new hires came from their
inexperience with a corporate environment. They also found sev-
eral patterns that are consistent with the management sciences [9].
Though our study concerns integration into a project landscape and
not an organization, we observed similar patterns. For example,
Begel and Simon found that newcomers did not know when they
were stuck and insisted on finding the solution on their own, some-
times to prove themselves to their managers. We observed the same
issues with experienced software developers, but we also found
strategies that teams used to limit the impact of these situations
(e.g., daily team meetings). They also found that newcomers per-
formed six main activities and that they spent most of their time on
communication, reading of documentation and bug fixing. We in-
directly confirmed this finding by observing that process activities

(e.g., daily team meetings) and rich communication (e.g., walk-
throughs), and not tools, were the most helpful orientation aids.
Finally, they noted that newcomers complained that because they
wanted to be productive and helpful, they acquired a broad but shal-
low understanding of their project and they no longer had time to
learn about the product in depth. A few participants in our study
mentioned this issue, but we found that acquiring a deep knowledge
at the beginning of the integration would likely not work (e.g., up
front courses instead of early experimentation) and that technical
meetings related to the tasks of the newcomers and held later in
their integration could help with this issue.

Sim and Holt interviewed four recently-hired developers at a big
software company and identified seven integration patterns [15].
Because they studied new hires, they observed many issues related
to organizational integration, but they also found some patterns
that our observations complement. For example, they found that
mentoring was an effective strategy to help newcomers get inte-
grated, but that it was inefficient for the team because of the time
devoted by the mentor. Based on our observations, however, we be-
lieve that, despite the cost, mentoring does benefit the whole team
because it builds strong relationships that have long-term benefit.
Strong relationships with their mentors enabled participants like P8
to get answers quickly, while the lack of strong relationships with
colleagues probably resulted in long delays for P14 and P15 when
they had questions. Sim and Holt also observed that the three new-
comers who employed a bottom-up approach to understanding a
project (low-level details first) were more successful than the new-
comer who used a top-down approach (e.g., trying to understand
the architecture first). We found that for participants whose early
experimentation was efficient, the strategy was slightly more com-
plex: they were presented with an overview of the structures (ar-
chitecture, inter-team organization, development process) and then
were given low-level tasks, such as fixing simple bugs. When the
team forgot to present an overview of a major structure, the par-
ticipant tried hard to obtain this overview through questions and
reading.

Our study complements these previous studies by categorizing
the landscape features that newcomers needed to learn and by iden-
tifying the obstacles and orientation aids encountered by newcom-
ers in the context of three integration factors. From a methodolog-
ical point of view, our study differs from the previous studies in
the larger number of participants and projects surveyed and in the
shorter time spent with each participant.

Berlin conducted a study on the interaction of three mentors and
three apprentices who had to extend a toolkit in a programming lan-
guage unfamiliar to them [3]. She found that mentors (1) answered
more than the initial questions of the apprentices, (2) could recon-
struct the rationale from the code and explain it to the apprentices,
and (3) interacted in a collaborative way with the apprentices by
being sensitive to their needs and current understanding of the sys-
tem. We observed that effective mentors, but not all mentors, exhib-
ited the same characteristics and, in addition, they enquired about
the progress of their apprentices. The collaborative conversation
style was also an important characteristic of effective exchanges
between our participants and their colleagues. For example, tech-
nical meetings were useful when they were in line with the current
understanding of newcomers and when newcomers could ask ques-
tions, but they were less useful when they occurred too early (e.g.,
up-front courses) or when the participants were mostly listening.

Lethbridge et al. [12] conducted a survey of 48 software engi-
neers to find out how documentation was used in industry. They
found, for example, that documentation was often outdated, but
software engineers still thought that high-level documents were

9

useful because the underlying concepts (e.g., features, requirements)
were stable. De Souza et al. also conducted two surveys on the
use of software documentation and they found that low-level doc-
uments (e.g., data models) were more often used during software
maintenance tasks than high-level or overview documents [8]. Our
observations on newcomers confirm these findings: the participants
in our study thought that documentation describing the low-level
design, even if it was outdated, was useful. We also found that
severely outdated instructions (e.g., for installation or requesting
credentials) that were not related to underlying concepts were not
effective, and that relying on colleagues was a better strategy.

Ko et al. observed 17 developers to learn about their information
needs when performing maintenance tasks [11]. They summarized
the results as 20 questions, such as “What code caused this program
state?” and “What have my coworkers been doing?” Sillito et al.
conducted two studies on developers performing change tasks [14].
They noted 44 general questions that the developers asked when
working with the code such as “What will the total impact of this
change be” and “Where should this case be handled?” The au-
thors found that 66% of these questions were partially supported by
tools (and 34% were fully supported). Our participants mentioned
that they asked most of these questions when they were internaliz-
ing the structures and cultures of their projects, but, in contrast to
seasoned team members, newcomers did not always know the ap-
propriate scope (e.g., many components unknown to the newcomer
can cause a program state) or they did not know how to use the
team’s tools efficiently to answer their questions. Interestingly, our
participants needed to interact with other team members to answer
some questions that Sillito et al. found fully supported by tools. For
example, a question like “When is this method called?” could not
be answered by tools because the newcomers did not know which
external components depended on their work.

Finally, on the general topic of knowledge acquisition, Newell
and Galliers surveyed 13 projects in different areas (e.g., healthcare
and utilities) and found several reasons why knowledge transfer
among organizations is problematic [13]. For example, they found
that lack of concrete experience with a proposed solution blinded
decision makers. Knowles demonstrated how adult learning ben-
efits from experimentation [10], and Jones found that the level of
self-efficacy of newcomers (which could be associated with years
of experience in the industry) influenced the integration process [9].
Von Krogh et al. studied the factors that led newcomers to be suc-
cesfully accepted by the community of a freestanding open source
project [16]. Our study focused on individuals joining software de-
velopment projects; our findings are in line with the previous work
in these research areas and complement it by describing the chal-
lenges and workarounds specific to software engineering.

7. CONCLUSION
When joining ongoing projects, newcomers often face unfamiliar

and rugged landscapes. Based on a qualitative study of 18 partic-
ipants from 18 projects, we provided an initial characterization of
project landscapes and an initial theory of the integration process.
We found, for example, that helpful landscape inhabitants make a
key difference to how easy it is for newcomers to find their way
and settle in. In particular, human guides are invaluable, better than
guidebooks, which often do not provide the precise details new-
comers need to make sense of their new surroundings. Existing in-
habitants can also affect the landscape by leaving well-worn paths
and signposts, such as issue histories and example code, which can
then be followed by newcomers as they navigate the landscape.

What about redesigning project landscapes, making them eas-
ier for newcomers to settle into? Could we design more appropri-

ate signposts? What about creating useful maps: micro and macro
views that show the relationships between different landscape fea-
tures and routes that can be taken? We hope that this study will
spark further studies to test our theory and to explore project land-
scapes further, as well as research into how to improve them.

Acknowledgments
The authors thank Victoria S. Thio and Peter Santhanam for their
help in recruiting participants, Janet A. Carroll for her help with
interview transcription, and all the IBM developers who generously
gave of their time for this study. This work was partially supported
by NSERC.

8. REFERENCES
[1] A. Begel and B. Simon. Novice software developers, all over

again. In Proceeding of the fourth international workshop on
Computing education research, pages 3–14, 2008.

[2] A. Begel and B. Simon. Struggles of new college graduates
in their first software development job. In Proceedings of the
39th SIGCSE technical symposium on Computer science
education, pages 226–230, 2008.

[3] L. M. Berlin. Beyond program understanding: A look at
programming expertise in industry. In Empirical Studies of
Programmers - Fifth Workshop, pages 6–25, 1993.

[4] J. Corbin and A. C. Strauss. Basics of Qualitative Research:
Techniques and Procedures for Developing Grounded
Theory. Sage Publications, 3rd edition, 2007.

[5] J. W. Creswell. Qualitative Inquiry and Research Design.
Sage Publications, 2nd edition, 2007.

[6] B. Dagenais, H. Ossher, R. K. E. Bellamy, M. P. Robillard,
and J. P. de Vries. A qualitative study on project landscapes.
In Cooperative and Human Aspects of Software Engineering,
an ICSE workshop, pages 32–35, 2009.

[7] C. R. B. de Souza and D. F. Redmiles. An empirical study of
software developers’ management of dependencies and
changes. In Proceedings of the 30th international conference
on Software engineering, pages 241–250, 2008.

[8] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira. A
study of the documentation essential to software
maintenance. In Proceedings of the 23rd annual
international conference on Design of communication, pages
68–75, 2005.

[9] G. R. Jones. Socialization tactics, self-efficacy, and
newcomers’ adjustments to organizations. Academy of
Management Journal, 29(2):282–279, 1986.

[10] M. S. Knowles. The Adult Learner: A Neglected Species.
Gulf Publishing Co, 4th edition, 1990.

[11] A. J. Ko, R. DeLine, and G. Venolia. Information needs in
collocated software development teams. In Proceedings of
the 29th international conference on Software Engineering,
pages 344–353, 2007.

[12] T. C. Lethbridge, J. Singer, and A. Forward. How software
engineers use documentation: the state of the practice. IEEE
Software, 20(6):35–39, 2003.

[13] S. Newell and R. Galliers. Knowledge transfer:
Short-circuiting the learning cycle? In Proceedings of the
39th Annual Hawaii International Conference on System
Sciences, pages 149–b, 2006.

[14] J. Sillito, G. C. Murphy, and K. D. Volder. Asking and
answering questions during a programming change task.
IEEE Transactions Software Engineering, 34(4):434–451,
2008.

[15] S. E. Sim and R. C. Holt. The ramp-up problem in software
projects: a case study of how software immigrants naturalize.
In Proceedings of the 20th international conference on
Software engineering, pages 361–370, 1998.

[16] G. von Krogh, S. Spaeth, and K. R. Lakhani. Community,
joining, and specialization in open source software
innovation: a case study. Research Policy, 32(7):1217–1241,
2003.

10

