
SemDiff: Analysis and Recommendation Support for API Evolution

Barthélémy Dagenais and Martin P. Robillard

School of Computer Science
McGill University

Montréal, QC, Canada
E-mail: {bart,martin}@cs.mcgill.ca

Abstract

As a framework evolves, changes in its Application Pro-
gramming Interface (API) can break client programs that
extend the framework. Repairing a client program can be a
challenging task because developers need to understand the
context surrounding the API change. This paper describes
SemDiff, a tool that recommends replacements for frame-
work methods that were accessed by a client program and
deleted during the evolution of the framework. SemDiff rec-
ommends replacements for non-trivial changes undiscov-
ered by other change-detection techniques and also enables
developers to look at the context of the changes that led to
the deletion of a framework method.

1. Introduction

When writing software applications, developers often
rely on frameworks to reuse common features and speed up
development. As a framework evolves, developers need to
adapt their applications to the changes made in the frame-
work’s Application Programming Interface (API). For ex-
ample, let us assume that a developer is writing a pro-
gram that extends the Eclipse JDT framework, version 3.2.1

When version 3.3 of the framework is released, the devel-
oper tries to compile the program with the new version, but
the Java compiler returns an error indicating that one of the
framework classes used by the program does not exist: the
class has been removed in the new version of the frame-
work. To fix this error, the developer needs to find a re-
placement for the missing class.

Searching for a replacement is often a challenging task
that does not provide significant added-value (i.e., the de-
veloper is trying to repair the application and is not adding
new features nor improving its quality). To mitigate such
situations, we created SemDiff, a tool that recommends re-
placements for framework elements that were accessed by

1www.eclipse.org

a client program and deleted as part of the framework’s
evolution [4]. Our recommendations are produced by an-
alyzing how the framework was adapted to its own changes
and by recommending similar adaptations to client pro-
grams. Specifically, SemDiff analyzes the evolution of
method calls in the framework (e.g., a call to method m1

was replaced by a call to methods m2 and m3). A devel-
oper can then use SemDiff to obtain a recommendation on
how to replace a call to a deprecated or deleted method.
An empirical study we previously performed on the Eclipse
JDT framework and three client programs showed that Sem-
Diff could recommend relevant method replacements with a
high precision, and detected changes typically undiscovered
by other change-detection techniques.

Change-detection techniques such as UMLDiff have
been proposed to help developers who are using an API that
is no longer backward compatible [10]. Usually, these ap-
proaches track equivalent framework elements (e.g., func-
tions, classes) across multiple versions by computing a fin-
gerprint for each element. Although the comparison of sim-
ilar elements can detect simple changes such as a refactor-
ing (e.g., renaming a method) with a high precision, this
strategy generally misses certain types of complex changes:
(1) software elements that are heavily modified between
two versions produce fingerprints that are too different to
be comparable, (2) software elements that have been split
or merged are ignored by techniques that look for one-to-
one changes, and (3) software elements that are deleted and
replaced by elements imported from an external codebase
are not detected. Because SemDiff looks for the adaptation
instead of the identity of changed elements, it is not affected
by such non-trivial changes.

Although the first prototype of SemDiff could analyze
industrial-sized systems such as Eclipse, only the recom-
mender was accessible to the end-user. After a major
reengineering effort, we developed a version of SemDiff2

that exposes the underlying analysis framework to the user
and improves the recommender user interface.

2SemDiff is available at www.cs.mcgill.cs/∼swevo/semdiff



CVS

Repository 
Adapter

Source Repository 
Analysis Framework

Structural Diff
Analysis

Call Diff
Analysis

DB

Recommender

Dataflow

SVN

Custom
Analysis

Figure 1. SemDiff Overview

SemDiff’s analysis framework mines the software repos-
itory containing the source code history of a framework to
study the evolution of method calls. As it is the case with
most approaches that mine software repositories, SemDiff
takes as input the coarse-grained data provided by a repos-
itory (i.e., the files that were changed) and performs mul-
tiple analyses to find fine-grained changes (e.g., method
call changes). Notable examples of repository analyses
include the detection of refactorings [9], the location of
cross-cutting concerns [2], and the automatic classification
of fine-grained changes [5, 10]. Future repository analyses
could benefit from SemDiff’s infrastructure.

In this paper, we present a description of SemDiff and
review its two main contributions: a recommender enabling
software engineers to adapt their client programs to the evo-
lution of a framework, and a repository analysis framework
enabling users to easily analyze the evolution of software
products.

2. SemDiff

SemDiff is a client-server application implemented as a
set of Eclipse plug-ins. Figure 1 provides an overview of
SemDiff’s architecture. The server component, which we
exposed in the new version of SemDiff, is described in Sec-
tion 2.2 and consists of the repository adapter that connects
to a source version control system such as CVS, the source
repository analysis framework, and a database that stores
the results of the analyses. The client component, described
in Section 2.1, can access the server remotely and consists
of the recommender.

For SemDiff, the main unit of change is a transaction,
i.e., a set of files that were committed together at some point
in the evolution of a software product. Transactions are
retrieved by the source repository analysis framework and
used by the recommender. In SemDiff, the Transactions
View (see Figure 3) provides the user with a convenient
way to browse and review the following details of trans-
actions: the transaction date, the username of the developer
who committed the transaction, the comment written by the
developer, the files that were changed,3 the Java elements
(methods, types, fields) that were changed, and the method

3In the remainder of this paper, we consider a “change” to be any addi-
tion, deletion or modification of an element (e.g., file, Java method, etc.)

Figure 2. Broken method call due to frame-
work evolution

calls that were added or removed. This information can be
used by the recommender or by the user to analyze the evo-
lution of the software application.

2.1. Recommending Adaptive Changes

When the developer mentioned in the introduction tries
to compile the program with the most recent version of
the Eclipse JDT framework, the Java compiler returns an
error indicating that the application class Client is call-
ing the missing framework constructor ListContent-

Provider() (Figure 2): this constructor and its class were
removed in the most recent version of the framework.

To fix this error, the developer can use SemDiff to iden-
tify a replacement for the constructor: the developer right-
clicks on the constructor call in the editor and selects the
menu option “SemDiff / Get Recommendations”.

Once SemDiff has computed a list of potential replace-
ments, it opens the Call Recommendations View, which dis-
plays a ranked list of recommended calls. For example, in
Figure 4, the first recommendation of SemDiff is to replace
a call to the constructor ListContentProvider() (first
line prefixed by REQ) by a call to the constructor Array-
ContentProvider() (second line prefixed by REC). The
fully qualified name of the recommended method indicates
that the recommendation comes from an external library, a
change typically undetected by other approaches. The de-
veloper can also right-click on the recommendation to navi-
gate to the Transactions View and see the transaction where
the change occurred (Figure 3). This view shows the con-
text of the change that led to the removal or deprecation of
the framework method. For example, the commit comment,
“Use ArrayContentProvider instead of ListContent-
Provider”, confirms that SemDiff’s recommendation is
valid. The developer can then use the recommendation and
make the appropriate changes to the client program. In a
previous study, we found that the top three recommenda-
tions made by SemDiff could fix 89% of the evolution errors
in three client programs [4].

Recommender Implementation. To compute the set of
method replacements, SemDiff searches the framework’s
history to find the transactions where calls to the bro-
ken constructor ListContentProvider()were removed.
SemDiff then suggests calls that were added in these trans-
actions. The complete description of the algorithm, and the
heuristics that SemDiff uses to handle non-trivial changes
are available in a previous publication [4].



Figure 3. Transactions View showing the details of a single transaction for Eclipse JDT

Figure 4. The Recommendations View

The Call Recommendations View shows how SemDiff
computed the recommendation. For example, Figure 4
shows that a call to ListContentProvider() was re-
placed by a call to ArrayContentProvider() in several
framework methods (e.g., saveAllDirtyEditors()). If
SemDiff recommends multiple method calls, the developer
can double-click on each recommendation to open the com-
pare editor, which will show two versions of a file in the
framework where a call was removed and replaced by the
recommendation.

2.2. Source Repository Analysis

To get recommendations on how to replace a call to
ListContentProvider(), SemDiff must first retrieve the
transactions from the Eclipse JDT source repository.
Repository. SemDiff can retrieve transactions from CVS
and Subversion source repositories. The user has to en-
ter the following connection information in an input dialog:
connection string, username, password, module paths.
Repository Analysis. Once SemDiff has downloaded the
files changed in each transaction, a list dialog asks the user
to choose which analyses to perform: these analyses find
fine-grained changes from the coarse-grained data provided
by the repository. Two analyses are provided by default,
StructDiff and CallDiff. StructDiff indicates the fields,
methods and types that were changed in each transaction.
CallDiff, which depends on StructDiff, indicates the method
calls that were added or removed in each class. Users can
also create their own analyses through the use of an Eclipse
extension point and these analyses are automatically added
to the list dialog.
Storage. The results of the analyses are stored in a
database. The user can choose to either rely on an inter-

nal (HSQLDB4) or an external (PostgreSQL5) database: the
former is automatically installed and configured by Sem-
Diff, while the latter usually provides better performance
for large repositories containing thousands of transactions.

User analysis. SemDiff offers many ways to browse and
analyze transactions. The Transactions View is the pre-
ferred tool to manually review the details of an individ-
ual transaction and look at the context of a change. For
example, Figure 3 shows which files, Java elements, and
calls were impacted by the removal of the ListContent-
Provider class. For each item displayed in the Transac-
tions View, the user can either navigate to the version of a
file before and after the change or open the compare edi-
tor that shows the two versions of the file side-by-side and
that highlights the main differences. When the user selects
a fine-grained element (e.g., a Java method), the editor au-
tomatically scrolls down to focus on the element.

Systematic analysis of transactions can be performed
through three main techniques. First, log files can be gen-
erated containing a textual representation of the changes in
each transaction. These log files were used in two previ-
ous studies on recommending elements that should be in-
vestigated during a maintenance task [7, 8]. Second, users
can access the object model of transactions maintained by
SemDiff by writing an Eclipse plug-in (like SemDiff’s rec-
ommender) or by executing a Groovy script, a Java-like dy-
namic language.6 Finally, users can connect to the database
containing the transaction data and perform SQL queries.

Remote access. Users may access transactions data stored
on another machine by entering the connection string of a
remote database in SemDiff. This enables users to dele-
gate the execution of transaction analysis to more powerful
computers: retrieving and analyzing transactions from large
repositories is CPU and memory intensive. For example,
with two GB of heap space, it took 13 hours to process the

4hsqldb.org
5www.postgresql.org
6groovy.codehaus.org



Eclipse JDT repository (∼5 seconds per transaction) on a
Pentium D 3.2 Ghz.
Implementation. To compute transactions, SemDiff au-
tomatically retrieves from the repository a log describing
the files that were changed. From this log, SemDiff down-
loads all the versions of each file that was ever created in
the project and associates each version to a transaction. Al-
though Subversion repositories explicitly keep track of the
files that were changed together, CVS repositories do not
group the files together and the log must be processed using
a common technique to recover the transactions [11] (Sem-
Diff hides this processing phase to the user).

SemDiff computes structural differences by comparing
the abstract syntax tree of the source files between each ver-
sion. To compute call differences, SemDiff uses Partial Pro-
gram Analysis (PPA) to recover the method signature of the
calls [3].

Because SemDiff only stores the files that were changed
at each transaction (as opposed to the entire program), it is
generally not possible to compile those files because their
dependencies are missing. PPA enables us to perform static
analysis on these partial programs by inferring types and
resolving syntactic ambiguities.

3. Related Work

Fluri et al. created ChangeDistiller, a tool that transforms
source code changes into abstract syntax tree edits [5].
These tree edits are then used to classify the source code
changes according to a taxonomy of changes. ChangeCom-
mander, an extension to ChangeDistiller, recommends the
addition of guard conditions before method calls and can
complement the recommendations made by SemDiff [6].

eRose is a tool that recommends files that should be
changed together during a maintenance task [11]. eRose
also mines CVS repositories to produce its recommenda-
tions, but it does not address the problem of adapting client
programs to the new version of a framework.

Xing and Stroulia proposed UMLDiff, an approach that
provides very precise analysis of the changes that happened
between two major revisions of a software application [10].
UMLDiff also provides a classification of changes and, like
SemDiff, can detect refactorings. JDiff is a tool that builds
and compares the control flow graph of two versions of a
Java program to model the difference in their behavior [1].
As opposed to SemDiff though, UMLDiff and JDiff require
the complete versions of the software application (hence
their ability to precisely determine the full signature of
method calls), do not work with software repositories, and
cannot detect complex changes such as program elements
that are replaced by external elements. A more complete
review of the related work is available in our previous pub-
lication [4].

4. Conclusion

We presented SemDiff, a toolset integrated within
Eclipse that recommends to developers how to adapt their
client programs to the evolution of a framework. Sem-
Diff also enables users to easily analyze the evolution of
a software application. Ultimately, we hope that tools like
SemDiff will encourage early adoption of frameworks that
change often and that developers will spend more time
on changes that have higher added-value than adaptive
changes.

Acknowledgments
The authors are grateful to Ekwa Duala-Ekoko and Tris-

tan Ratchford for theirs valuable comments on this paper.
This work was supported by NSERC and FQRNT.

References

[1] T. Apiwattanapong, A. Orso, and M. J. Harrold. JDiff: A dif-
ferencing technique and tool for object-oriented programs.
Automated Software Engineering, 14(1):3–36, 2007.

[2] S. Breu and T. Zimmermann. Mining aspects from version
history. In Proc. of the 21st Int’l Conf. on Automated Soft-
ware Engineering, pages 221–230, 2006.

[3] B. Dagenais and L. Hendren. Enabling static analysis for
partial Java programs. In Proc. of the 23rd Conf. on Ob-
ject Oriented Programming Systems and Applications, pages
313–328, 2008.

[4] B. Dagenais and M. P. Robillard. Recommending adaptive
changes for framework evolution. In Proc. of the 30th Int’l
Conf. on Software engineering, pages 481–490, 2008.

[5] B. Fluri, M. Wuersch, M. Pinzger, and H. Gall. Change
distilling: Tree differencing for fine-grained source code
change extraction. IEEE Transactions on Software Engi-
neering, 33(11):725–743, 2007.

[6] B. Fluri, J. Zuberbüehler, and H. Gall. Recommending
method invocation context changes. In Int’l Workshop on
Recommendation Systems for Software Engineering, FSE
Workshop, 2008.

[7] M. P. Robillard and B. Dagenais. Retrieving task-related
clusters from change history. In Proc. of the 2008 15th Work-
ing Conf. on Reverse Engineering, pages 17–26, 2008.

[8] M. P. Robillard and P. Manggala. Reusing program in-
vestigation knowledge for code understanding. In Proc. of
the 2008 The 16th Int’l Conf. on Program Comprehension,
pages 202–211, 2008.

[9] P. Weissgerber and S. Diehl. Identifying refactorings from
source-code changes. In Proc. of the 21st Int’l Conf. on Au-
tomated Software Engineering, pages 231–240, 2006.

[10] Z. Xing and E. Stroulia. Understanding the evolution and co-
evolution of classes in object-oriented systems. Int’l Jour-
nal of Software Engineering and Knowledge Engineering,
16(1):23–51, 2006.

[11] T. Zimmermann, A. Zeller, P. Weißgerber, and S. Diehl.
Mining version histories to guide software changes. IEEE
Transactions on Software Engineering, 31(6):429–445,
2005.


