
FEAT

A Tool for Locating, Describing, and Ana lyz ing Concerns in Source C o d e

Martin P. Robillard and Gail C. Murphy
University of British Columbia

Department of Computer Science
201-2366 Main Mall, Vancouver, BC

Canada, V6T 1Z4
{mr obi 11 a, murphy} @ c s. ubc. c a

1 Introduction 2 The FEAT Tool

Developers working on existing programs repeatedly
have to address concerns, or aspects, that are not well mod-
ularized in the source code comprising a system. In such
cases, a developer has to first locate the implementation of
the concern in the source code comprising the system, and
then document the concern sufficiently to be able to under-
stand it and perform the actual change task.

Several approaches are available to help software devel-
opers locate and manage scattered concern code. Lexical
searching tools, such as grep [1], code browsers, such as the
Smalltalk integrated development environment [3], cross-
reference databases, such as CIA [2], and slicers [9], can
each help a developer identify relevant points in the code
and can help elicit the relationships between the different
parts of a program. Alternatively, a developer may be able
to leverage the identification of the change from a previ-
ous modification using version differencing in a source code
repository. All of these tools produce a similar result: the
developer is presented with the lines of source code con-
tributing to the concern in the system. This ad hoc, source
code-intensive representation of concerns is difficult to use
as the basis for reasoning about and analyzing concerns for
the purpose of software evolution.

To address the problem of effectively capturing knowl-
edge about the implementation of a concern in source code,
we have investigated the possibility of describing concerns
as a graphs of relations between program elements. We
have named this representation Concern Graph [7, 8]. We
have developed a tool, called FEAT [6], to support building
and analyzing Concern Graphs. Specifically, FEAT sup-
ports locating, describing, and analyzing the code imple-
menting a one or more concerns in a Java system.

FEAT is developed as a plugin for the Eclipse Plat-
form [5], an integrated software development environment
with a plugin architecture supporting the addition of func-
tionality (Figure 1, last page).

With the FEAT plugin activated, users of Eclipse can use
the integrated development environment as usual, to browse
and modify code, perform searches, etc. However, if a user
desires to create a concern representation, the FEAT Per-
spective can be activated and a concern representation cre-
ated. At this point, a concern in FEAT is simply a named
container for a fragment of a program which is of interest to
a user. Any class, method, or field in a project can then be
moved to the FEAT Perspective.

Elements in the FEAT Perspective can be analyzed for
their dependencies to other elements in the source code.
Any element or relations of interest to a user can be stored
as part of a concern. The source code corresponding to any
element or relation can also be viewed in code viewer (bot-
tom window).

Concerns descriptions can be used to systematically ana-
lyze the code for a concern, or to compare two different con-
cern descriptions. In both cases, FEAT automatically de-
tects relations between elements in concerns, and presents
the relations visually to the users.

The architecture of FEAT consists in three components:
a model component providing operation on concerns and
ensuring the consistency of the concern description, an Java
bytecode analyzer component, built on top of IBM's Jikes
Bytecode Toolkit [4], which provides relations between dif-
ferent elements in a program, and a GUI component which
ties the tool into the Eclipse Platform.

We have successfully used an earlier prototype of the
FEAT tool to locate, describe, and analyze concerns for
the purpose of software evolution in 4 academic case stud-

0-7695-1877-X/03 $17.00 © 2003 IEEE 822

attribute}
C~aandMe~u menu • ~ ~ z m u (t i t l e) :
t ~ r (i n t i ' O ; i ~ C o l o ~ p , s i . z e {) ; i~-~)

~ e v U n C l e (

a t t r i R t o ~
• " • , ~ ~ ;

t h i s
)

)
) ;

r e t u r n mine :
)

/ Cxwnt~ the 8rr~s w e ~ .
o/

l~rQt~ta~l Jllenu ~wmatedt~v~u{} {

~ u . e d d (~ U n d o a b l e C - - ~ t+
Chem~mAt t : e i b ta t~u~d (' no~e l ' , "Accovl lc~ls' , nerG Inteqpnr(PolyLimltFigura.ARROU_TIP_ll0tlE), t h i s) }) ;

~ u . add (hem U u d o a b l o C c ~ a n d (
Chl~age~ttril~atllC~aand('at S t ~ J r t ' . " ~ l ~ d o ' . ~ I n t ~ (I ~ I y % i ~ i ~ . z ~ L ~] ~ O ~ _ T I ~ . S T ~ R T) . this)});

Figure 1. The FEAT tool.

ies [8], including a scalability study involving a large indus-
trial code base. The current version of the tool is presently
being used in a new series of user studies.

3 Description of the Demonstration

The demonstration will consist in performing part of a
change task on a Java program with the help of FEAT. First,
we will use FEAT to locate and analyze a set of concerns
relevant to the change task. Specifically, we will show
how, by visually navigating structural program dependen-
cies through the tool's graphical interface, we can rapidly
locate the code implementing a concern, and store the result
as an abstract representation consisting of building blocks
that are easy to manipulate and query. We will then show
how the representation of the sample concern supported by
FEAT can be used to investigate the relationships between
the captured concern and the base code, between the differ-
ent parts of the concern itself, and between different con-
cern representations. Finally, we will show how FEAT can
be used to keep track of the actual source code implement-
ing the concern.

References

[1] A.V. Aho. Pattern matching in strings. In R. V. Book, editor,
Formal Language Theory: Perspectives and Open Problems,
pages 325-347, New York, 1980. Academic Press.

[2] Y.-E Chen, M. Y. Nishimoto, and C. Ramamoorthy. The C in-
formation abstraction system. IEEE Transactions on Software
Engineering, 16(3):325-334, March 1990.

[3] A. Goldberg. Smalltalk-80: The Interactive Programming En-
vironment. Addison-Wesley, 1984.

[4] The Jikes bytecode toolkit. IBM, March 2000.
http://www.alphaworks.ibm.com/tech/jikesbt.

[5] Object Technology International, Inc. Eclipse platform tech-
nical overview. White Paper, July 2001.

[6] M. P. Robillard. The FEAT Eclipse Plugin: A tool for lo-
cating, describing, and analyzing concerns in source code.
http://www.cs.ubc.ca/-mrobilla/feat2.

[7] M.P. Robillard and G. C. Murphy. Capturing concern descrip-
tions dunng program navigation. Position paper for the OOP-
SLA 2002 Workshop on Tool Support for Aspect-oriented
Software Development, November 2002.

[8] M. P. Robillard and G. C. Murphy. Concern Graphs: Finding
and describing concerns using structural program dependen-
cies. In Proceedings of the 24th International Conference on
Software Engineering, May 2002.

[9] M. Weiser. Program slicing. IEEE Transactions on Software
Engineering, 10(4):352-357, July 1984.

823

