Casdoc: Unobtrusive Explanations in Code Examples

Mathieu Nassif
mnassif@cs.mcgill.ca
School of Computer Science
McGill University
Montréal, QC, Canada

ABSTRACT

Code examples are of great value to programmers trying to learn
an unfamiliar API Effective code examples are often surrounded
with plain text explanations of the relevant concepts, techniques,
and API elements involved in the example. However, authoring
concise yet complete explanations is a challenging balancing act.
To address this challenge, we propose Casdoc, a novel authoring
technique and presentation format for annotated code examples.
Casdoc-formatted code examples are HTML documents designed to
embed unobtrusive explanations into the code. They thus contain
more explanations to address the varying needs of a larger audi-
ence, without disrupting individual readers with information they
already know. Explanations are split into short annotations and
organized into an intuitive tree-like structure, thus supporting a
streamlined authoring process. We used Casdoc to produce 105 Java
code examples as part of the course material for an undergraduate
computer science course. Students preferred the new format over
traditional code examples. Their interaction with code examples
suggests that the intuitive structure of Casdoc annotations reduces
the need for navigation aids such as search fields.

On-line tool and video: https://www.cs.mcgill.ca/~martin/casdoc/

CCS CONCEPTS

« Software and its engineering — Software maintenance tools;
Programming by example; Documentation.

KEYWORDS

Software documentation, documentation format, code examples
ACM Reference Format:

Mathieu Nassif, Zara Horlacher, and Martin P. Robillard. 2022. Casdoc: Un-
obtrusive Explanations in Code Examples. In 30th International Conference
on Program Comprehension (ICPC °22), May 16—17, 2022, Virtual Event, USA.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3524610.3527730

1 INTRODUCTION

Documentation is the main resource programmers can use to dis-
cover and learn to use the application programming interface (API)
of a framework or library. Indeed, low quality documentation can
be a major obstacle for the adoption of a new framework [10]. One

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPC 22, May 16-17, 2022, Virtual Event, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9298-3/22/05...$15.00
https://doi.org/10.1145/3524610.3527730

Zara Horlacher
zara.horlacher@mail.mcgill.ca
School of Computer Science
McGill University
Montréal, QC, Canada

Martin P. Robillard
martin@cs.mcgill.ca
School of Computer Science
McGill University
Montréal, QC, Canada

important aspect of API documentation is the inclusion of code
examples [2, 8]. Prior work has proposed various techniques to
generate them automatically (e.g., [3]). However, code examples
alone are insufficient to convey all necessary knowledge to use
an API effectively. Supporting knowledge such as their structure,
key elements, and related concepts, is often provided in plain text
explanations located around the code example [8].

Authoring explanations to complement code examples is a dif-
ficult balancing act. Too much content can bloat or fragment the
documentation, but too little can fail to address the needs of some
programmers. Anticipating different needs can lead to tangled ex-
planations for unrelated tasks, making the relevant information for
one task harder to find even when it is available [1, 15]. These is-
sues are compounded by the reality that programmers with varying
expertise will have different needs for the same documentation.

To address these seemingly conflicting issues, we propose a new
format to improve the authoring and presentation of code examples.
This new format, called Casdoc (for Cascading documentation),
comprises three aspects. First, the explanations of a code example
are broken down into short annotations. Second, these annotations
are linked to the precise element of the code example or of another
annotation they provide an explanation about. Finally, annotations
are initially hidden and must be revealed by the reader.

This presentation format offers benefits to both readers and
authors. Because readers reveal only information about the code el-
ements and concepts they do not understand, they are not distracted
by knowledge they are already familiar with. As a consequence, au-
thors can include more content in a single document to address the
needs of a larger audience, without worrying about the document
becoming too cluttered. Furthermore, the need-oriented hierarchy
of annotations provides an effective and consistent information
structure for readers, while removing the burden of organizing
documentation from authors.

Casdoc represents a departure from traditional formats of doc-
umentation that are designed around the limitations of printed
media. It leverages the new possibilities of web technologies to
structure information more intuitively, and only requires standard
web technologies, such as any modern web browser, to present
improved documents. Thus, Casdoc-formatted code examples can
be embedded in any web-based documentation, such as tutorials,
API reference documentation, and Q&A forums. We implemented
a proof of concept tool to generate Casdoc documents for Java
code examples. This tool takes as input Java files annotated us-
ing a domain-specific annotation language, and generates a self-
contained Casdoc-formatted HTML document for each input file.

Readers can find examples of Casdoc documents, a short video
introducing the main features of the documents, a user manual
to annotate Java files, as well as a free on-line service to generate

https://orcid.org/0000-0003-0211-7256
https://orcid.org/0000-0002-0248-1384
https://www.cs.mcgill.ca/~martin/casdoc/
https://doi.org/10.1145/3524610.3527730
https://doi.org/10.1145/3524610.3527730

ICPC °22, May 16-17, 2022, Virtual Event, USA

Mathieu Nassif, Zara Horlacher, and Martin P. Robillard

String url = "jdbc:mysql://localhost/TUTORIALSPOINT";
String query = "SELECT » FROM Employees";
try(Connection conn = DriverManager.getConnection(url);
Statement stmt = conn.createStatement ();
ResultSet rs = stmt.executeQuery(query);) {
while (rs.next()) {
System.out.println("ID: "+rs.getInt("id"));
System.out.println("Name: "+rs.getString ("name"));

} catch (SQLException e) { e.printStackTrace (); }

Figure 1: Code example showcasing how to use the JDBC API
to query an SQL database. Adapted from Tutorials Point [9].

JDBC connection URL S W
format for SQLite /L’dec's“"‘e-”’e-do
Javadoc]avasql /L>< Reference >_7/ ResultSet.next() /

Iterator pattern

Format varies for
database systems

JDBC connection
URL format

Code
Star (*) selects al

I
example
SQL query syntax columns) “SELECT [colum
FROM [tabls
Environment Data query Freelng Java try-with- try (resource decl.)
setup template resources resources statement { block; }

Figure 2: Information needs (parallelograms) and their solu-
tion (white rounded rectangles) elicited by a code example
of the JDBC API and its explanation (dark shapes). Casdoc
can organize all of this information in a single document.

Casdoc documents from annotated Java files at
https://www.cs.mcgill.ca/~martin/casdoc/

2 MOTIVATION

Let us consider a traditional search scenario for learning how to
interact with an SQL database in Java. This scenario assumes prior
experience in Java programming, but not with SQL databases.

We start with a web query such as “Java SQL database example”.
Among the results, we find a code example similar to the one in Fig-
ure 1 that shows how to query a database. At this point, we realize
our need to understand the connection URL and the syntax of SQL
statements. Each information need triggers a new time-consuming
search process, which can in turn trigger further searches. Figure 2
shows some of these additional searches that may be needed to
fully understand the original code example.

This scenario shows that much effort can be spent searching for
supporting information when trying to understand a code example.
It also shows the cascading nature of information needs: Finding
some information, for example that connection URLSs follow vendor-
specific formats, can create new information needs, i.e., the format
for a given vendor. Needs also vary for different readers. Some may
need to refresh their memory on, e.g., Java’s try-with-resources
statements, that other readers already know well [2].

All the supporting information could be contained in a single
document. However, with a traditional format, doing so for a large
audience of varying backgrounds can lead to large and intimidating
documents, and programmers are more likely to miss the informa-
tion they need when scanning many paragraphs. Documents with
too much background information can also feel too verbose, inciting
readers to look elsewhere for more concise documentation [1].

public class JdbcExample { Search withir [‘)i'l‘,‘u'%‘?@ N B
public static void main(String[] args) {

String url = "jdbc:mysql://localhost/TUTORIALSPOINT";

String query = "SELECT * FROM Employees";

fann crastactatamant ().

ResultSet rs = § @ . Connection X
while (rs.next()

This connection must be closed”| changes to the database and
ception needs to interact with the ditabas releases the resources required
to keep the connection open.

-------- closed
Syste ut.p . Connection @
OUt'p A Connection object represents —Closing a conneclion commits all
} catch (sQeXx

© public interface Connecti It's possible to close a
@ AutoCloseable connection with the close()

method, but a better alternative
Official API Reference

istousea try-with-

Figure 3: View of a Casdoc document, with block (1) and in-
line (2) anchors, revealed pop-up annotations (3), navigation
aids (4), and automatically injected API documentation (5).

3 APPROACH

Our approach to present extensive descriptions of code examples
effectively is to split explanations into concise hidden fragments,
organized in a need-based tree structure, and to allow readers to
reveal selected fragments. Thus, when opening a new document,
only the uncluttered code example is shown, which is often what
programmers first look for [2]. Readers can easily access just the
additional information they need.

We developed this idea through a prototype implementation for
Java code examples. The prototype consists of three components: a
documentation format for HTML documents; a markup language to
annotate code examples directly in Java files; and a transformation
tool to convert annotated Java files to Casdoc code examples in
HTML documents.

Because the focus of our work is to improve the presentation of
code examples, we assume that the documentation content already
exists or is written manually by an author. However, we designed
Casdoc to allow extensions for generated documentation, so that
it can benefit from state-of-the-art and future work on automated
documentation generation.

3.1 Casdoc Documentation Format
We designed Casdoc based on the following design principles:

(1) Each document should express a clear, concise intent. Sup-
plemental information should be unobtrusive.

(2) Navigation within the document should follow the informa-
tion needs of readers. Only information relevant at a given
time should be displayed.

(3) The format should support typical navigation actions such
as orienteering and teleporting [12].

(4) Information added by the author of a document should be
additive to existing tool-injected documentation, such as API
reference documentation.

Figure 3 shows a partial view of a Casdoc document. Consistently
with the first design principle, the initial view of the document
consists only of the code example, with subtle annotation markers.
An annotation marker indicates that the code element is an anchor
to additional explanations. There are two kinds of anchors: a block

https://www.cs.mcgill.ca/~martin/casdoc/

Casdoc: Unobtrusive Explanations in Code Examples

anchor (1) matches an arbitrary block of consecutive lines, while an
in-line anchor (2) matches a single keyword within a line of code. In
Figure 3, a reader unfamiliar with ResultSet’s next() method can see
by the blue underline that this method is associated with further
explanations.

Explanations are contained in pop-up annotations (number 3 in
Figure 3). Hovering over an anchor reveals a floating pop-up that
can be quickly opened and closed to clarify or recall existing knowl-
edge [2]. If the reader wants to keep an annotation visible, they can
pin it. Pinned pop-ups thus allow readers to lay out the document
as they prefer. Annotations can themselves include in-line anchors
for further explanations about, e.g., new concepts mentioned in the
annotation. For example, in Figure 3, the right pop-up is a nested
annotation that describes how to close a Connection object, an
operation mentioned in the left pop-up. Hence, annotations are
themselves concise, deferring their own supporting information
to nested annotations. These choices arise from our second design
principle. Readers can find further information by looking for mark-
ers near an unfamiliar element or concept, and display only the
information they find useful.

Our third design principle led to the addition of navigation tools
to support orienteering and teleporting actions [12] (number 4 in
Figure 3). A search field allows readers to find deeply nested anno-
tations and teleport to them. To help readers understand to which
element an annotation relates to, nested annotations have bread-
crumbs that show their parent annotation, i.e., the annotation that
contains the anchor. Thus, readers using an orienteering strategy
can navigate the annotations’ tree structure backwards if they need
to. Additionally, a pair of undo and redo buttons allows to navigate
through the history of pinning and unpinning pop-up annotations.

Lastly, according to our fourth design principle, it should be
possible to extend Casdoc to automatically insert some annotations
in addition to the author’s manual annotations. To avoid conflicts
or undefined behavior, if both an author’s and a tool-injected an-
notations have the same anchor, these annotations are combined
into a single pop-up (number 5 in Figure 3). To avoid mislead-
ing information sources, an icon in the top left corner of pop-up
boxes identifies the source of an annotation. We implemented one
automated source of annotations: the API reference documenta-
tion of types and methods from the Java standard library. Because
those automatically-generated annotations have predictable an-
chors, those anchors purposefully do not have visible markers.

3.2 Markup Language for Java Files

To generate Casdoc documents, authors need to insert annotations
directly in Java files, which will be converted to HTML documents
with our tool. Authors define annotations using a markup language
that we designed to streamline the authoring process.!
Annotations are declared within Java block comments that begin
with a question mark, i.e., enclosed in /*? ... */, which we refer
to as Casdoc comments. This strategy—similar to documentation
(Javadoc) comments enclosed in /** ... */—distinguishes the content
of annotations from regular block comments to keep in the code

!In this article, we use the term annotation to refer exclusively to explanations of a
code example, either in their comment form within Java files, or in their pop-up form
in the HTML files. We do not use the term to refer to Java’s annotation types.

ICPC 22, May 16-17, 2022, Virtual Event, USA

/%?
« Keyword: next
« The next() method does two things: it checks if there are additional rows in the
« ResultSet, and advances the cursor if there are.
*/
while (rs.next()) {
System.out.printIn("ID: "+rs.getInt("id"));
System.out.println("Name: "+rs.getString("name"));

}

Figure 4: Declaration of the annotation with an in-line anchor
labelled “2” in Figure 3, placed within the Java source file.

example. A Casdoc comment can declare multiple annotations, and
is placed immediately above the element it annotates.

Figure 4 shows an example of an annotation with the in-line
anchor next. The first line of an annotation defines the type of
anchor (e.g., the Keyword type indicates an in-line anchor) and the
anchor itself. For annotations with a nested anchor, the second line
declares the parent annotation’s anchor. Annotations with a block
anchor use the second line to declare the title, which appears at the
top of the pop-up and is used for the breadcrumbs. Annotations with
in-line or nested anchors use their anchor as title. The subsequent
lines define the content of the annotation, using Markdown syntax.
A detailed description of the Casdoc markup language is available
on the tool’s website.

The Casdoc markup language allows authors to create human-
readable annotations in a Java file. Because annotations are inserted
in block comments, authors can rely on any Java editor to create
both the code examples and their annotations at the same time.
Furthermore, because annotations are inserted directly above their
anchors, authors can insert information exactly where it is relevant.
Finally, in traditional documents with many paragraphs, authors
must invest effort to ensure that the focus of each explanation is
clear and that the narrative flow of the paragraphs is adequate.
Casdoc mitigates this concern by clearly linking each explanation
to its context, thus reducing the burden on authors.

3.3 Transformation Tool

The last component of our prototype is the tool to transform an-
notated Java files into HTML documents in Casdoc format. The
generated HTML documents use only standard web technologies
(CSS and JavaScript) and are entirely self-contained. Thus, once
created, Casdoc documents can be shared and viewed without spe-
cialized viewing tools.

This transformation tool processes a Java file by parsing it into
an abstract syntax tree (AST). It then extracts and removes the
Casdoc comments, and places the remaining AST in a buffer to
serve as the initial code example. The tool then parses the Cas-
doc comments to extract the annotations and the position of their
respective anchors. It also generates annotations containing the
API reference documentation for types and methods of the Java
standard libraries.

After identifying the annotations, the tool updates the buffer to
enclose each anchor in HTML tags, and appends the content of
the annotations to the buffer. Finally, it injects the content of the

ICPC °22, May 16-17, 2022, Virtual Event, USA

buffer into a template HTML document with embedded CSS and

JavaScript code that handles the display of pop-up annotations.
An interface to use the Casdoc transformation tool is available on

the project website. The tool is free to use, but requires registration.

3.4 Limitations

We intended our prototype to support annotating any part of any
Java file. However, for practical reasons, in-line anchors cannot
span multiple lines, and manual annotations can only link to one
anchor, even if the associated element is repeated in the code ex-
ample. Furthermore, anchors within other Java comments proved
challenging to properly design, so only block anchors are allowed
within (non-Casdoc) comments. When annotating code examples
(see Section 4), we found it was possible to work around these
limitations without sacrificing the quality of the annotations.

4 EMPIRICAL ASSESSMENT

To gather insights into the benefits and limitations of Casdoc, we
produced 105 annotated code examples for an undergraduate soft-
ware design course in the Fall 2021 term, and we monitored how
students interact with them.? These examples had been previously
created by the third author as part of the development of the course,
and we annotated them through the term. The examples showcased
the use of good software design principles in Java. Most of them
relied only on the Java standard libraries, and the others required
either the JUnit testing library or JavaFX graphical user interface
(GUI) library as a dependency. As a baseline, we also converted each
Casdoc example into a static code example, in which annotations
are shown as regular Java comments.

Creating the annotated code examples for a realistic context
demonstrates the viability of our prototype. It was possible to inject
in the code examples many clarifications for confusing elements,
without diminishing the relative importance of the code example.
Thus, because the authors did not have to consider which clar-
ifications were worth documenting and how to structure these
clarifications in a single narrative flow, it was possible to deliver
more information in the code examples, without requiring more
effort, as compared to authoring similar documents in a traditional
format.

The interaction traces between participants and code examples
also provided encouraging feedback about the quality of Casdoc
documents. After removing traces from participants simply explor-
ing Casdoc’s features, we obtained data from 21 participants, who
looked at 89 of the 105 code examples in total. Each of them con-
sulted between 5 and 120 documents (between 4 and 59 unique
documents), with an average of 22.7 (or 14.2 unique).

Originally, we had planned to compare the traces of participants
using Casdoc to those preferring the traditional examples. How-
ever, only two participants tried the traditional format. One of them
switched back to Casdoc within one minute. The other read some
documents in the traditional format, but switched back after open-
ing a code example with many annotations. Although this situation
prevents a more thorough comparison of the two formats, it shows
that most participants were favorable to Casdoc.

2We only monitored the activity of students who provided informed consent. This
study is approved by the Research Ethics Board of McGill University (file #21-06-007).

Mathieu Nassif, Zara Horlacher, and Martin P. Robillard

We also observed that participants most often hover over an
anchor to reveal a floating pop-up rather than pin the pop-up. This
observation suggests that readers may prefer information placed
in elements that can quickly be revealed or hidden, possibly to
avoid being distracted by this information once they understand
it. Finally, we observed that participants did not rely much on the
navigation tools we provided. In particular, only three of them
used the search field, each only once. This could indicate that the
structure of annotations is sufficiently intuitive that readers do not
need to resort to typical navigation actions like teleporting and
orienteering within the documents.

5 RELATED WORK AND CONCLUSION

Finding an optimal format for software documentation is not a new
problem [5], yet many areas of the design space remain unexplored.
The evolution of web technologies and the transition to on-line
documentation created opportunities to design more effective for-
mats [11]. For example, video tutorials are increasingly popular
among developers [7]. Other technologies, such as augmented re-
ality, can also provide new ways to improve documentation [4].
However, most of the recent work has focused on techniques to in-
corporate new information sources (e.g., [13]), to navigate existing
documents (e.g., [14]), or to generate documentation (e.g., [6]). The
question of how to present the generated or augmented documen-
tation remains unsolved, and de facto standards remain close to the
format of printed documents.

We presented Casdoc, a new interactive documentation format
for code examples. Casdoc documents focus on the code example,
hiding all other content from the initial view. They can contain
many additional explanations, linked to the specific element of the
code example they explain, that are revealed by readers if they need
it. These explanations can be nested, e.g., to explain a new con-
cept mentioned in another explanation, thus structuring documents
as a tree of short information fragments rather than a sequence
of paragraphs. This structure also streamlines the authoring pro-
cess, encouraging authors to provide crisp explanations, without
worrying about the organization of the document.

We implemented a prototype of Casdoc. With our tool, readers
can annotate their own Java files to produce annotated code ex-
amples to include in their API learning material. When testing the
viability of our prototype with undergraduate students, we found
an overwhelming preference for our new format, preventing us
from reliably comparing it to a standard static format. To address
this gap, we designed a controlled experiment to compare how
programmers react to Casdoc documents versus a baseline format.
We plan to report the results of this experiment in future work.

ACKNOWLEDGMENTS

This work was funded by the Natural Sciences and Engineering Re-
search Council of Canada and a Feng Qian undergraduate research
award.

REFERENCES

[1] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Marquez, Mario Lineres-Véasquez,
Laura Moreno, Gabriele Bavota, and Michele Lanza. 2019. Software Documenta-
tion Issues Unveiled. In Proceedings of the IEEE/ACM 41st International Conference
on Software Engineering. 1199-1210.

Casdoc: Unobtrusive Explanations in Code Examples

[2] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer.

2009. Two Studies of Opportunistic Programming: Interleaving Web Foraging,
Learning, and Writing Code. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 1589-1598.

Raymond P. L. Buse and Westley Weimer. 2012. Synthesizing API Usage Exam-
ples. In Proceedings of the 34th IEEE/ACM International Conference on Software
Engineering. 357-367.

Sridhar Chimalakonda and Akhila Sri Manasa Venigalla. 2020. Software Docu-
mentation and Augmented Reality: Love or Arranged Marriage?. In Proceedings
of the 28th Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering. 1529-1532.

Bill Curtis, Sylvia B. Sheppard, Elizabeth Kruesi-Bailey, John Bailey, and Debo-
rah A. Boehm-Davis. 1989. Experimental Evaluation of Software Documentation
Formats. Journal of Systems and Software 9, 2 (1989), 167-207.

Mingwei Liu, Xin Peng, Andrian Marcus, Zhenchang Xing, Wenkai Xie, Shuang-
shuang Xing, and Yang Liu. 2019. Generating Query-Specific class API Summaries.
In Proceedings of the 27th Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering. 120-130.

Laura MacLeod, Margaret-Anne Storey, and Andreas Bergen. 2015. Code, Camera,
Action: How Software Developers Document and Share Program Knowledge Us-
ing YouTube. In Proceedings of the IEEE 23rd International Conference on Program
Comprehension. 104-114.

ICPC 22, May 16-17, 2022, Virtual Event, USA

Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns. 2012. What
Makes a Good Code Example? A Study of Programming Q&A in StackOverflow.
In Proceedings of the 28th IEEE International Conference on Software Maintenance.
25-34.

Tutorials Point. 2009. JDBC - Sample, Example Code. https://www.tutorialspoint.
com/jdbc/jdbc-sample-code.htm Last access: 2021-11-01.

Martin P. Robillard and Robert DeLine. 2011. A field study of API learning
obstacles. Empirical Software Engineering 16, 6 (2011), 703-732.

Philipp Schugerl, Juergen Rilling, and Philippe Charland. 2009. Beyond Generated
Software Documentation — A Web 2.0 Perspective. In Proceedings of the IEEE
International Conference on Software Maintenance. 547-550.

[12] Jaime Teevan, Christine Alvarado, Mark S. Ackerman, and David R. Karger. 2004.

The Perfect Search Engine Is Not Enough: A Study of Orienteering Behavior in
Directed Search. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. 415-422.

Christoph Treude and Martin P. Robillard. 2016. Augmenting API Documen-
tation with Insights from Stack Overflow. In Proceedings of the IEEE/ACM 38th
International Conference on Software Engineering. 392—-403.

Christoph Treude, Martin P. Robillard, and Barthélémy Dagenais. 2015. Extracting
Development Tasks to Navigate Software Documentation. IEEE Transactions on
Software Engineering 41, 6 (2015), 565-581.

Gias Uddin and Martin P. Robillard. 2015. How API Documentation Fails. IEEE
Software 32, 4 (2015), 68-75.

https://www.tutorialspoint.com/jdbc/jdbc-sample-code.htm
https://www.tutorialspoint.com/jdbc/jdbc-sample-code.htm

	Abstract
	1 Introduction
	2 Motivation
	3 Approach
	3.1 Casdoc Documentation Format
	3.2 Markup Language for Java Files
	3.3 Transformation Tool
	3.4 Limitations

	4 Empirical Assessment
	5 Related Work and Conclusion
	Acknowledgments
	References

