
A Comparative Study of Three Program Exploration Tools

Brian de Alwis, Gail C. Murphy
Dept. of Computer Science

University of British Columbia
{bsd,murphy}@cs.ubc.ca

Martin P. Robillard
Dept. of Computer Science

McGill University
martin@cs.mcgill.ca

Abstract

Programmers need tools to help explore large software
systems when performing software evolution tasks. A va-
riety of tools have been created to improve the effective-
ness of such exploration. The usefulness of these tools has
been argued largely on the basis of case studies, small
narrowly-focussed experiments, or non-human-based ex-
periments. In this paper, we report on a more rigorously
controlled study of three specialized software exploration
tools in which professional programmers used the tools to
plan complex change tasks to a medium-sized code base.
We found that the tools had little apparent effect; the ef-
fects observed instead appear to be dominated by individ-
ual styles and strategies of the programmers and character-
istics of the tasks. In addition to presenting the results of
the study, this paper introduces the use of two experimental
evaluation aids: theNASA Task Load Index(TLX ) for as-
sessing task difficulty and distance profiles for assessing the
degree to which programmers remain on-track.

1. Introduction

Programmers spend a considerable amount of their pro-
gramming efforts exploring source code [7, 10]. During
such explorations, programmers sometimes miss seemingly
obvious information due to difficulties in obtaining, recog-
nizing, or synthesizing relevant information from the pro-
gram text [17]. A number of exploration tools have been
proposed to help overcome such problems [e.g., 13, 18].
The effectiveness of these tools has been argued largely on
the basis of case studies, narrowly-focussed experiments, or
non-human-based experiments (Section 2).

As part of our work on a new exploration tool, we under-
took a controlled experiment to compare the effectiveness
of three software exploration tools (Section 3) based on the
following three questions:

• Do exploration tools alleviate the demands made upon a
programmer’smental resourcesduring a task?

• Do exploration tools help a programmer focus on the pro-
gram elements relevant to the task and avoid irrelevant
elements? (exploration behaviour)

• Do exploration tools help a programmer garner a better
understanding of how the task should be carried out on
the code? (correctness)

The experiment used the Eclipse integrated development
environment (IDE) as a baseline and three specialized ex-
ploration tools: JQuery [5], Ferret, and Suade [12]. Each
of these tools uses and presents structural information in a
different way and represents a different point in the design
space for a structurally-based program exploration tool. To
help ensure a realistic setting for our experiment, we re-
cruited professional programmers and had the programmers
use the tools to plan complex changes to an open-source
codebase.

We found that any observable effects appear to be dom-
inated by individual styles and strategies of programmers
and characteristics of the tasks. We found no evidence that
the use of the exploration tools lead to better quality solu-
tions (Section 4). We also found that what were seemingly
similar tasks to us were not perceived as such by the partic-
ipants. This paper makes four contributions.

1. We introduce the use ofNASA Task Load Index (TLX ) [2]
to gauge how the participants view task difficulty.

2. We introduce the use of distance profiles to evaluate the
degree to which a programmer remains on-task during
their program exploration.

3. We present evidence that any effects of the exploration
tools are likely dominated by the strategies employed by
a programmer and by the task.

4. We show that the use of a small set of metrics to argue
the effectiveness of exploration tools may not reflect the
impact of the tools.

2. Related Work

Most tools for helping software programmers navigate
and explore source code have been evaluated using quali-



tative case study methods [e.g., 13]. These studies provide
rich detail about particular situations but are often limited
in the range of situations and users considered. In perform-
ing our experiment, we were attempting to more precisely
compare the effects of different tools.

There are only a few reports describing experiments con-
ducted about source code exploration tools. Storey et al.
[19] and Sim and Storey [16] describe comparative experi-
ments where programmers attempted the same set of tasks
using different exploration tools. Their results are largely
qualitative. They found that some tools were better for
different typesof tasks, whether reverse-engineering tasks
or program-modification tasks. Our experiment focuses
specifically on program modification tasks.

We found five reports of hypothesis-testing experiments
to assess the effectiveness of software exploration tool(s) [1,
3, 8, 9, 20]. All five of these experiments used students
as their subjects. To assess the tools, all of these experi-
ments used the correctness of answers to questions about a
code base. Three of these experiments also measured time-
to-completion [1, 3, 20]; the other experiments imposed
completion times, which varied from 50 minutes to 5 days.
Three of these experiments attempted to ascertain whether
the subjects found their respective tools useful [8, 9, 20],
but each used a different method. Most of these exper-
iments used a number of elementary information-finding
tasks [3, 8, 9, 20], such as “list procedures of functions
called byX.” Meyers and Reiss [9] asked one question to
describe the changes necessary to implement new function-
ality. Binkley [1] asked participants to identify the source
of an error in a program, in addition to a series of informa-
tion recall questions. In contrast, our experiment attempted
to determine if using specialized rather than general tools
caused professional programmers to perform more effec-
tively on real tasks.

Rajlich and Cowan [11] propose some starting points for
standardizing comparative experiments for software tools,
suggesting the recording of three measures: (i) accuracy
of the answers the programmers give to questions about
the program, (ii) the response time for accurate answers,
and (iii) the response time for inaccurate answers. These
measures do not capture any detail of the programmer’s be-
haviour, nor the support afforded to the programmer. In
contrast, we use measures in Section 3.2 intended to ana-
lyze and describe the effect of tools on the experience and
behaviour of programmers.

3. Experiment

Our experiment sought to assess the effectiveness of
three tools introduced to ease the exploration of source
code.

3.1.Exploration Tools

We wanted to compare features of three exploration
tools: Ferret, our own unpublished tool; JQuery [5]; and
a pre-release of Suade [12]. Each of these tools runs within
the Eclipse environment.1 We chose these tools as they rep-
resent a range of different approaches for obtaining and pre-
senting static information extracted from program text, and
all have a goal of improving program exploration.

JQuery is a query-based source code browser [5] that
shows query results in context. A JQuery user can issue
a variety of pre-written queries, a superset of the standard
queries from Eclipse. Results of a query are displayed as a
tree with expandable and collapsible nodes. Individual el-
ements in the tree provide the context for further queries,
whose results are shown in-place. This hierarchical dis-
play provides an explicit map of the navigation paths as the
tree expansions capture the history of a programmer’s ex-
ploration.

Ferret provides a structured display of information about
the local contextof a program element of interest, based on
the assumption that understanding a program element also
requires understanding how it relates to the rest of the sys-
tem. The local context is structured as answers to a set of
conceptual queriesabout that element, which include and
build-on the standard queries supported by Eclipse. An ex-
ample of a conceptual query is “what interfaces define (or
specify) this method?” The conceptual queries are com-
puted automatically as program elements are selected in the
IDE, and the answers are displayed in a separate Eclipse
view, categorized by whether they involvedeclarations, are
aboutinter-classor intra-classrelations, or arehierarchical
in nature.

Suade is an implementation of the topology-analysis al-
gorithm described by Robillard [12]. When requested by
the user, Suade recommends additional program elements
for investigation using an estimate of their structural relat-
edness to a previously-identified set of program elements.
The recommended program elements are displayed in a sep-
arate Eclipse view, ranked according to their estimated re-
latedness. Elements deemed interesting by the programmer
can be added to the input set and used for requesting addi-
tional suggestions.

3.2.Hypotheses and Measures

We transformed our study questions (Section 1) into the
following three hypotheses.

Hypothesis 1: Programmers using an exploration tool
should report a lower mental workload to complete a

1Versions: Eclipse R3.1.2 (www.eclipse.org), Ferret 0.2.14.2 (www.cs.
ubc.ca/~bsd/research/ferret/), JQuery 3.1.5 (jquery.cs.ubc.ca), and Suade
pre-release 0.1.2 (www.cs.mcgill.ca/~swevo/suade/); verified 2007/03/30

www.eclipse.org
www.cs.ubc.ca/~bsd/research/ferret/
www.cs.ubc.ca/~bsd/research/ferret/
jquery.cs.ubc.ca
www.cs.mcgill.ca/~swevo/suade/


task as compared to Eclipse alone.
We expected that an exploration tool should alleviate the de-
mands made upon a programmer’s mental resources while
undertaking a task. It may be that an exploration tool has
little effect on the output produced by the programmer, but
improves the programmer’s ability to produce the output.
We assess this support using theTLX [2], a well-validated
and easy-to-administer questionnaire for assessing thesub-
jective mental workloadexperienced by a subject perform-
ing a task. TheTLX combines a subject’s report of six dif-
ferent factors (the mental, physical, and temporal demands;
the effort required; the subject’s view of his performance;
and the frustration experienced) to provide a subjective as-
sessment of workload. To compare scores between subjects,
the scores are normalized by taking the difference from a
baseline task performed without the treatment of interest.

Hypothesis 2: Programmers using an exploration tool
should not need to explore as much code as compared to
Eclipse alone.
We expected that an exploration tool should help the pro-
grammers focus on the program elements relevant to the
task and avoid examining irrelevant elements. We assess
this hypothesis in two ways. We first compare the numbers
of unique program elements viewed by the programmer in
each of the tasks (Viewed). Recognizing that some program
elements are more relevant to the task solution than oth-
ers, we also examine the programmer’s navigation patterns,
comparing the distances strayed from the solution elements
during the exploration.

Hypothesis 3: Programmers using an exploration tool
should identify more of the salient elements for the task
as compared to Eclipse alone.
We expected that programmers using an exploration tool
should garner a better understanding of how the task should
be carried out on the code through the improved support
for exploring relations in the source code. We assess this
hypothesis by comparing the quality of their solutions, de-
termined by the percentage of program elements correctly
reported from model solutions (Quality).

3.3.Design

Our within-subjects experiment compared a program-
mer’s code exploration behaviour when using one of the ex-
ploration tools with the same programmer’s behaviour when
using the standard exploration facilities in the EclipseIDE

for Java development. A within-subjects design satisfied the
requirements of theTLX to have a baseline for comparison,
and allowed compensating for strong individual differences
seen in programmers [e.g., 14, 15].

Each subject was asked to investigate and document a
solution for two change tasks. The order of the tasks was

Table 1: Allocation of programmers per treatment
group.

AS–SR SR–AS

Tool Combination T1 T2 T1 T2

Eclipse / JQuery G1 G1 G2 G2

Eclipse / Ferret G3 G3 G4 G4

Eclipse / Suade G5 G5 G6 G6

randomized between subjects. Each subject used the nor-
mal Eclipse facilities for the first task, which served as a
baseline for comparison as required for theTLX . For the
second task, each subject was randomly assigned to use one
of the three exploration tools. The two tasks (AS and SR)
are described in Section 3.6. By stressing the documenta-
tion to guide another programmer in making the necessary
changes, we aimed to emphasize the searching to under-
stand the behaviour of the application.

This experiment uses a two-way, repeated measures, fac-
torial design. Thetwo-wayrefers to the two independent
variables (or between-subjects variables):Tool, the explo-
ration tool used for the second task; andTask Order, the
order in whichAS and SR were tackled. Afactorial de-
signtests all combinations of the independent variables, and
allows studying the effect of each factor as well as inter-
actions between the factors. We thus have six treatment
conditions. Our design has repeated measures as each sub-
ject was involved in two trials, referred to as the variable
Trial. As we were comparing three exploration tools, with
two possible orderings of the tasks, and two trials, this is a
3× 2× 2 design. This design may be diagrammed as in
Table 1, whereTi represents the trial andGi represents the
treatment conditions.

Both the choice of exploration tool and task order were
randomized within blocks [6], where a block is a sequence
of experiment runs exercising all combinations of variables.
This randomization resulted in six treatment conditions; we
chose to have three subjects in each treatment condition,
resulting in 18 subjects.

3.4.Procedure

Each subject was asked to work on two change tasks to
an open-source editor, jEdit 4.1-pre6.2 This version of jEdit
comprises approximately 65 KLOC3 and 679 classes. The
subjects had 40 minutes to perform each task. As the explo-
ration tools use only static program information, the sub-
jects were instructed to not use the debugger. The experi-
ment was performed on a 2 GHz duo-core laptop equipped
with 1 GB of RAM and a 1400×1050 screen.

2www.jedit.org, verified 2007/03/30.
3Thousands of lines of code, only counting non-blank lines of code.

www.jedit.org


Each subject was instructed to create a plan for perform-
ing the tasks, identifying the program elements that either
need to be changed or that need to be understood. The plan
was to be appropriate for a senior student to rapidly turn
into working code. The plan was to be captured using a
specialized Relevant Elements view (Section 3.7).

After completing the first task, each subject followed a
10 minute tutorial on the exploration tool to be used in the
second task. Each tutorial demonstrated the particular tool’s
use on an unrelated codebase, JHotDraw 6.0b1.4 The tuto-
rials were assembled from introductory materials provided
by the developers of each tool. To help a subject retain in-
formation from the tutorial, we had them use the assigned
tool to answer a relatively simple question about JHotDraw;
if unsuccessful, the experimenter provided the solution and
demonstrated how the tool might be used to obtain the an-
swer. The experimenter also answered any questions and
provided tips on tool strategies.

Each subject was asked to use their assigned tool to its
fullest extent possible. If the subject was not successful at
finding the information, he was allowed to revert to the stan-
dard facilities in Eclipse. Because finding a starting point is
difficult, we provided an initialseed, a single pertinent ele-
ment to help start each task.

The experiment was piloted on three students. Minor
changes were made in light of comments from the first two
students, and the third student, who was the most experi-
enced, was able to successfully complete the experiment.
Each of these students felt the tasks were of equivalent diffi-
culty. Complete details of the tasks, and the provided source
code, are available online.5

3.5.Subjects

We recruited 18 professional programmers; each met our
criterion of Eclipse proficiency having either used Eclipse
for at least 6 months, or having successfully developed an
Eclipse plug-in. These programmers came from six differ-
ent companies or organizations, one of which involved pro-
grammers from two very different business divisions. All
programmers were male, had a minimum of three years ex-
perience writing software in an industrial setting, and had
worked on software projects with at least five other pro-
grammers. All but one had a minimum of two years expe-
rience programming with Java; one programmer had only
one year of Java experience.

JEdit was unknown to all but two programmers, neither
of whom had seen the code for at least three years. In our
follow-up interviews, neither claimed any advantage from
that previous exposure.

4www.jhotdraw.org, verified 2007/03/30.
5www.cs.ubc.ca/~bsd/research/icpc2007/

3.6.Tasks

The experiment involved identifying the changes re-
quired for two tasks. One of the tasks,AS, involved adding
a capability to the autosaving functionality, and was chosen
to be identical to that used in previous work [14]. The other
task,SR, involved reloading settings when the settings files
were edited within jEdit. We identified this task by exam-
ining the jEdit source code and identifying a small piece of
functionality that was easily removed. TheSR task seemed
comparable toAS: both interacted with only small amounts
of the overall system, and both used already-existing func-
tionality and required little new code.

Model solutions to the tasks were created by identify-
ing the methods, fields, and types in the existing source that
were either necessary to understand or that required modi-
fication. The model solutions did not include new methods
or new types that might have been necessary. Types were
only included when the solution required them to be sub-
classed, or when their entire workings were required to be
understood in detail. The model solution for theAS task
was identified from the solution from Robillard et al.’s orig-
inal study. As theSR task was created by removing existing
code, we simply examined the code that was removed.

3.7.Data Collection

We had two primary sources for data collection. The
Eclipse workspace was instrumented with the Mylar Mon-
itor [10] to collect information on Eclipse and tool usage.
Programmers were also asked to record their development
plan using a custom tool called the Relevant Elements view.

The Mylar Monitor provides a record of the exploration
and interaction undertaken by a subject during the experi-
ment, called themonitor history. Events registered include
the selections of user interface (UI) elements, switches be-
tween editors, and command executions. Additional instru-
mentation recorded the program source elements currently
visible or made visible through scrolling.

The Relevant Elements view was built for this experi-
ment for the programmers to capture and describe the pro-
gram elements that are relevant to the task. This view sup-
ports one-way interaction only, like paper, meaning that it
is easy to add elements to the view, but cannot be used to
re-open those elements, so as to prevent its being used as an
exploration replacement by the programmers.

The solutions created by the programmers required some
clean-up before being processed. Although programmers
were encouraged to reference all elements necessary for un-
derstanding or implementing the change, most did not. We
processed the programmer solutions to add elements that
were referred to in their comments. For example, one pro-
grammer instructed in his solution:

www.jhotdraw.org
www.cs.ubc.ca/~bsd/research/icpc2007/


This is done by iterating over JEdit.getBuffers() and
calling buffer.getAutoSaveFile().delete().

From this description, we addedjEdit.getBuffers() andBuf-
fer.getAutosaveFile().

Not all situations were so clear cut. We were conserva-
tive, adding elements only when referred to in the solution.
For example, in the following excerpt:

(The setting can be retrieved from JEdit properties)

This programmer had referenced the fetching of properties
elsewhere, and so we addedjEdit.getProperty().

3.8.Data Analysis

We analyzed the data both visually and statistically to
test our three hypotheses.

3.8.1.Visual Assessments

One form of visual analysis entailed plotting and comparing
various measurements grouped by the different task order-
ings and tools.

A second form involved the analysis of plots, calleddis-
tance profiles, of the programmers’ exploration of the pro-
grams by comparing thedistancethey strayed from the so-
lution elements during the exploration. To produce these
plots for a particular task, we first transform the jEdit source
code into a directed graph. We map types, methods, and
field in the source to nodes in the graph. We add edges
for the following relations between program elements: de-
clares field, method, and inner type; extends and imple-
ments type; returns type; has argument of type; references
field; calls method; creates object instance; throws excep-
tion; and catches exception. These edges correspond to re-
lations that can be found in a single step from direct exam-
ination of the source code or by using a simple query. We
then assign a distance to each node calculated as the node’s
minimum distanced (ignoring edge directionality) to any of
the nodes identified in the model solution (Section 3.6) for
that task. A node withd = 0 is a solution element. A node
with d = 1 is a program element that either uses or is used
by a solution element. Nodes withd > 1 have no direct tie
to a solution element.

A plot for a particular programmer using a particular tool
is then created by processing the interaction history col-
lected by Mylar Monitor. We determine the distance for
each new element that appeared on the programmer’s screen
and assigned the distance of the screen to be the minimum
distance of any elements currently on-screen.

3.8.2.Statistical Assessments

Statistical analyses were used to assess support for our find-
ings through use ofANOVAs. ANOVAs, or Analyses of Vari-

ance, are a set of statistical techniques to identify sources
of variability between groups. Aone-wayANOVA assumes
a single independent variable; atwo-wayANOVA assumes
two independent variables.ANOVAs allow dealing not only
with the individual effects of the independent variables, but
also any interactions that may arise between them. The re-
sult of anANOVA is a set of statistical assessments of the dif-
ferent individual effects and effect combinations. We chose
a 10% significance level in assessing the statistical tests6 as
it is generally considered suitable for exploratory analysis.

We were unable to test the samples for normality; such
tests generally require seven or more samples, and our de-
sign with 18 programmers resulted in only three samples
per group. HoweverANOVA is generally robust to non-
normality providing the variances in the groups are the
same [4], which was confirmed.7

4. Results

We present the results of the experiment by examining
each of the three hypotheses. We note that all programmers
did use their assigned exploration tool throughout their task,
although two of the Ferret users, one of the JQuery users,
and three of the Suade users also reverted to the Eclipse
search facilities on occasion.

4.1.Mental Support

Hypothesis 1: Programmers using an exploration tool
should report a lower mental workload to complete a
task as compared to Eclipse alone.
Figure 1 shows the differences inTLX scores reported by
the programmers, grouped by the different exploration tools
and the task orderings, as well as grouped by only the task
orderings.8 Each point corresponds to an individual pro-
grammer and corresponds tot2−t1 whereti is theTLX score
from taski, and where the second task was undertaken with
the exploration tool. ATLX difference greater than zero
indicates that the programmer felt that the second task (al-
ways undertaken with the exploration tool) was harder than
the first, and a difference less than zero that the second task
was easier. The data supports the first hypothesis if theTLX

TLX differences are generally less than zero, indicating that
the tasks in which the exploration tool were used were eas-
ier.

From Figure 1, we see that theTLX differences lie both
above and below zero regardless of the exploration tool

6All statistical tests performed using R 2.3.1 (www.r-project.org) on
NetBSD 4.99.1 on a 2 GHz Intel Core Duo.

7Homogeneity of variances assessed using Bartlett’s test.
8We present many of the results graphically using boxplots showing the

0, 25, 50, 75, and 100 percentiles; percentiles are particularly appropriate
for summarizing data with skew. Results from individual programmers are
represented by single points, which may be jittered to reveal overlaps.

www.r-project.org


-30

-20

-10

 0

 10

 20

 30

 40

 50

SR-ASAS-SRSR-ASAS-SRSR-ASAS-SRSR-ASAS-SR

T
LX

 d
iff

er
en

ce
s

 
JQuery Ferret Suade

Figure 1: Differences in TLX scores, separated by
tool and task order, and by task-order only.

used. Grouping the differences by task order, we see that
the differences are reflected around zero, indicating that the
AS andSR tasks were perceived as having different degrees
of difficulty. A two-way ANOVA comparing theTLX dif-
ferences by task ordering and exploration tool reports the
only statistically significant difference being by task order
(F(1,12) = 7.06, p = 0.02). From Figure 1, theAS task ap-
pears to impose less workload than theSR task, regardless
of tool.

As a result of the overwhelming effect of the task on
the result, theTLX difference cannot be attributed only to
the tool, and we have no evidence to support our hypothe-
sis. The exploration tools may actually alleviate subjective
mental workload, but the effect associated with the tasks
outweighs the effect associated with the tools.

In our follow-up interviews, we asked whether the pro-
grammers found the tools useful: four of six reported Ferret
as useful; four of five reported JQuery as useful, and two
of five reported Suade as useful. The two non-respondents
for JQuery and Suade were ambivalent about the tool used.
Two of the Suade dislikers attributed their dislike to diffi-
culty in evaluating the reasons behind Suade’s recommen-
dations. Several programmers asked about the availability
of the tools.

4.2.Context Explored

Hypothesis 2: Programmers using an exploration tool
should not need to explore as much code as compared to
Eclipse alone.
We expected that programmers using the tools should be
more focused on the program elements relevant to the task.

4.2.1.Number of Unique Program Elements Viewed

Figure 2 compares the within-subject differences in number
of uniquevisible elements, separated by task order and tool.
Visible program elements are those whose source had been
visible on-screen at some point during the programmer’s in-
vestigation. This value serves as a ceiling on the number of
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Figure 2: Within-subject differences in number
of unique program elements visible to program-
mers, separated by task and tool (jittered).

program elements actually viewed and understood by the
programmer. Each point corresponds to an individual pro-
grammer and corresponds tov2−v1 wherevi is the number
of program elements viewed in taski, and where the second
task was undertaken with the tool. A number greater than
zero means that the programmer viewed more items during
the second task when the exploration tool was used. These
numbers capture neither repeat visits to previously-viewed
program elements, nor the amount of time spent examining
the program elements.

From Figure 2, we see that most of the points lie be-
low zero, indicating that programmers seemed to look at
more code for their first task when Eclipse was used. A
two-way repeated-measuresANOVA comparing theViewed
scores by task ordering and exploration tool, reports the
only statistically significant effect being an effect by trial
(F(1,12) = 3.56, p = 0.08). There is no statistical support
for a difference between tools. This difference between tri-
als can be interpreted in two ways: (i) the exploration tools
had an equal and relatively uniform effect, or (ii) there were
carry-over effects between trials.

4.2.2.Detailed Examination of Navigation Paths

We also undertook a more detailed qualitative analysis of
the programmers’ actual program exploration by compar-
ing the distance they strayed from the solution elements
(described in Section 3.8.1). For bothAS or SR tasks, the
maximum distance assigned to any program element was
six steps, and all programmers remained within a distance
of three steps (i.e.,d≤ 3).

Figure 3 shows examples of distance profiles for sev-
eral users from their two tasks. Space constraints prevent
us from including all graphs. A distance profile indicates
only that the code displayed by Eclipse had the minimum
distance listed; the programmer may have spent some of
that time looking at another artefact, such as the task de-
scriptions. These graphs have three additional annotations,
an ‘×’ marks where a solution element was first seen, a ‘◦’
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Figure 3: Distance profiles for users 6, 7, 8, and 10: column (a) is from the first task, always undertaken with
Eclipse; (b) is from the second task, undertaken with one of the exploration tools. The greyed profiles (7(a),
8(a), 6(b), and 10(b)) are from the AS task; the white profiles (7(b), 8(b), 6(a), and 10(a)) are from the SR task.

where a solution element was first correctly identified, and
a ‘+’ when a different file was viewed.

In comparing the distance profiles, we see three slight
trends, all involvingspikes. Spikes are meaningful in that
they represent occasions where the programmer has started
to investigate beyond elements directly related to the solu-
tion (i.e., whered > 1). Of interest are the duration and
frequency of the spikes: how long was it before the pro-
grammer realized that the line of inquiry was not actually
related to the task?

The first trend we observe is a difference by task: gener-
ally the distance profiles fromSR appear to bespikier than
those fromAS, with more frequent movements between the
different distance levels. Such spikes may arise from ex-
amining an element and quickly realizing its irrelevance to
the task. Although theSR task involved fewer actual so-
lution elements, it did require examining a class hierarchy,
which may account for some of the rapid descents. Further
support for this observation is provided by comparing the
average amounts of time spent per task in examining items
with d≤ 1 versusd > 1. Using only the times from the first
trial, which was always undertaken with Eclipse, the pro-
grammers spent more time exploring items withd ≤ 1 for
AS (92%, s.d.±9%) as compared toSR (73%, s.d.±12%).

The distance profiles also reflect individual differences.
Even though the programmers generally started from the
same locations (theseeds), the profiles immediately diverge
as programmers chose different areas or items to explore.
We also see wide variances in the amounts of time spent at
the different distance levelsd.

The final trend is that JQuery appeared to have a less-
pronounced profiles: spikes appear to be less frequent, but
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Figure 4: Comparisons of the percent of time
spent looking at code at distance d≤ 1 for AS and
SR.

longer-lasting. This may arise as the query tree structure
promotes more breadth-first-search examination of query
results; with the other tools, a new query generally causes
the query context to be lost, perhaps promoting more depth-
first-search examination.

Figure 4 compares the percentage of the time spent in-
vestigating program elements withd≤ 1. Programmers us-
ing Eclipse seem to spend most of their time viewing such
elements for theAS task, but less so forSR. The tools may
have helped somewhat inSR, given that the mean of time
spent ind ≤ 1 appears higher for the exploration tools for
SR. This effect is slight at best, and a two-wayANOVA re-
ports no statistical support for this speculation.

From examining the ‘×’ in the distance profiles, pro-
grammers came across new relevant elements the entire du-
ration. We see no evidence of an early broad strategy, fol-
lowed by a period of refinement.

Generally we did not see any consistent behaviour across



the users. If there had been a strong tool effect than we
would have expected to see more consistent patterns.

4.3.Solution Items Identified

Hypothesis 3: Programmers using an exploration tool
should identify more of the salient elements for the task
as compared to Eclipse alone.
We expected that programmers using the exploration tools
should have garnered a better understanding of how the task
should be carried out on the code. Their identified solution
sets should be missing fewer of the key elements required
for a correct solution.

Figure 5 compares the percentage of solution program
elements available to the programmers, distinguishing be-
tween selected, visible, and identified program elements.
Selected elementsrefers to the explicit selection of user in-
terface elements corresponding to program elements: the
programmersaskedto view these elements.Visible ele-
mentsrefers to program elements whose definitions were
either partially or wholly on-screen. Finally,identified ele-
mentsrefers to the program elements correctly identified by
programmers as being required for the solution. The num-
bers shown are expressed as the percentage of the solution
program elements identified, as normalized by the number
of solution program elements for each task.

We report these three separate measures as no single
measure captures the information required. The program
elements selected value underestimates the program ele-
ments investigated as it does not account for program el-
ements made subsequently visible through scrolling. The
visible program elements value overestimates the program
elements investigated as it assumes the programmer has ex-
amined all of the program elements available on-screen. In
examining the program elements visible, we see that none
of the programmers using Eclipse and only a very few of
those programmers using the exploration tools saw all of
the solution program elements required. None of these
programmers correctly identified all solution program ele-
ments. We use the percentage of solution program elements
correctly identified as the quality of the solution.

Figure 6 compares the within-subject differences in the
solution quality, as assessed by the percentage of solution
program elements correctly identified as compared to our
ideal solutions, differentiating by task and tool. Each point
corresponds to an individual programmer and corresponds
to q2− q1 whereqi is the percentage of solution program
elements correctly identified from taski, and where the sec-
ond task was undertaken with the exploration tool. A num-
ber greater than zero would imply that the programmer pro-
duces a higher quality solution during the second task when
an exploration tool was used. The only visible effect seems
to be by task ordering and there does not appear to be any
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Figure 5: Between-subjects percentage of solu-
tion program elements respectively selected, vis-
ible, and identified by the programmers.
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Figure 6: Within-subject differences in the per-
centage of solution elements correctly identified,
separated by tool and task.

effect by exploration tool. A two-way repeated-measures
ANOVA comparing theQuality scores by task ordering and
exploration tool confirms this observation, showing a statis-
tically significant interaction effect between the task order-
ing and the trial (F(1,12) = 21.4, p = 0.0006). This inter-
action effect confirms the findings of a task ordering effect
as found in Section 4.1.

From our follow-up interviews, it seemed that many of
the programmers appeared to have made more headway
than would appear from their solutions. It is possible that
they were willing to speculate in the interview, but would
not put their speculations to ‘paper’, so to speak.

5. Discussion

5.1.The Absence of Practical Effects from Tools

We found no evidence of any practical effect from the
exploration software exploration tools. There are several
possible explanations.

There were effects from the tools but our measures were
inaccurate or do not capture the phenomena of interest.
Our analysis showed no effect from the tools used, despite



positive comments made by the subjects about the tools
tested and requests from those subjects for the tools. It may
be that we require more sensitive measures than the simple,
unweighted scores used, or require a sample with more than
18 programmers. Our qualitative analysis relied largely on
the distance profiles that take an information-centric view
of how the task was approached by programmers. As there
may be other possible solutions to the tasks, the measures
of distance from ideal solutions should be treated with some
caution; however virtually all the solution elements would
be required in some form by any solution. The deep cog-
nitive nature of programming work may not be reflected in
these behavioral measurements, both quantitative and qual-
itative, that we used.

Our experience does shed doubt on the usefulness of
measures proposed and used in other experiments, such as
the response times for answers [11]. We believe a more
comprehensive set of measures needs to be developed than
has been proposed to date. We suggest such a set include
the use of theTLX . Although we were unable to establish
the necessary baseline conditions to use theTLX to deter-
mine the perceived impact of the tools because of the unan-
ticipated differences in perceived difficulty of the tasks, we
were able to use it to gauge the programmers’ perception of
task difficulty.

Any effects from the exploration tools are being con-
founded by differences between the tasks, or confounded
by carry-over (or learning) effects. The two tasks used
in our experiment were sufficiently complex that no pro-
grammer successfully identified all the relevant elements,
and their perceived difficulty confounded the results from
TLX (Section 4.1). It is possible that the other two measures
of effectiveness are also affected by task difficulty, thus con-
founding an effect by the tool. Selecting a different initial
seed, a different task, a different domain, or even using a
different coding style, might produce a very different result.

To assess the likelihood of learning effects, we computed
the distance profile for one task using the model solution of
the other task. We found no statistical significance in corre-
lation between the percentage of time ind = 0 and the so-
lution qualities.9 This result suggests there was little carry-
over effect between the tasks.

The exploration tools have no practical effect for these
particular tasks. We see two possible explanations. First,
it is possible that the tools are providing useful and relevant
information to the programmers, but that the programmers
are not taking in the information. Programmers may need
further explanations for the information, or may need to dis-
cover the information on their own to make use of it.

Second, since none of the programmers correctly identi-
fied all relevant elements for either task, it may be that the

9Pearson’sr = 0.36 at the 10% level (n = 18).

static program information is insufficient to identify all of
the relevant information for a program change task. It may
be that Eclipse already does a good job, and that these new
tools are simply repackaging readily-available information
in new forms—finessing existing solutions, rather than pro-
viding new means to solve the problems.

5.2.Impacts on Validity

In addition to the possible construct validity threats men-
tioned above, there are several other factors that pose threats
to our experiment.

The first factor arises from our choice to use real tasks as
realistic tasks rarely have a single possible approach. This
situation arose in our study where two of our subjects pro-
posed very different solutions to theSR task as each sup-
posed additional requirement beyond what was stated.

Another factor comes from the imposition of a time limit.
We chose a 40 minute limit as it seemed long enough for the
programmers to make at least some headway in understand-
ing the task, and yet minimized total necessary time so as to
avoid turning off potential subjects. Six of the 18 subjects
finished their tasks before the time allotted.

With the exception of disallowing the use of the debug-
ger, we did not control what tools the programmers could
use. The dynamic information from debugging could have
been significant and helped diagnose some of the trickier
interactions.

Finally, we also noticed one exploration strategy that was
used almost exclusively by programmers from a single or-
ganization. These programmers used Eclipse’s Call Hierar-
chy view which provides a means of drilling down through
method calls and whose results are shown in-place in a tree.
This view possibly confers similar benefits to JQuery. Sev-
eral of these programmers commented that they had been
shown this view by another programmer in their organiza-
tion. This kind ofcultural communication of helpful strate-
gies may pose additional threats to validity.

5.3.Implications for Future Evaluations

It is possible that the programmers were hampered by
unfamiliarUIs. This might be remedied by additional train-
ing or possibly by having more adaptive tools, such that the
tool will suggest itself for use. Longitudinal evaluation ap-
proaches might be more appropriate in such circumstances,
providing opportunities for subjects to learn and integrate
the tool into their strategies.

Previous studies report finding effects for particular ex-
ploration tools when using elementary search tasks (Sec-
tion 2), whereas our study failed to find any noticeable ef-
fects for complex tasks of a longer duration. This suggests
that the effects from improvements to elementary search



operations are dominated by the cognitive requirements of
programming tasks.

Might we have had different results with a different set
of tasks? It is possible that the tools studied were unsuit-
able for the particular tasks used. However, it is not clear
why this might be: jEdit is implemented using plain Java,
and neither task involved complicated architectures or other
paradigms. Future work should address understanding more
precisely the characteristics of the tasks we used that made
programmers perceive them differently.

6. Summary

We undertook a study to compare the effect of three soft-
ware exploration tools on programmer efficiency. We had
18 industrial programmers plan two complex change tasks,
their first task using Eclipse and their second task using one
of the exploration tools. We found that the tools had lit-
tle apparent effect. Rather, we found that the behaviour of
programmers seemed impacted by the tasks chosen, and we
found evidence of effects from individual styles and strate-
gies. Although this may seem obvious to those conducting
comparative studies of tools, it has not been clearly reported
previously. Finally, we discussed experimental issues and
lessons we learned from this experiment.
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