
Creating and Evolving Developer Documentation:
Understanding the Decisions of Open Source Contributors

Barthélémy Dagenais and Martin P. Robillard
School of Computer Science

McGill University
Montréal, QC, Canada

{bart, martin}@cs.mcgill.ca

ABSTRACT
Developer documentation helps developers learn frameworks
and libraries. To better understand how documentation in
open source projects is created and maintained, we per-
formed a qualitative study in which we interviewed core
contributors who wrote developer documentation and de-
velopers who read documentation. In addition, we studied
the evolution of 19 documents by analyzing more than 1500
document revisions. We identified the decisions that con-
tributors make, the factors influencing these decisions and
the consequences for the project. Among many findings,
we observed how working on the documentation could im-
prove the code quality and how constant interaction with
the projects’ community positively impacted the documen-
tation.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Documentation, Experimentation, Human Factors

1. INTRODUCTION
Developers usually rely on libraries or application frame-

works1 when building applications. Frameworks provide
standardized and tested solutions to recurring design prob-
lems. For example, hundreds of applications like Google
Code Search and Twitter use the JQuery framework to pro-
vide an interactive user experience with Javascript and AJAX.2

To use a framework, developers must learn many things
such as the domain and design concepts behind the frame-
work, how the concepts map to the implementation, and how
to extend the framework [12]. Various types of documents
are available to help developers learn about frameworks,

1Unless otherwise specified, we use the term framework to
represent any reusable software artifacts such as libraries
and toolkits.
2http://docs.jquery.com/Sites Using jQuery

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE-18, November 7–11, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-60558-791-2/10/11 ...$10.00.

ranging from Application Programming Interface documen-
tation to tutorials and reference manuals.

We find though that very little is known generally about
the creation and maintenance of developer documentation.
For example, the Spring Framework manual3 has approxi-
mately 200 000 words (twice the size of an average novel) and
has gone through five major revisions. Creating and main-
taining this documentation potentially represents a large ef-
fort yet we do not know the kind of problems documentation
contributors encounter, the factors they consider when work-
ing on the documentation and the impact their documentation-
related decisions have on the project. For instance, does
documenting a change immediately after making it have dif-
ferent consequences than documenting all changes before a
release? Answering these questions provides insights about
the techniques that are needed to optimize the resources re-
quired to create and maintain developer documentation.

We conducted an exploratory study to learn more about
the documentation process of open source projects. Specif-
ically, we were interested in identifying the documentation
decisions made by open source contributors, the context in
which these decisions were made, and the consequences these
decisions had on the project. We performed semi-structured
interviews with 22 developers or technical writers who wrote
or read the documentation of open source projects. In par-
allel, we manually inspected more than 1500 revisions of 19
documents selected from 10 open source projects.

Among many findings, we observed how updating the doc-
umentation with every change led to a form of embarrassment-
driven development, which in turn led to an improvement
in the code quality. We also found that all contributors who
originally selected a public wiki to host their documentation
eventually moved to a more controlled documentation in-
frastructure because of the high maintenance costs and the
decrease of documentation authoritativeness. Such observa-
tions could enable practitioners to make informed decisions
by analyzing the trade-offs encountered by their peers and
researchers to build documentation tools that are adapted
to the documentation process.

2. METHOD
We based our exploratory study on grounded theory as

described by Corbin and Strauss [5]. Grounded theory is
a qualitative research methodology that employs theoretical
sampling and open coding to formulate a theory “grounded”
in the empirical data. By following grounded theory, we

3References to project and documentation tools are pre-
sented in Table 5 in the Appendix

1

started from general research questions and refined the ques-
tions, and the data collection instruments, as the study pro-
gressed. As opposed to random sampling, grounded theory
involved refining our sampling criteria throughout the course
of the study to ensure that the selected participants were
able to answer the new questions that have been formulated.
For example, after having interviewed two contributors of
Perl projects, we filtered out further Perl projects; after hav-
ing interviewed four contributors from library projects, we
sent more invitations to contributors of framework projects.

We analyzed the data, collected through interviews and
document revisions, using open coding: we assigned codes
to sentences, paragraphs, or revisions and we refined them
as the study progressed. We then reviewed the codes sev-
eral times and linked them to emerging categories, a pro-
cess called axial coding. Finally, the goal of a study using
grounded theory is to produce a coherent set of hypotheses
laid in the context of a process, that originates from empir-
ical data. Although all reported observations are linked to
specific cataloged evidences, we elide some of these links for
the sake of brevity.4

Our method follows that of previous software engineering
studies based on grounded theory [1, 8, 9]. These references
provide an additional discussion on the use of grounded the-
ory in software engineering.

2.1 Data Collection
We learned about the documentation process of open source

projects by gathering data from three sources. We inter-
viewed developers who contributed to open source projects
and their documentation (the contributors): these develop-
ers were often the founder or the core maintainer of the
project.5 Most of the observations reported in this paper
come from these interviews. We also interviewed develop-
ers who frequently used open source projects and who read
their documentation (the users). We wanted to determine
how developers used documentation and what kind of doc-
umentation was the most useful to them. Finally, we an-
alyzed the evolution of 19 documents from 10 open source
projects (the historical analysis). Because some projects
started more than 15 years ago, it was often difficult for the
participants to remember the various details of the docu-
mentation process. Our systematic analysis of the revisions
provided us with a more comprehensive and detailed view
of that documentation’s evolution.

The projects of the contributors, the users, and the his-
torical analysis were selected in parallel so they are not nec-
essarily the same. We used this strategy to preserve the
anonymity of the contributors and to allow us to provide
concrete examples by naming real open source projects when
discussing observations from the users’ interviews and the
historical analysis. Additionally, this sampling strategy en-
abled us to perform data triangulation by evaluating our
observations on different projects.

The Contributors. To recruit contributors, we began by
making a list of open source projects that were still being
used by a community of users and that were large enough to
require documentation to be used. We only selected projects
that fulfilled these five criteria:

4Specific evidence will be provided upon request.
5Unless otherwise specified, we assume that the contributors
have commit access to their project’s repository.

Part. (years) Project Prog.
Code Exp. Domain Lang.

U1 > 10 Web Applications Java, PHP
U2 > 10 System Prog., Database Perl
U3 > 20 System Prog. C
U4 > 10 System Simulators C,C++,Java
U5 > 5 Web Applications Python, Java, C
U6 > 5 Financial Applications Java
U7 > 5 Web Applications PHP
U8 > 25 Database C++
U9 > 25 Web Applications PHP
U10 > 3 Web Applications PHP

Table 1: Documentation users

1. The project offered some reuse facilities for program-
mers (e.g., frameworks, libraries, toolkits, extensible
applications),

2. The project was more than one year old.

3. There was at least one active contributor in the last
year (e.g., a contributor answered a question on the
mailing list in 2009).

4. The project had more than 10k lines of source code.

5. The project had more than 1000 users (measured by
the number of downloads, issue reporters, or mailing
list subscribers).

We selected projects from a wide variety of application do-
mains and programming languages to ensure that our find-
ings were not specific to one domain in particular.

After having selected a project, we looked at its web site
and at the source repository to identify the main documen-
tation contributors. When in doubt, we contacted one of
the founders or core maintainers. We sent 49 invitations to
contributors, 12 of which accepted to do an interview.

Each contributor who accepted our invitation participated
in a 45-minute semi-structured phone interview in which we
asked open-ended questions such as “how did the documen-
tation evolve in your project?” and “what is your workflow
when you work on the documentation?”.

A few contributors talked about various projects they
worked on or used, but most contributors focused on one
project. The programming language of the projects varied
greatly: Perl (2 contributors), Java (2), Javascript (1), C(2),
C++ (1), PHP (2), Python (2). The age of the projects
ranged from 1.5 years to more than 15 years with an aver-
age of 8.7 years. The application domains were also varied:
programming language library (4), database or databinding
library (3), web application framework (3), blogging plat-
form (1), and web server (1). Finally, all of our participants
had more than five years of programming or technical writ-
ing experience (up to 25 years).

The Users. To recruit developers who used open source
projects and read documentation, we relied on the list of
users of stackoverflow.com, a popular collaborative web site
where programmers can ask and answer questions. We wanted
to interview users who had various amounts of expertise in
terms of programming languages and years of programming
experience. Stackoverflow user profiles indicate how many
questions each user has asked and answered and the tags
associated with these questions (e.g., a question might be
related to java and eclipse). We filtered out all users who
did not have contact information published on their profile
and who were primarily answering questions related to the

2

Project Prog. Domain Document Length Age #CS #C %CC
Lang. Words Yrs

Django Python Web Fmk.
Tutorial Part 1 3700 4.25 89 11 31%
Tutorial Part 3 2692 4.25 61 7 57%
Model API 4140 4.25 191 7 53%

WordPress PHP Blogging Platform Writing a Plug-in 2523 4.00 126 56 wiki
Plug-in API 2013 4.75 127 56 wiki

KDE Plasma C++ GUI Fmk. Getting Started 1521 2.00 51 21 wiki
Plasma DataEngines 1854 0.75 10 7 wiki

Hibernate 3 Java Databinding Fmk. QuickStart 2497 1.00 21 2 9%
Collections Mapping 3076 1.00 37 4 11%

Spring Java Application Fmk. Beans Framework 30061 4.50 233 15 18%
Transactions 9584 5.75 87 9 26%

GTK+ C GUI Fmk. GTK+ 2.0 Tutorial 56765 9.00 54 10 28%

Firefox XML Web Browser How to build an extension 3163 4.25 316 143 wiki

DBI Perl Database Lib. Module Documentation 34221 5.00 145 3 19%

Shoes Ruby GUI Fmk. Manual 18887 1.00 34 5 6%

Eclipse Java Application Fmk.

Creating the plug-in project 559 4.75 16 6 25%
Application Dialogs 720 7.25 26 8 4%
Documents and Partitions 841 6.00 24 8 8%
Resources and the file system 1638 7.75 26 8 8%

Table 2: Evolution of documents

.NET platform because we judged that they were less likely
to have a rich experience with open source projects.6

We sent 38 invitations and recruited 10 participants. We
sent each participant an email asking for a list of open
source projects that had good or bad documentation. We
purposely did not define good or bad documentation be-
cause we wanted the participants to elaborate on their defi-
nition during the interview. Each developer participated in
a 30-minute semi-structured phone interview that focused
on their experience with the documentation of the projects
they selected, and then, on their experience with documen-
tation in general.

Table 1 shows the profile of the developers we interviewed:
the number of years of programming experience, the main
field they are professionally working in, and the program-
ming languages they mentioned during the interview. Most
participants used many open source projects as part of their
work or as part of hobby projects so their documentation
needs are not exclusive to their field of work.

The Historical Analysis. We systematically analyzed
the evolution of documents of open source projects that
maintained their documentation in a source repository (e.g.,
CVS) or in a wiki. We also used the same criteria as for the
contributors to select projects for our historical analysis.

For each project, we selected from one to four documents.
The first document was a tutorial or a similar document
that told users how to get started with the project. The
second document was a reference (e.g., list of properties).
We assumed that these two types of documents were distinct
enough that they might exhibit different evolution patterns.
We had to analyze a different number of documents per
project because there is no documentation standard across
projects and it was impossible to compare documents of the
same size or of the same nature. For example, documents
ranged from a complete manual in one file (e.g., the GTK

6The documentation experience of .NET developers is of
interest, but not for this particular study on open source
projects. We are aware that with the CodePlex project
(www.codeplex.com), open source projects in .NET are be-
coming more mainstream.

Tutorial) to document sections separated in small files and
presented on many pages (e.g., Eclipse help files).

We analyzed the history of the documents by looking at
their change comments and by comparing each version of the
documents. This was necessary because often the change
comment was not clear enough. For example, a commit
comment mentioned fixing a “typo”, but in fact, the actual
change shows a code example being modified. Through sev-
eral passes of open coding, we assigned a code to each revi-
sion to summarize the rationale behind the change. Table 2
shows descriptive statistics of the documents we inspected
such as the time between the first and last revision that
we could find (in years), the number of change sets (#CS),
the number of different committers who modified the files
(#C), and the percentage of revisions that originated from
community contributions (%CC). We report the details of
the revision classification in Appendix A.

We considered that all revisions that mentioned a bug
number, a contributed patch, or a post from a forum or
a mailing list originated from the community. It was not
always possible to determine the source of the change when
the documents were hosted on a wiki, so we indicated “wiki”
in the table.7

3. CONCEPTUAL FRAMEWORK
Following the analysis of the interviews and the document

revisions, we identified three production modes in which doc-
umentation of open source projects is created. Although we
expected documentation to be produced in different modes,
the study helped us concretize what these modes were and
what they corresponded to in practice. These production
modes guided our analysis of the main decisions made by
contributors (Section 4). Figure 1 depicts how the docu-
mentation effort was distributed in the lifecycle of the open
source projects we studied. First, contributors create the
initial documentation, which requires an upfront effort that
is higher than the regular maintenance effort. Then, as the

7This is only a rough estimate because core contributors
sometimes create bug reports themselves and other times,
they forget to include the source of the change request.

3

Figure 1: Documentation production modes

Decision
Point

Decision Consequences
● Effort
● Impacts on
 ProjectDecision

Factors (Context)

...

influence

has

Figure 2: Decisions made in a documentation pro-
duction mode

software evolves, contributors incrementally change the doc-
umentation in small chunks of effort (e.g., spending 20 min-
utes to clarify a paragraph). Sometimes, major documen-
tation tasks such as the writing of a book on the project
requires a burst of documentation effort.

In addition to the three production modes, we note that
documentation writers make important decisions at specific
decisions points. As illustrated in Figure 2, decisions are
influenced by contextual factors and they have consequences
in terms of required effort and impacts for the project. This
paper focuses on the relationships between the decisions,
their factors, and their consequences.

For example, for the decision point “When to adapt the
documentation to the project’s evolution”, there are many
possible decisions (e.g., updating the documentation shortly
after making a change, before an official release, before mak-
ing a change, etc.). The decisions related to a decision
point are not mutually exclusive, but each decision has some
specific effort and impact associated with it. The conse-
quences of a decision can also become a factor over time.
For example, four contributors sought to document their
changes as quickly as possible after realizing that they of-
ten improved their code while documenting. We analyzed
the consequences of the documentation decisions from many
perspectives (contributors, users, and evolution) to evaluate
the trade-offs involved with each decision.

4. DECISIONS
We provide an overview of the documentation production

modes and the decisions points. Then, we discuss in detail
the six decisions that had the largest impact on the docu-
mentation creation and maintenance of the projects we stud-
ied, as determined by our analysis. Underlined sentences
represent major observations for each decision. Table 3 pro-
vides a summary of the consequences of these six decisions
on five aspects of open source projects.

Initial Effort. When a project starts, contributors en-
counter two main decision points. First, contributors must
select tools to create, maintain, and publish the documen-
tation. There are three main types of infrastructure that

are used by contributors, sometimes in combination with
each other: wikis (see Section 4.1), documentation suites
(e.g., POD, Sphinx, or Javadoc), and general documents
such as HTML. In our historical analysis, we observed that
the editing errors (e.g., forgetting a closing tag) caused by
the syntax of any documentation infrastructure were respon-
sible for an important amount of changes and that better
tool support could probably mitigate this problem: 55.4%
in Eclipse (HTML), 11.4% in Django (Sphinx), 11.1% in
GTK (SGML), and 6.7% in WordPress (wiki).

A second decision point that developers encounter early
on concerns the type of documentation to create. Contribu-
tors typically create one type of documentation initially and
the documentation covers only a subset of the code. Then,
as the project evolves, contributors create more documents
of various kinds. After analyzing the interviews of both con-
tributors and users, we identified three types of documenta-
tion based on their focus: a task is the unit of getting started
documentation (Section 4.2), a programming language ele-
ment (e.g., a function) is the unit of reference documentation
(Section 4.3), and a concept is the unit of conceptual docu-
mentation. These documentation types are consistent with
some previous classification attempts [2, 3].

Incremental Changes. Small and continuous incremen-
tal changes are the main force driving the evolution of open
source project documentation. We noticed in our histori-
cal analysis that all changes except a few structural changes
and the first revisions concerned a few words or a few lines
of code and that these changes occurred regularly through-
out the project history (see Table 4 in the Appendix). In
this production mode, open source contributors encounter
two major decision points: how to adapt the documentation
to the project’s evolution and how to manage the project
community’s contributions.

We found in our historical analysis that software evolution
motivated at least 38% of the revisions to the documents we
analyzed (adaptation and addition changes). We encoun-
tered five strategies (i.e., decisions) that contributors used
to adapt the documentation to the project’s evolution: con-
tributors (1) updated the documentation with each change
(Section 4.4), (2) updated the documentation before each
release, (3) relied on a documentation team to document
the changes (Section 4.5), (4) wrote the documentation be-
fore the change and used it as a specification, or (5) did not
document their changes.

The second decision point contributors encounter is to
determine how to manage the documentation contributions
from the community. These contributions come in various
forms: (1) documented code patches (Section 4.4), (2) doc-
umentation patches, (3) documentation hosted outside the
official project’s web site, (4) comments and questions asked
on official support channels (Section 4.6), and (5) exter-
nal support channels such as stackoverflow.com. Managing
the documentation contributions represents a large fraction
of the documentation effort: in our historical analysis, we
found that 28% of the document revisions, excluding docu-
ments on wikis, originated from the community.

Bursts. During a project’s lifetime, the documentation oc-
casionally goes through major concerted changes that we
call bursts. These changes improve the quality of the doc-
umentation, but they require such effort that they are not
done regularly.

4

Publishers sometimes approach contributors of open source
projects to write books about their projects: six contributors
in our study mentioned that they (or their close collabora-
tors) wrote books. One consequence of writing books is that
contributors think more about their design decisions: “it
forced me to be more precise, to think carefully about what
I wrote”C3.8 This particular contributor made many small
changes to clarify the content of the official documentation
while he was writing the book. Because books about open
source projects are not always updated, their main advan-
tage lies in the improvement of the quality of the official
documentation and the time that the contributors take to
reflect on their design decisions.

Contributors also change the documentation infrastruc-
ture when it becomes too costly to maintain. Maintenance
issues either come from custom tool chains, “it is so complex
that our release manager can’t build the documentation on
his machine”C4, or from a barrier of entry that is not high
enough (e.g., wiki).

The last type of burst efforts are the major reviews initi-
ated by the documentation contributors themselves. During
these reviews, contributors can end up rewriting the whole
documentation (C5) or simply restructuring its table of con-
tents (C8). We observed that major reviews lasted from six
weeks (C7) to three years (C9).

4.1 Wiki as Documentation Infrastructure
We begin our description of major decisions with the se-

lection of a public wiki to host the documentation infras-
tructure. Wikis enable contributors to easily create a web
site that allows anybody to contribute to the documenta-
tion, offers a simple editing syntax, and automatically keeps
track of the changes to the documentation.

Context. Contributors select wikis to host their documen-
tation when the programming language of the project is not
associated with any infrastructure (such as CPAN with Perl)
or when the project contributors want to rely on crowdsourc-
ing to create documentation, i.e., they hope that users will
create and manage the documentation.

Public wikis also offer one of the lowest barriers to entry:
the contribution is one click away. According to contribu-
tors like C7, it is a powerful strategy to build a community
around the project: C7 started to contribute on his project
by fixing misspelled words.

Consequences. Although wikis initially appear to be an
interesting choice for contributors, all the projects we sur-
veyed that started on a wiki (4 out of 12) moved to an in-
frastructure where contributions to the documentation are
more controlled. As one contributor mentioned: “the quality
of the contributions... it’s been [hesitating] ok... sometimes
[it] isn’t factual so we had to change that... but the problem
has been SPAM”C1. Indeed, we observed in our historical
analysis that projects on wikis are often plagued by SPAM
(24.1% of the revisions in Firefox) or by the addition of URLs
that do not add any valuable content to the documentation
(e.g., a link to a tutorial in a list already containing 20 links).

Another problem with wikis is that they lack authorita-
tiveness, an important issue according to our users: “I don’t
want to look at a wiki that might be outdated or incorrect”U3

8Identifiers are associated with quotes for traceability and to
distinguish between participants. Identifiers of contributors
and users begin with a “C” and “U” respectively.

For example, we observed cases such as a revision in a Fire-
fox tutorial where one line of a code example was erroneously
modified (possibly in good faith). The change was only dis-
covered and reverted one day later (June 13th 2006).

Finally, because the barrier to entry is low, i.e., there is
not much effort required to modify the documentation, the
documentation can become less concise and focused over
time: “there’s a user-driven desire to make sure that every
single possible situation is addressed by the documentation.
[these situations] were unhelpful at best and just clutter at
worst”C5. According to C7, managing public wikis of large
projects is a full-time job.

Alternatives. As users and contributors mentioned, the
community is less inclined to contribute documentation than
it is to contribute code, so the barrier to contribute docu-
mentation must be lower than the barrier to contribute code.
Still, there exist mechanisms that encourage user contribu-
tions and that do not sacrifice authoritativeness, such as al-
lowing user comments at the bottom of documents. Another
strategy is to explicitly ask for feedback within the docu-
ments. For example, we observed in our historical analysis
that Django provides a series of links to ask a question or to
report an issue with the documentation on every page. Hi-
bernate provides a similar link on the first page of the man-
ual only. We could not find such a link in the Eclipse docu-
mentation. This strategy could explain in part the number
of revisions that were motivated by the community: Django:
48%, Hibernate: 10%, and Eclipse: 10%.

4.2 Getting Started as Initial Documentation
Getting started documentation describes how to use a par-

ticular feature or a set of related features. It can range from
a small code snippet (e.g., the synopsis section at the be-
ginning of a Perl module) to a full scale tutorial (e.g., the
four-part tutorial of Django).

Context. Contributors create getting started documenta-
tion as the first type of documentation so that users can
install and try the project as quickly as possible. Contrib-
utor C8 mentioned that for open source projects, getting
started documentation is the best kind of documentation to
start with because once a user knows how to use the basic
features, it is possible to look at the source code to learn the
details of the API.

For seven contributors, “getting started” documentation
has not only a training purpose, but it also serves as a
marketing tool, it should “hook users”C1, specifically when
there are many projects competing in the same area. In con-
trast, the contributors of the five oldest projects reported
that there was no marketing purpose behind the getting
started documentation: these projects were the first to be
released in their respective field and the contributors wrote
the documentation for learning purpose only.

Contributors of libraries that offer atomic functions that
do not interact with each other felt that getting started
documentation was difficult to create because no reasonable
code snippet could give an idea of the range of features of-
fered by the libraries. These contributors still tried to create
a document that listed the main features or the main differ-
ences with similar libraries.

Consequences. The importance of getting started docu-
mentation was confirmed by users who mentioned examples
of projects they selected because their documentation en-
abled them to get started faster and to get a better idea

5

of the provided features. For example, U5 selected Django
over Rails because the former had the best getting started
documentation, even though the latter looked more “power-
ful”U5. C2 confirmed that users evaluate Perl projects by
looking at their synopsis.

Writing getting started documentation is challenging though:
“technical writing... I didn’t have much exposure... I got used
to it to some degree, but it is a challenge... it can take a lot
of time”C6. Finding a good example on which to base the
getting started documentation, an example that is realistic
but not too contrived, is difficult (C11).

4.3 Reference Documentation as Initial
Documentation

Contributors may decide to initially focus on reference
documentation by systematically documenting the API, the
properties, the options and the syntax used by a project.

Context. When a library offers mostly atomic functions,
reference documentation is the most appropriate documen-
tation type to begin with because, as contributor C11 men-
tioned, it can be difficult to create getting started documen-
tation that shows examples calling many functions.

In contrast to libraries with atomic functions, frameworks
expecting users to extend and use the framework in some
specific ways need more than reference documentation ac-
cording to the users we interviewed. Frameworks, by their
nature, require users to compose many parts together, but
reference documentation only focuses on one part at the
time: “interactions between these classes is often very dif-
ficult to get a grasp of... you need more information how the
overall structure of the framework works”U4.

When contributors initially create the reference documen-
tation, they either systematically document all parts of their
projects or they rely on a more pragmatic approach: “I try to
go for anything that is not obvious”C10. Indeed, most pro-
gramming languages are self-documenting when the types
and members are clearly named. Users repeatedly confirmed
that when a function has a clear name and a few well-named
parameters, they will just try to call the function and will
only seek the documentation if they encounter a problem. In
statically typed languages such as Java, developers will use
auto-complete to learn about the possible types and mem-
bers and in dynamic languages such as Python, developers
will execute code in an interpreter and call functions such as
help() (displays API documentation) to learn more about
a program. For weakly and statically typed languages such
as C, developers cannot rely on type names (because many
types are integer pointers) or on an facilities provided by
an interpreter and reference documentation becomes more
important. One user mentioned that the equivalent of an
empty API documentation with only the type name, (e.g.,
Doxygen), could save him hours of source code exploration.

Consequences. Comprehensive reference documentation,
especially for libraries, can contribute to the success of a
project. For example, contributor C1 ensured that all func-
tions of his project were documented before releasing the
first version. According to C1, even if his project launched
a year after a competing project, the user base grew quickly
because the competing project had no documentation. Nowa-
days, although there are at least four other libraries provid-
ing similar features, C1’s project has the largest user base
and C1 attributes this success in large part to the documen-
tation, a claim that was confirmed by four users.

In terms of effort, reference documentation is the easiest
type of documentation to create according to the contribu-
tors we interviewed. For example, when C4 works with a
developer who does not have strong technical writing skills,
C4 works on the getting started documentation and let his
colleague works on the reference documentation.

4.4 Documentation Update with Every Change
One strategy to adapt the documentation to a project’s

evolution is to document a change quickly after implement-
ing it or requiring external developers to include documen-
tation and tests with the code they contribute.

Context. Although all projects except two have a policy
that all changes must be documented before a new version
is released, we observed that seven contributors preferred to
document their changes shortly after making them instead of
waiting just before the release. These developers considered
that documentation was part of their change task and they
saw many benefits to this practice (described below).

Contributors C4, C8, and C10 ask external contributors to
document their code contribution These three contributors
want to ensure that the coverage of the code by the docu-
mentation stays constant and that the contribution is well
thought-out. Contributors sometimes bend this policy to en-
courage more code contributions. For example, C10 accepts
code contributions without documentation for his smaller
projects or for experimental features in larger projects.

Consequences. Documenting changes as they are made
ensures that all the“user-accessible features are documented”C1,
a documentation property that users often mentioned.

Another, perhaps more surprising, advantage of updat-
ing the documentation with every change is that it leads to
a form of “embarrassment-driven development [EDD]: when
you have to demo something, and documentation is almost
like having a demo, you’ll fix it [usability issue] if it’s re-
ally annoying”C10. Contributors reported that they modi-
fied their code while working on the documentation of their
project to attempt to: (1) adopt a clearer terminology, (2)
add new tools to reduce the time it takes to use the project,
(3) improve the design of their project, or (4) improve the
usability of the API.

We observed that EDD happens when contributors are
working on getting started documentation and are describ-
ing how to accomplish common tasks: this is when con-
tributors take the perspective of the users and must com-
pose many parts of the technology together. EDD is pos-
sible when the development process exhibits these proper-
ties: contributors who write the documentation have code
commit privileges, these contributors can modify the code
without going through a lengthy approval process, and the
documentation process is not totally separated from the cod-
ing process. For example, C4 mentioned that he tried to
write documentation as soon as possible in the development
process: “it’s common that I discover that when I’m writing
[documentation] I need to change the design of the library
because I discover that my design isn’t explainable”C4.

Nevertheless, two contributors minimized the benefit of
embarrassment-driven development. For example, in the
project of C9, many contributors review each code change
so most usability or design problems are caught during the
review phase and not while writing documentation. Con-
tributor C11 added that for libraries that provide atomic
functions, unit tests covering the common scenarios will also

6

enable developers to detect API usability issues (e.g., is it
easy to call this method in the unit test?).

One advantage of requiring code contribution to be docu-
mented is that it helps project maintainers to evaluate large
contributions: “I start with the documentation: if the doc-
umentation is good I have fairly good confidence in the im-
plementation. It’s pretty hard to have a well-documented
system that is badly implemented”C4.

As users mentioned, one potential issue with requiring
that all changes be documented is that developers might
write content-free documentation: comprehensive policies
established by C1 such as requiring a code example for each
function help developers avoid this issue.

4.5 Use of a Separate Documentation Team
Three contributors, C5, C7, and C12, were part of a ded-

icated documentation team in their project.

Context. We observed that external contributors formed
documentation teams and officially joined a project when
the original code contributors believed that documentation
was important to their project, but lacked motivation (i.e.,
they preferred to write code) or confidence in their docu-
mentation skills.

We observed two types of documentation teams. The first
type (C5 and C7) is responsible for documenting everything,
from the new features to in-depth tutorials. The other type
(C12) is responsible for improving the documentation such
as adding examples, polishing the writing style, or complet-
ing the documentation, but code contributors are still re-
sponsible for documenting their changes.

Consequences. Relying on a documentation team to doc-
ument most changes (first type of team) had many disadvan-
tages. First, code contributors outnumbered documentation
contributors so the documentation lagged behind the imple-
mentation of new features, a situation that led to frustration,
both for the users and the documentation team:“our release
cycle should include documentation itself, [we need] more
than just API reference, [we need] prose that covers kind
of usages things. We’re releasing tons of code..., but there
is no documentation for it and people got frustrated”C5. A
second disadvantage was that developers who implemented
the change did not become aware of usability issues on their
own. All contributors who were in a documentation team
mentioned that they sometimes acted as testers and reported
issues with new features to the developers, but developers
were not always receptive to their comments: “somebody
made a decision and it became that ’name’, meanwhile some-
one in the documentation had made [another] decision on
what the name would be... It was a very big struggle in nam-
ing things: [the developer name] confuses lots of things”C7.
In contrast, C12, who is part of the second type of team,
mentioned that the development team usually let the docu-
mentation team work on the terminology.

Contributors C7 and C12 mentioned that having a doc-
umentation team lowers the barrier to entry: users with
no advanced knowledge of a programming language can still
contribute to the documentation and become an official con-
tributor with commit privileges.

4.6 Documentation Updates based on Questions
One strategy used by contributors to leverage the com-

munity is to consider questions asked on support channels
(e.g., mailing list) to be a bug report on the documentation.

Context. The best example of this strategy came from
Contributor C9 who sent us a list of emails that had been
exchanged on the mailing list about an unclear section in the
documentation. The exchange started with a question about
the difference between two parameters: “I see six emails...
The problem is that the nuance of this particular command
was really not clearly spelled out... This is a case where we
really aren’t doing our job”C9. C9 then attempted to edit
the problematic section in the documentation and submitted
a patch for review to the mailing list. After a few email
exchanges with other contributors, C9 further edited the
section and committed his changes. Overall, the change took
at most 20 minutes. Other contributors described a similar
experience when managing questions.

Consequences. Community feedback is essential to write
clear documentation: “when I write documentation, I skip
things which need to be documented. But I am not aware
of that. It’s impossible to get around that problem unless
you actually have someone else... who does not understand
the details about the system”U4. In our historical analysis
of changes, we found that more than half of the clarifica-
tion changes (102 out of 195) were about explicitly stating
something that was implied, such as adding an extra step to
a tutorial. Community feedback helps locate these parts of
the documentation that needs clarification and that could
not have been foreseen by the contributors.

The main effort when continuously improving the doc-
umentation does not lie in the changes themselves but in
constantly looking for occasions to improve the documenta-
tion. As C12 said, only a small percentage of the community
contribute through the various channels (IRC, mailing list,
bugs). A question raised by one individual on the mailing list
might actually be asked by many more users. Many tricks
are then used to evaluate if a question should be addressed
by the documentation: was the question asked many times,
is the answer provided by the community right or wrong, is
the question addressed at all by the documentation, and is
the question about an English-related issue and asked by a
non-native English speaker?

Finally, users mentioned that they look for the presence
of a live community when selecting a project: an active sup-
port channel gives some assurance to the users that their
questions will be answered if they encounter any problem.

4.7 Summary
The decisions made by contributors have been presented

as part of the documentation production modes and the de-
cision points, which is useful to understand the context of
these decisions. Yet, the consequences of the decisions for
the contributors and the users are orthogonal to the doc-
umentation process. Table 3 shows the main consequence
of the six decisions presented in Section 4 for five aspects
of open source projects: the documentation creation effort,
the documentation maintenance effort, the project adoption,
the number and quality of community contributions, and
the learnability of the technology. For each consequence, we
indicate the number of contributors (C) or users (U) who
discussed it. Because our questions and selection criteria
evolved as the study progressed, these numbers reflect the
variety of observations we gathered for each consequence: a
quantitative study with a larger sample would form a natu-
ral step to evaluate the frequencies of these consequences.

7

Impact
on − >

Doc. creation Doc. maintenance Adoption Community
contributions

Learnability

Public
wiki

Made the creation
faster (3C)

Increased maintenance
(4C)

Very divergent opin-
ions (4C,4U)

Lowered barrier to
entry, led to low
quality (4C)

Led to “corner
cases clutter” (3C)

Getting
started

Required strong writ-
ing skills (7C)

Was used as marketing
tool (5C,3U)

Improved for
framework (4C,6U)

Reference
doc.

Was the easiest type to
create (4C)

Was more costly to
maintain (1C,1U)

Was mostly important
for libraries & Com-
petitive advantage.
(1C,4U)

Improved for
libraries (1C,8U)

Doc.
update
with
changes

Required smaller up-
front effort (2C)

Led to small but nu-
merous changes more
adapted to open source
development process
(5C)

Led to better cover-
age, a selection criteria
(1C,5U)

Increased the bar-
rier to entry but
improved the qual-
ity of the contribu-
tions (3C)

EDD led to API
usability improve-
ment (4C)

Doc.
team

Documentation lagged
behind released fea-
tures10 (2C)

Documentation effort
shifted from dev. team
to doc. team (3C)

Lowered barrier to
entry (2C)

Improved clarity
and conciseness
of documentation.
(3C)

Updates
based on
questions

Lowered upfront effort
(2C)

One of the main
sources of maintenance
(7C)

Was a sign of commu-
nity activity, a selec-
tion criteria (2U)

Questions became
a contribution (7C)

Led to many clari-
fications (7C)

Table 3: Decisions and their consequences

5. QUALITY AND CREDIBILITY
We evaluated the quality (are the findings innovative, thought-

ful, useful?) and the credibility (are the findings trustworthy
and do they reflect the participants’, researchers’, and read-
ers’ experiences with a phenomenon?) of our study by rely-
ing on three criteria proposed by Corbin and Strauss [5, p.
305]: fit, applicability, and sensitivity. These evaluation cri-
teria are more relevant for a qualitative study than the usual
threats to validity associated with quantitative studies [6,
p.202]. The goal of our study was not to generalize a phe-
nomenon observed in a sample to a population: instead we
are generating a theory about a complex phenomenon from
a set of observations obtained through theoretical sampling.

We produced a four-page summary presenting a subset
of the decisions we analyzed and we invited the 12 contrib-
utors to review this summary to ensure that our findings
resonated with their experience. Six contributors accepted
our invitation and responded to a short questionnaire.

Fit. “Do the findings fit/resonate with the professionals for
whom the research was intended and the participants?” The
contributors found that the major decisions they made were
represented in our summary. They mentioned though that
many smaller decisions or factors were missing. For exam-
ple, C7 remarked that the fact that documentation teams
had to always catch up with the development team was not
represented well in the summary. We had analyzed most
of these details, but for the sake of brevity, we did not in-
clude them in the summary. There are only a few decisions
that we did not analyze because we thought that they were
less relevant to documentation (e.g., how to support users).
These comments motivated our choice of presenting only a
few important decisions and providing more detailed find-
ings.

Applicability or Usefulness. “Do the findings offer new
insights? Can they be used to develop policy or change prac-
tice?” To the best of our knowledge, this is the first study
on the process taken by contributors to create and main-
tain developer documentation. We hope that our description
of the documentation decisions will help researchers devise
documentation techniques that better support documenta-

tion decisions. For example, recognizing that the program-
ming language plays an important role in the documentation
decisions could lead to the development of solutions for lan-
guages that have a less standardized documentation culture.

We believe that this study has many benefits for prac-
titioners. Contributor C11 mentioned that our summary
could help other contributors reflect more on their docu-
mentation approach. Contributors and users mentioned that
there is a general lack of motivation when it comes to con-
tributing documentation. We hope that by uncovering the
context and the consequences of documentation decisions,
such as how documenting can improve the quality of the
code, and how certain types of document contribute to the
success of projects, could increase the motivation of contrib-
utors and users.

Sensitivity. “Were the questions driving the data collection
arrived at through analysis, or were concepts and questions
generated before the data were collected?” We did not en-
ter this study with a blank slate because we have worked
on documentation studies and tools in the past. To address
this issue, Creswell recommends disclosure of any stance on
the issue that researchers had before beginning the study [6,
p.217]. For instance, we thought that writing documenta-
tion took a large amount of time and effort and we did not
think that the community could play such a significant role
in the documentation process. We were surprised at first to
see the contributors struggle to name a single challenge to
documentation. We soon realized how documentation could
be seen as a vital and interesting part of open source projects
and how the community could help improve the documen-
tation. These early observations forced us to recognize and
reconsider our preconceptions and helped us look at the data
from a fresher perspective.

6. RELATED WORK
Most of the related work on developer documentation has

focused on studying how developers use documentation and
devising techniques to document programs.

10Only for documentation teams that are responsible for doc-
umenting changes

8

How Developers Learn Frameworks and Libraries.
Kirk et al. conducted three case studies to study the prob-
lems encountered by software developers when using a frame-
work [12]. They identified general kinds of questions such
as finding out what features are provided by the framework
and understanding how classes communicate together in the
presence of inversion of control and subtle dependencies.
The authors observed that different types of documentation
provided answers to a subset of the questions.

Carroll et al. observed users reading documentation and
found that the step-by-step progress induced by traditional
documentation such as detailed tutorials and reference man-
uals was often interrupted by periods of self-initiated prob-
lem solving by users [3]. Indeed, users ignored steps and
complete sections that did not seem related to real tasks,
and they often made mistakes during their unsupervised ex-
ploration. Because this active way of learning was not what
the designer of traditional documentation intended, Carroll
et al. designed a new type of documentation, the minimal
manual, that is task-oriented and that helps the users resolve
errors [3, 4, 15].

Robillard conducted a survey and qualitative interviews
in a study of how Microsoft developers learn APIs [14]. The
study identified obstacles to API learnability in documenta-
tion such as the lack of code examples and the absence of
task-oriented documentation. Forward and Lethbridge con-
ducted a survey with developers and managers, and asked
questions regarding the use and the characteristics or vari-
ous software documents [11]. According to the participants,
the following properties of software documentation were the
most important: content (information in the document), up-
to-dateness, availability, use of examples, and organization
(sections, subsections, index).

Nykaza et al. performed a need assessment on the desired
and required content of the documentation of a framework
developed by a software organization [13]. The authors ob-
served that junior programmers with deep knowledge of the
domain and senior programmers with no knowledge of the
domain had similar documentation needs about the frame-
work. The programmers preferred simple code examples
that they could copy and execute right away (as opposed
to complex examples showing many features at once) and a
manual that had self-contained sections so users could refer
to it during their exploration (as opposed to manual that
must be read from start to finish).

We complement these studies by studying the decisions
made by the producers of documentation and by identifying
the effort required by these decisions and their impact on
the project and the users.

Documenting Programs. Many documentation techniques
rely on mining code examples to infer usage information
about libraries and frameworks. For example, SpotWeb
mines code examples found on the web to recommend frame-
work hotspots, i.e., classes and methods that are frequently
reused [17]. MAPO mines open source repositories and in-
dexes API usage patterns, i.e., sequence of method calls that
are frequently invoked together [18]. Then, MAPO recom-
mends code snippets that implement these patterns, based
on the programming context of the user.

Schäfer et al. used a clustering technique to recover the
main building blocks of a framework from client programs to
build a representation of the framework that is easy to un-

derstand by users [16]. Similar classes are grouped together
to help users understand the framework.

Finally, there are tools that help developers produce or
augment existing documentation. Mismar is a semi-automated
tool that produces tutorial-like wizards from concerns, i.e.,
the classes and methods related to a framework extension
point, and that finds code examples that implement the tu-
torial [7]. eMoose highlights in a code editor the methods
that have special rules described in their Javadoc [10].

We believe that tools can be useful to complement the
documentation, but they cannot replace human-written doc-
umentation. As we observed in our study, some documents
are used for marketing purposes so they cannot be gener-
ated, and writing documentation introduces a feedback loop
that is beneficial for the program’s usability.

7. CONCLUSION
Developers rely on documentation to learn how to use

frameworks and libraries and to help them select the open
source technologies that can fulfill their requirements. Fol-
lowing a qualitative study with 22 documentation contribu-
tors and users and the analysis of the evolution of 19 docu-
ments, we observed the decisions made by open source con-
tributors in the context of three production modes: initial
effort, incremental changes, and bursts.

Understanding how these decisions are made and what
their consequences are can help researchers devise documen-
tation techniques that are more suited to the documenta-
tion process of open source projects and that alleviate the
issues we identified. Our findings can also help practition-
ers make more informed decisions. For example, a better
understanding of embarrassment-driven development could
motivate developers to document their changes quickly after
making them. A better comprehension of the relationship
between the type of project (e.g., library or framework) and
getting started and reference documentation could help con-
tributors focus their effort on the more appropriate type of
documentation.

As a future work, we would like to report our results on
the other decisions made by open source contributors and
pursue our analysis of the documentation needs of users.

Acknowledgments
The authors thank Harold Ossher, Tristan Ratchford, Annie
Ying and the anonymous reviewers for their valuable com-
ments on the paper. This project was supported by NSERC.

8. REFERENCES
[1] S. Adolph, W. Hall, and P. Kruchten. A methodological leg

to stand on: lessons learned using grounded theory to study
software development. In Proc. Conf. of the Center for
Advanced Studies on Collaborative Research, pages
166–178, 2008.

[2] G. Butler, P. Grogono, and F. Khendek. A reuse case
perspective on documenting frameworks. In Proc. IEEE
Asia Pacific Soft. Eng. Conf., pages 94–101, 1998.

[3] J. M. Carroll, P. L. Smith-Kerker, J. R. Ford, and S. A.
Mazur-Rimetz. The minimal manual. Journal of
Human-Computer Interaction, 3(2):123–153, 1987.

[4] I. Chai. Framework Documentation: How to document
object-oriented frameworks. An empirical study. PhD in
Computer Sscience, University of Illinois at
Urbana-Champaign, 2000.

[5] J. Corbin and A. C. Strauss. Basics of Qualitative
Research: Techniques and Procedures for Developing
Grounded Theory. Sage Publications, 3rd edition, 2007.

9

Code Django WP Plasma Hib. Spring GTK Firefox DBI Shoes Eclipse Avg.

Clarification 18.2 7.1 13.1 6.9 14.1 1.9 9.5 16.6 5.9 1.1 9.4
Adaptation 15.8 8.7 24.6 17.2 8.8 33.3 7.3 32.4 0 18.5 16.7
Addition 16.7 19 18.0 24.1 20.9 9.3 7.9 27.6 64.7 5.4 21.4
Structure 3.2 6.3 3.3 15.5 4.4 1.9 1.3 2.07 8.8 6.5 5.3
Format 11.4 6.7 3.3 3.5 6.6 11.1 3.2 1.4 5.9 55.4 10.8
Links 6.5 27.7 6.6 3.5 1.9 5.6 14.2 4.8 0 1.1 7.2
Correction 7.6 2.4 11.5 15.5 10.6 13 3.8 3.5 5.9 0.0 7.4
Polish 20.5 17.4 13.1 13.8 32.8 18.5 11.7 11.7 5.9 10.9 15.6
SPAM 0.0 2.4 1.6 0.0 0.0 0.0 24.1 0.0 0.0 0.0 2.8
Revert 0.0 2.4 4.9 0.0 0.0 5.6 17.1 0.0 2.9 1.1 3.4

Table 4: Classification of document revisions (in %). Top-5 codes for each document are in italic.

[6] J. W. Creswell. Qualitative Inquiry and Research Design.
Sage Publications, 2nd edition, 2007.

[7] B. Dagenais and H. Ossher. Automatically locating
framework extension examples. In Proc. ACM SIGSOFT
Intl Symposium on Foundations of Soft. Eng., pages
203–213, 2008.

[8] B. Dagenais, H. Ossher, R. K. Bellamy, M. P. Robillard,
and J. P. de Vries. Moving into a new software project
landscape. In Proc. IEEE/ACM SIGSOFT Intl Conf. on
Soft. Eng., pages 275–284, 2010.

[9] C. R. B. de Souza and D. F. Redmiles. An empirical study
of software developers’ management of dependencies and
changes. In Proc. Intl Conf. on Soft. Eng., pages 241–250,
2008.

[10] U. Dekel and J. D. Herbsleb. Improving api documentation
usability with knowledge pushing. In Proc. IEEE/ACM
SIGSOFT Intl Conf. on Soft. Eng., pages 320–330, 2009.

[11] A. Forward and T. C. Lethbridge. The relevance of software
documentation, tools and technologies: a survey. In Proc.
ACM Symposium on Document Engineering, pages 26–33,
2002.

[12] D. Kirk, M. Roper, and M. Wood. Identifying and
addressing problems in object-oriented framework reuse.
Journal of Empirical Soft. Eng., 12(3):243–274, 2007.

[13] J. Nykaza, R. Messinger, F. Boehme, C. L. Norman,
M. Mace, and M. Gordon. What programmers really want:
results of a needs assessment for sdk documentation. In
Proc. Intl Conf. on Computer Documentation, pages
133–141, 2002.

[14] M. P. Robillard. What makes apis hard to learn? answers
from developers. IEEE Software, 26(6):27–34, 2009.

[15] M. B. Rosson, J. M. Carrol, and R. K. Bellamy. Smalltalk
scaffolding: a case study of minimalist instruction. In Proc.
ACM SIGCHI Conf. on Human Factors in Computing
Systems, pages 423–430, 1990.

[16] T. Schäfer, I. Aracic, M. Merz, M. Mezini, and
K. Ostermann. Clustering for generating framework
top-level views. In Proc. Working Conf. on Reverse Eng.,
pages 239–248, 2007.

[17] S. Thummalapenta and T. Xie. SpotWeb: Detecting
framework hotspots and coldspots via mining open source
code on the web. In Proc. IEEE/ACM Intl Conf. on
Automated Soft. Eng., pages 327–336, 2008.

[18] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei. MAPO:
Mining and recommending API usage patterns. In Proc.
European Conf. on Object-Oriented Programming, pages
318–343, 2009.

Appendix A. Results of Historical Analysis
We classified each documentation revision by associating
a category summarizing the rationale behind the change.
When there were multiple types of change, we identified the
change that had caused the largest number of lines in the
document to be modified. Ten categories of change emerged
from our analysis:

Clarification. Addition of a note or the modification of
words to clarify existing content.

Adaptation. Modification of the text to reflect the new
state of the project. An adaptive change can range from the
update of copyright date to the recommendation of a new
feature over and old one.

Documentation Tools and Infrastructures

CPAN www.cpan.org
POD perldoc.perl.org/perlpod.html
Sphinx sphinx.pocoo.org
Javadoc java.sun.com/j2se/javadoc
Doxygen www.doxygen.org

Projects

Django www.djangoproject.com
WordPress wordpress.org
KDE Plasma plasma.kde.org
Hibernate www.hibernate.org
Spring www.springsource.org
GTK+ www.gtk.org
Firefox www.mozilla.com/firefox
DBI dbi.perl.org
Shoes github.com/shoes/shoes
Eclipse www.eclipse.org
Rails rubyonrails.org

Table 5: Documentation tools and open dource
projects mentioned in this paper

Addition. Text or examples that are added to a docu-
ment. For example, when a new feature is released, a section
describing the feature is often added in a reference manual.

Structure. When sections are moved inside or outside
documents, e.g., when a large document is split in multiple
smaller documents.

Format. Modifications of the file syntax, e.g., the addi-
tion of an HTML closing tag that had been forgotten in the
previous revision.

Links. Addition of a URL to the documentation.
Correction. Modification of a code example because it

was broken or the behavior was not the one intended. Be-
cause it was not always possible to determine if a correction
was due to refactoring, the modifications of a code example
following a refactoring are included in this category.

Polish. Words or sentences that are copy edited, e.g.,
spelling error. When new sentences or domain-specific words
were added to clarify an existing sentence, we considered the
change to be part of the clarification category.

SPAM. Unsolicited advertisement or vandalism.
Revert. When the current version of the document is re-

verted to a previous version. This is often caused by SPAM,
but incorrect or unclear addition by contributors can also
cause a revert.

Table 4 shows the distribution of the change categories
across the document revisions for each project. The five
most popular categories in each project are in bold. The
last column, Avg., presents an unweighted average of each
category across the 10 projects: because we did not ana-
lyze the same number of documents and revisions for each
project, a weighted average would be heavily biased toward
the documents with the most revisions. We found that the
top five category in weighted and unweighted averages were
the same.

10

