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ABSTRACT 
Repeated changes to a software system can introduce small 
weaknesses such as unplanned dependencies between different 
parts of the system. While such problems usually go undetected, 
their cumulative effect can result in a noticeable decrease in the 
quality of a system.  We present an approach to warn developers 
about increased coupling between the (potentially scattered) 
implementation of different features. Our automated approach can 
detect sections of the source code contributing to the increased 
coupling as soon as software changes are tested. Developers can 
then inspect the results to assess whether the quality of their 
changes is adequate.  We have implemented our approach for 
C++ and integrated it with the development process of a 
proprietary 3D graphics software. We report on our evaluation of 
the approach in the field, and on a study showing that, for files in 
the target system, causing increases in feature coupling is a 
significant predictor of future modifications due to bug fixes. 

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging – Testing 
tools. D.2.7 [Software Engineering]: Distribution, Maintenance, 
and Enhancement – Restructuring, reverse engineering, and 
reengineering. 

General Terms 
Design, Reliability, Verification. 

Keywords 
Feature coupling, feature associations, feature implementation, 
feature location, regression testing, dynamic analysis. 
 

1. INTRODUCTION 
Successful software requires a maintenance investment that can 
dwarf that of its initial development. The long life and large 
install base that come with success typically combine to expose 
flaws and impose unforeseen requirements on a software system.  
In turn, such factors put pressure on software development 
organizations to keep up with customers' changing expectations, 

resulting in continual modifications to a software code base.  As 
evidence of this situation, the issue tracking systems for large 
open-source software projects typically include thousands of 
completed modifications. 
Many factors influence the quality of changes to a system, 
including developer experience, familiarity with the system, time 
constraints, and the quality of the system's design.  In general, 
these practical considerations often lead to suboptimal changes 
that slightly deteriorate the quality of a code base [3, 4, 11], for 
example by increasing the overall amount of coupling. We refer 
to this phenomenon as code decay [4]. 
Code decay is problematic because it can make it harder to 
change a system in a way that is not easily observable.  For 
example, a software modification may not cause any regression 
fault, but instead expose some subtle implementation details that 
were previously hidden.  Later versions of the system may come 
to depend on the details, thus making the previously-encapsulated 
code difficult to change.  While the effects of code decay will 
eventually become apparent, it may prove very expensive to 
remedy the situation at the later juncture. Code decay is a subtle 
phenomenon that is difficult to characterize [4].  However, it is 
nevertheless possible to detect potential symptoms, or risk factors, 
which can then be assessed by developers. 
The intuition guiding the present research is that an increase in 
the amount of coupling between the implementation of different 
features (functional requirements) can be a symptom of code 
decay (i.e., if it is unplanned), and that such situations should be 
reported to developers for closer inspection.  Unfortunately, the 
implementation of features is not always neatly encapsulated in a 
single module [7, 10], a situation which precludes the trivial use 
of standard coupling metrics to detect this symptom.   
In this paper, we describe a new feature coupling detection 
technique.  Our approach is based on a dynamic analysis of a 
software system as it undergoes regression testing.  It can be 
completely automated and fully integrated in the software 
development process of an organization.  With our technique, 
developers work as usual but when their changes are committed 
and tested, the execution of the test suite is monitored, analyzed, 
and compared with information obtained from the regression 
testing of a previous version of the code.  When increased 
associations between the implementation of different features are 
detected, the parts of the code contributing to the evidence 
obtained are retrieved and reported to the developer. 
We have implemented our technique and applied it to a real-world 
code base consisting of more than 100 000 lines of C++ source 
code exercised by thousands of tests.  Our experience with this 
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technique showed that its overhead is low enough to integrate it in 
the build and test cycle of the organization and that it produces 
reports that are easy to understand and convenient to use by 
developers.  A study of the target system using our technique also 
demonstrated that files contributing to increases in feature 
coupling were significantly more likely to be modified by future 
bug fixes, hence reinforcing the assumptions forming the basis for 
our technique.  The contributions of this paper include a 
description of our automatic technique for the detection of 
increases in feature coupling and a detailed account of our 
experience with this technique in the field. 
In the rest of this paper, we first provide the details of our 
technique for detecting increases in feature coupling (Section 2).  
We then describe our application of the technique (Section 3) and 
our initial experience with the technique along with the validation 
study (Section 4).  Finally, we discuss related work in Section 5 
and conclude in Section 6. 

2. COUPLING DETECTION TECHNIQUE 
Measures of coupling in software have traditionally been used to 
diagnose different conditions in software systems, such as the 
need for refactoring for more thorough validation activities [1].  
In a similar perspective, we base our coupling detection technique 
on the following hypothesis: Given that a system implements a 
number of features, any increase in the association between the 
implementation of two features may indicate locations where 
unplanned dependencies have been introduced. 
In this paper, we use the term “feature” to refer to a cohesive set 
of the observable properties of a software system (e.g., as would 
correspond to the functional requirements).  For example, a word 
processing software would typically include features such as 
“spell checker”, ”auto save”, and “undo”. For a number of 
practical reasons, the implementation of features does not always 
align with module boundaries, and is instead scattered throughout 
the basic decomposition of the system [7, 10].  For example, the 
functionality to “undo” commands typically involves code that is 
scattered throughout the implementation of each undoable 
command in the system. 
Although the idea of detecting increases in the coupling between  
features is conceptually simple, its practical realization must 
account for the numerous and complex ways in which different 
(and potentially scattered) sections of a software system can 
interact.  For example, statically establishing data dependencies 
between sections of code requires complex, computationally 
expensive, and potentially imprecise calculations. 
To investigate a technique that would apply to large, deployed 
software systems, we chose to estimate feature interactions using 
a probabilistic model based on test coverage information.  Our 
technique associates features with tests, and tests with 
implementation components. By recording whether the overlap 
between components implementing different features increases as 
a regression test suite is applied to a new version of a system, we 
can determine which sections of the code cause the increases.  We 
hypothesize that such sections may contribute to code decay and 
should be inspected by developers to ensure that the changes do 
not introduce undesirable weaknesses in the code.  In the rest of 
this section, we present the details of our technique. 

2.1 Basic Concepts 
The following concepts are important to our analysis algorithm.  
The most basic concepts are that of a program version, a 
component, a feature, and a test. 

DEFINITION 1 (PROGRAM VERSION).  A program version 
P=(C,F,T)  is the combination of a set C  of components, a set F 
of feature, and a set T of tests.  

DEFINITION 2 (COMPONENT).  Given a program version P=(C, F, 
T), a component c ∈ C is an entity of the program represented by 
P whose execution can be detected as part of the execution of a 
test t ∈ T. 

Components can be defined to represent different constructs, such 
as lines of code, procedures, basic blocks, etc…  Although 
practical considerations influence the selection of a component 
granularity, our approach is technically independent from the 
specific choice component types. 

DEFINITION 3 (FEATURE).  Given a program version P=(C, F, T), 
a feature f ∈ F is a functionality of the program expressed such 
that it is possible to unambiguously determine whether a test t∈ T 
exercises f. 

DEFINITION 4 (TEST).  Given a program version P=(C, F, T), a 
test t ∈ T is an execution of a subset of the program represented 
by P that exercises a set of features Ft and covers a set of 
components Ct, where Ft ⊂ F and Ct ⊂ C.  We have exercises(t,f) 
if t exercises f, and covers(t,c) if c is executed as part of t. 

It follows from the last two definitions that the association 
between features and tests is many-to-many.  In other words, it is 
not necessary for a feature to be uniquely associated with a test. 

In practice, the binary relation exercises can be obtained in a 
number of ways, including through manual inspection, feature 
location techniques, or others.  In the context of our approach we 
assume that this relation exists and that the information is 
available as part of a software project.  Section 3.2 describes one 
way to automatically generate the exercises relation.  As for the 
covers relation, the components covered by individual tests can be 
determined from the execution of a test using straightforward 
instrumentation techniques (see Section 3.1). 

2.2 Feature Implementation 
We estimate the association between different features in two 
steps.  First, we estimate how strongly each component is 
associated with the implementation of a feature.  We call this 
estimate the feature implementation. Second, and based on the 
feature implementation, we estimate the strength of the 
association between the implementation of different features.  We 
call this last estimate the feature association.   
The calculations of the feature implementations and associations 
are based on linear algebra.  Given a program version P = (C,F,T), 
we model the exercises relation as a matrix of size |T| × |F| where 
the row/column tuple (t,f) is 1 if t exercises f and 0 otherwise.  
Similarly, we model the covers relation as a matrix of size |T| × 
|C| where the row/column tuple (t,c) is 1 if t covers c and 0 
otherwise. 
The intuitions behind our definition of a feature implementation 
are that a) a component implements a feature if it is covered by all 
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tests exercising the feature, and b) the strength of the 
implementation relation is determined by the ratio of tests 
covering the component that are associated with the feature over 
the ratio of all tests covering the component.  For example, if a 
component c1 is covered by 20 tests, and all 5 tests for feature f1 
cover c1, then we will say that that c1 implements f1 with a degree 
of 0.25.  At the other end of the spectrum, if c1 is covered by 20 
tests, and all 20 tests for feature f1 cover c1, then we will say that 
c1 implement f1 with a degree of 1.0.  In order to operationalize 
these intuitions, we define a vector operation we call the 
implementation product.  The implementation product is similar 
to a standard dot product but makes provisions for intuitions a) 
and b) above. 

DEFINITION 5 (IMPLEMENTATION PRODUCT). Given two vectors of 
size n, a = (a1, a2, … an) and b = (b1, b2, …, bn), the 
implementation product a ⊗ b is defined as  
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With our definition of the implementation product, we can define 
a matrix implementation product that works just like the standard 
matrix multiplication except that the implementation product is 
used instead of the dot product to multiply component vectors. 

DEFINITION 6 (MATRIX IMPLEMENTATION PRODUCT). Let A = [aik] 
be an m × n matrix, and let B = [bkj] be an n × s matrix.  The 
matrix implementation product A ⊗ B is the m × s matrix 
C[cij],where cij is the implementation product of the ith row 
vector of A and the jth column vector of B. 

With the above definitions, we can now define a feature 
implementation. 

DEFINITION 7 (FEATURE IMPLEMENTATION). Let exercises 
and covers be the matrices corresponding to the exercises and 
covers relations for a program version, respectively. Let 
exercisesT be the transpose of exercise. We define a feature 
implementation FI as FI = exercisesT ⊗ covers. 

Example 

We illustrate the calculation of a feature implementation with a 
small example.  Consider a simple program comprising four tests 
and seven components.  Table 1 shows the covers matrix for a 
program version (for clarity we do not show the 0 values).  We 
can assume that this information is obtained by running test 
programs with execution instrumentation. 

Table 1: Covers matrix for the example program 
 C1 C2 C3 C4 C5 C6 C7 

T1 1 1  1  1  

T2 1 1 1    1 

T3  1 1 1 1   

T4  1  1  1  

 

Additionally, individual tests exercise only a subset of the 
features of the program.  Table 2 shows the transpose of the 
exercises matrix.  This information can be provided along with  
the test suite, for example. 

Table 2: ExercisesT matrix for the example program 
 T1 T2 T3 T4 

F1 1    

F2 1 1   

F3  1   

F4 1   1 

F5   1  

 
Taking the implementation product of exercisesT and covers 
produces the FI matrix, as shown in Table 3. 

Table 3: Feature implementation for the example program 
 C1 C2 C3 C4 C5 C6 C7 

F1 0.5 0.25 0 0.33 0 0.5 0 

F2 1 0.5 0 0 0 0 0 

F3 0.5 0.25 0.5 0 0 0 1 

F4 0 0.5 0 0.67 0 1 0 

F5 0 0.25 0.5 0.33 1 0 0 

 
For example, taking the implementation product of row F1 in 
exercisesT and column C1 in covers produces the value (F1, C1) = 
1×1/(1+1) = 0.5 in FI.  This value estimates that C1 implements F1 
with a degree of 0.5 since one other test not associated with F1 
covers C1. 

2.3 Feature Association 
A feature association is a square matrix representing the degree of 
association between the implementation of different features. 

DEFINITION 8 (FEATURE ASSOCIATION). Given a program version 
P = (C,F,T) and its corresponding feature implementation FI, a 
feature association FA is the square matrix of size |F| × |F| 
defined as the (true) matrix product FA = FI •FIT. 

The dot product between two feature implementation vectors 
represents the cosine of the angle between them (multiplied by the 
magnitude of each vector).  Hence, the feature association matrix 
models how strongly any two features “align” in the space of 
components.  The higher the value for a pair of features, the larger 
the number of components they share in their implementation or 
the more important the shared components are to both features.  In 
our approach, we do not take into account the absolute value of 
feature associations.  Instead, we simply detect whether such 
values increase as a system evolves. 

Example 

To complete our example, Table 4 shows the final feature 
association for our example. 
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Table 4: Feature association for the example program 
 F1 F2 F3 F4 F5 

F1 0.67 0.63 0.31 0.85 0.17 

F2 0.63 1.25 0.63 0.25 0.13 

F3 0.31 0.63 1.56 0.13 0.31 

F4 0.85 0.25 0.13 1.70 0.35 

F5 0.17 0.13 0.31 0.35 1.42 

 
From Table 4 we see that, for example, feature f1 is more strongly 
associated with feature f2 than with feature f5.  There are two 
things to note from this table.  First, a feature association matrix is 
in fact a triangular matrix as the association relation is 
symmetrical.  Second, the values representing the association of a 
feature with itself vary between features.  This is simply a 
consequence of the fact that, for simplicity, we have not 
normalized the feature implementation vectors (the row vectors of 
the feature implementation matrix).  If we normalize the feature 
implementation vectors in Table 3, the diagonal of the feature 
association matrix will contain only values of 1.  

2.4 Coupling-Increasing Components (CIC) 
Coupling-Increasing Components (CIC) are the components that 
contribute to an increase in the level of association between two 
features.  We obtain the set of CICs by comparing the feature 
implementations and feature associations of two different 
program versions. 

To identify CICs, we first locate feature pairs whose association 
has increased between two versions.  We define an association to 
have increased if the association between two features in a (more 
recent) program version is greater than the association between 
the same features in a previous program version by a certain 
multiplicative factor α.  The α factor is a parameter of our 
approach that can take values in the interval [1..∞). 

DEFINITION 9 (COUPLING-INCREASING FEATURE PAIRS). Given two 
program versions P = (C,F,T) and P*=(C*,F*,T*), and their 
corresponding feature association FA[faij] and FA*[faij*], the 
coupling-increasing feature pairs CIF[cifij] is a matrix of the 
same size as FA* where: 

⎩
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DEFINITION 10 (COUPLING-INCREASING COMPONENTS). Given two 
feature implementations FI and FI* and a matrix of coupling-
increasing features CIF, we define the set of coupling-increasing 
components of a modified program P*=(C*, F*, T*) as the set of 
components contributing to values in CIF.  The set of CIC can be 
calculated with the following algorithm: 

 1: param: P*=(C*, F*, T*): Modified Program 
 2: param: FI[fij] and FI*[f*ij]: Feature Implementations 
 3: param: CIF[cifij]: Coupling-Increasing Features 
 4: var: CIC={}: Coupling-Increasing Components 
 5: for i = 1..|fi| (where fi is a row vector of FI) 
 6:   for j = 1..|fi|, i ≠ j 
 7:     if cifij = 1 
 8:       for k = 1..|fi| 
 9:         if f*ik • f*jk > fik • fjk 
10:           CIC  CIC ∪ c | c is the component 
                     corresponding to column k in FI 
11:         end if 
12:       end for 
13:     end if 
14:   end for 
15: end for 
16: return CIC 
 
Once the analysis is complete, we present the CIC set to the 
developers, who will determine if the components are in fact 
contributing to code decay. 

2.5 Discussion 
The quality of the results produced by our algorithm is dependent 
on the stability of feature associations in the absence of code 
decay.  For example, if changes that do not cause code decay in 
practice introduce variations in associations, then our algorithm 
could produce false positives.  In general, the role of the 
parameter α is to stabilize the algorithm, by making it more 
resilient to small variations in feature associations.  However, if α 
is set too high then important symptoms of code decay could go 
unnoticed, and so the effective range of α is also limited. 

Essentially, variations in feature association are a factor of two 
main phenomena: a) relevant variations due to an increase in 
feature coupling (and potentially indicative of code decay), and b) 
irrelevant variations due to imprecision in the computation of 
feature implementations.  The primary source of imprecision in 
the computation of feature implementations is an insufficient 
number of tests exercising certain features to obtain reasonable 
estimates of the components that implement them.  The 
importance of this imprecision will typically diminish as the 
number of tests increases and the focus of tests narrows to fewer 
features. 

Finally, the inclusion of components in the CIC set implies the 
existence of a mapping of components between system versions 
(c ∈ C  c* ∈ C*).  In other words, given two feature 
implementation matrices representing two different program 
versions, it is assumed that a column in the matrix for one version 
represents the same component as the corresponding column in 
the matrix for the other version.  In practice, this assumption 
requires special treatment when components are added or 
removed between versions.  Additionally, if using lines of code as 
components (commonly identified by file/line information), even 
unchanged components may require remapping because of the 
addition and removal of other components above them in the 
same file.  This bidirectional mapping between components of 
different program versions is assumed to exist in the CIC 
algorithm, but the details are left to the implementation (see 
Section 3.4.2). 
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3. CASE STUDY 
To investigate the feasibility and usefulness of our approach, we 
implemented our technique and applied it to a proprietary 3D 
graphics program developed at NVidia Corporation.1  The target 
system consists of more than 100 000 lines of C++ code exercised 
by thousands of tests, and each change is tested for regression 
before it is submitted to the source repository.  Although many 
parts of the implementation built for this case study are generic 
enough to apply to a wide range of software systems, practical 
considerations required us to tailor the overall implementation to 
the environment of our target system. 

 
Figure 1 : Implementation Diagram 

Our current implementation (depicted in Figure 1) is designed to 
be applied to all new changes made to our target system before 
they are submitted to the source repository.  To this end, our 
implementation extends existing proprietary regression-testing 
infrastructure and practices without interfering with the normal 
activities of software developers.  For our analyses, we defined 
components as the lines of code of the system, as an 
approximation for C++ statements.  However, for practical 
reasons we aggregate the results by source files for the final 
presentation to developers. 
Our implementation works as follows.  First, we obtain the test 
suite from the source repository and compile the locally-modified 
program with code instrumentation to produce statement coverage 
information when executed.  The test suite is then executed as 
usual, producing the covers relation matrix that relates tests with 
components (see Section 3.1).  Executing the test suite on our 
target system also produces the exercises relation matrix that 
relates tests with features thanks to a different type of 
instrumentation that forms an integral part of our specific target 
system (see Section 3.2). 
As described in the previous section, the covers and exercises 
matrices serve as input to the computation of feature 
implementations and association analyses (see Section 3.3).  
Feature implementations and associations are then marked for 
storage in the source repository together with the current changes 
so that they can be versioned along with the software and used in 
future analyses.  To perform feature coupling analysis (see 
Section 3.4), we recover the version of the feature 
implementations and associations that match the previous version 
of the program.  The old and new associations are then compared 

                                                                 
1 This software is used internally and is not released to the public. 

for increased associations and the CIC set is constructed from the 
lines of code that caused the differences, as described in Section 
2.4.  Finally, the lines of code are aggregated by files and the set 
of coupling-increasing files is presented to the developer. 
In the rest of this section, we discuss key implementation issues 
specific to each step of our approach. 

3.1 The Covers Relation 
We obtain the covers relation by instrumenting the program code 
to automatically detect each line of code covered by each test.  
Inspired by the work of Tikir and Hollingsworth [12], we 
designed our instrumentation such that it removes itself once 
triggered, leaving the original subroutines.  This strategy greatly 
reduces the cost of instrumentation, especially for code containing 
loops.  This characteristic of our implementation is in fact critical 
given the size and heavy computational nature of the target 
system.  We observed, as also noted by Tikir and Hollingsworth, 
that the performance impact of this type of instrumentation is low, 
increasing the run time by only 5~10% (see Section 4.3 for the 
details of the performance evaluation). 
The covers matrix produced by our coverage instrumentation can 
be very large.  Thousands of tests executing over hundreds of 
thousands of lines of code will produce hundreds of millions of 
entries in this matrix.  Fortunately, covers matrices are naturally 
sparse and contain some simple patterns, such as groups of 
components that are always covered together.  We reduced the 
effective size of the stored data by indexing, storing, and 
analyzing these groups of components as a single entity. 

3.2 The Exercises Relation 
Ideally, the features exercised by individual tests in the test suite 
would be documented alongside and versioned with the test suite.  
In practice, we found that this information was not consistently 
available.  In our target system, each test is relatively complex 
and exercises many features, often leaving only vague and 
informal references to the dominant feature to be encoded in the 
test name.  In some cases, even the names were misleading, due to 
the test’s ultimate purpose changing over time. 
To recover the exercises relations, we relied on execution logs 
produced by our target system as it executes.  These execution 
logs form an integral part of the target system and are different 
from our instrumentation system.  The primary purpose of the 
execution logs is to assist in the analysis of inputs given to the 
system, both manually by developers and through automated 
tools.  Built by the developers alongside the system’s 
functionality, the logs provide extensive details about the 
execution of the system, including a fine-grained description of 
the functionalities exercised by the program during its execution.  
For example, the logs produced by our target system are 
analogous to a trace of user interactions that could be generated 
by a word processor, logging the commands invoked by the users 
through menus and buttons (e.g., spellchecking, justification, 
etc…). 
Since the exact details of our logging feature are proprietary, for 
the purpose of this paper we abstract the logging feature as a 
module that produces a list of the commands called on the 
graphics software.  We collected these logs for each test and 
matched the functionality they referenced to features, hence 
reconstructing the exercises relations between tests and features.  
The main consequence of this strategy is that it makes our 
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definition of feature to be fine-grained, yielding more than ten 
thousand features for our target system.  However, this strategy 
supports a completely automatic recovery of the exercises matrix, 
which is a critical element of the feasibility of our approach.  This 
strategy for mapping features to tests is a parameter of our 
approach that may not be directly realizable for all target systems 
(see Section 3.5).  
Although the number of features detected remains much less than 
the number of lines of code in the system, our feature identifiers 
are much larger than an integer and their analysis produces 
physical data sets of similar size.  Like the covers matrices, 
exercises matrices are also naturally sparse and their cost can be 
made manageable using a similar grouping strategy. 

3.3 Feature Implementations 
The implementation of the computational support for feature 
implementations as described in Section 2.2 gives rise to a matrix 
product of staggering size if the sparseness is not exploited.  To 
compute the implementation of a feature, the associated exercises 
test group2 for the feature is used as the reference test set.  All test 
groups from the covers relations are then compared to the 
reference test set.  If all tests from the reference test set are found 
in the covers test group, then all components associated to it are 
added to the implementation of the feature.  The implementation 
value of each of these components is then calculated as the size of 
the reference test set over the size of the test group (see 
Definition 5).  This process produces as output a set of tuples of 
components and implementation values, representing the non-zero 
values of the feature implementation vectors. 
Even in their compact form, the feature implementation vectors 
remain large and dominated by components with very low 
implementation scores (e.g., components that are covered by all 
tests).  To increase the performance of our feature coupling 
analysis, we limit the size of feature implementation vectors to 
200 components, and truncate the less significant components.  
The components truncated in this manner vary from feature to 
feature, leaving a selection of the 200 highest-degree components 
for each individual feature, and resulting in a sparser (but not 
smaller) feature implementation matrix.  The choice of 200 as the 
length of implementation vectors is based on experience with 
applying feature location techniques on our target system. 
The tradeoff of this optimization strategy is that the components 
removed in this manner will also vary from program version to 
program version.  As a result, features insufficiently exercised by 
the test suite will appear to make significant feature 
implementation losses and gains between versions.  Although in 
principle the low implementation values of the truncated 
components means that they should not affect the end result  (the 
computation of CICs), in practice we have found that this process 
introduces noise that warrants additional filtering during coupling 
analysis (see Section 3.4). 
Finally, even though it is not required by our algorithm, we 
normalize our implementation vectors after truncation.  As a 
result the implementation products are themselves normalized and 
provide useful meaning to associations when debugging the 
implementation of coupling analysis. 

                                                                 
2 The groups are seen in the sparse matrix, as mentioned in 3.1. 

3.4 Feature Coupling Analysis 
Our implementation of feature coupling analysis is faithful to the 
algorithm described in Section 2.4.  However, use of the 
technique in the field required the development of an additional 
noise filtering support, and support for the mapping of 
components and features across program versions. 

3.4.1 Eliminating Noise 
The set of tests used to validate changes made to our target 
system varied greatly depending on the scope of the changes 
performed.  Current practices for our target system call for 
executing a “sanity” test suite instead of the much larger “full” 
test suite when changes are deemed at low risk of causing 
functional regressions.3  As a result, we encountered many cases 
where some features were insufficiently exercised to reliably 
identify the components implementing them (in other words, 
resulted in significant noise  in the feature implementation 
matrix).  We solved this problem by adding a filtering pass to the 
algorithm described in Section 2.4. 
We employ two different filtering methods to reduce the effect of 
noise at the feature coupling analysis phase.  First, the algorithm’s 
sensitivity threshold α eliminates insignificant variations in 
associations.  For our target system, values as small as α=1.1 
provided an appropriate baseline for noise reduction.   We 
determined this value heuristically by estimating how much a 
feature association should increase  before being considered 
significant. This initial estimate was assessed empirically and 
found to be adequate for our initial investigation of the approach 
(see Section 4.2).   
Second, we defined an analysis on individual feature 
implementations to discard variations resulting from noisy feature 
implementation vectors that do not appear to reliably associate a 
feature to its implementation.  Specifically, we define a noisy 
implementation vector as one whose components are all more or 
less equally relevant, such that no component is significantly 
more important than any other.  As in Section 2.4, we 
parameterized the significance detected with a sensitivity 
threshold β, such that a feature implementation vector (of 
components) [ci] is noisy if the following predicate holds (the 
overbar denotes the mean and σ the standard deviation):  

( )ccci βσ<−  

3.4.2 Mapping Components with Program Versions 
We identify our components (lines of source code) with unique 
indices in the covers and feature implementation matrices.  The 
indices are derived from file names (indexed in a file name table) 
and line numbers.  This choice is convenient when gathering 
covers relations, but problematic during feature coupling analysis 
because changes to the source code cause source lines to move 
(potentially including unchanged source lines).  To allow the 
comparison of feature implementation matrices during feature 
coupling analysis, we build a (line number line number) map for 
each file of the system between program versions, by applying the 
UNIX diff utility to the different versions of the files and 
accumulating the additions and subtractions of lines to find the 
mapping of old line numbers to new line numbers. 

                                                                 
3 This is ultimately left at the developer’s discretion. 
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Our implementation uses this mapping to link components in the 
new version to those of the old version, ignoring removed 
components and assuming that new components previously held 
implementation scores of zero (i.e., that they were never covered).  
This assumption is reasonable, since it shows new components 
with nonzero feature implementation values as implementation 
gains, and allows them to contribute correctly to feature coupling 
analysis. 

3.4.3 Mapping Features with Program Versions 
Features can also vary between program versions, though they are 
far more stable than components.  In all cases where algorithms 
manipulate features we refer to them by an index in a table of 
feature names, for instance when referring to features in the 
exercises or feature implementation matrices.  Because features 
change over time, the table of features that we build for our 
analysis (see Section 3.2) also changes over time and indices in 
the exercises and feature implementation matrices of different 
program versions are incompatible.  To enable the comparison of 
features of different program versions, we search for the names of 
features from one program version’s feature table in the other 
program version’s feature table.  We note the pair of indices in a 
one-way mapping from new to old indices and use the mapping 
during feature coupling analysis whenever we compare new 
features with old features. 

3.5 Discussion 
The most sensitive aspects of the implementation of our approach 
revolve around the definition of components and features.  
Selecting components as functions instead of source code lines, 
and coarse- rather than fine-grained features, would simplify the 
feature coupling analysis significantly.  With fewer, larger 
features, the noise elimination process may not be necessary, 
since each feature is more likely to have been sufficiently 
exercised by the test suite.  Using functions as components would 
simplify the mapping of components between versions.  However, 
for our application, our choice of definitions for components and 
features was influenced mostly by the concern that the 
implementation of features may be scattered across different 
functions. 
Lines of code were a natural fit for comparison and integration of 
the results of coupling analysis with other tools of the existing 
infrastructure surrounding the target system.  The data we collect 
subsumes the data function-level instrumentation produces:  we 
have the flexibility to recover function coverage from our data 
through very simple analysis of the source code to support 
functions as components in the coupling analysis. 
The granularity of features was also dictated by the existing 
infrastructure, through the level of detail of the existing execution 
logs.  For our definition of features, alternatives consisted mostly 
of the manual mapping of tests to features, a choice that was 
simply not practical, requiring too much human intervention to 
scale up to the size of the test suite.  In practice, execution logs 
are not uncommon in the field, and we expect that our approach 
can be replicated for systems with logging features, although the 
quality of the results will necessarily vary depending on the 
details of the logging data produced. In the cases where it is not 
feasible to instrument the program in this manner, then the 
mapping of tests to features must be provided by some other 
means, such as formal documentation or as an integral part of the 

test suite.4 However, for some software systems that are under 
active development it may be reasonable to install instrumentation 
that produces execution logs detailing the features in use.  

4. EMPIRICAL RESULTS 
The applicability of our feature coupling detection technique is 
based on a number of assumptions that can only be validated 
empirically.  Specifically, we rely on the fact that, in practice: 

• Feature implementation vectors meaningfully associate 
components with features; 

• The CIC sets produced are usable by developers; 
• The computational cost of the approach is acceptable; 
• The symptoms detected by the approach have value. 

To help determine whether these assumptions held in the case of 
our target system, we applied our approach to 13 different 
versions of our target system distributed over a three-month 
period, to simulate the analysis of weekly development releases.  
Because of practical constraints on the computational resources 
available for this research project, we limited the number of tests 
executed on the 13 versions of the system to the “sanity” subset of 
the tests.  This subset was previously selected using the execution 
logs to identify the smallest subset of tests from the “full” test 
suite that exercised 95% of the same features. 

4.1 Feature Implementation Vectors 
To be able to determine coupling-increasing components, we need 
to be able to reliably associate components with features.  In our 
approach, the association between a feature and its components is 
modeled with a feature implementation vector (a row in the 
feature implementation matrix).  For the purpose of our approach, 
we consider that a feature implementation vector is useful if it 
clearly identifies certain components as associated with a feature.  
In our approach the parameter β determines if a feature 
implementation vector is "good enough" to be used in the 
computation of CICs (see Section 3.4.1).  
As an initial investigation we measured the relative number of 
significant versus noisy implementation vectors in our feature 
implementation matrix, given different values of β.  We consider 
an implementation vector to be noisy if the predicate of 
Section 3.4.1 holds and significant otherwise.  Figure 2 shows the 
relative number of significant vectors in the matrix for different 
values of β.  For each value of β, each bar represents the value for 
one of the 13 versions of the program we analyzed.  
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Figure 2: Effect of the β parameter on noise detection 

We selected β=1.5 for our system because we felt it provided 
adequate protection from noise without eliminating weaker 
                                                                 
4 This is a common assumption, made in [6,10,17,18] 
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evidence in feature implementation vectors. For this value of β, 
we observed that (on average) 56% of feature implementation 
vectors were rejected when executing the “sanity” test suite.  
Executing the “full” test suite reduces this number to 25%, 
strengthening our intuition that more thorough testing of features 
reduces noise in the feature implementation matrix. 

In the process of selecting a value for β, we manually looked at 
the value distributions in feature implementation vectors.  To 
illustrate this phenomenon, Figure 3 shows the value distribution 
of both a significant (solid line) and noisy feature implementation 
(dotted line), sorted by decreasing degree values. 
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Figure 3: Sample feature implementations 

For the significant feature implementation, the figure shows a few 
very relevant components that stand out from a long tail of less 
relevant components.  For the noisy feature implementation 
vector, we see instead an almost straight line, with no component 
being more or less associated with a feature than others. In 
general, we find that noisy vectors usually correspond to features 
that are insufficiently exercised by tests.  

4.2 CIC Sets 
The characteristics of CIC sets matter in our approach since this is 
the information directly reported to developers.  If CIC sets 
contain large numbers of source locations scattered throughout the 
system, the developers will be overwhelmed with information.  
The size of CIC sets is affected by the parameters α and β, which 
determine whether association changes constitute valid symptoms 
to be reported, and the usefulness of feature implementation 
vectors, respectively.  To assess their sensitivity to α and β for 
our system, we measured the CIC sets produced from 13 target 
revisions of the system (yielding 12 CIC sets).  Since our 
approach automatically aggregates CIC sets by source file, we 
present our results at this level of granularity. 
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Figure 4: Effect of β on the size of CIC sets 

Figure 4 shows the impact of the β parameter on the size of CICs 
(number of files) for a fixed value of α.  Note that in general 
increasing the value of β decreases the number of CICs.   
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Figure 5: Effect of α on the size of CIC sets 

Figure 5 shows the effect of α on the size of CIC sets for a fixed 
value of β=1.5.  We observed that the number of coupling-
increasing files produced remains largely stable for changing 
values of α.  We surmise that the spikes in the graph represent 
versions exhibiting significant increases in some feature 
associations. 
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Figure 6: Number of file changes between revisions 

Except for two versions of the system, we find that the number of 
files reported as coupling-increasing to be manageable (often 
under five files).  This observation makes it reasonable to expect 
that a developer could inspect the complete list of files reported to 
evaluate whether the last changes to each file could have been 
suboptimal.  To provide a better context for this interpretation, 
Figure 6 shows the number of files changed between each version 
considered.  As can be seen from this last figure, feature coupling 
analysis can help narrow the focus of the developer to a number 
of files about ten times lower than the overall number of changed 
files. 

4.3 Performance 
Our approach is only feasible if it can be applied without 
incurring overhead that would severely disrupt the normal 
activities of developers.  In general, thanks to the various 
optimizations described in Section 3, we found that our 
implementation of the approach exhibited acceptable performance 
characteristics for its intended use.  In the rest of this section, we 
discuss the performance characteristics and tradeoffs 
corresponding to the different steps of our approach.  Unless 
otherwise noted, the experimental machine for our performance 
assessments was an IBM T42 Thinkpad laptop computer with a 
1.86 GHz Pentium-M processor and 2 GB of physical memory.  
The analysis implementation was written in C++, compiled using 
Visual Studio 2005 (with optimizations enabled) and executed on 
Windows XP SP2. 
For our target system, using the “sanity” test suite comprising 70 
tests, the entire analysis process requires about 2 minutes.  For 
larger test suites, comprising several thousand tests, the process 
completes in less than 2 hours. 
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4.3.1 Executing the Test Suite 
In our environment, tests execute on dedicated computer nodes 
that exploit parallelism between tests and reduce testing latency 
by sharing nodes between all developers.  This system allows 
developers to test their changes for regression within minutes or 
hours, depending on the size of the test suite used. 
The only part of our approach that affects the testing phase is the 
line coverage instrumentation, which increases the execution time 
by 5~10% and requires additional storage requirements to store 
line coverage information.  Roughly 300KB of disk space per test 
is required, with the data compressed with zlib5 as it is written. 

4.3.2 Recovering the Exhibits & Covers Relations 
We merged the recovery of the exhibits and covers matrices into a 
single process, centered on the recovery of test-related 
information from the file system where it is written during the 
execution of the regression test suite.  The computational (and 
memory) cost of this operation grows linearly with the number of 
tests, components and features.  
On the experimental machine, this phase represents about 1.5 
second of computation per test, which is mostly due to file system 
management (seeking and opening files), I/O (reading), 
decompression (zlib), decoding the file format, and memory 
management.  This process is the most time-consuming because it 
is performed serially.  This entire process completed after less 
than 3 minutes for all versions of the program, using the “sanity” 
test suite, but typically took more than one hour on larger test 
suites. 
When this process has completed, the output is written to a single 
file, roughly 20MB in size for our target system, containing both 
the exhibits and covers matrices in their compressed form. 

4.3.3 Computing Feature Implementations 
The time required to compute feature implementations is solely 
bounded by the processor speed.  The computational cost of this 
operation in our implementation grows linearly with the number 
of features, components and tests.  Although the algorithm does 
not take tests into account, our implementation compresses the 
covers and exhibits matrices using test groups.  The computational 
cost introduced by test groups grows linearly with the number of 
tests in the worst case.  However, the practical compression of 
data (and data processing) we get from working with test groups 
more than makes up for any added performance cost. 
For our target system this processing step executes at a rate of 
about 50 features per second.  The output is an in-memory feature 
implementation matrix that requires about 2KB per feature of 
memory. 

4.3.4 Feature Associations and Coupling Analysis 
The computational time required for calculating feature 
associations and to perform feature coupling analysis grows 
quadratically with the number of features, but is positively 
impacted by the truncation of implementation vectors to constant 
lengths.  This decouples both operations from the specific number 
of components, resulting in a constant-time operation.  
Furthermore, the small size of the vectors means that the 
processor can process almost 100 000 of our implementation 

                                                                 
5 http://www.zlib.net/ 

products every second.  The entire coupling analysis phase takes 
just 10 seconds on the experimental machine. 

4.4 Validation Study 
For our initial assessment of our approach, the final question we 
wanted to answer was whether the files identified with our 
approach were actually responsible for code decay.  This question 
is a difficult one given that code decay is an abstract concept that 
is difficult to operationalize [4].  As a starting point, we decided 
to work with the weaker hypothesis that files identified with our 
approach correlate with files touched by future bug fixes.  To 
determine whether this hypothesis held in our case, we built 
contingency tables recording, for each file in our target system 
and each version of the system, whether the file was flagged as 
coupling-increasing or not, and whether the file was touched by 
bug fixes afterwards or not.  This strategy is similar to previous 
studies of dynamic coupling, which have also used future changes 
as the  dependent variable for empirical evaluation [1].  With this 
data, a standard statistical procedure (the chi-square test of 
independence) can determine whether increased feature coupling 
is a predictor of future bug fixes. 
For this experiment, we considered all the source files of the 
system for the 12 revisions used in the rest of our investigation.  
A file was considered to be "coupling increasing" at a given 
version of the program if it appeared in the CIC set produced by 
the application of our technique to that version, using α=1.1 and 
β=1.5.  To determine whether a file was associated with future 
bug fixes or not, we searched the issue tracking database.  A file 
was considered "buggy in the future" for a version of the program 
if it was involved in at least one bug fix in the following 4 
months. 
Table 5 shows our aggregated contingency tables.  Each row 
corresponds to one versions of the system.  Columns 2 to 5 
present, for each version, the number of files with the 
characteristics listed in the header.  For example, version 5 of the 
system comprised 14 files identified as both coupling-increasing 
and buggy in the future. 
 

Table 5: Feature coupling increase as a Predictor of Bugs 

Version CI 
Buggy 

CI 
Not Buggy 

Not CI 
Buggy 

Not CI 
Not Buggy 

1 2 0 302 837 

2 7 0 299 835 

3 4 0 292 845 

4 1 0 295 845 

5 14 8 274 845 

6 0 0 257 884 

7 2 3 240 896 

8 11 6 227 897 

9 5 3 227 906 

10 0 0 235 906 

11 0 0 234 907 

12 0 0 234 907 
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Because of low values in the first two columns, we could only 
perform a chi-square test of independence for versions 5 and 8.6  
However, for both versions 5 and 8 the chi-square test indicates a 
statistically significant relation between the "coupling increasing" 
and "buggy in the future" variables (p ≤ 0.001).  In other words, our 
feature coupling increase metric is a good predictor that a file will 
be touched by a bug fix in the future. 
Manual inspection of the files identified as coupling-increasing 
showed that these files did correspond to code units judged by the 
developers of the system to be in need of preventative maintenance.  
Although not surprising, these initial results can already serve to 
confirm informal observations about the perceived deteriorated state 
of the coupling-increasing files. Additional research should help 
improve the precision with which our technique can identify 
problematic code locations. 

4.5 Discussion 
Our experience with the current implementation of our feature 
coupling increase detection technique has allowed us to answer 
many practical questions regarding the assumptions stated at the 
beginning of this section. 
First, we were able to determine that our approach could clearly 
identify feature implementation vectors that strongly associate 
features with components.  Empirical evidence (e.g., Figure 3) 
shows a "natural" distinction between significant and noisy feature 
implementations.  By being able to select and use only "good" 
feature implementations, we can increase the overall quality of the 
results produced.  However, due to the filtering of noisy feature 
implementation vectors, some significant feature coupling increases 
might go undetected simply because the test suite is not able to 
accurately factor out a feature.  When combined with a test selection 
strategy, it might be advisable to favor or simply add tests that 
improve feature coverage. 
Second, our experience showed that, when aggregated into files, the 
size of CIC sets constitutes a manageable amount of information for 
developers.  Although we found the size of CIC sets to vary 
depending on the values of the α and β parameters, the main factor 
determining the size of CIC sets is the nature of the actual program 
versions analyzed. 
Third, our implementation of the proposed approach demonstrated 
that it can be used at a reasonable cost (10% slowdown for the 
execution of the test suite plus a few minutes of additional 
computation).  As such, the total cost will vary greatly based on the 
size of the test suite executed.  However, as in the case of testing, 
the quality of the results will increase with the number of tests.  
More experience should help determine in which situations the 
benefits of the approach are worth the cost. 
Finally, we were able to obtain evidence that files identified as 
coupling-increasing with our approach are more likely to be touched 
by bug fixes than randomly-selected files.  Although we construe 
this initial result as confirming evidence of the assumptions 
underlying our approach, our interpretation is subject to the usual 
threats to validity that must be considered for quantitative studies of 
this type.  In our case, an important consideration is that the 
phenomenon of code decay might not be adequately measured by 
                                                                 
6 The chi-square test is generally considered invalid (but not 

necessarily failed) if a cell value is lower than 5. 

the single occurrence of bugs in a file.  More detailed, qualitative 
investigation should help us strengthen the link between CICs and 
actual code decay. 

5. RELATED WORK 
The seminal work motivating our research is the investigation of 
code decay in a large-scale phone switching system conducted by 
Eick et al. [4].  In their study of the 15-year history of the system, 
Eick et al. analyzed a number of decay indices such as the span of 
changes (number of files touched), which is shown to increase as the 
software evolves.  Although this study motivated our research by 
providing evidence of code decay, our decay assessment strategy 
differs from Eick et al.'s code decay indices in that we do not 
analyze the history of the code, but rather immediate differences 
between versions.  This difference in strategy is mainly due to 
different research goals. While Eick et al. sought to provide 
evidence of long term decay, we were interested in preventing such 
decay by providing an early warning system. 
A large number of approaches have been proposed that involve the 
analysis of a running program for purposes that range from the 
broad (e.g., program understanding [2]) to the very specific (e.g., 
impact analysis [8]).  In this space, a few approaches relate more 
closely to our work through either their relationship to coupling 
analysis or their reliance on the concept of feature.    
Arisholm et al. investigated how dynamic coupling measures can 
help assess various properties of a software system [1].  The 
dynamic measures studied by Arisholm et al. include 
characterizations such as the number of messages sent by each 
object, the number of distinct methods invoked by each method, etc.  
This work does not take into account the notion of feature as a 
separate entity that can span multiple modules.  Nevertheless, the 
results of this study are consistent with ours, in that "dynamic export 
coupling measures were shown to be significantly related to change 
proneness" [1, p. 505]. 
The approach developed by Licata et al. [9] produces “feature 
signatures” by taking the textual difference between two versions of 
a software system and analyzing the number of distinct test suites 
that execute each code block that differs between the two versions.  
The main assumption behind the concept of feature signatures is that 
a test suite corresponds to a feature. Feature signatures are 
represented as histograms plotting the number of “difference 
blocks” executed by the number of distinct test suites.  Licata et al. 
propose to use feature signatures to recover the rationale associated 
with a change, to understand relationships between test suites, and 
to identify scattered code associated with a feature.  There are a 
number of important differences between the approach of Licata et 
al. and our feature coupling detection approach.  First, we do not 
assume that test suites map one-to-one with features, but recover 
feature associations using a separate process.  Second, we rely 
primarily on differences in the execution traces, as opposed to 
differences in the source code text.  Finally, our approach produces 
a specific metric (increase in feature coupling), as opposed to a 
general representation of the impact of the change on test suites.  
Although the main focus of this research is not specifically the 
location of features in source code, the technical foundations for this 
work has benefited from a number of dynamic analysis-based 
feature location techniques. We conclude this discussion of related 
work with a description of feature location techniques that have 
inspired the design and implementation of our approach. 
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The Software Reconnaissance technique developed by Wilde et al. 
identifies features in source code based on an analysis of the 
execution of a program [13, 14]. Software Reconnaissance 
determines the code implementing a feature by comparing a trace of 
the execution of a program in which a certain feature was activated 
to one where the feature was not activated.  Wilde at al. also 
proposed a second formulation of Software Reconnaissance where 
components are attributed implementation scores based on the 
frequency of their occurrence in a test suite, and the frequency of 
their occurrence together with the feature to locate [13].  This 
definition is the basis for our feature association calculations. 
Eisenberg and De Volder extended Software Reconnaissance by 
devising more sophisticated heuristics for determining component 
implementation scores [6]. They combine both of Software 
Reconnaissance's formulations by requiring the user to provide sets 
of exhibiting and non-exhibiting tests, and then performing multiple 
probabilistic analyses on them. They combine the result of the 
analyses into a final implementation score which is used to assign 
components to a feature. 
Finally, Eisenbarth et al. [5] proposed a different extension to the 
ideas of Wilde et al., by producing the mapping between 
components and test cases using mathematical concept analysis. 
Their approach, however, requires more human intervention than 
would be practical for our application. 

6. CONCLUSION 
One important challenge for organizations involved in software 
maintenance is to ensure that the repeated modifications applied to a 
software system do not result in a gradual decay of the system's 
code base.  Unfortunately, symptoms of code decay can be difficult 
to detect in the short term, and clear evidence may only appear once 
it is too late to easily remedy the situation. 
In an attempt to mitigate this problem, we proposed to analyze a 
system for symptoms of potential decay with every execution of a 
regression test suite. Our technique is based on the assumption that 
an increase in the level of association between the implementation 
of two features may indicate the introduction of unplanned 
dependencies, and constitutes a symptom of potential code decay.  
By analyzing the execution of regression tests, we automatically 
determine the degree of coupling between features based on the 
sections of code they execute in common.  With this information, 
we can then identify any section of code that contributes to an 
increase in feature coupling between two different versions of a 
system. 
We assessed the feasibility of our approach by implementing it and 
integrating it with the development environment of a proprietary 3D 
graphics software comprising over 100 000 lines of C++ source 
code. This experience provided us with valuable insights about the 
engineering tradeoffs required to integrate feature coupling increase 
detection with regression testing in practice.  For example, we were 
able to measure the tradeoff between the size of the test suite used 
(which impacts execution time) and the number of features that can 
be located with enough accuracy to be analyzed for coupling 
increases. 
Our experience has also helped confirm that source files identified 
with our approach may be in need of preventative maintenance.  A 

small experiment confirmed that files identified by our approach 
were significantly more likely to be affected by change requests in 
the future.  Although we expect that additional experimentation will 
help us better understand the link between increased feature 
associations and code decay, we conclude that detecting increases in 
feature coupling as part of regression testing is a feasible and 
promising approach for maintaining the quality of software systems. 
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