ConcernM

apper:

Simple View-Based Separation of Scattered Concerns

Martin P. Robillard and Frédéric Weigand-Warr

School of Computer Science
McGill University

Montreal, QC,

Canada

{martin,fwwarri@cs.mcgill.ca

ABSTRACT

We introduce ConcernMapper, an Eclipse plug-in for expenitn

ing with techniques for advanced separation of concernsn- Co
cernMapper supports development and maintenance tasis-inv
ing scattered concerns by allowing developers to orgamde/gew

the code of a project in terms of high-level abstractionkedaon-
cerns ConcernMapper is also designed as an extensible platform
intended to provide a simple way to store and query conceit mo
els created through a variety of approaches. This paperibdesc
the user interface and internal architecture of Concermpdamand
demonstrates how to write extensions for it.

Categories and Subject Descriptors

D.2.3 [Software Engineering: Coding Tools and Techniques; D.2.6
[Software Engineering: Programming Environments; D.2.3ft-
ware Engineering: Distribution, Maintenance, and Enhancement

General Terms
Design, Documentation, Experimentation

Keywords

Separation of concerns, concern mapping, concern mogekpgct-
oriented software development

INTRODUCTION

An old tenet of software engineering tells us to design sarfev
systems to achieve “separation of concerns”. This guidetiper-
fectly clear when heard a comfortable distance away frommcgou
code. Unfortunately, when we get down to details, troubtjogs-
tions arise: What is a concern? (Is this design decisioryreal
concern?) Who is this a concern for? (Current developers@ré&u
maintainers? Users?) Will this always be a concern? (Are you
really sure?)

Clearly, it is not possible to separaa#i concerns that may be
of present or future interest to the various stakeholders edft-
ware project. As a consequence, although the decompositian

1.

Permission to make digital or hard copies of all or part o tvwork for
personal or classroom use is granted without fee providatiabpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgyies prior specific
permission and/or a fee.

OOPSLA 2005 Eclipse Technology Exchange (ED¢jpber 16—17, 2005,
San Diego, CA, USA.

Copyright 2005 ACM .$5.00.

software system into modules can often be “good” in genéra,
rarely “perfect” for a given software modification task. Tgaglly,
the code to understand and change in the context of a software
modification task will cut across a number of modules (classe
files, etc.), and may participate in the implementation afotes
concerns (requirements, design decisions, etc.) Sincgoprere-
search indicates that modifying the implementation of eons
whose code is not localized leads to particular challengesdft-
ware developers [6, 8], we are investigating techniqueidoale-
velopers to modify software systems in a way that naturdigna
with their concern of interest.

To provide a simple foundation for our research program en ad
vanced separation of concerns, we developed an Eclipseimplug
to support a simple way to model concerns in source code. Our
plug-in, ConcernMappérwas developed with two goals in mind.
First, we wanted ConcernMapper to support our daily sofvesa-
velopment activities by providing a simple way to model cems.

In an academic environment, where projects can experiehigha
personnel turnover and where a lot of the development isrexpe
mental, we wanted to provide Eclipse users with a very simjplg

to associate code with concerns in order to collect, shakreuse
this type of knowledge. As a second goal, we were interested i
developing a simple platform for research on advanced agpar

of concerns. Many techniques can be used to automaticddly in
code that might be of interest to a developer, and there anetco
less ways to present this information back to developersw-Ho
ever, these ideas have one common denominator: they inthodve
association of code with high-level concerns. In desigr@mnm-
cernMapper, we strove for an open architecture that cafydaesi
extended by any researcher wishing to record informatiaugb
the implementation of concerns using Eclipse. Section #:@sg
an example of how ConcernMapper can be extended to automati-
cally generate concerns based on a simple structural asalfythe
program.

2. USING CONCERN MODELS

We describe the main features of our ConcernMapper plug-in
through a scenario of software modification involving seatl con-
cerns. Our scenario is taken from a previous study of thevieha
of Eclipse developers grappling with a modification problem
volving scattered concerns [8].

In this scenario, a developer using Eclipse with ConcernMap
per is asked to enhance the “autosave” feature of a popukar-op
source text editor, jEd%. The autosave feature in the jEdit text
editor makes backups of all open files at a frequency that eaeb

www.cs.mcgill.caimartin/cm
2www.jedit.org

by users. Not knowing how the autosave feature is implendente
jEdit or even where to start looking, the developer perfoangen-
eral text search for the keyword “autosave”. This searcligidl
matches scattered over four Java files. The developer latdyb
at the files and decides that they indeed participate in theeim
mentation of the autosave feature. Using ConcernMapperi¢h
veloper creates a concern called “Autosave feature”. Theldper

then tries to understand how the autosave feature is impittde
by browsing and querying the code using the various JDT views

(Package Explorer, Type Hierarchy, Call Hierarchy, etdEach

time the developer finds elements relevant to the implentienta

of the autosave feature, they drag them into the Autosaveeton

in the ConcernMapper View. Figure 1 shows the ConcernMapper

view at some point of the investigation.

® Concern Mapper 5 HEEE O

= [Fa] Butosave feature
+ (‘i Autosave
=3 Buffer
o autosaveFils
@ autosavel)
@ getautosaveFile()
B recoverfutosaveliisw)
=& jEdit
@ propettiesChanged()
=R C] Load3aveOptionPane
o autosave
@ _init)
@ _save()

Ll i

Figure 1: The ConcernMapper View with a single concern.

During the investigation, the developer is constantlyiinfed of
which elements are now part of his concern of interest. Famex
ple, in the results of any Java search, the subset of thetsabat

After additional investigation, the developer understatt im-
plementation of the autosave feature much better and diss@v
natural separation between different aspects of the featur

e The timing of the autosave event.

e The management of the state of a file (whether it was backed
up since the last modification).

e The management of the option pane in the graphical user in-
terface allowing users to change the frequency of autosave
events.

e The code supporting the recovery from automatically saved
backups.

By creating new concerns, renaming the existing one, and mov
ing and copying elements between concerns in ConcernMapper
the developer quickly reorganizes the concern model toatefle
decomposition that will help solve the modification taske(gég-
ure 3).

‘S Concern Mapper 54
] Q Autasave
=3 jEdit
- @ propertiesChanged()
= E File: state management
=-{3 Buffer
: - B AUTOSAYE_DIRTY
autosaveFie
autosavel)
finishSawing(view, Skring, String, boolean, boolean)
i - @ getAutosaveFile)
=3 jEdit
- @ propertiesChanged()
S E Opkion pane
[E Recavery

' @ & o

i 5

are part of a concern are displayed in bold with the name of the Figure 3: The ConcernMapper View with multiple concerns.

concern (see Figure 2).

| Problems | Javadoc Declaration | Call Hierarchy | 4 Search E@I-‘._ =T
|'autosaveFile - 17 references in wotkspace =
Rl == | Ela
4o | % g | OB = %] ¥ -
= i org.gjtsp.jedit - src - jEdit

=] 9 Buffer
@ autosave() {2 matches) [Autosave feature]
& close) (2 matches)
m finishSaving(View, String, String, boolean, boolean) (2 matches)
ef getAutosaveFile() [Autosave feature]
@ loadiView, boolean) (4 matches)
= recoverfutosave{¥iew) (3 matches) [Autosave feature]
m setPath{String) {3 matches)

Figure 2: Search results with concern information.

After spending some time investigating source code andrunde
standing how the autosave feature is implemented, the afexel
realizes that it is already 8pm and probably a good time tbitcal
a day. At this point, the developer saves the concern model (a
an XML file) and adds it to the revision control system. Thetnex
morning (or week), when the developer has time to implentent t
change, the concern model is loaded into the ConcernMappsy v
allowing the developer to immediately access the code aateo
each concern.

3. DESIGN AND IMPLEMENTATION

Although ConcernMapper can be useful as a stand-alone tool,
the main motivation underlying its development was to pievi
a basic but extensible platform for experimenting with ambead
separation of concerns mechanisms. To this end, we des@ored
cernMapper for simplicity and ease of extension. This seatie-
scribes the main architecture of ConcernMapper and thesidesi
motivating it.

Besides a basic plug-in class controlling its state, Coridap-
per is logically decomposed into two components: a modeland
view. Figure 4 is a UML class diagram representing the key fea
tures of the architecture of ConcernMapper. Ctasser nMapper
is the main plug-in class. It manages an instance oCtimeer n-
Model . The Concer nMapper Vi ew is the class implementing an
Eclipse view extension point. It can obtain a reference ¢éatiodel
throughConcer nvapper, and can register itself as a listener for
any changes to the model.

«interface»
ConcernModelChangeListener

=

ConcernMapperyiew

i)

ConcernhMapper Concerniodel

Figure 4: Key components of ConcernMapper.

3.1 The Concern Model Structure

The basic idea of ConcernMapper is to allow developers t@-ass
ciate parts of a program with high-level concerns. Ideal§hould
be possible to support the associatiomoy part of a program with
a concern, if this association can be useful to developexamE
ples of program parts can include source code elementsifesth-
ods, fields, classes, local variables, statements, consinantvell
as fragments from other software engineering artifacts,(&/ML
model elements, individual requirements, sections froer ozan-
uals). To accommodate experimentation with such poss#silive
have left our model open-ended and capable of supportintyaey
of element. The decision as to which element types to sugport
taken by the implementers of the model viewing componemts (i
our case clasSoncer nvapper Vi ew). Section 3.3 describes and
justifies the elements currently supported by ConcernMappe

We express the structure of our concern model as a grammar

using the extended Backus Naur form:
<nodel > ::= <concer n>*

<concern> ::= <name><wei ght ed- el enent >
<wei ght ed- el ement > :: = <obj ect ><degr ee>

As this specification states, a concern model consists of @er

more concerns, where each concern maps a name to zero or more

weighted elements. A weighted element is simply a pair aasoc
ing an object of unspecified type with a value indicating thenm
bership degree of the object in the concern. In other wordsna
cern is named a fuzzy set [17].

3.2 The ConcernMapper API

In ConcernMapper, the concern model is accessible throngh a
application programming interface (API) that implemehtsFacade
design pattern [3]. The internal implementation of the niasle
completely hidden and client code need only interact wighctin-
cernMdel class. TheConcer nMbdel class supports operations
for creating, renaming, and deleting concerns, as wellsadding
and removing elements to and from concerns and querying vari
ous aspects of the model. Finally the API provides the ofmersit
necessary to register and deregister objects listeninganges to
the model (an implementation of the Observer design pal8dyn
Since modifications to the model can only be done through the

Concer nMapper class, all operations resulting in a change to the
internal state of the model automatically result in a nadifion to
observers. In other words, the notification logic is cormgliehid-

den from clients. The complete model API can be accessed from
the source code distributed with ConcernMapper.

3.3 Current Instantiation of the model

ConcernMapper release 1.0.0 only supports populatingezoac
with fields and methods. The decision stems from an initial go
to provide a simple and robust implementation of the moded, b
also from our extensive experimentation with FEAT, a preslg-
developed concern modeling tool [11]. Regarding the decisbt
to model intra-method elements (such as local variablaes)er-
perience with FEAT indicated that modeling concerns atlgsl
of detail did not appear to be a cost-effective strategyeéuat] to
mark specific intra-method details as relevant to a conaanires
a developer to spend more effort reasoning about thesdgiibtan
necessary. This is particularly true of code segments whith
though they help a developer understand a concern, do ndttoee
be modified during a specific task. Regarding the decisiortaot
support the inclusion of classes, our rationale was thabttiesion
of a class as part of a concern model is ambiguous: does dateli
that all of the code in the class implements the concern or entt
of it? This aspect was modeled explicitly in an early expgmess
of concern models [9] but has since been dropped. In therurre
version of ConcernMapper, we solve the problem by dispyin
classes declaring elements that are part of a concern mids!:
thus possible to “add” a class to a model by dragging and dingpp
a selection of all the elements of the class.

4. EXTENDING CONCERNMAPPER

We are offering ConcernMapper as a simple, extensiblegtatf
for experimentation with advanced separation of conceenb-t
nigues. This section highlights our motivation and dematss,
through an example, the simplicity of extending Concernpéap
for other research applications.

4.1 Motivation

Building concern models manually is only one of many ways
of producing information about the implementation of cansen
source code. Different techniques have recently been peabby
software engineering researchers that could lead to atimgen-
eration of concern models. Such techniques include (buhare
limited to):

e Program Navigation Analysis[12]. A number of approaches
have been proposed to monitor and analyze the actions of de-
velopers as they perform software development tasks [5, 10,
13]. The results of such analyses often represent a subset of
the code of interest to a developer. This code can be recorded
as a concern model.

Static Analysis Various analyses can be performed on the
structural dependencies of programs to elicit code of poten
tial interest. We are currently experimenting with an algo-
rithm to infer code of potential interest to developers base
on an analysis of the topology of structural dependencies to
set of interest [7]. Our research prototype for this aldwonit

is based on ConcernMapper.

Feature Location. A number of techniques can automat-
ically produce an estimate of the methods implementing a
feature by analyzing traces of the execution of a system [2,
14]

e Repository Mining. Data mining techniques have been pro-
posed that report on elements that are often changed togethe
during program evolution tasks [15, 18]. It may be useful to
document such change sets as concern models.

¢ Information Retrieval. Information retrieval techniques can
be used to automatically associate text (e.g., from user man
uals) with the corresponding code [1, 16].

Finally, by storing a core concern model that can be accessed
by other Eclipse plug-ins, ConcernModel also provides golm
platform for experimenting with concern visualizationia@ues.

4.2 Example

We demonstrate below how easy it is to extend ConcernMapper

through a complete example. For our example we have chosen to

build a plug-in that creates a concern through a simplecstaialy-

sis technique. Using the Eclipse search engine, our exaphjie

in finds all the methods accessing a field selected by the usker a
adds them to a new concern in the ConcernMapper view. Figure 5
shows how this action is triggered in our plug-in (the poprignu

has been artificially simplified for clarity in the preseida).

_ Hierarchy

CH.ifa.draw.applet
1| prawhAppletjava

49 DrawApplet

- W foDrawPath
D falintitled
.. & IMAGES
farrawChoice
fDefauliToolButton

T g

fFil PPen
‘Open Type Hierarchy

b Gt

F3
F4

Shift+Delete
Cirl+Inzert
Shift +Insert

Delete

MOCK-UP

il

Extract Accessors into Concern Mapper

4

Figure 5: Creating a concern representing field accessors.

We developed this plug-in in three steps.

1. Building the user interface: Our example plug-in contributes
an action td Fi el d elements’ popup menu. To do so, we ex-
tended theor g. ecl i pse. ui . popupnenus extension point
by adding arobj ect Cont ri buti on to the standard popup
menu forl Fi el ds. This enables users to right-click on any
field in the Package Explorer (or other JDT views) and be
presented with the possibility to extract accessors of ghe s
lected field into a new concern (see Figure 5).

2. Implementing the action: We wrote a class that implements
thel Qbj ect Act i onDel egat e interface and that corresponds
to the class named in the extension point (see above). In this
class, we implemented theel ect i onChanged method to
ensure that the selected element is adaptable tdraal d.

Using the Eclipse search engine, our action searches the wor
space for accessors of the selected field and returns them as
aSet .

. Updating the concern model: So far we did not need to
reference the ConcernMapper plug-in. This means that de-
velopers can use any other technique to find elements of code
that could be part of a concern (see Section 4.1). Elements of
interest can be added to the concern model by interacting di-
rectly with theConcer nModel class, which provides a sim-
ple API. Any plug-in needing to extend ConcernMapper’s
functionality must declarea. ncgi | | . cs. serg. cmas are-
quired plug-in in the plug-in manifest file. Once this is dpne
the concern model can be accessed by calimger nMapper .
get Def aul t () . get Concer nModel (). Methods such as
newConcern(String nane) andaddEl ement (String
name, Object el ement, int degree) make creating con-
cerns and adding elements easy since the plug-in views are
automatically refreshed when the model changes. Figure 6
shows the code of the method called when the concern gen-
eration action is triggered (with the analysis and exceptio
handling constructs elided for clarity). This code, lockite
ther un method of the action delegate, performs the follow-
ing actions.

(a) Using the Eclipse search engine, obtain the list of meth-
ods calling the selected field (represented by the com-
ments on line 3-4).

(b) Generate a name for the concern (line 7).

(c) Using the ConcernMapper API, add a new (empty) con-
cern with the generated name (lines 9-11).

(d) For each accessor method detected, add the method to
the concern (lines 13-17).

That's all. The ConcernMapper plug-in takes care of refrgsh
the view, and showing which elements are now part of the aonce
model in the various JDT views. The concern model can then be
saved as an XML file by the click of a button.

5. RELATED WORK

The ConcernMapper plug-in evolved from first author’s wonk o
FEAT [11]. With ConcernMapper, we are investigating ways to
simplify the manual creation of concern models, and to ifaté
the programmatic generation of concern models by othes tddie
main difference between ConcernMapper and tools such a3 FEA
and the Concern Manipulation Environment (CME) [4] is thahE€
cernMapper supports a fuzzy, exclusively extensional méate
concerns. Such a model allows users (humans or programs) to
create concern representations without having to reasout dbe
structure of concerns a priori. This approach differs frd&A\F and
CME'’s crisp, relation-based concern models. ConcernMeappe
simpler model directly enables us to leaverage featureslypde
such as the dragging and dropping of Java elements to givd-dev
opers a fluid way to create concerns that naturally alignis thieir
program investigation activities (see Section 2). We areetily
investigating how to carry over the main benefits of relatiased
concern models (e.g., robustness in the face of softwaret@wo)
to our fuzzy concern model.

1 public void run(lAction action)

2

3 /1 Search for the accessing | Method objects

4 /1 and store themin a Set variabl e | Met hods

5

6 //Add a concern to the concern nodel

7 String | Name = "Accessors of " + aField.getEl enent Name() ;

8

9 i f(!ConcernMapper. get Def aul t (). get Concer nhodel (). exi st s(| Nanme))
10 {

11 Concer nMapper . get Def aul t () . get Concer nhMbdel (). newConcer n(| Nane) ;
12 /1 Add the accessors to the concern

13 for(Iterator i = IMethods.iterator(); i.hasNext();)

14 {

15 I Method | Next = (I Method)i.next();

16 Concer nMapper . get Def aul t () . get Concer nivbdel (). addEl ement (| Name, | Next, 100);
17

18

19 }

Figure 6: Code required to update ConcernMapper

6. CONCLUSIONS

Concerns are not often perfectly separated. As a resulgl-dev
opers often have to perform change tasks involving codeesealt
through different modules (classes, methods, etc.). Alghanany
features of Eclipse greatly facilitate navigating betweferent
code locations of interest to a developer, the non-loctinaof
code relevant to a concern implies that developers’ effaghirbe
wasted tracking down code that is conceptually related hat t
should be co-located, at least in the context of a specifiogda
task.

In our effort to mitigate this problem we developed Concern-
Mapper, a simple Eclipse plug-in that supports a conceiented
approach to software development by allowing developegsitckly
build models of the code of interest, and to store these conce
models for future use.

ConcernMapper is intended to provide a basic building bfock
research on separation of concerns, automatic featuredocand
program navigation. As such, it follows a simple architeetthat
is easy to extend.

7. ACKNOWLEDGMENTS

The authors are grateful to the anonymous reviewers for thei
useful comments. This work is supported by an Eclipse Intawva
Award, a research grant from the Natural Sciences and Eegine

(5]

(6]
(7]

(8]

El

[10]

[11]

[12]

ing Research Council of Canada (NSERC), and by the Faculty of [13]

Science of McGill University.

8. REFERENCES

[1] G. Antoniol, G. Canfora, A. De Lucia, and E. Merlo. Recaong
code to documentation links in OO systemsPhoceedings of the
6th Working Conference on Reverse Engineerpages 136-144,
1999.

[2] Thomas Eisenbarth, Rainer Koschke, and Daniel Simonatiog
features in source codiEEE Transactions on Software Engineering
29(3):210-224, 2003.

[3] Erich Gamma, Richard Helm, Ralph Johnson, and John idiss
Design Patterns—Elements of Reusable Object-Orientad/&ef
Professional Computing Series. Addison-Wesley Longmam, |
Reading, MA, USA, 1995.

[4] William Harrison, Harold Ossher, Stanley Sutton Jrg &eri Tarr.
Concern modeling in the Concern Manipulation Environmént.
Proceedings of the First International Workshop on the Miode
and Analysis of Concerns in Software (MAQ®)lume 30 (4) of
ACM SIGSOFT Software Engineering Not2805.

[14]

[15]

[16]

[17]

(18]

Mik Kersten and Gail C. Murphy. Mylar: a degree-of-irest model
for IDEs. InProceedings of the 4th Conference on Aspect-Oriented
Software Developmenpages 159-168, 2005.

Stanley Letovsky and Elliot Soloway. Delocalized plams program
comprehensionEEE Softwarg3(3):41-49, 1986.

Martin P. Robillard. Automatic generation of suggessdor
program investigation. IRroceedings of the Joint European
Software Engineering Conference and ACM SIGSOFT Symposium
on the Foundations of Software Engineeripgages 11-20, 2005.
Martin P. Robillard, Wesley Coelho, and Gail C. Murphyow
effective developers investigate source code: An expoyattudy.
IEEE Transactions on Software Engineer,ii3§(12):889-903, 2004.
Martin P. Robillard and Gail C. Murphy. Concern Graph&ding
and describing concerns using structural program depereterin
Proceedings of the 24th International Conference on Soéwa
Engineering pages 406416, 2002.

Martin P. Robillard and Gail C. Murphy. Automaticallgferring
concern code from program investigation activitiesPhoceedings
of the 18th International Conference on Automated Software
Engineering pages 225-234, 2003.

Martin P. Robillard and Gail C. Murphy. FEAT: a tool fardating,
describing, and analyzing concerns in source codBraceedings of
the 25th International Conference on Software Engineenrages
822-823, 2003.

Martin P. Robillard and Gail C. Murphy. Program navigatanalysis
to support task-aware software development environménts.
Proceedings of the ICSE Workshop on Directions in Software
Engineering Environmentpages 83-88. IEE, 2004.

Janice Singer, Robert Elves, and Margaret-Anne StdtayTracks:
Supporting navigation in software maintenancePtoceedings of
the International Conference on Software Maintenar2@95.
Norman Wilde and Michael C. Scully. Software reconsaisce:
Mapping program features to codgoftware Maintenance: Research
and Practice 7:49-62, 1995.

Annie T.T. Ying, Gail C. Murphy, Raymond Ng, and Mark C.
Chu-Carroll. Predicting source code changes by mining @dan
history. IEEE Transactions on Software Engineer,ii3§(9):574-586,
2004.

Wei Zhao, Lu Zhang, Yin Liu, Jiasu Sun, and Fuqging Yany!A&F-L:
Towards a static non-interactive approach to feature ilmcain
Proceedings of the 26th International Conference on Soéwa
Engineering pages 293-303, 2004.

H.-J. Zimmermannkuzzy Set Theory and Its Applicatiofduwer
Academic Publishers, third edition, 1996.

Thomas Zimmermann, Peter Wei3gerber, Stephan Diedl, a
Andreas Zeller. Mining version histories to guide softwahanges.
In Proceedings of the 26th International Conference on Soéwa
Engineering pages 563-572, 2004.

