Turnover-Induced Knowledge Loss in Practice

Martin P. Robillard
martin@cs.mcgill.ca
School of Computer Science
McGill University
Montréal, QC, Canada

ABSTRACT

When contributors to a software project leave, the knowledge they
hold may become lost, thus impacting code quality and team pro-
ductivity. Although well-known strategies can be used to mitigate
knowledge loss, these strategies have to be tailored to their target
context to be effective. To help software development organizations
mitigate turnover-induced knowledge loss, we sought to better
understand the different contexts in which developers experience
this knowledge loss, and the resulting implications. We conducted
qualitative interviews with 27 professional developers and man-
agers from three different companies that provide software products
and services. Leveraging the experience of these practitioners, we
contribute a framework for characterizing turnover-induced knowl-
edge loss and descriptions of the implications of knowledge loss,
synthesized into 20 observations. These observations about knowl-
edge loss in practice are organized into four themes, validated by
the participants, and discussed within the context of the research
literature in software engineering.

CCS CONCEPTS

« Software and its engineering — Software development pro-
cess management; Collaboration in software development;
Software evolution; Maintaining software; Documentation.

KEYWORDS

Knowledge loss, knowledge sharing, knowledge management, doc-
umentation

ACM Reference Format:

Martin P. Robillard. 2021. Turnover-Induced Knowledge Loss in Practice. In
Proceedings of the 29th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE "21),
August 23-28, 2021, Athens, Greece. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3468264.3473923

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE °21, August 23-28, 2021, Athens, Greece

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8562-6/21/08...$15.00
https://doi.org/10.1145/3468264.3473923

1292

1 INTRODUCTION

When contributors to a software project leave the project, the
knowledge they hold may become inaccessible, or lost, to the re-
maining team members [12, 38]. In software development, knowl-
edge loss impacts quality [15, 32] and productivity [41], among
other factors [42]. In the words of an experienced software devel-
oper we interviewed about the impact of knowledge loss: “We have
to reverse engineer and sometimes we have to look for knowledge. We have
to find something, which was probably written somewhere before, and the
biggest impact is how fast we can deliver the solution”.

Numerous high-level strategies exist to mitigate knowledge loss
in software development, which can focus on personal, project, or
technology factors [35]. These include, for example, learning by
experimenting, maintaining a clear documentation process, or sub-
stituting verbal communication with an instant messenger. While
it is useful to be informed of the options available, knowledge man-
agement practices have to be applied in a specific context. Only
with a shared understanding of the context in which knowledge is
lost can the practicalities and trade-offs involved in its mitigation
become actionable. The goal of our research is to help software
development organizations with the implementation of mitigation
strategies for turnover-induced knowledge loss. For this purpose,
we sought to better understand 1) the different contexts in which
developers experience turnover-induced knowledge loss, and 2) the
implications of knowledge loss in practice.

To learn about knowledge loss in practice, we conducted qual-
itative interviews with 27 professional developers and managers
from three different companies that provide software products and
services to commercial enterprises. We analyzed the interview tran-
scripts and leveraged the statements of the participants to elaborate
a systematic approach for describing knowledge loss contexts, and
to capture descriptions of the implications of knowledge loss in
practice. We provided all the participants with a summary of the
findings and, of nine respondents, the majority confirmed the cred-
ibility and usefulness of these findings through a questionnaire.

The first contribution of this paper is a framework for charac-
terizing turnover-induced knowledge loss, applied to 41 workplace
situations described by the participants, and also validated by the
participants. For example, we noted, among others, that the depar-
ture of a knowledge owner does not necessarily imply a complete
disengagement from the project, and that internal transfers within
a company can amount to a complete departure from the point
of view of knowledge transfer. The second contribution is a set of
descriptions of the implications of knowledge loss, synthesized into
20 observations organized into four themes, validated by practi-
tioners, and discussed within the context of the broader research
literature in software engineering.

https://orcid.org/0000-0002-0248-1384
https://doi.org/10.1145/3468264.3473923
https://doi.org/10.1145/3468264.3473923

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

The remainder of this paper is organized as follows. In Section 2,
we present relevant concepts of knowledge management theory and
survey the related work on knowledge loss in software engineering.
In Section 3, we describe our research methods. Section 4 reports on
knowledge loss contexts, and Section 5 reports on the implications
of knowledge loss in practice. In Section 6, we present the results of
the validation survey. We synthesize the insights and implications
of the work and conclude in Section 7.

2 BACKGROUND

This investigation of knowledge loss in practice is informed by
existing theories of knowledge management as well as related work
on knowledge loss in software engineering.

2.1 Theory of Knowledge Management

The general goal of this work is to help improve organizational
learning in software development organizations. Schneider sum-
marizes organizational learning as the “learning of individuals,
organization-wide collection of knowledge, and cultivation of in-
frastructure for knowledge exchange” [46, p.3]. Consistently with
Schneider, we use Sunassee and Sewry’s definition of knowledge
as “the human expertise stored in a person’s mind, gained through
experience and interaction with the person’s environment” [49].

Various models have been proposed to capture how knowledge
flows within organizations [11]. As a reference model of knowledge
management life-cycle, we use Nonaka and Takeuchi’s theory of
knowledge creation [36] as it is both well-known and enduring [11,
p-79]. One of the main features of this model is the distinction
between tacit and explicit knowledge. Tacit knowledge refers to
knowledge that cannot easily be communicated through writing or
verbalization [40], whereas explicit knowledge refers to the kind
that can be codified.

Figure 1 shows the Nonaka and Takeuchi model [36]. The figure
is a matrix where each cell represents a type of knowledge con-
version. The rows represent the initial type of knowledge (tacit vs.
explicit) and the columns represent the final type of the conversion
(again, tacit vs. explicit). For example, socialization is the sharing
of tacit knowledge directly from one person to another, whereas
externalization is the conversion of tacit knowledge to explicit
knowledge (usually by writing it down, but also through diagrams,
etc.). Linking explicit knowledge is called combination. Finally,
learning by doing leads to the internalization of knowledge. In
the model, the spiral represents the learning process, with the diam-
eter of the spiral representing the growing amount of knowledge
acquired over time by repeatedly creating new knowledge through
conversions.

Many books exist that describe knowledge transfer practices
and barriers to knowledge sharing [12, 23, 37, 50]. While such
reference texts are useful surveys of the general state of the practice
of knowledge management, this paper offers a more focused view of
the experience of knowledge loss in software projects, specifically
in the context of turnover. We define turnover as the departure
of a contributor from a software project in which they are actively
engaged. Turnover can be voluntary or involuntary [48], and is
generally associated with decreased project performance due in
part to knowledge loss [15, 39].

1293

Martin P. Robillard

Tacit Explicit

Socialization Externalization

5 & & |

o

|_

=

=

E ®

S [L]
Internalization Combination

Figure 1: Nonaka and Takeuchi’s model of knowledge
creation. Adapted by permission from Springer Nature:
Springer, Experience and Knowledge Management in Soft-
ware Engineering by Kurt Schneider, © 2009 [46].

2.2 Knowledge Loss in Software Engineering

In software engineering, contributions to our understanding of
knowledge loss can be organized in terms of literature reviews, case
studies, and data-mining studies.

Literature Reviews. Nidhra et al. provide a literature survey of the
knowledge transfer challenges and mitigation strategies in global
software development [35], while Rashid et al. contribute a concep-
tual map of the literature on knowledge loss related to open-source
software, summarizing, in particular, the different types of impact
that knowledge loss has on open-source projects [42]. These in-
clude, for example, abandoned code and project instabilities. Also
drawing on the literature, Kukko and Helander review 22 knowl-
edge sharing barriers, and map them to different companies based
on how the companies increased in size [22]. In terms of the overall
literature, Manhart and Thalmann find that “the existing body of lit-
erature primarily focusses on the formal and the legal dimension of
knowledge protection, while neglecting the tacit dimension” [27].

Case Studies. A number of studies directly investigated how knowl-
edge gets lost in software projects. In particular, Feilkas et al. focus
on how architectural documentation gets out of date through an
industry case study [14]. Based on their experience with medium-
size companies, Durst and Wilhelm emphasize the challenge of
promoting knowledge management to a first class concern, not-
ing that “management appears to be too busy with the day-to-day
running of the business to give [the risk of knowledge loss] a high
priority” [13]. In a similar vein, Viana et al. observed knowledge
creation and loss within a company. They discuss, among others,
the challenges of externalizing knowledge, and the issue that exter-
nalized knowledge may end up not being used [52]. Finally, through
an interview-based case study, Mitchell and Seaman studied how

Turnover-Induced Knowledge Loss in Practice

knowledge flows within one company, identifying several obsta-
cles, including “inability to efficiently locate explicit knowledge
(documents) from the project’s online database” [31, p.167], and a
tension between engineers’ perceived need to capture knowledge
from impromptu interactions and the manager’s belief that this is
not cost-effective.

Data-Mining Studies. Researchers have also studied knowledge flow
in software projects by mining software repositories. As general
context for the study of knowledge loss, Sowe et al. provided an
initial insight into knowledge sharing practices in open-source
software through a study of mailing lists [47]. By mining project
repositories, Mockus showed that “recent departures from an orga-
nization were associated with increased probability of customer re-
ported defects, thus demonstrating that in the observed context the
organizational change reduces product quality” [32]. Similarly, Bird
et al. found that high levels of code ownership were associated with
fewer defects [3]. Studying turnover in global open-source projects,
Lin et al. observed that developers who produce documentation
do not remain as long as coders in software projects [25]. Foucault
et al. found that “the activity of external newcomers negatively
impact software quality” [15]. As for knowledge loss specifically,
Izquierdo-Cortazar et al. introduced the idea of modeling knowledge
loss in terms of lines of code contributed by a developer who left
the project [19]. This idea was further refined by Rigby et al. [43],
who modeled the phenomenon probabilistically as a risk [20], and
Nassif and Robillard, who added additional parameters to the anal-
ysis [33]. Other researchers have used various techniques applied
to software repositories in an attempt to estimate the so-called
“bus factor” metric, namely the number of key developers whose
departure would threaten the project [2, 7], or to predict project
productivity when accounting for knowledge loss [34]. Mirsaeedi
and Rigby follow up on the investigation of knowledge at risk with
the suggestion to distribute knowledge through code reviews to
reduce the files at risk of turnover [30]. Although the use of metrics
allows us to take into account a huge amount of process data to
make observations, the modeling of knowledge in terms of source
files is very approximate [45].

3 METHOD

We explored the experience of professional developers and man-
agers dealing with turnover-induced knowledge loss situations by
conducting qualitative interviews with participants recruited from
three software development companies. We then transcribed the
interviews and analyzed the transcripts qualitatively.

3.1 Companies and Participants

We recruited 27 participants from three companies (see Table 1).
Company A is a multinational that develops enterprise solutions.
The participants from Company A are members of a department in
charge of software maintenance. Company B is a small company
that develops and operates accounting software for affiliated compa-
nies. Company C is a small company that specializes in integrated
on-line sales solutions. We recruited the participants via personal
contacts. Our recruitment goal for this study was to involve par-
ticipants from multiple companies and to interview a sufficient
number of practitioners to be able to explore the knowledge loss

1294

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Table 1: Characteristics of the study participants

ID Role Experience Seniority
Company A

Al-Man Development Manager o L
A2-Man Development Manager L o
A3-Man Development Manager L o
A4-Man Development Manager L L
A5-Man Development Manager o [
A6-Arc Software Architect o o
A7-Arc Software Architect L L
A8-Dev Software Developer @ o
A9-Dev Software Developer @ o
A10-Dev Software Developer @ o
Al11-Dev Software Developer o [
A12-Dev Software Developer o [
A13-Dev Software Developer L o
A14-Dev Software Developer L L
A15-Dev Software Developer o o
A16-Dev Software Developer o [
A17-Dev Software Developer o o
Company B

B1-Exe Company Executive o @
B2-Man Development Manager L L
B3-Man Development Manager O O
B4-Dev Software Developer O @
Company C

C1-Exe Company Executive @ @
C2-Man Development Manager O @
C3-Dev Software Developer @ @
C4-Dev Software Developer @ O
C5-Dev Software Developer O @
C6-Dev Software Developer O O

phenomenon from multiple personal perspectives. Within these
parameters, the number of participants was bounded pragmatically
by the difficulty of diverting practitioners from their professional
activities and the high cost of analyzing qualitative interviews.

Table 1 provides, for each participant, their main role within
the company, their level of experience, and their seniority within
the company, all using generalized descriptors. We discretized the
participants’ level of experience and seniority into three levels. For
general workplace experience, we distinguish between participants
within five years of graduation or in their role as an IT worker O,
participants with over ten years of relevant industry experience @,
and participants in-between the two ®. For seniority within the
company, we distinguish between participants who have been with
the company for two years or less O, from participants who have
been with the company for over seven years @, and participants
in-between the two @.

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

(1) Your official job title and brief description of your role and
responsibilities;

(2) Brief summary of your work experience, including gradu-
ation year, years with Company X, years and roles with
previous organizations (if appropriate);

(3) Can you think of situations where you needed information
that only one or a few colleagues had, or that had been
forgotten or lost?

Figure 2: Pre-study questionnaire

As the table shows, the three companies provide different en-
vironments for studying knowledge loss in practice. Participants
from Company A are all veterans of the company. Company B
presents a dichotomy, with two senior participants and two junior
participants, with corresponding tenure time in the company. As as
relatively new company, Company C presents a wide spectrum of
expertise and seniority, from founding members in major positions
of responsibilities to recent junior hires.

3.2 Data Collection

We sent participants a pre-study questionnaire (Figure 2) along
with a consent form and a request to schedule an interview.

The goal of the interviews was to get rich descriptions of the
participants’ experience with turnover-induced knowledge loss. To
this end, we employed an open-ended, loosely-structured style of
qualitative interview [53], which consisted of asking participants
to elaborate on the situations they referenced in Question 3 of
the pre-study questionnaire. We conducted all 27 individual inter-
views through a videoconferencing software. We audio- and video-
recorded the interviews. As none of the participants used screen
sharing, we only analyzed the audio portion of the recordings. The
author conducted all interview sessions. During the interview, the
investigator limited his role to asking clarification questions and
prompting the participant for additional details. The interviews
lasted between 10 and 45 minutes (mean=25 SD=8.7). We conducted
all but three of the interviews in English, with the remaining being
conducted in French. This protocol was reviewed and approved by
the Research Ethics Board of McGill University.

3.3 Data Analysis

We used an automated transcription software followed by a manual
cleaning process to convert the audio recordings to textual tran-
scripts. We structured the data analysis into two parts, with the
first part focusing on understanding the contexts of knowledge loss
and the second part focusing on the implications of knowledge loss
from the point of view of practitioners.

Contexts for knowledge loss. We sought to better understand the
different contexts in which practitioners experience turnover-induced
knowledge loss. We analyzed the transcripts to identify data extracts
in which a participant described a project departure context that
resulted in knowledge loss. A data extract corresponds to a cohesive
unit of action or verbalization by the participant, roughly equiva-
lent to a few sentences in the transcript. We collected a set of 41

1295

Martin P. Robillard

extracts about knowledge loss contexts from 25 participants across
all three companies (two of the 27 participants had no contribution
to this part of the study). By inspecting the data, we devised an orig-
inal framework for characterizing knowledge loss contexts. This
framework posits three orthogonal dimensions for describing the
departure of a knowledge owner. The three dimensions are whether
the departure was permanent or temporary, whether it was sudden
or anticipated, and whether it was complete or partial. We selected
these dimensions analytically, but based on the variation points
we noted in the turnover situations described by participants. For
each of the 41 knowledge loss contexts under study, we noted the
type of departure using a small and closed set of codes created
from a preliminary review of the data. These codes are reported
as the content of the cells in Table 2. For the three dimensions,
we used either one of the two applicable values (e.g., complete or
partial), or the special value unspecified if the extract was not ex-
plicit about a dimension. As an example, we consider the following
extract: “..and sometimes after [the handover] the team might disappear
because they are not working on this project anymore [...]. They left, [...]
they are assigned to another project and they are busy: we cannot even
ask them questions..”—A11-Dev. We coded this extract as an internal
transfer that was permanent and complete, and unspecified in terms
of gradual vs. sudden.

Implications of knowledge loss. We sought to better understand the
implications of knowledge loss in practice, using an inductive data
analysis strategy. We structured our analysis using the reflexive
thematic analysis framework proposed by Braun and Clarke [4].
Thematic analysis is a “method for systematically identifying, or-
ganizing, and offering insight into patterns of meaning (themes)
across a data set” [4, p.57] that is organized in six phases. First,
we studied all transcripts (Phase 1: Familiarizing Yourself With the
Data) and coded all relevant data extracts using open coding (a pro-
cedure whereby an investigator associates a free-form label, or code
to a data extract) (Phase 2: Generating Initial Codes). We followed
a process coding approach, using gerunds to denote “observable
and conceptual actions in the data” [29, p.75]. With this step, we
identified 134 data extracts annotated with 22 distinct codes (e.g.,
hoping that others remember, or trying to guess the intent of the code).
The investigator then studied the distribution of initial codes and
grouped them into themes (Phase 3: Searching for Themes). As a
result of this step, we mapped 20 of the 22 initial codes to the four
themes described in Table 3 and dropped two because they were
not well supported by evidence. The investigator then reviewed all
coded data extracts, this time organized by theme as opposed to
participant (Phase 4: Reviewing Potential Themes), and noted obser-
vations that capture the essence of the theme (Phase 5: Defining and
Naming Themes). We completed Phase 6 (Producing the Report) con-
currently with Phases 4 and 5. We use an example to illustrate our
analysis process. During the initial coding, we noted the following
extract as relevant: “..they’re very, in their own world: it’s hard to break
that product out of there. [...] They’re protective of the knowledge, they
really don’t want to share it that easily, because it’s their bread and butter,
their design”—As-Arc. We then coded this extract as facing knowledge
sharing resistance, one of the 22 initial codes. In the subsequent
phase, we grouped this code with five related codes to create the
theme working with colleagues.

Turnover-Induced Knowledge Loss in Practice

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Table 2: Contexts for turnover-induced knowledge loss. Each cell represents the type of context that has the attributes in the
corresponding row and column. The pie charts visualize the hypothesized level of impact on knowledge loss, from high (e) to
low (o). Contexts that were not directly recorded from participants are in italics.

Permanent Temporary
Sudden Anticipated Sudden Anticipated
Complete @ Death, departure (mini- @ Retirement, departure, in- @ Unanticipated leave (™ Weekend, vacations, antic-
mum notice) ternal transfer ipated leave
Partial ® Departure or internal (® Retirement, departure, in- (® Unanticipated leave (O Weekend, vacations, antic-

transfer (minimum notice) ternal transfer

ipated leave

3.4 Quality and Credibility

With the selection and application of our research method we strove
for high standards of quality (are the findings thoughtful and use-
ful?) and credibility (do they truly reflect the participants’ experi-
ences with a phenomenon?). These evaluation criteria are more
relevant for a qualitative study than the usual threats to validity
associated with quantitative studies [9, p.202]. The goal of this
study is not to generalize a phenomenon observed in a sample to a
population: instead we seek to synthesize the salient aspects of a
multi-faceted human situation through rich descriptions.

To ensure that our findings had an adequate level of quality and
credibility, we asked the original participants to review a prelim-
inary version of this report and provide feedback (a practice also
known as member checking [8]). After the data analysis was com-
pleted, we sent all 27 participants the preliminary report along with
a feedback questionnaire. The report consisted of a one-paragraph
introduction followed by a preliminary version of Sections 3-5
of this paper. One email invitation bounced and, of 26 recipients,
we received nine responses with at least one participant for each
company. We provide the survey details together with the results
in Section 6.

Limitations. The number of participants in our study is inevitably
limited, which creates the risk that we may have missed important
themes or modulations of a theme. In particular, we did not attempt
to assess the amount of saturation we achieved with our data set,
as this practice is questionable in the context of reflexive thematic
analysis [5]. In consequence, the themes we describe should be con-
sidered a shared but partial view of the knowledge loss experience.
The quality of our observations is also affected by our use of inter-
views to elicit the participant’s experience. We may have missed
insights due to some participants imperfectly recalling their experi-
ence or verbalizing their thoughts. These limitations were, to the
extent possible, mitigated through interview techniques (relevant
prompts and questions), and triangulation between participants.

4 CONTEXT FOR KNOWLEDGE LOSS

We sought to better understand the workplace contexts that en-
gender knowledge loss. To be able to reason about such contexts
analytically, we devised a framework that characterizes project
departure events along three dimensions: permanent vs. tempo-
rary, sudden vs. anticipated, and complete vs. partial. Table 2
presents the three dimensions with their corresponding contexts

1296

types and hypothesized level of impact on teams. We leverage our
interviews to provide rich descriptions of each dimension. We pro-
vide additional data to validate the framework in Section 6.

4.1 Complete vs. Partial Departures

A complete departure means a knowledge owner is no longer avail-
able for knowledge sharing. The canonical case is that of “a guy
passed away”—A13-Dev, but employees can also simply leave without
trace: “I personally have no idea even how to contact him and where to
find him or whatever”—A1-Dev.

In contrast, a partial departure means a knowledge owner re-
mains available for knowledge sharing on a discretionary basis:
“They ended up giving their numbers, they can call them whenever’—A6-Arc;
“Fortunately he left personal contact information and he was nice enough,
he said ‘OK, now I’'m retired | finally have some time in order to be able to
write down [...] knowledge points that | think you should know in order to
do well in supporting this particular product’”—A15-Dev.

Although developers who transfer internally [17] technically
remain reachable, their departure can be considered complete if, as
a result of their transfer, their knowledge is lost. “How can he forget?
Because they developed it. You know they worked on that for very many
years..”—A12-Dev; “So even if | send an email right now about the feature
the developer built 10 years ago, he will be like ‘what are you talking about?

>

I have no idea” —A7-Arc; “I told my colleague ‘can you please help me on
this because | don’t know they did it” He took time to check it. ‘I’'m so sorry
I don’t remember at all.”’—A12-Dev.

Knowledge seekers may also have reservations about contacting
departed knowledge owners, which contributes to making a depar-
ture effectively complete even when the knowledge owner remains
accessible: “I guess there would have been a way to get in touch with him,
but often times when a colleague has been gone for a little while, we try
and not get involved too much, unless we have no choice”—A9-Dev; “So
they developed this, they finish [...] so you know that application, it’s not
a priority anymore.”—A10-Dev.

4.2 Sudden vs. Anticipated Departures

A departure is perceived as sudden if normal expectations about
knowledge transfer cannot be met. Even when an employee gives
their legal notice, their departure can be felt as sudden by their
teammates: “Two weeks of notice to go and so that was hard because,
the functionality was developed by him, but it was new. [...] So it was very
surprising, because normally, to [transfer the knowledge] we have to plan
and the other people should be available”—A12-Dev

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Martin P. Robillard

Table 3: Implications of knowledge loss in practice: main themes

Theme

Observations

Lacking Guidance and Information

Relying on Documentation

Working with Colleagues

Recreating the Knowledge

Practitioners can be left feeling uncertain about a specification or guessing the intent of the
code. Practitioners may feel they lack tacit knowledge about how to solve problems, or relevant
domain knowledge. Practitioners can feel they have to learn on their own.

Documentation can sometimes replace expert knowledge. However, documentation can also be
missing or disorganized and hard to find or search. The format of the documentation may be
unsuitable for the task, or its quality may be poor. As either an alternative to or replacement for
documentation, practitioners can leverage the project history, which has its own inefficiencies.
It can be possible to retrieve some knowledge from colleagues, which can require relying on
informal personal networks. However, social knowledge transfer can require explicit investment,
and can be inefficient because of its informality and the need to involve a lot of people. The
process can also be complicated by personality factors.

Practitioners can attempt to recreate the lost knowledge by doing their own research and self-
directed learning. However, the high level of effort required for this activity can interfere with
work. Recreating the knowledge can be a social activity, which may need to include some of the

non-developer stakeholders. Ultimately some of the recreated knowledge becomes documented.

Retirements and other anticipated departures, such as leaves
and internal transfers, allow for some knowledge sharing: “we just
plan around my vacation”—C5-Dev; “Before he left | asked him to identify
pull requests that contain all the [relevant code]. And then | asked him to
walk me through all these steps and those pull requests became kind of
a reference implementation”—C1-Exe; “So you have still a 25 year gap on
that, but they’re starting to give what they can before retirement”—A6-Arc.

4.3 Permanent vs. Temporary Departures

Departures are permanent when the knowledge owner is not ex-
pected to return to the project: “so I can go back to the architect [...]
who developed it 10 years ago, but it will not be useful because they moved
on, you know”—A7-Arc. In contrast, with temporary departures, the
knowledge owner is expected to return to the team. Although leaves
and other temporary departures are not typically associated with
turnover, we noted that, in practice, temporary departures can
produce impacts similar to other knowledge loss contexts.

Temporary departures are problematic, for example, when the
information needs cannot be anticipated in advance of a leave: “When
people take vacation or are sick, requests that they would normally handle
can come up and, there are a few of us that will try and take those over
when they are gone, and sometimes they’re requests that we have never
experienced before and don’t have any documentation for, so we don’t
know how to do them”—B4-Dev; “On weekend support you’re responsible
for any incoming critical customer incidents from any of these components
or areas. So these are often in the times that you find that on the weekend
you receive [many] customer incidents for an area which you know nothing
about”—A15-Dev

In one interesting case, developers in Company C were contrac-
tually requested to decrease their involvement in a project and
forgot crucial information they no longer used frequently: “From
one day to the next [the client] decided to scale down development but to
keep us on, but only a few hours per month. [...] At the beginning were were
four full-time developers on this, so there was a lot of information we hadn’t
really documented, but that now that we only work on this eight hours per
month, we realize that there are some information we forgot..”—C2-Man.

1297

5 IMPLICATIONS OF KNOWLEDGE LOSS

We sought to better understand the experience of software de-
velopment professionals faced with situations of knowledge loss.
Through our analysis process, we determined that these experi-
ences can be organized into four main themes. Table 3 summarizes
the main observations we made for each theme. The observations
are indicated in italics in the table and in bold in the detailed de-
scription of the themes.

5.1 Lacking Guidance and Information

What’s the intent behind this code? What was he trying to
do, here?—A1-Man

The theme lacking guidance and information generally captures
the type of knowledge lost and the disorientation caused by the
disengagement of a knowledge owner, beyond the usual needs that
motivate information seeking [6, 21, 26].

Some participants described how they felt uncertain about
a specification, indicating insufficiently externalized knowledge.
For example, because of the departure of a team member: “we never
knew what should be the right behavior’—As-Dev. Although features
may be documented, requests by customers can involve subtleties
that are not covered by this documentation, in which case only the
original designer was in a unique position to comment on whether
a customer request is consistent with a feature’s design [A7-Arc]:
“Should we assume that the customer is right or wrong about what they
are expecting? Because if the code is saying something else, we don’t
necessarily take it as this is the right and expected behavior [...] So most of
the questions are to make sure that we are covering exactly the scenarios
of the customers”—As-Man. The question of distinguishing observed
from specified behavior can motivate reaching out to knowledge
owners who may still be partially available (Section 4.1): “We still
have contact with the solution manager and [...] we still contact them
and we still ask them ‘is the functionality doing what it’s supposed to
do?”’—A5-Man.

Turnover-Induced Knowledge Loss in Practice

Similarly, developers lacking a ground truth about the rationale
for design decisions can also be left guessing the intent of the
code: “It’s been a while and most of the people who developed this have
moved on so [...] there’s a few things that were completely ignored and
the question is, why did they ignore these?”—A11-Dev. These experiences
can also be associated with a limitation of knowledge externaliza-
tion, which is notoriously difficult for design rationale [18]. The
implication is that developers must recreate this knowledge (Sec-
tion 5.4): “What’s the reason behind doing it in such way? So that reason-
ing here the person would have lost it and we would have to figure it out
ourselves”—A8-Dev.

Participants also referred specifically to the lack of tacit knowl-
edge caused by the departure of a knowledge owner. Describing
how a developer about to move to another project was providing a
knowledge transfer session, A8-Dev mentioned: “He might be able to
give us the overview of that solution [with] certain technical points, but he
would not be able to give us the [...] particular knack in that solution”. Par-
ticipant A11-Dev referred to this tacit knowledge as “Some hints that
can drive a problem resolution”, elaborating: “you can have the knowledge,
it’s there, but still there is some fine tuning in the heads of people”. Some
participants stressed the importance of practical experience: “so
there’s some documentation, but not much practical experience”—A14-Dev;
“So handover session theory is good. But practice is absolutely a different
thing. When somebody explains to you, you think you understood every-
thing, you know everything. When it comes that a customer has this issue,
this is a different story”—A2-Man

This observation is an important reminder of the limitations of
externalized knowledge and that it cannot completely replace so-
cialization and internalization in the process of knowledge creation
(see Figure 1). In the words of a participant from Company B: “I
had never had to really run the program and do these steps on my own.
So when | had to do it, it was basically reading through those notes and
having to figure out and understand what was what | meant by it”—B2-Man

Related to a lack of tacit knowledge, some participants indi-
cated that they were impacted by the lack of domain knowledge
owned by the departed colleague, e.g: “it’s not like software knowl-
edge, it’s more of a business knowledge of the [customer]”—As6-Arc. Finally,
some participants noted having to learn on their own: “[Alone]
it will take much more time, but it’s always possible [...] but unfortunately
it’s stressful..”—A12-Dev. In a different scenario, a developer who was
the only employee with PHP knowledge left and his successor com-
mented: “It wasn’t that bad, but | did have to learn everything on my own
because not necessarily anyone in the company was a PHP expert”—Cé-Dev.

5.2 Relying on Documentation

Reading the code is not enough, right? You need really de-
tailed explanations, and then that’s when you would look
for documentation. But in some cases it’s either not good
enough, the documentation, or it’s not, well, it’s not there
anymore at all. —A1-Man

In the ideal case, documentation can replace expert knowl-
edge [C1-Exe]. “If you have an SDD [Software Design Document] or if you
have a document, even if it’s not an SDD, but at least a document that’s ex-
plaining the feature or what was developed [...] So if this is given and stated
then we have no problem”—A7-Arc. However, among the observations

1298

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

collected, this experience was in the minority. Instead, most of the
participants commented on the obstacles to using documentation.
The challenges of documentation are well-known in the knowl-
edge management literature: “Unfortunately, many documentation
processes are broken, or nonexistent, and leaders don’t realize it
until the lost knowledge actually threatens operations.” [12, p.89].
Issues with documentation have also been reported extensively in
the software engineering literature (e.g., [1, 24, 51]). The following
observations record the experience of developers specifically in the
context of turnover.

In the worst case, documentation can be missing: “My boss
would give me some pointers like “oh this guy did it I think he wrote some
documentation somewhere”, but | couldn’t really find anything”—C5-Dev;
“The moment the person leaves [the company], [...] they cleaned up every-
thing, including the recordings. So the recordings were lost.”—A17-Dev

Relevant information may be disorganized and hard to find
or search: “It’s an Excel file. Some of it is a Word document. Some of this
is a recording from an old [proprietary format] that you’re not even sure
how to play anymore. [...] There’s no standard basically, so it’s very time
consuming.”—A1-Man; “If even the documentation was somewhere stored
on some servers at the company by this custom dev team we might not even
know where it is”—A3-Man. One participant even mentioned that they
needed their expert in the first place, just to find the documentation:
“[The information] is there, but you have to find it. So sometimes you have
to ask the expert or colleagues with more experience just to point you to
the place”—A13-Dev.

The documentation format may be unsuitable for the task.
Numerous design trade-offs are involved when designing documen-
tation [10], and the format employed may ultimately be mismatched
to the information needs. This was noted in particular for video
recordings: “and when we have specific questions and you have to go
through the whole video one hour in order to extract some useful infor-
mation and people, they just get fed up”—A11-Dev; In particular, docu-
mentation may be judged to be too “high-level” to palliate the loss
of expert knowledge: “[the recording] was super high level, basically
not really useful”—A1-Man. Finally, documentation may be ineffective
at supporting knowledge internalization: “The documentation from
development doesn’t really help sometimes because it’s really about how
they designed it. The best knowledge is sometimes the one that you learn
in the process”—A10-Dev.

In addition to not being in the right format, the documentation’s
quality may not be sufficient: “or we get the documentation, but, this
is incomplete or not very well written, and it’s confusing”—A3-Man, in par-
ticularly with respect to being up-to-date: “The document was not up
to date, it’s already probably lost some of the new enhancements”—A4-Man.

As either an alternative to or replacement for documentation, de-
velopers can leverage artifacts from the project history (email,
issue reports, etc.): “if it’s really a technical question, usually | can read the
code and then find the answer or we use our support system”—C1-Exe; “after
his departure | was trying to go through all his old solved incidents”—A15-Dev;
“When again customers started asking us questions it was not easy to find
this information because the person was gone. [...] Sometimes it’s really
hard to find the email which was there three years ago..”—A2-Man; “What
I generally do is doing some search for previous incidents and find out how
the colleague was solving that. So it give some bits and pieces”—A14-Dev.

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

5.3 Working with Colleagues

That’s the ideal situation: that they have given enough
knowledge to everyone else, like it’s a beehive. You’re hop-
ing that everyone got a little piece of that knowledge so that
it could be retrieved somehow.—A6-Arc

Participants commented on their attempts to work with other
colleagues to recover some of the lost knowledge, i.e., to pri-
marily rely on socialization to mitigate knowledge loss: “The only
issue if they left [the company], then we can seek this help from other
colleagues that are still around. Or some colleagues that got the knowledge
transfer from this guy before he left”—A11-Dev; “You would look at the
documents that exist, and pretty much every single time you can see the
name of the authors [...] So we would try and get in touch with them once
we saw that they were involved with the projects, just sending an email and
see if they could get in touch with us”—A9-Dev. According to De Long,
socialization is most appropriate to transfer “implicit know-how”
type of knowledge [12, Figure 6.2].

Socialization-based knowledge conversion may require relying
on informal personal networks: “Sometimes you can go through
the personal touch because those who work on the same topic, they know
who they are”—A4-Man; “So | go back to the developer: “ah please”, be-
cause we have a very good relationship together, [our department] and
development, and we know each other very well”—A12-Dev. However,
socialization-based knowledge transfer can require explicit
investment: “So a lot of the times the best way to start the whole process
is you send three—four colleagues there for two weeks. They interact with
them, they go out. [...] You start building a kind of human interaction before
you can get any other knowledge out”—A6-Arc; “We build good relationship
usually during the handover...”—A5-Man; “That’s why you have a manager
that hopefully knows a bit more the people involved in what group. But this
is very unstructured, and that’s why we have a mentor system”—A1-Man.

Although a potential safety net for turnover-induced knowledge
loss, socialization is not without its inefficiencies. These inefficien-
cies can be associated with the informality of the process: “So
you contact a person in [another country] that’s been there for a while and
he knows this person that knows, and he knows the other person..”—Aé6-Arc.
Disengaged members also have other priorities “And sometimes after
[the handover] the team might disappear because they are not working on
this project anymore [...] we cannot even ask them questions: sometimes
you send an email and it stays there for two weeks, three weeks”—A11-Dev.
It may also be necessary to involve many people to cover all
the knowledge required: “we had to involve too many stakeholders from
development teams or previous product owners, or people who have a kind
of small knowledge about that topic. So we had to get in touch with all of
them to understand the behavior and then make a single piece of correction
line”—As-Dev; “I had [the leaver’s advice] in the back of my mind as well
and used that to help work with other people on our team with providing
some information about what | was looking for to see if they could help fill
in some blanks and they were able to”—B2-Man

Finally, personality factors can also complicate the process:
“Sometimes you have this kind of human relation that they feel that, ‘oh,
I’m really busy, I’'m going to come back to you later on, you know, when |
feel like it”—A7-Arc. A specific knowledge transfer barrier related to
working with colleagues is reluctance to share the knowledge [16]:
“They’re protective of the knowledge, they really don’t want to share it that
easily, because it’s their bread and butter, their design..”—A6-Arc.

1299

Martin P. Robillard

5.4 Recreating the Knowledge

We had to rebuild the knowledge because we knew the only
thing we know is what [the software] is supposed to do [...]
But of course we wasted much more time than if we would
have had the expert from the start.—A1-Man

Participants described their attempts at recreating lost knowl-
edge by doing their own research and self-directed learning:
“I used to use the [learning resources] from old colleagues [...] Because they
were supporting [the software] and they were developing in it, so they gave
hints in their books. So this kind of information I’'m acquiring myself right
now as well”—A11-Dev. Many participants pointed, however, that the
effort required for this activity interfered with their work.
Following an incomplete knowledge transfer session, a participant
noted: “I remember | had to work for at least three or four days [...] maybe
more than eight hours a day to be able to just understand, “OK, where
—A12-Dev; Other participants opined: “you have reverse

»

is the issue
engineering stuff. You have your code, you debug, and you learn so we can
build up the knowledge back. But it takes some time.”—A13-Dev; “But over
time you [...] kind of reverse engineer, figure out how the application is
designed. [...] So generally this kind of knowledge gap will slow down the
support so you know the customer might wait...”—A14-Dev; “We allocated
time for me and another person. We basically meet up every day and we
try to see how it works inside..”—A17-Dev.

Participants also noted how recreating the knowledge can
be a social activity, implying that the observations noted for the
theme working with others may apply in this case as well. “And
individual questions, you know. Gradually | would say gain some knowledge
in that way. After that, people get better. We have some expertise in my
team as of now”—A4-Man; “And the only way is to learn is by debugging,
and come to our conclusion and try as a group too see what makes the
most sense for the customer”—A5-Man.

In some cases, the other people involved may need to include
some of the non-developer stakeholders, and in particular do-
main experts: “I started interviews with accountants. I started interviews
with the original developer who is pretty good at sending me an email with
kind of a stream of consciousness”—Bi-Exe; “It’s more of a meeting, myself
and another person and my boss actually would then meet and go, and
talk through what does it do? How does it work? How do we want it to
work? And we would basically reverse engineer and decode things based
on our knowledge of what we do inside of our company”—B2-Man.

As some of the recreated knowledge becomes documented,
the issues of ensuring documentation accessibility and quality need
to be considered: “Any way that | can find on the company’s share drive,
in whatever notes or a memo, | tried to collect and put them together
and | try to restudy this software product on my own. But this is not an
easy process.”—A15-Dev; “Sometimes they’re requests that we have never
experienced before and don’t have any documentation for, [...] and that’s
where our support documentation started building, as one of our team
members had put together a document about different scenarios that can
come up that they normally handle, that then we can use as a resource to
use while they’re gone”—B4-Dev

6 VALIDATION SURVEY

We sent a validation survey to all 27 participants, nine of whom
responded. The survey was organized in three sections that each
consisted of a Likert-scale evaluation followed by the free-form

Turnover-Induced Knowledge Loss in Practice

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

To what extent do you agree that the overall description of knowledge loss contexts...
r

fits your understanding of the reality of
knowledge loss

is useful for helping you think about knowledge
loss situations in practice

M%

1%

100%

50%

89%

89%

0 50% 100%

To what extent do you agree that the observations for each theme below are consistent with your general experience

Lacking Guidance and Information 22%

Relying on Documentation 0%
Working with Colleagues 0%
Recreating the Knowledge 1%

100%

50%

78%

100%

100%

89%
L
0

50% 100%

To what extent do you agree that the observations for each theme below are useful for helping you think about knowledge

Lacking Guidance and Information 1%

Relying on Documentation 1%
Working with Colleagues 22%
Recreating the Knowledge 1%

100%

Strongly Disagree

50%

loss swtuationls in practice
89%
89%
78%

89%

0 50% 100%

Disagree Agree Strongly Agree

Figure 3: Validation survey responses for Likert-scale questions (n=9)

question “please justify your answer”. Figure 3 shows the questions
and answers to the Likert-scale portion of all three sections. In
this section, we identify respondents by company only to maintain
adequate anonymity.

Knowledge Loss Contexts. The first section addressed both the cred-
ibility and usefulness of the knowledge loss context framework
described in Section 4. Eight respondents agreed that the descrip-
tion of the knowledge loss contexts fits their experience and was
useful. The remaining respondent strongly disagreed to both state-
ments, without comments. In addition to confirmatory comments,
two respondents pointed to additional aspects of the knowledge
loss context that would be useful to capture: “the quantity, quality,
and uniqueness of the knowledge”—¢ and well as the “the size of the
company and the development team”—C.

Knowledge Loss Implications—Credibility. The second section ad-
dressed specifically the credibility of the observations reported
for the four themes. The observations for the themes relying on
documentation and working with colleagues resonated with all re-
spondents. For the theme lacking guidance and information, only
one of the two detractors commented, stating: “I find the context of a
developer or a development team having to figure out the intent of a piece
of code troubling..”—B. This divergence may be due to the fact that
the data supporting the observation about guessing the intent of the
code was exclusively collected from participants in Company A,
and the respondent may not have been exposed to these challenges
as part of a smaller organization. About recreating the knowledge,
the detractor indicated: “Can be done but it is too stressful and asks to
invest a huge amount of time and the efforts are rarely appreciated”—A.
This comment indicates that while the respondent disagrees with
the practice, they actually speak of it from experience, thus con-
firming the observation. Other complementary insights shared by
participants as comments to this section include: “Lacking guidance

1300

and information is the number one issue for us. To a point where we pay
specific attention to this criterion in our code reviews. We ask for inline
comments when we spot code that has no obvious intent”—C as well as
“If knowledge is not externalized, it is often because we are unsure what
the best format and location for that knowledge is”—C and “For lacking
guidance and information, small companies may be more impacted because
of the many responsabilities each of the employees have”—C.

Knowledge Loss Implications—Usefulness. The third section of the
survey addressed the usefulness of the observations. For this section,
seven respondents agreed or strongly agreed that the observations
were useful for all four themes, and two respondents disagreed
with two themes each. One detractor provided no justification, but
for the second the justification does not appear to contradict the
observations: “I do not agree exactly with everything about lacking guid-
ance and information. | feel that developers need to be able to learn on
their own..”—C. Although the observations capture the experience of
developers in situations of knowledge loss, the statements make no
judgement about mitigation measures, which may certainly include
self-learning. As for feedback related to working with colleagues,
the statement actually corroborates the experience of A9-Dev noted
in Section 4.1: “When working with previous colleagues, | disagree in the
sense that | would not feel comfortable contacting someone that is not
working with the company anymore to retrieve information..”—C. Finally,
one comment from a positive respondent highlights the role and
potential value of knowledge re-creation in the spiral of knowl-
edge: “I agree with all the different points mentioned but recreating the
knowledge can be highly beneficial for the person at stake. In my personal
opinion | learn best when | get hands-on experience with something. | find
that relying on documentation and colleagues gives you a decent amount
of understanding but to truly understand something it is best for me to
recreate it. | agree that it is pretty time consuming”—C. It is interesting
to note how this opinion is diametrically opposed to that of the
respondent from Company A quoted in the previous paragraph.

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

7 CONCLUSIONS

With this study, we sought to better understand turnover-induced
knowledge loss contexts and their implications. Based on interviews
with 27 professional software developers and managers from three
companies, we devised and applied a framework for characterizing
knowledge loss contexts, and synthesized 20 observations about the
potential implications of knowledge loss in practice. We conclude
with a discussion of the broader insights we gathered from the
study.

Insights From Knowledge Loss Contexts. The experiences we col-
lected about knowledge loss contexts challenge a number of as-
sumptions about turnover-induced knowledge loss in software
development. The notion of turnover captured by the “bus factor”
concept [2, 7, 43] assumes a sudden, complete, and permanent de-
parture. Our study helped illustrate the different shades of turnover
beyond those parameters. First, we saw how departed knowledge
owners may remain available for knowledge transfer, thus mitigat-
ing the impact of knowledge loss. Conversely, we saw how internal
transfers within a company can nevertheless amount to a complete
departure from the point of view of knowledge loss, as the knowl-
edge owners progressively lose their knowledge. The interview
data also emphasized how the simple anticipation of a departure
can play a major role in preventing knowledge loss. Finally, we
observed that temporary leaves—not usually considered turnover—
can have implications similar to knowledge loss as developers must
resolve incidents under time pressure without the help of an expert.

Knowledge Loss and Knowledge Management. The 20 observations
about the implications of knowledge loss listed in Table 3 capture
important concerns of the participants regarding knowledge loss.
We note that they cover practically all the forms of knowledge con-
version illustrated in Figure 1. Observations about lacking guidance
and information capture the challenges of sharing tacit knowledge,
typically acquired through socialization. The theme working with
colleagues focuses specifically on the socialization conversion, and
recreating the knowledge also emphasizes the need to involve others
in this process. Externalization, and to a lesser extent, combination,
are reflected in the theme relying on documentation. The observa-
tions captured under this theme illustrate the barriers to knowledge
transfer experienced when documentation is used for knowledge
loss mitigation (as opposed to, for example, learning a new technol-
ogy [28, 44]). The theme recreating the knowledge also touches on
externalization, as participants have described their attempts to cap-
ture the new knowledge explicitly. Finally, the observations about
tacit knowledge under theme lacking guidance and information
show how some participants were adamant about the importance
of knowledge internalization (learning by doing) in the knowledge
loss mitigation process.

Future Work. This study was exploratory in nature. It sought to re-
port on the experience of knowledge loss in software development
using data excerpts that provide descriptions of the phenomenon
as close to the participants’ experiences as possible. While these
descriptions help increase our awareness of the numerous facets
of the phenomenon of knowledge loss in practice, much work re-
mains to implement knowledge loss mitigation strategies in specific
contexts. First, it will be useful to empirically assess the potential

1301

Martin P. Robillard

impact of turnover events on organizations. Our proposed frame-
work hypothesizes this impact, but future work could empirically
validate the levels, as well as help enrich the framework with ad-
ditional dimensions for capturing knowledge loss. For example,
it may be possible to identify the main type of knowledge lost
through a specific departure event. Another promising direction
for furthering this work will be to link the different context types
with implications. For example, are internal transfers more strongly
associated with certain types of implications than retirements? Fi-
nally, as the ultimate goal of this research is to help organizations
manage knowledge related to software assets, a natural extension
of this study will be to experiment with a selection of mitigation
strategies for one or more knowledge loss implications determined
with the help of the observations we contributed. To this end, the
framework presented in Table 2 and the observations described in
Table 3 can provide a shared vocabulary and a common ground for
software development teams to engage in discussions of knowledge
loss challenges and potential mitigation strategies.

ACKNOWLEDGMENTS

We warmly thank the company facilitators and participants for
generously sharing their time and making this project possible. We
are also grateful to Alexa Hernandez for reviewing the paper in
detail, and to Deeksha Arya, Mathieu Nassif, Louis-Bertrand Varin,
and the anonymous reviewers for their constructive comments.
This work is funded by NSERC.

REFERENCES

[1] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Marquez, Mario Linares-Vasquez,
Laura Moreno, Gabriele Bavota, and Michele Lanza. 2019. Software documenta-
tion issues unveiled. In Proceedings of the 41st IEEE/ACM International Conference
on Software Engineering. 1199-1210. https://doi.org/10.1109/ICSE.2019.00122
Guilherme Avelino, Leonardo Passos, Andre Hora, and Marco Tulio Valente. 2016.
A novel approach for estimating truck factors. In Proceedings of the 24th IEEE
International Conference on Program Comprehension. 1-10. https://doi.org/10.
1109/ICPC.2016.7503718
Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald Gall, and
Premkumar Devanbu. 2011. Don’t touch my code! Examining the effects of
ownership on software quality. In Proceedings of the Joint 19th ACM SIGSOFT
Symposium on the Foundations of Software Engineering and 13th European Software
Engineering Conference. 4-14. https://doi.org/10.1145/2025113.2025119
Virginia Braun and Victoria Clarke. 2012. Thematic analysis. In APA Handbook of
Research Methods in Psychology, Vol 2: Research Designs: Quantitative, Qualitative,
Neuropsychological, and Biological, Harris Cooper, Paul M. Camic, Debra L. Long,
AT. Panter, David Rindskopf, and Kenneth J. Sher (Eds.). American Psychological
Association, 57-71. https://doi.org/10.1037/13620-004
Virginia Braun and Victoria Clarke. 2021. To saturate or not to saturate? Ques-
tioning data saturation as a useful concept for thematic analysis and sample-size
rationales. Qualitative Research in Sport, Exercise and Health 13, 2 (2021), 201-216.
https://doi.org/10.1080/2159676X.2019.1704846
Donald O. Case and Lisa M. Given. 2016. Looking for Information: A Survey of
Research on Information Seeking, Needs, and Behavior (4th ed.). Emerald.
Valerio Cosentino, Javier Luis Canovas Izquierdo, and Jordi Cabot. 2015. Assessing
the bus factor of Git repositories. In Proceedings of the 22nd IEEE International
Conference on Software Analysis, Evolution, and Reengineering. 499-503. https:
//doi.org/10.1109/SANER.2015.7081864
[8] John W. Creswell. 2003. Research Design: Qualitative, Quantitative, and Mixed
Methods Approaches (2nd ed.). Sage.
John W. Creswell. 2006. Qualitative Inquiry and Research Design (2nd ed.). Sage.
Barthélémy Dagenais and Martin P. Robillard. 2010. Creating and evolving devel-
oper documentation: Understanding the decisions of open source contributors. In
Proceedings of the 18th ACM SIGSOFT International Symposium on the Foundations
of Software Engineering. 127-136. https://doi.org/10.1145/1882291.1882312
Kimiz Dalkir. 2017. Knowledge Management in Theory and Practice. MIT Press.
2] David W. DeLong. 2004. Lost Knowledge: Confronting the Threat of an Aging
Workforce. Oxford University Press.

7

https://doi.org/10.1109/ICSE.2019.00122
https://doi.org/10.1109/ICPC.2016.7503718
https://doi.org/10.1109/ICPC.2016.7503718
https://doi.org/10.1145/2025113.2025119
https://doi.org/10.1037/13620-004
https://doi.org/10.1080/2159676X.2019.1704846
https://doi.org/10.1109/SANER.2015.7081864
https://doi.org/10.1109/SANER.2015.7081864
https://doi.org/10.1145/1882291.1882312

Turnover-Induced Knowledge Loss in Practice

[13]

[14]

[15

[17]

(18]

[19

[20]

[21

)
£

[23]

[24

[25]

[26

[27

[28

[29]

[30]

[32]

Susanne Durst and Stefan Wilhelm. 2011. Knowledge management in practice:
Insights into a medium-sized enterprise’s exposure to knowledge loss. Prometheus
29, 1(2011), 23-38. https://doi.org/10.1080/08109028.2011.565693

Martin Feilkas, Daniel Ratiu, and Elmar Jiirgens. 2009. The loss of architectural
knowledge during system evolution: An industrial case study. In Proceedings
of the 17th IEEE International Conference on Program Comprehension. 188-197.
https://doi.org/10.1109/ICPC.2009.5090042

Matthieu Foucault, Marc Palyart, Xavier Blanc, Gail C. Murphy, and Jean-Rémy
Falleri. 2015. Impact of developer turnover on quality in open-source software. In
Proceedings of the Joint ACM SIGSOFT Symposium on the Foundations of Software
Engineering and European Software Engineering Conference. 829-841. https:
//doi.org/10.1145/2786805.2786870

Robert Gregory, Roman Beck, and Michael Prifling. 2009. Breaching the knowl-
edge transfer blockade in IT offshore outsourcing projects - A case from the
financial services industry. In Proceedings of the 42nd Hawaii International Con-
ference on System Sciences. 1-10. https://doi.org/10.1109/HICSS.2009.93

Daniel S. Hamermesh, Wolter H. J. Hassink, and Jan C. van Ours. 1996. Job
turnover and labor turnover: A taxonomy of employment dynamics. Annales
d’Economie et de Statistique 41/42 (1996), 21-40. https://doi.org/10.2307/20066462
John Horner and M. E. Atwood. 2006. Effective design rationale: Understanding
the barriers. In Rationale Management in Software Engineering, Allen H. Dutoit,
Raymond McCall, Ivan Mistrik, and Barbara Paech (Eds.). Springer, 73-90. https:
//doi.org/10.1007/978-3-540-30998-7_3

Daniel Izquierdo-Cortazar, Gregorio Robles, Felipe Ortega, and Jesus M. Gonzalez-
Barahona. 2009. Using software archaeology to measure knowledge loss in
software projects due to developer turnover. In Proceedings of the 42nd Hawaii
International Conference on System Sciences. 1-10. https://doi.org/10.1109/HICSS.
2009.498

Murray E. Jennex and Alexandra Durcikova. 2013. Assessing knowledge loss
risk. In Proceedings of the 46th Hawaii International Conference on System Sciences.
3478-3487. https://doi.org/10.1109/HICSS.2013.103

Andrew J. Ko, Robert DeLine, and Gina Venolia. 2007. Information needs in
collocated software development teams. In Proceedings of the 29th IEEE/ACM
International Conference on Software Engineering. 344-353. https://doi.org/10.
1109/ICSE.2007.45

Marianne Kukko and Nina Helander. 2012. Knowledge sharing barriers in grow-
ing software companies. In Proceedings of the 45th Hawaii International Conference
on System Sciences. 3756-3765. https://doi.org/10.1109/HICSS.2012.407
Dorothy Leonard-Barton. 2015. Critical Knowledge Transfer: Tools for Managing
Your Company’s Deep Smarts. Harvard Business Review Press.

Timothy C. Lethbridge, Janice Singer, and Andrew Forward. 2003. How software
engineers use documentation: The state of the practice. IEEE Software 20, 6 (2003),
35-39. https://doi.org/10.1109/MS.2003.1241364

Bin Lin, Gregorio Robles, and Alexander Serebrenik. 2017. Developer turnover
in global, industrial open source projects: Insights from applying survival analy-
sis. In Proceedings of the 12th IEEE International Conference on Global Software
Engineering. 66-75. https://doi.org/10.1109/ICGSE.2017.11

Walid Maalej, Rebecca Tiarks, Tobias Roehm, and Rainer Koschke. 2014. On
the comprehension of program comprehension. ACM Transactions on Software
Engineering and Methodology 23, 4, Article 31 (2014), 1-37 pages. https://doi.org/
10.1145/2622669

Markus Manhart and Stefan Thalmann. 2015. Protecting organizational knowl-
edge: A structured literature review. Journal of Knowledge Management 19, 2
(2015), 190-211. https://doi.org/10.1108/JKM-05-2014-0198

Michael Meng, Stephanie Steinhardt, and Andreas Schubert. 2018. Application
programming interface documentation: What do software developers want?
Journal of Technical Writing and Communication 48, 3 (2018), 295-330. https:
//doi.org/10.1177/0047281617721853

Matthew B. Miles, A. Michael Huberman, and Johnny Saldafa. 2014. Qualitative
Data Analysis: A Method Sourcebook (3rd ed.). Sage.

Ehsan Mirsaeedi and Peter C. Rigby. 2020. Mitigating turnover with code review
recommendation: Balancing expertise, workload, and knowledge distribution. In
Proceedings of the 42nd ACM/IEEE International Conference on Software Engineer-
ing. 1183-1195. https://doi.org/10.1145/3377811.3380335

Susan M. Mitchell and Carolyn B. Seaman. 2016. Could removal of project-level
knowledge flow obstacles contribute to software process improvement? A study
of software engineer perceptions. Information and Software Technology 72 (2016),
151-170. https://doi.org/10.1016/j.infsof.2015.12.007

Audris Mockus. 2010. Organizational volatility and its effects on software defects.
In Proceedings of the 18th ACM SIGSOFT International Symposium on the Founda-
tions of Software Engineering. 117-126. https://doi.org/10.1145/1882291.1882311

1302

(33]

(34]

[35

[36

[43

[44

[46

[47]

(48]

[49]

o
=

(51]

[52]

[53

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Mathieu Nassif and Martin P. Robillard. 2017. Revisiting turnover-induced knowl-
edge loss in software projects. In Proceedings of the 33rd IEEE International Con-
ference on Software Maintenance and Evolution. 261-272.

Olivia B. Newton, Stephen M. Fiore, and Jihye Song. 2019. Expertise and com-
plexity as mediators of knowledge loss in open source software development.

Proceedings of the Human Factors and Ergonomics Society Annual Meeting 63, 1
(2019), 1580-1584. https://doi.org/10.1177/1071181319631445

Srinivas Nidhra, Muralidhar Yanamadala, Wasif Afzal, and Richard Torkar. 2013.
Knowledge transfer challenges and mitigation strategies in global software
development - A systematic literature review and industrial validation. In-
ternational Journal of Information Management 33, 2 (2013), 333-355. https:
//doi.org/10.1016/j.ijinfomgt.2012.11.004

Tkujiro Nonaka and Hirotaka Takeuchi. 1995. The Knowledge-Creating Company:
How Japanese Companies Create the Dynamics of Innovation. Oxford University
Press.

Klaus North and Gita Kumta. 2014. Knowledge Management: Value Creation
Through Organizational Learning. Springer. https://doi.org/10.1007/978-3-319-
03698-4

Salvatore Parise, Rob Cross, and Thomas H. Davenport. 2006. Strategies for
Preventing a Knowledge-Loss Crisis. MIT Sloan Management Review 47, 4 (2006),
31-38.

L. G. Pee, A. Kankanhalli, G. W. Tan, and G. Z. Tham. 2014. Mitigating the
impact of member turnover in information systems development projects. IEEE
Transactions on Engineering Management 61, 4 (2014), 702-716. https://doi.org/
10.1109/TEM.2014.2332339

Michael Polanyi. 1967. The Tacit Dimension. Anchor Books.

Xiangju Qin, Michael Salter-Townshend, and Padraig Cunningham. 2014. Explor-
ing the relationship between membership turnover and productivity in online
communities. In Proceedings of the 8th International AAAI Conference on Weblogs
and Social Media. https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/
view/8097/8141

Mehvish Rashid, Paul M. Clarke, and Rory V. O’Connor. 2019. A systematic
examination of knowledge loss in open source software projects. International
Journal of Information Management 46 (2019), 104-123. https://doi.org/10.1016/].
ijinfomgt.2018.11.015

Peter C. Rigby, Yue Cai Zhu, Samuel M. Donadelli, and Audris Mockus. 2016.
Quantifying and mitigating turnover-induced knowledge loss: Case studies of
Chrome and a project at Avaya. In Proceedings of the 38th ACM/IEEE International
Conference on Software Engineering. 1006-1016. https://doi.org/10.1145/2884781.
2884851

Martin P. Robillard and Kaylee Kutschera. 2020. Lessons learned while migrating
from Swing to JavaFX. IEEE Software 37, 3 (2020), 78-85. https://doi.org/10.1109/
MS.2019.2919840

Martin P. Robillard, Mathieu Nassif, and Shane McIntosh. 2018. Threats of
aggregating software repository data. In Proceedings of the 34th IEEE International
Conference on Software Maintenance and Evolution. 508-518. https://doi.org/10.
1109/ICSME.2018.00009

Kurt Schneider. 2009. Experience and Knowledge Management in Software Engi-
neering. Springer. https://doi.org/10.1007/978-3-540-95880-2

Sulayman K. Sowe, Ioannis Stamelos, and Lefteris Angelis. 2008. Understanding
knowledge sharing activities in free/open source software projects: An empirical
study. Journal of Systems and Software 81, 3 (2008), 431-446. https://doi.org/10.
1016/j.55.2007.03.086

Meaghan Stovel and Nick Bontis. 2002. Voluntary turnover: knowledge man-
agement—friend or foe? Journal of Intellectual Capital 3, 3 (2002), 303-322.
https://doi.org/10.1108/14691930210435633

Nakkiran N. Sunassee and David A. Sewry. 2002. A theoretical framework
for knowledge management implementation. In Proceedings of the 2002 Annual
Research Conference of the South African Institute of Computer Scientists and
Information Technologists on Enablement through Technology. 235-245.

Charles A. Tryon. 2012. Managing Organizational Knowledge: 3rd Generation
Knowledge Management ... and Beyond! CRC Press.

Gias Uddin and Martin P. Robillard. 2015. How API Documentation Fails. IEEE
Software 32, 4 (2015), 68-75. https://doi.org/10.1109/MS.2014.80

Davi Viana, Tayana Conte, Sabrina Marczak, Raymundo Ferreira, and Cleidson
de Souza. 2015. Knowledge creation and loss within a software organization: An
exploratory case study. In Proceedings of the 48th Hawaii International Conference
on System Sciences. 3980-3989. https://doi.org/10.1109/HICSS.2015.477

Robert S. Weiss. 1995. Learning From Strangers: The Art and Method of Qualitative
Interview Studies. Free Press.

https://doi.org/10.1080/08109028.2011.565693
https://doi.org/10.1109/ICPC.2009.5090042
https://doi.org/10.1145/2786805.2786870
https://doi.org/10.1145/2786805.2786870
https://doi.org/10.1109/HICSS.2009.93
https://doi.org/10.2307/20066462
https://doi.org/10.1007/978-3-540-30998-7_3
https://doi.org/10.1007/978-3-540-30998-7_3
https://doi.org/10.1109/HICSS.2009.498
https://doi.org/10.1109/HICSS.2009.498
https://doi.org/10.1109/HICSS.2013.103
https://doi.org/10.1109/ICSE.2007.45
https://doi.org/10.1109/ICSE.2007.45
https://doi.org/10.1109/HICSS.2012.407
https://doi.org/10.1109/MS.2003.1241364
https://doi.org/10.1109/ICGSE.2017.11
https://doi.org/10.1145/2622669
https://doi.org/10.1145/2622669
https://doi.org/10.1108/JKM-05-2014-0198
https://doi.org/10.1177/0047281617721853
https://doi.org/10.1177/0047281617721853
https://doi.org/10.1145/3377811.3380335
https://doi.org/10.1016/j.infsof.2015.12.007
https://doi.org/10.1145/1882291.1882311
https://doi.org/10.1177/1071181319631445
https://doi.org/10.1016/j.ijinfomgt.2012.11.004
https://doi.org/10.1016/j.ijinfomgt.2012.11.004
https://doi.org/10.1007/978-3-319-03698-4
https://doi.org/10.1007/978-3-319-03698-4
https://doi.org/10.1109/TEM.2014.2332339
https://doi.org/10.1109/TEM.2014.2332339
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8097/8141
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8097/8141
https://doi.org/10.1016/j.ijinfomgt.2018.11.015
https://doi.org/10.1016/j.ijinfomgt.2018.11.015
https://doi.org/10.1145/2884781.2884851
https://doi.org/10.1145/2884781.2884851
https://doi.org/10.1109/MS.2019.2919840
https://doi.org/10.1109/MS.2019.2919840
https://doi.org/10.1109/ICSME.2018.00009
https://doi.org/10.1109/ICSME.2018.00009
https://doi.org/10.1007/978-3-540-95880-2
https://doi.org/10.1016/j.jss.2007.03.086
https://doi.org/10.1016/j.jss.2007.03.086
https://doi.org/10.1108/14691930210435633
https://doi.org/10.1109/MS.2014.80
https://doi.org/10.1109/HICSS.2015.477

	Abstract
	1 Introduction
	2 Background
	2.1 Theory of Knowledge Management
	2.2 Knowledge Loss in Software Engineering

	3 Method
	3.1 Companies and Participants
	3.2 Data Collection
	3.3 Data Analysis
	3.4 Quality and Credibility

	4 Context for Knowledge Loss
	4.1 Complete vs. Partial Departures
	4.2 Sudden vs. Anticipated Departures
	4.3 Permanent vs. Temporary Departures

	5 Implications of knowledge loss
	5.1 Lacking Guidance and Information
	5.2 Relying on Documentation
	5.3 Working with Colleagues
	5.4 Recreating the Knowledge

	6 Validation Survey
	7 Conclusions
	Acknowledgments
	References

