
Code Fragment Summarization

Annie T. T. Ying and Martin P. Robillard
School of Computer Science

McGill University
{annie.ying,martin}@cs.mcgill.ca

ABSTRACT
Current research in software engineering has mostly focused
on the retrieval accuracy aspect but little on the presenta-
tion aspect of code examples, e.g., how code examples are
presented in a result page. We investigate the feasibility
of summarizing code examples for better presenting a code
example. Our algorithm based on machine learning could
approximate summaries in an oracle manually generated by
humans with a precision of 0.71. This result is promising
as summaries with this level of precision achieved the same
level of agreement as human annotators with each other.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Experimentation

Keywords
Machine Learning, summarization, source code analysis

1. INTRODUCTION
The Web is an important resource for a programmer: as

much as 20% of a programmer’s time could be spent on
the Web [2]. When a programmer searches for information
related to an Application Programming Interfaces (API), of
the various types of documentation the programmer finds on
the Web, code examples are one of the most effective [14],
important [16], and frequently sought-after [17]. Because
searching for code examples is often an indispensable part
of programming, researchers have built search engines and
recommendation systems for retrieving relevant code exam-
ples [21, 4, 1]. Most of these systems focus on improving the
accuracy of code example retrieval.
However, even when a relevant example is returned by a

general or code-specific search engine, the presentation of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE ’13, August 18-26,2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2237-9/13/08 ...$15.00.

Figure 1: A result for “apr file read” from Google

code examples can hinder the use of the example. Even a
state-of-the-art search engine for finding code examples does
not provide adequate cues for a programmer to effectively
evaluate whether the link is worth-while to follow. Often,
the textual snippet accompanying a returned link contains
no code, only a textual summary of the Web page being
linked. When a summary does contain code, the summary
is extracted as if the code were text (Figure 1). These limita-
tions often foil a programmer’s attempt to evaluate whether
a search hit is worth pursuing, making it necessary for a
programmer to open and scan many of the result pages [20].
Yet, in the context of general search engines, textual snip-
pets form a significant part (40% of the time on a search
result page [7]) of evaluating whether a particular returned
link is worth navigating to.
We propose to summarize code examples, more formally,

code fragments which we define as partial programs that
serve the purpose of demonstrating the usage of an API.
A code fragment summary is a shorter code fragment than
the original one, where any line in the summary is more
informative (in the context of a specific query) than any
other line not in the summary.
In this paper, we present a feasibility study on one way

of generating code fragment summaries: a supervised ma-
chine learning approach that classifies whether a line in a
code fragment should be in a summary. As an initial inves-
tigation, we exploited two types of features: syntactic fea-
tures of the source code, and whether a line is related to the
given query. For training and evaluating our classifier, we
collected a corpus of code fragments and constructed a cor-
responding summary oracle using four human annotators.
The corpus consists of 70 code fragments directly extracted
from code examples illustrating the answers to the Eclipse
official FAQ.1 We defined the query, which is the focus of the
summary, as the FAQ question. The summary oracle con-
sists of summaries manually created by annotators through
selecting lines deemed important for a summary, totaling to
3560 judgments. Figure 2 illustrates one code fragment from
our corpus, for the FAQ “How do I distinguish between in-
ternal and external JARs on the build path?” The summary
we generated is marked as bold.

1http://wiki.eclipse.org/index.php/Eclipse FAQs, accessed
on May 29, 2013

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’13, August 18–26, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2237-9/13/08...$15.00
http://dx.doi.org/10.1145/2491411.2494587

655

1: IClasspathEntry entry = ...

2: IPath path = entry.getPath();

3: IWorkspace workspace=ResourcesPlugin.getWorkspace();

4: IResource jarFile=workspace.getRoot().findMember(path);

5: if (jarFile != null) {
6: return jarFile.getLocation();

7: } else {
8: // must be an external JAR (or invalid classpath entry)

9: }
Figure 2: A code fragment summary (in bold)

We found promising evidence in the feasibility of gener-
ating code fragment summaries using a machine learning
approach with light-weight features, with a precision of 0.71
when we allowed summaries to be of the same length as the
oracle. This level of precision were as similar to human-
generated summaries as summaries generated by different
humans to each other. Our syntactic and query-related fea-
tures are fast to generate (0.09s per code fragment), making
it possible to deploy in a real search engine and other soft-
ware engineering settings. This simple algorithm will serve
as a baseline, as we develop more sophisticated code frag-
ment summarization approaches.

2. RELATEDWORK
The closest work to ours is a system by Kim et al [11]

that augments API documentation with code example sum-
maries. The component of their system responsible for sum-
marization resembles our tool, also using syntactic and query
features, though without the use of machine learning. Our
summarizer differs in the purpose: their approach is meant
for summarizing multiple results from a code search engine,
such as Koders, whereas our algorithm works on summariz-
ing any single code fragments.
Mica [20] and Assieme [9] are examples of the line of work

aiming at augmenting search engines. Mica aims at helping
a programmer evaluate if a search hit from a general search
engine contains relevant API elements, and for Assieme, rel-
evant code examples. Mica works by augmenting the search
result page with API methods, classes and field names con-
tained in Web pages linked by the search hits. Assieme
extracts the code examples from the returned Web pages
as the result and displays various statistics and links to the
API elements. Assieme attempts to better adapt a general
search engine to code search by expanding a programmer’s
query on a general search engine with programming lan-
guage keywords. Our system differs in that instead of sim-
ply displaying all the API elements (in Mica’s case) or the
code fragments (in Assieme’s case) contained in a Web page
linked by the search hits, we summarize code fragments con-
tained in the Web page to improve on the often inadequate
textual snippets provided by general search engines.
Researchers have proposed code example search engines

(e.g., Strathcona [10], SNIFF [5], Sourcerer [1], and a recent
system by Buse and Weimer [4]) and code completion tools
(e.g., the Intelligent Code Completion system [3]). Most of
these systems attempt to synthesize code examples or find
the relevant APIs from code repositories that match a pro-
grammer’s query, whether the query is explicitly formed or
implicitly inferred from the context. However, these sys-
tems do not help a programmer searching on the Web for
code examples and wishing to use the context accompanying
the desired code fragment in a Web page.

Several efforts have investigated reduced representations
of software artifacts, including summarizing bug reports [15,
12] and producing a succinct set of textual keywords [8] or
textual summary [18, 19] given the source code of a method.

3. CODE FRAGMENT SUMMARIZER
Our classifier uses two types of features: whether a line

contains certain syntactic constructs and whether a line is
related to a query. We set aside 17 code fragments and
summaries for the the development of features (development
set) and the rest, 53, for evaluation.

3.1 Syntactic Features
We observed from the summaries in the development set

that when a line contains a certain type of syntactic con-
structs, the line is more likely to be in a summary. For
example, a line containing an anonymous class declaration
and instantiation tended to be in a summary in the oracle,
whereas a line containing an if conditional tended not to be
in a summary.
In total, after experimenting with the development set,

we employed 49 syntactic features. These features include
whether a line in a code fragment contains a certain part
of a type signature (e.g., typeIsPublic), contains an anony-
mous declaration and instantiation, contains an exception
handling or conditional keyword, is in a block, contains a
variable or field declaration, contains a part of a method
signature, contains a method invocation, contains a method
exist statement, contains a comment, contains an assign-
ment, contains a call declared in the code, and contains a
call in the Java SDK.
We extracted these syntactic features of a code fragment

from its abstract syntax tree (AST). All syntactic features
are discrete variables, with a binary value depending on
whether a line contains a feature.

3.2 Query-Related Features
We also observed that annotators are more likely to in-

clude in the summary the lines containing the terms from
the query, which is the question in the FAQ. Analogous to
the syntactic features, query related features are discrete
variables, with a binary value depending on whether a line
contains a feature. We constructed three features that in-
dicate whether an identifier in a code fragment contains a
query term or not. We constructed two additional features
that looked beyond just individual lines: mostTerms is true
when a line contains the most number of matching terms
among all the lines in the same code fragment, and mostDi-
verseTerms is analogous except it indicates the most num-
ber of distinct terms. When computing the features, we split
the identifiers according to the common camel case identifier
naming convention.

3.3 Classifier, Training and Evaluation Data
We experimented with two separate classifiers using Naive

Bayes (NB) and Support Vector Machine (SVM).
Regarding training data, the summaries from the four an-

notators had a Cohen Kappa [6] agreement of 0.487. A value
between 0.4-0.6 is considered a moderate agreement when
the task is well-defined [6]. Since the same code fragment
line could have contradictory markings by the four anno-
tators. Such noise could confuse machine learning models,
more so for SVM than Naive Bayes. Other previous efforts in

656

Average false positive rate

A
ve

ra
g

e
 t

ru
e

 p
o

s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

 4−line

 3−line

 2−line

 1−line

 0−line

SVM
NB

SVM−query−only

first−N−lines
last−N−lines

Figure 3: ROC curves

summarization have addressed this problem by training and
evaluating a model using a gold standard summary [15].
A gold standard summary for a given code fragment consists
of lines marked as in-summary by at least two annotators,
and lines marked by one annotator or none are not consid-
ered to be in a gold standard summary. On average, the size
of a summary in the gold standard was 33.5% (sd=14.5%)
of the original code fragment.

4. FEASIBILITY STUDY
Our main research question is whether it is feasible to

generate code fragments summaries using only syntactic and
query-related features. On average, our summarizer could
generate features for a code fragment in 0.09 seconds per
code fragment. If we can generate reasonable code fragment
summaries using these two simple types of features, it would
provide us with a promising feasibility argument and base-
line for developing more sophisticated techniques.

4.1 Effectiveness Metrics
We used leave-one-out cross validation, where “one” (also

known as a fold) refers to one code fragment.2 For each fold,
we defined the correctness of the generated summary as the
corresponding gold standard summary.
To evaluate how well a generated summary resembles the

gold standard summary in the oracle, we compared the two
using R-precision, an evaluation metric from the field of
information retrieval [13]. R-precision is similar to precision-
at-k, the precision for summaries of length k. Precision-at-k
determines out of the top k lines predicted by our classifier
(predictedk), how many are correct (|oracle ∩ predictedk|).
R-precision differs from precision-at-k by allowing summaries
of variable lengths. The R-precision of a code fragment eval-
uates the top R lines returned by our classifier (predictedR),
where R is the length of the summary oracle. More formally,

R-precision is given by |oracle∩predictedR|
|predictedR| .

4.2 Effectiveness Results
As a preliminary evaluation, we assessed the performance

of our summarizer by comparing whether the classifier was
better than three baselines: the first-N-lines classifier which
constructs a summary of length N by picking the first N

2To maximize the training data but still evaluate on the
unseen evaluation data, the cross validation consisted of 53
folds, each fold yielded a prediction for one summary trained
on 69 (i.e., 17+53-1) gold standard summaries.

A1 A2 A3 A4

0.4

0.5

0.6

3 annotators except ...

K
a
p
p
a
 a

g
re

e
m

e
n
t 4 annotators

3 + Konaila

Figure 4: Agreement result

lines of a code fragment, the last-N-lines classifier which
picks the last N lines, and the SVM-query-only classifier
that only uses the two query related features described in
Section 3.2. We conducted the performance comparison
through a receiver operator characteristic (ROC) curve. An
ROC curve depicts the trade-off between the true positive
rate and false positive rate as we varied N from one line
to four lines. This curve enables us to understand explicitly
the performance trade-off among different summary lengths.
The coordinate of a point on the curve is given by the av-
erage true positive rate (average of each of the true positive
rate per code fragment) and average false positive rate (av-
erage of each of the false positive rate per code fragment).
The true positive rate of a code fragment c is given by:

|{lines in gold st. summary of c} ∩ {lines in gen. summary of c}|
|{lines in gold st. summary of c}|

The false positive rate of a code fragment c is given by:

|{lines in c not in gold st. summary} ∩ {lines in gen. sum. of c}|
|{lines in c not in gold st. summary}|

Averaging the rates per code fragment (rather than for all
lines) aligns better with the actual task of providing a sum-
mary for a code fragment (rather than being just an exercise
of predicting summary-membership of lines). The closer the
ROC curve is to the upper left corner (with fewer false posi-
tives and more true positives), the better the classifier. The
area under the curve sums up this intuition: the better the
classifier, the closer its area under a ROC curve is to 1.
Figure 3 shows five ROC curves: two versions of our clas-

sifier (SVM and NB, the two thicker lines) and three base-
lines (SVM-query-only, first-N-lines, and last-N-lines, the
three thinner lines). Our two classifiers have area under the
curve of 0.806 for SVM and 0.772 for NB. Both clearly lie
above the first-N-lines baseline (the area under the curve is
0.493) and last-N-lines baseline (the area under the curve
is 0.503). In addition, the two classifiers using both syntac-
tic and query features out-perform the baseline using only
query-related features, SVM-query-only, whose area under
the curve is 0.629.

4.3 Generated against Annotators’ Summaries
Figure 4 illustrates the Kappa agreement of the four anno-

tators (kappa=0.487) and how the agreement changed when
we left out the summaries provided by each one of the an-
notators and replaced the summaries of the left-out anno-
tator with summaries generated by the classifier. In one
case (A3), swapping in the generated summaries even im-
proved the agreement, whereas in two cases the agreement
decreased slightly and in the third case decreased more. The
average of the four kappa statistics of the three-annotators-
plus-our-classifier settings was 0.484, almost the same as the
agreement of the four annotators.

657

One could argue that the average R-precision was 0.705
and the area under the ROC curve were far from 1, the per-
fect score. However, given the agreement among the human
annotators on the summaries was considered moderately low
(kappa=0.487), there is a limit to the performance one could
expect from a machine learning approach that relied on this
same set of annotations. These initial results show promis-
ing feasibility in using light-weight features to generate code
fragment summaries.

5. CONCLUSIONANDFUTUREDIRECTIONS
We introduced a new idea of generating code fragment

summaries as a way to provide succinct cues for Web pages
containing code fragments. These summaries have a wide
range of applications in summarizing any artifacts contain-
ing code fragments. The approach of using light-weight syn-
tactic and query features achieved a precision of 0.705 when
we allowed summaries to be of the same length as the or-
acle. With this level of precision, our summaries achieved
the same level of agreement as human annotators with each
other. The features are fast to generate, 0.09 seconds per
code fragment, making it possible to deploy in a real search
engine and other software engineering settings.
There are promising future directions to take our current

summarizer to. Observing the summaries in the Eclipse FAQ
oracle revealed the promise in additional code-level analysis,
to take into account the relation between lines when generat-
ing summaries. For example, simple intra-method data-flow
related features—such as whether a return type of a method
call in a code fragment is later used–can be indicative of
whether the line is important for a summary. Analyses on
code fragments can pose technical challenges related to the
fact that code fragments are not complete programs.
In the evaluation of our summaries, defining the correct-

ness of a summary as the summary lines more agreed upon
by the annotators assumed that a code fragment has a single
universal summary suitable for everyone. The moderately
low agreement among the annotators motivated us to inves-
tigate a different assumption on the correctness of a sum-
mary: there does not exist one correct summary; rather,
each annotator’s version of the summary is correct. With
this assumption, an optimal summarizer would be one that
personalizes summaries for each individual. Personalized
summaries is a promising direction for future research.

6. ACKNOWLEDGMENTS
Thanks to the four annotators, J. Pineau, K. Moffatt, P.

Duboue, P. Rigby, Y. Chhetri, F. Ferreira, G. Petrosyan &
C. Treude. This work is supported by NSERC & McGill.

7. REFERENCES
[1] S. Bajracharya, J. Ossher, and C. Lopes. Leveraging

usage similarity for effective retrieval of examples in
code repositories. In Proc. of FSE, pages 157–166,
2010.

[2] J. Brandt, P. Guo, J. Lewenstein, M. Dontcheva, and
S. Klemmer. Two studies of opportunistic
programming: interleaving web foraging, learning, and
writing code. In Proc. of CHI, pages 1589–1598, 2009.

[3] M. Bruch, M. Monperrus, and M. Mezini. Learning
from examples to improve code completion systems. In
Proc. of ESEC/FSE, pages 213–222, 2009.

[4] R. Buse and W. Weimer. Synthesizing API usage
examples. In Proc. of ICSE, pages 782–792, 2012.

[5] S. Chatterjee, S. Juvekar, and K. Sen. SNIFF: A
search engine for Java using free-form queries. In Proc.
of FASE, pages 385–400, 2009.

[6] J. Cohen et al. A coefficient of agreement for nominal
scales. Educational and psychological measurement,
20(1):37–46, 1960.

[7] E. Cutrell and Z. Guan. What are you looking for?:
an eye-tracking study of information usage in web
search. In Proceedings of the Conference on Human
Factors in Computing Systems, pages 407–416, 2007.

[8] S. Haiduc, J. Aponte, and A. Marcus. Supporting
program comprehension with source code
summarization. In Proc. of ICSE-v2, pages 223–226,
2010.

[9] R. Hoffmann, J. Fogarty, and D. Weld. Assieme:
finding and leveraging implicit references in a web
search interface for programmers. In Proc. of UIST,
pages 13–22, 2007.

[10] R. Holmes and G. Murphy. Using structural context
to recommend source code examples. In Proc. of
ICSE, pages 117–125, 2005.

[11] J. Kim, S. Lee, S.-W. Hwang, and S. Kim. Enriching
documents with examples: A corpus mining approach.
Transactions on Information Systems, 31, 2013.

[12] S. Mani, R. Catherine, V. Sinha, and A. Dubey.
AUSUM: approach for unsupervised bug report
summarization. In Proc. of FSE, pages 1–11, 2012.

[13] C. Manning, P. Raghavan, and H. Schutze.
Introduction to information retrieval. Cambridge
University Press, 2008.

[14] S. McLellan, A. Roesler, J. Tempest, and C. Spinuzzi.
Building more usable APIs. IEEE Software,
15(3):78–86, 1998.

[15] S. Rastkar, G. Murphy, and G. Murray. Summarizing
software artifacts: a case study of bug reports. In
Proc. of ICSE, pages 505–514, 2010.

[16] M. Robillard. What makes APIs hard to learn?
Answers from developers. IEEE Software, 26(6):27–34,
2009.

[17] S. Sim, R. Gallardo-Valencia, K. Philip, M. Umarji,
M. Agarwala, C. Lopes, and S. Ratanotayanon.
Software reuse through methodical component reuse
and amethodical snippet remixing. In Proc. of CSCW,
pages 1361–1370, 2012.

[18] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and
K. Vijay-Shanker. Towards automatically generating
summary comments for Java methods. In Proc. of
ASE, pages 43–52, 2010.

[19] G. Sridhara, L. Pollock, and K. Vijay-Shanker.
Automatically detecting and describing high level
actions within methods. In Proc. of ICSE, 2011.

[20] J. Stylos and B. Myers. Mica: A web-search tool for
finding API components and examples. In Proc. of
VL/HCC, pages 195–202, 2006.

[21] T. Xie and J. Pei. MAPO: mining API usages from
open source repositories. In Proc. of MSR, pages
54–57, 2006.

658

