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ABSTRACT
Before performing a modification task, a developer usually has to
investigate the source code of a system to understand how to carry
out the task. Discovering the code relevant to a change task is
costly because it is an inherently human activity whose success de-
pends on a large number of unpredictable factors, such as intuition
and luck. Although studies have shown that effective developers
tend to explore a program by following structural dependencies,
no methodology is available to guide their navigation through the
typically hundreds of dependency paths found in a non-trivial pro-
gram. In this paper, we propose a technique to automatically pro-
pose and rank program elements that are potentially interesting to a
developer investigating source code. Our technique is based on an
analysis of the topology of structural dependencies in a program. It
takes as input a set of program elements of interest to a developer
and produces a fuzzy set describing other elements of potential in-
terest. Empirical evaluation of our technique indicates that it can
help developers quickly select program elements worthy of inves-
tigation while avoiding less interesting ones.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments; D.2.7
[Software Engineering]: Distribution, Maintenance, and Enhance-
ment—Restructuring, reverse engineering, and reengineering

General Terms
Algorithms, Experimentation, Human Factors

Keywords
Static analysis, feature location, structural program dependencies

1. INTRODUCTION
Software projects typically go through multiple iterations dur-

ing their lifetime [13], with many iterations involving a number of
modifications to the source code. As part of most software modi-
fication tasks, a developer must investigate the source code associ-
ated with the task prior to modifying it [4].
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In essence, the goal of investigating source code in the context
of a software modification task is to solve an instance of the con-
cept assignment problem [3], namely, to identify how high-level
concepts associated with the task are implemented in source code.
For example, a developer asked to solve an I/O performance prob-
lem may need to discover and understand the code implementing a
buffering algorithm.

The concept assignment problem is a hard problem in software
engineering because it is an inherently human activity, whose suc-
cess depends on a large number of unpredictable factors, such as
intuition and luck. In a recent empirical study of program inves-
tigation [15], we observed that a distinctive characteristic of ef-
fective developers was their tendency to investigate source code
by following structural dependencies. While this practice can help
make program investigation more systematic, it does not solve the
concept assignment problem. Indeed, in any non-trivial software
system, the number of structural dependencies to follow is much
too large to be completely covered by a developer. As a result, de-
velopers must rely on their intuition to determine where to look.
In the case of expert developers working on a well-known system,
intuition will generally do the trick. However, novice developers
working on an unfamiliar system may easily get stuck in irrelevant
code and fail to notice important program functionality, leading to
low-quality software modifications [15].

This problem can be mitigated through approaches that automat-
ically provide developers with an estimate of the code relevant to a
concept, concern, or feature (see Section 2). This paper provides a
contribution to this corpus by investigating the hypothesis that it is
possible to guide developers towards interesting sections of code by
analyzing the topology of a program’s structural dependencies. In
other words, that patterns in the structural dependencies of a soft-
ware system can indicate sections of code worthy of investigation,
independently of the semantics of the program. Our motivation for
investigating the potential of static dependency analysis is to de-
velop a technique that would be inexpensive enough to use in a
highly iterative fashion and on incomplete or incorrect programs.

As part of our investigation we developed an algorithm for a sta-
tic analysis that calculates program elements of likely interest to
a developer. Our algorithm takes as input a fuzzy set describing
methods or fields of interest to a developer, and produces a fuzzy
set containing methods and fields that are of potential interest. The
degree of potential interest for each element suggested is obtained
by analyzing two characteristics of the dependencies to elements
in the set of interest: specificity and reinforcement. Informally, an
element is specific if it is related to few other elements, whereas an
element is reinforced if it is related to other elements of interest.

We implemented a prototype of our algorithm for Java systems
and basic tool support allowing developers to use it for software



evolution tasks. Using this prototype, we conducted an experi-
ment to study the quantitative nature of the results produced and
their stability in the face of different configurations and inputs. We
also performed two case studies on medium-size systems where we
qualitatively evaluated the suggestions produced. Our results show
that the algorithm is stable and produces suggestions that can help
a developer rapidly build a core set of program elements associated
with a task while avoiding code that is not relevant. We conclude
that analyzing the topology of a program’s structural dependencies
is a promising technique for helping developers navigate source
code efficiently.

In the rest of this paper, we first present an overview of tech-
niques previously proposed to help developers investigate source
code (Section 2). We then present our algorithm (Section 3), and
describe its current implementation for Java (Section 4). We report
on the empirical evaluation of our algorithm in Section 5 (quan-
titative experiment) and in Section 6 (case studies). Finally, we
discuss the results of the evaluation and additional applications for
the technique in Section 7 and present our conclusions in Section 8.

2. RELATED WORK
A variety of approaches have been proposed to help developers

identify the source code that may be related to a change. Such
approaches usually come under the banner of concept, concern,
or feature location approaches, and use a wide range of analysis
techniques. Since a survey of all the work in this area is neither
possible nor desirable in the context of this paper, we focus on a
general categorization of the main approaches, which we illustrate
with references to recent work.

2.1 Program Slicing
Program slicing denotes a type of analysis intended to identify

the parts of a program that may affect the values computed at some
point of interest [19]. Slicing was originally defined as a static
analysis technique [21], but dynamic variants have since been de-
veloped. For software evolution activities, slicing can be used to
help determine the impact of changes [9]. Visual techniques have
also been developed to help in this process [8].

Although they are conceptually appealing techniques, static slic-
ing and its variants suffer from practical limitations. First, comput-
ing slices can be expensive [21], and pragmatic considerations may
require lower-precision data-flow analyses [20]. Second, because a
statement is often transitively dependent on many other statements,
slices are often very large [11, 21], which limits their usefulness to
developers wishing to focus on code of immediate interest.

2.2 Dynamic Analysis
The Software Reconnaissance technique developed by Wilde et

al. identifies features in source code based on a analysis of the exe-
cution of a program [22]. Software Reconnaissance determines the
code implementing a feature by comparing a trace of the execution
of a program in which a certain feature was activated to one where
the feature was not activated.

Another approach to feature location based on dynamic analy-
sis was developed by Eisenbarth et al. [7]. Eisenbarth et al. pro-
duce the mapping between components and test cases using math-
ematical concept analysis (a partial ordering and clustering tech-
nique [18]). In addition to producing a basic mapping between
components and test cases, the approach of Eisenbarth et al. in-
volves the refinement of the feature-to-code mapping through in-
spection by a developer of a static dependency graph of the pro-
gram analyzed. This step helps achieve a more precise and com-

plete description of the code implementing a feature, at the cost of
additional effort for developers using the technique.

Dynamic slicing [1, 10] is a variant of slicing that takes into ac-
count program execution trace information. Specifically, dynamic
slicing only considers program dependencies that occur in a spe-
cific execution of the program.

In contrast to static approaches, dynamic feature location ap-
proaches depend on the availability and quality of test cases for
an executable system. As such, they cannot be applied to incom-
plete code or to code that cannot be executed. In addition, dy-
namic approaches can only identify the code relevant to features
that can be expressed at the user level. These form a proper subset
of the concerns a developer might wish or need to investigate. Of-
ten, developers must investigate code overlapping different features
to understand enough of the system to respect the existing design.
Because it is independent of the execution of specific features, our
static approach does not suffer from this limitation.

2.3 Information Retrieval
Another approach taken to identify the code associated with a

feature is to use information retrieval techniques. Antoniol et al.
proposed an approach to determine a set of components potentially
affected by a maintenance task using a probabilistic analysis of
the text of the maintenance request [2]. This approach, however,
produces results only at the granularity of high-level components
(classes), and cannot be used to identify more fine-grained elements
such as methods.

The SNIAFL technique of Zhao et al. [24] combines an analysis
of the names of functions and identifiers with a call graph analy-
sis to automatically identify the functions associated with a textual
description of a feature. The main tradeoff of SNIAFL is that a
developer must produce a description of all features in a system in
order to be able to fully use the technique.

2.4 Repository Mining
A number of approaches can help developers identify elements

of interest in the context of a software modification tasks through
analysis of a repository of software artifacts. Both Zimmermann et
al. [26] and Ying et al. [23] proposed data mining techniques that
report on elements that are often changed together during program
evolution tasks. This information can help a developer determine
where to look when investigating source code. The advantage of
data mining approaches is that, given enough evidence, the ele-
ments recommended have the potential to be highly relevant. The
main tradeoff of these approaches is the necessity to have a large
history of changes available for analysis. This requirement is espe-
cially true if results are to be computed and reported at the level
of class members. Reliance on change history implies that the
approach cannot be used when tasks address code that was never
changed before.

2.5 Static Dependency Analysis
Most techniques proposed to address the concept assignment

problem include some form of static dependency analysis, from
tool-assisted traversal of dependency paths [5] to automatic searches
for dependencies to elements currently active in an integrated de-
velopment environment [12]. Many of the techniques described
in this section partially involve an analysis of structural dependen-
cies. In the space of purely static analysis-based techniques, the
novelty of our research lies in the analysis of the topology of pro-
gram dependencies, and its use to produce results ranked by degree
of potential interest to a developer.



3. ALGORITHM
Our algorithm for suggesting elements to examine during a pro-

gram investigation task takes as input a set of interest Ī . This set
contains program elements (e.g., fields and methods) identified by
a developer as interesting in the context of the task.1 Our algorithm
then analyzes the structural dependencies between the elements in
Ī and the rest of the program, and produces a suggestion set S̄
containing elements related to Ī with, for each element, a value
indicating its potential interest to the developer.

The general hypothesis underlying our algorithm is that the topol-
ogy of structural program dependencies contains clues that can help
identify elements that are likely to be more worthy of investigation
than others. Specifically, two simple but interacting intuitions guide
the design of our algorithm:

• Specificity. An element y is specific to a set of interest Ī
if any element in Ī related to y is related to few elements
besides y, and if y itself is related to few elements.

• Reinforcement. An element y is reinforced by a set of inter-
est Ī if most elements related to y are in Ī .

For example, if a method m1 ∈ Ī is only called by a single
other method m2, and m2 itself does not call any method besides
m1, then m2 will be highly specific (and potentially interesting
to a developer). Our definition of specificity is motivated by the
hypothesis that elements that are very specific to a set of interest
probably contribute to the implementation of the concept or task
associated with the set of interest.

Reinforcement is orthogonal to specificity and can potentially
compensate for it. For example, if m1 is called by 25 methods, 24
of which are also in Ī , then the remaining method will be highly
reinforced, and thus potentially interesting. Our definition of re-
inforcement is motivated by the hypothesis that if most elements
sharing some structural property are related to a set of interest, it
may be desirable (and the developer may be intending) to investi-
gate all of the elements with this property.

In reasoning about specificity and reinforcement it is useful to
distinguish between direct and transpose (inverse) relations. We
illustrate this concept for specificity in Figure 1. In the figure, ele-
ments A and B are in a set of interest. The specificity for element 1
takes into account that element A relates to two elements (elements
1 and 2, direct relation) and that element 1 is related to no element
other than A (transpose relation). The specificity for element 2 also
takes into account element A’s relation to elements 1 and 2 (direct)
but also the fact that element 2 is related to element 4 (transpose).
For this reason element 2 is less specific than element 1. In the case
of element 3, its specificity is determined by the fact that it is the
only element related to B (direct), but itself is related to three other
elements (transpose). We use direct and transpose relations in the
calculation of both specificity and reinforcement (see Section 3.3
for details).
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Figure 1: Sample program graph to illustrate specificity

1In the context of our algorithm, we take “interesting” to mean
“worthy of detailed investigation”.

3.1 Basic Concepts
Since program investigation is an imperfect process, and since

the results produced by our algorithm indicate a degree of potential
interest, we use fuzzy sets to represent both the set of interest (in-
put) and the suggestion set (output). The human-centric nature of
program investigation makes fuzzy logic a particularly well-suited
tool supporting our algorithm. In our application of fuzzy set the-
ory, we use notation and definitions consistent with the presentation
of Zimmermann [25]. In particular, set variables with an overbar
distinguish fuzzy sets from normal (crisp) sets.

Our algorithm relies on the concepts described below. These
concepts assume the existence of a program P to which the al-
gorithm is applied. Formally, P = (E, R) consists of a set of
elements E and a set R of relations between these elements.

DEFINITION 1 (PROGRAM ELEMENT). A program element
e ∈ E is any element that can be individually investigated by a
developer.

Typical program elements in an object-oriented language include
fields and methods. Although classes can fit the definition, in prac-
tice the amount of code forming their declaration is too large for
them to constitute a unit of investigation for the purpose of our al-
gorithm.

DEFINITION 2 (RELATION). A relation r = (l, e1, e2) ∈ R
is a program dependency of type l between two program elements
e1 and e2.

Typical relations in an object-oriented language include field ac-
cesses and method calls.

DEFINITION 3 (TRANSPOSE). Given a relation r = (l, e1, e2)
∈ R, its transpose is defined as r� = (l�, e2, e1). In any program,
all relations have a transpose, i.e., r ∈ R → r� ∈ R.

For example, if e1 calls e2, then e2 is called by e1.

DEFINITION 4 (SET OF INTEREST). Given a program P =
(E, R), a set of interest Ī = {(e, µĪ(e)) | e ∈ E} is defined as a
fuzzy set with membership function µĪ .

DEFINITION 5 (SUGGESTION SET). Given a program P =
(E, R), a suggestion set S̄ = {(e, µS̄(e)) | e ∈ E} is defined as a
fuzzy set with membership function µS̄ .

In practice, the normalized membership functions µĪ and µS̄ are
specified as sets of ordered pairs, where the first element denotes
a program element and the second its degree of membership [25].
For example: µĪ = {(e1, 0.5), (e2, 0.7)}.

3.2 Main Algorithm
Figure 2 presents the abstracted analysis algorithm. For each

relation type considered, the algorithm calculates a suggestion set
based on the relation type.2 For example, using l = calls will gen-
erate a suggestion set based on the analysis of the methods called
by methods in Ī .

Instead of merging the fuzzy sets obtained for each relation us-
ing the standard union operator for fuzzy sets,3 we define a new
operator � that works slightly differently: if an element x is in the
intersection of both fuzzy sets, the resulting membership degree is
2The set of relation types is a crisp set (no overbar).
3For two fuzzy sets S̄1 and S̄2 with membership functions µS̄1

(x)
and µS̄2

(x) we usually have µS̄1∪S̄2(x) = max(µS̄1
(x), µS̄2

(x)).



1: Param: Ī : Set of interest
2: Param: L: Set of relation types to analyze
3: Var: S̄ = {}: Suggestion set
4: Var: T̄ = {}: Temporary set
5: for all l ∈ L do
6: T̄ = analyzeRelation(l, Ī)
7: S̄ = S̄ � T̄
8: end for
9: return S̄

Figure 2: Main algorithm

higher than both maximums, and calculated using the following
function:

µS̄1�S̄2
(x) = max(µS̄1

(x), µS̄2
(x))

1
1+min(µS̄1

(x),µS̄2
(x)) (1)

We designed our merge function (equation 1) to be symmetri-
cal, to have a range between 0 and 1 (inclusive), and to always
be greater than the maximum of its operands. This last property
is intended to reflect the intuition that if an element is found in
the sets generated through different relations, these repeated occur-
rences reinforce each other. For example, according to this func-
tion, an element (x, 0.75) ∈ S̄1 intersecting with an an element
(x, 0.50) ∈ S̄2 will result in an element with membership 0.83 in
the merged set. The properties of our merge function are obtained
by taking a normalized degree value to a power between 0 and 1
(inclusive). Symmetry is achieved through the use of the min and
max functions.

3.3 Analyzing Relations
The function analyzeRelation is specified in Figure 3. For each

element x in a set of interest (line 8), this function obtains the range
of relation l corresponding to domain x (line 9). For example, for
l = calls, the set Sb contains all the methods called by x. Then,
each range element s ∈ Sb that is not already in the set of interest
(lines 10–11) is added to the suggestion set (line 13) with a mem-
bership degree that is calculated (line 13) by taking into account the
specificity and reinforcement of the element s for both its relation l
and its transpose (line 12), by multiplying this value by the degree
of the element x being analyzed for dependencies, and by taking
the resulting value to the power of α.4 The parameter α is used to
adjust the sensitivity of the algorithm by taking a normalized de-
gree value to a power between 0 and 1. The effect of this operation
is to increase the overall degree value and to decrease differences
between the degree of elements in a suggestion set. Use of an ex-
ponent ensures that the result remains a normalized degree value
(i.e., between 0 and 1). The impact of α on the results is reported
in detail in Section 5.

We designed our algorithm to perform calculations on relations
and their transpose because both directions of a relation can pro-
vide clues that an element might be worthy of investigation. For
example, let us assume that an element x is called by 200 methods.
If one of these 200 methods only calls x and no other methods, then
it is probably more interesting than the 199 other callers because it
is very specific to x. Performing our analysis on the transpose of
each relation allows us to factor in this intuition.

The degree (deg) of the range of a relation is defined in equa-
tion 2. This equation is designed to account for the basic tradeoff
between specificity and reinforcement. The greater the number of
elements in a set that are also in a set of interest (numerator), the
greater the reinforcement. The greater the number of elements in
4The union operation of line 13 uses the traditional definition of
unions for fuzzy sets (using the maximum values of membership
functions).

1: Assumes: P = (E, R): A program
2: Param: Ī = {(x, µĪ(x)) | x ∈ E}: Set of interest
3: Param: l ∈ {r | (r, e1, e2) ∈ R}: Relation type to analyze
4: Param: 0 ≤ α ≤ 1: A calibration parameter
5: Var: Sb ∈ E: A (crisp) set of program elements
6: Var: Sf ∈ E: A (crisp) set of program elements
7: Var: Z̄: The (fuzzy) set to be returned
8: for all x ∈ Ī do
9: Sb = {y | (l, x, y) ∈ R}

10: for all s ∈ Sb do
11: if s /∈ Ī then
12: Sf = {y | (l�, s, y) ∈ R}
13: Z̄ = Z̄∪{(s, (µĪ(x) ·deg(1, Sb, Ī) ·deg(0, Sf , Ī))α)}
14: end if
15: end for
16: end for
17: return Z̄

Figure 3: Function analyzeRelation

a set (the denominator), the smaller the specificity. An additional
unit is added when using the range of the direct relation (line 9),
since this range may be completely disjoint from the set of inter-
est. This case cannot occur with the transpose relation (line 12)
since, by definition, at least one element (x) will be part of the set
of interest Ī.

deg(t, U, V̄ ) =
t + |U ∩ V̄ |

|U | (2)

3.4 Example
Our algorithm can best be illustrated through an example. We

use an example from the JHotDraw drawing application (version
5.4 beta 2).5

As a set of interest, we choose two elements in class Draw-
Application: method tool() and field fTool, and apply the
algorithm with the relations called by, calls, accesses, and accessed
by and parameter α = 0.25.

tool()

fTool

setTool(…)

1 2 3 4 5

calls

accesses

x4 x4 x4 x5 x29

x32

Figure 4: Partial dependencies in JHotDraw

The execution of analyzeRelation with l = called by (line 9 of
Figure 3) yields six callers, represented in Figure 4 by the five num-
bered nodes and the setTool(...) node. In the figure, elements
in the set of interest Ī are shaded gray. Since none of the six nodes
is in Ī , their direct degree is 1/6 (equation 2). For each of the
six methods in the range, the range of the transpose relation (calls)
is calculated, and shown on the figure by an arrow indicating the
number of callees. For example, method setTool(...) calls 33
5http://www.jhotdraw.org



methods: tool() and 32 other ones (names not important). Since
fTool is a field and not called by any method, a first suggestion
set (line 6 of Figure 2) can already be generated for the called by
relation:

method 1 2 3 4 5 setTool(...)

degree 0.43 0.43 0.43 0.41 0.27 0.27

At this point the degree for setTool(...) as calculated using
the called by relation is relatively low. This value is calculated by
multiplying 1/6 (direct relation) by 1/33 (transpose relation) and
taking the result to the power of 0.25. The value is low mostly be-
cause setTool(...) has low specificity with respect to the calls
relation (it calls 32 methods besides tool()).

The second iteration analyses the relation calls and yields an
empty suggestion set since none of the elements in the set of in-
terest call anything. The merge operation thus produces exactly the
suggestion set above.

The third iteration analyses the relation accesses. This analysis
also yields an empty suggestion set since tool() only accesses the
field fTool and this element is already in the set of interest.

The final iteration analyses the relation accessed by and consid-
erably changes the suggestion set. The method tool() is of course
not accessed by anything so the analyses focuses on fTool. As
shown in Figure 4, fTool is only accessed by two methods (tool
and setTool), yielding a high specificity. Furthermore, one of the
methods (tool()) is already in the set of interest, yielding a high
reinforcement for the remaining range (method setTool(...)).
The degree for the direct relation is thus (1 + 1)/2 = 1. In ad-
dition, setTool only accesses a single field, fTool itself. This
yields a transpose degree of 1/1 = 1. As a result, the final degree
for setTool(...) is 1. The final suggestion set is:

method 1 2 3 4 5 setTool(...)

degree 0.43 0.43 0.43 0.41 0.27 1.00

This result has a meaningful application since setTool is a non-
trivial mutator of fTool, and would likely need to be investigated
by a developer interested in understanding the mechanism for man-
aging drawing tools in JHotDraw. In this case, the name of the
method is a good indication of its relevance to the set of interest.
However, the strength of our technique is that the same result would
have been obtained even if the method had not been appropriately
named. Furthermore, in the case where large numbers of depen-
dencies must be considered, developers may not always deem it
cost-effective to read the name of each element returned in the re-
sult of a cross-reference search. In such cases, our technique can
help by automatically ranking elements based on our specificity-
reinforcement criterion.

3.5 Complexity
The space complexity of our suggestion algorithm is negligible

as it only needs temporary storage for small subsets of an entire
program.6 The time complexity is linear in the cardinality of the set
of interest Ī used as input to the algorithm. More precisely, given
the inputs L (set of relations) and Ī (set of interest), and assuming
that the upper bound on the number of dependencies to a program
element is a small constant, the execution time of the algorithm can
be modeled as O(|L| × |Ī|).
6The static analysis required to execute the algorithm is discussed
in Section 4.1.

4. CURRENT IMPLEMENTATION
We built a prototype implementation of our proposed algorithm

to analyze Java programs using the four relations: calls, called by,
accesses, and accessed by. Our current implementation of the al-
gorithm relies on an in-memory program database storing all the
relation tuples (l, x, y) ∈ R.

4.1 Static Analysis
The program database is built by parsing all source code files in

a software system, detecting relations between different elements,
and inserting each relation and its transpose in the database. The
time complexity of this phase of the algorithm is linear in the to-
tal number of lines of source code in the program, and the space
complexity is linear in the total number of relations recorded (also
a direct factor of the total size of the program).

To ensure that the results would be as useful as possible, we have
implemented the function returning the range of a relation (lines
9 and 12 of Figure 3) to return only the elements defined in the
source code analyzed (as opposed to binary libraries). This way,
library elements that are typically not investigated by developers
are left out of the analysis and, in consequence, of the suggestion
sets produced.

Another important consideration when designing the static analy-
sis used to build the program database was the specification of the
semantics of the calls relation with respect to virtual calls. Two
main alternatives are possible, namely, to consider a calls relation
to be between:

1. the caller and the static method called as determined through
type checking.

2. the caller and all method implementations potentially invoked
through dynamic binding.

In the context of our algorithm, both alternatives have advantages
and disadvantages. On one hand, using only static types will result
in fewer dependencies and has thus a better chance of identifying
important relations. However, certain related elements may not be
identified if they are only accessed through dynamic calls. On the
other hand, traversing class hierarchies to infer methods potentially
called will elicit more dependencies but, in the case of large class
hierarchies making an important use of overriding, this may result
in an artificially low level of specificity. To investigate how these
factors play out in practice, we implemented our prototype with the
two alternative semantics for the calls and called by relations: to
include only static bindings, and to include all methods potentially
called as generated using class hierarchy analysis (CHA).

4.2 Tool Support
We implemented our algorithm as an Eclipse plug-in. Eclipse is

an integrated software development environment supporting the ad-
dition of functionality [14]. Our plug-in performs the static analy-
sis by parsing the Java files that are part of an Eclipse project. The
graphical user interface support for using our algorithm was de-
signed to be as simple to use as possible. Our implementation thus
consists of a single tree view. Developers can create and name
boxes representing sets of interest (the roots of the trees), and drag
and drop Java elements from Eclipse views into each box. It is
possible to adjust the membership degree of each element in a set
of interest through a slider bar, and to filter out all elements with
a membership degree lower than a user-specified threshold. Click-
ing a button in the main Eclipse tool bar (not shown) applies the
algorithm to a selected set of interest, which automatically gets
extended with the suggestions set. Figure 5 shows a view of our
plug-in.



5. QUANTITATIVE EVALUATION
As part of the evaluation of our technique, we were interested

in studying how the algorithm would behave in realistic conditions.
Understanding the basic behavior of the algorithm was our first step
in assessing the general usability of the technique. A qualitative
evaluation of the usefulness of the approach in the context of a
program investigation task is presented in the next section.

For our quantitative evaluation, we were specifically interested
in determining:

• The typical size of suggestion sets produced for a singleton
set of interest.

• The impact of the parameter α on the degree of the elements
in the suggestion set, when using both static signatures and
CHA to determine the calls relation.

• The stability of the relative order of membership degree for
the elements of a suggestion set with respect to varying α
and semantics for the calls relation.

An analysis of each of these factors helped us better configure
the parameters of the algorithm and understand its output. To study
the factors mentioned above, we ran different configurations of the
algorithm on a series of sets of interest consisting of a single ele-
ment. Although singleton sets of interest generally do not exercise
the reinforcement aspect of the algorithm (except in the case of
two-element cycles), they exhibit important properties that make
them a very good baseline for studying the behavior of the algo-
rithm. These properties are discussed below, where applicable.

As targets for this experiment, we used two open-source systems
designed for different application domains: the JHotDraw draw-
ing program mentioned in Section 3.4 and the Azureus BitTorrent
client. 7 Both of these systems are developed in Java and Table 1
lists their characteristics as computed by the LOCC analysis pro-
gram version 3.3.8

To derive sets of interest on which to apply our algorithm, we
first selected the five classes in each system that were the most
modified (i.e., whose corresponding file had the highest revision
number in the CVS repository). We chose these classes because we
hypothesize that heavily modified program segments are likely to
be modified again, and thus form natural targets for our technique.

7http://http://azureus.sourceforge.net/
8http://csdl.ics.hawaii.edu/Tools/LOCC/LOCC.html

Figure 5: Graphical user interface for our suggestion algorithm

Table 1: Characteristics of Target Systems
System # Types # Methods LOC

JHotDraw version 5.4 beta 2 302 2682 20,985
Azureus version 2.2 1415 7948 128,214

Table 2: Classes Analyzed
Class Revision # Members

DrawApplet 14 57
DrawApplication 31 110
JavaDrawApp 18 19
StandardDrawingView 30 114
TextFigure 19 61

ConfigView 181 26
DiskManagerImpl 193 77
MyTorrentsView 176 73
PEPeerControlImpl 207 165
TRTrackerClientClassicImpl 149 105

We then created singleton sets of interests with each element (field
or method) in each of the 10 classes chosen. Not surprisingly, most
of the 10 classes selected with our criterion were complex classes
with a large number of elements. In total, we obtained 807 differ-
ent singleton sets of interest. We then applied our algorithm to each
set for an α value varying between 0.1 and 0.9 in 0.2 increments,
and using both CHA and static bindings for the calls relation and
its transpose.

Table 2 lists each class analyzed, its revision number, and the
number of elements it declares. The top five classes in the table are
from JHotDraw and the bottom five from Azureus.

5.1 Size of Suggestion Sets
The first question we investigate is what is the typical size of

a suggestion set? The size of a suggestion set is the number of
elements in relation with the elements in the set of interest. This
number is independent from the value of the α parameter. In this
case it is useful to analyze singleton sets of interest since suggestion
sets for more than one element will be bounded by a multiple of
this value corresponding to the number of elements in the set. In
other words, the size of a suggestion set for a set of interest of two
elements will be at most the sum of the size of the suggestion sets
corresponding to the sets of interest for each individual element.
Table 3 shows the average and maximum size of suggestion sets
for elements in each of the 10 classes (the minimum is 0 or 1 in
most cases). In the table, the column labels with suffix “-S” indicate
results using static bindings and the column labels with suffix “-C”
indicate results using CHA. We make three principal observations
from this data.

• On average users of the algorithm can expect relatively small
suggestion sets for a singleton set of interest. Applying the
algorithm without CHA over the 807 test sets yields an aver-
age suggestion set size of 4.8, with per-class averages in the
interval [3.6–6.1].

• A small number of elements yield much larger suggestion
sets. The maximum values calculated help us determine the
worst case scenario. For example, the largest suggestion set
produced with our analysis contains 80 elements. A sugges-
tion set generated from two elements with non-overlapping
suggestion sets can thus yield a suggestion set of 160 ele-
ments. In such cases, it is unrealistic for developers to look



Table 3: Size of suggestion sets
Class Avg-S Max-S Avg-C Max-C

DrawApplet 3.9 19 5.7 30
DrawApplication 3.9 29 5.5 46
JavaDrawApp 4.4 33 5.4 34
StandardDrawingView 3.6 22 8.4 70
TextFigure 4.3 19 7.6 53

ConfigView 4.7 31 9.9 80
DiskManagerImpl 5.6 51 8.3 64
MyTorrentsView 4.6 23 5.9 24
PEPeerControlImpl 6.1 31 8.8 86
TRTrackerClientClassicImpl 5.6 46 6.4 51

Aggregated Values 4.8 51 7.3 86

at all of the elements suggested. It is exactly for this reason
that we have designed our algorithm to produce fuzzy sets:
developers can automatically filter out elements with a low
degree from the suggestion set.

• Applying the algorithm with CHA invariably generates larger
suggestion sets. This result is not surprising since using CHA
can only add dependencies. The empirical data documents
the extent of the phenomenon.

5.2 Parameterization of the Algorithm
Using the algorithm in practice requires choosing a value for the

α parameter. To assess how the parameter value impacts the results
of the algorithm, we analyzed the data produced by running our al-
gorithm on our 807 test sets under the 10 different configurations
mentioned earlier. For each suggestion set produced, we counted
the number of elements with degree above 0.5. This strategy was
designed to produce values that would indicate what a developer
would see as suggestions when using a filtering threshold of 0.5. To
give a sense of the variability of the results, we average over each
class. Figure 6 shows the results of this analysis. Each bar in the
graph represents the ratio of elements with degree above 0.50 for a
specific class under a specific configuration of the algorithm. We
tested the 10 configurations (five values of α with both static bind-
ings and CHA), for all elements in all 10 classes. White columns
represent JHotDraw classes and grey columns represent Azureus
classes. The suffix “-S” denotes configurations using static binding
while “-C” denotes use of CHA to calculate the calls relation.

We make four observations based on this data.

• For a given semantics of the calls relation, ratios are exactly
the same for α = 0.9 and α = 0.7.

• For values of α >= 0.7 many suggestion sets contain no or
very few elements above 0.5.

• For values of α = 0.1 almost all of the elements in the sug-
gestion set have a degree above 0.5.

• There is significant variability in the ratio of elements above
0.5, both between classes and between applications.

The first three observations synthesize the exponential impact of
the α parameter on degree values. Given that α is used as a expo-
nent in the unit interval it is expected that its impact will not be felt
beyond a certain threshold. Our experiment documents this thresh-
old as measured with 807 suggestion sets of varying size. Varia-
tions observed between different classes can partially be explained
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Figure 6: Per-class ratio of elements with degree above 0.5 in
the suggestion sets

by the different roles that classes play in class hierarchies. As an
example, we can contrast two classes from the JHotDraw system
under the α = 0.3 configuration with CHA. The class generating
the highest ratio of high-degree elements is JavaDrawApp (35%),
while the class with the lowest ratio is TextFigure (17%). In-
spection of the program shows that TextFigure is part of a deep
class hierarchy heavily using polymorphism, while JavaDrawApp
is the entry point to the application. For this reason, specificity for
TextFigure is expected to be lower, and correspondingly so is the
number of high-degree elements.

These observations provide us with two valuable results. First,
the most useful value of α is in the interval 0.1 < α < 0.7. Second,
the variability observed between classes indicates that we should
not treat degree values as an absolute measure of how interesting
an element is, but rather as a relative measure in the context of a
suggestion set.

5.3 Stability of the Algorithm
The last observation described in the previous section indicates

that the relative order of elements in a suggestion set according
to their degree is more important than the absolute value of their
degree in helping a developer determine potential elements of in-
terest. Because of this result, we wanted to ensure that the order of
elements was stable. We thus recorded the element with the high-
est degree in the suggestion set produced for each set of interest for
each configuration and analyzed whether this element was the same
across all 10 configurations. Table 4 shows the results for each class
and the aggregated results for all 807 sets of interest. In the table,
the column labeled Ratio shows the ratio of suggestion sets whose
element with highest degree does not change across all configura-
tions to all of the sets generated from elements of this class. The
column labeled Var shows the maximum number of elements with
highest degree. For example, for 95% of the sets generated from el-
ements of class DrawApplet the element with the highest degree in
the suggestion set is the same regardless of the algorithm’s parame-
ters. For the three remaining sets, the element with highest degree
varies only between two alternatives. Overall, 86% of the 807 sets
tested have the same element of highest degree independent of the
configuration chosen. This data indicates that the algorithm is gen-
erally stable in its recommendation of the most interesting element.



Table 4: Ratio of stable sets
Class Ratio Var

DrawApplet 95% 2
DrawApplication 90% 3
JavaDrawApp 84% 3
StandardDrawingView 82% 2
TextFigure 77% 3

ConfigView 85% 2
DiskManagerImpl 90% 2
MyTorrentsView 82% 2
PEPeerControlImpl 80% 2
TRTrackerClientClassicImpl 93% 2

Aggregated Results 86% 3

6. CASE STUDIES
In the previous section, we quantitatively assessed the nature of

the results generated by our algorithm. Although this analysis pro-
vides us with useful insights into the behavior of the algorithm un-
der realistic conditions, it does not provide evidence that the algo-
rithm is useful to software developers. This section presents two
case studies intended to build a body of evidence that the analysis
of topologies in the structural dependencies of a program can help
suggest methods of interest to developers investigating source code.
We selected our case studies by identifying, in each target system,
a high-level concern that was partially implemented by one of the
five most modified classes (i.e., the classes identified in the previ-
ous section).

6.1 JHotDraw Study
Our first case study discusses a scenario of program investigation

involving class TextFigure. This class represents a box where
users of JHotDraw can enter and edit text. In the version of JHot-
Draw used, TextFigure supports three attribute types: font size,
font style, and font name (in addition to general attributes supported
by a super class). Let us assume that a developer is asked to en-
hance the class to support additional attribute types. This is not
a trivial task as the mechanism for attaching attributes to figures
is much more elaborate than simply adding a key-value pair to a
properties object. For example, in class TextFigure there are two
methods named setAttribute, one of which is 24 lines of source
code long.

We used our Eclipse plug-in and built a set of interest consisting
of the two methods of TextFigure named getAttribute and
the two methods named setAttribute. This is a realistic starting
point for a developer unfamiliar with the code of JHotDraw since it
consists of all of the members of TextFigure containing the text
string “atttribute”.

Applying our algorithm to this set with α = 0.3 and CHA
yielded the suggestion set of Table 5.

This suggestion set is small enough to be completely investi-
gated. Going through the list, we selected each member likely to
be helpful in understanding the mechanism for setting attributes on
a TextFigure (in bold in the list). Our justification is as follows.
Elements 1 and 5 are selected because they help understand the
mechanism used to create and manage constants attached to prop-
erties. Elements 3, 4, and 8 are selected because they are the con-
stants referring to the properties of a TextFigure. Elements 6 and
10 are selected because they are the getter and setter methods for a
font object. Finally, element 7 is added because it contains a call
to generate default font properties. Elements 2 and 9 are rejected
because they only access the properties and provide no insight into

Table 5: Suggestion set for JHotDraw: first iteration

# Element Degree
1 FigureAttributeConstant.getConstant(...) 0.62
2 AttributeFigure.writeObject(...) 0.60
3 FigureAttributeConstant.FONT SIZE 0.55
4 FigureAttributeConstant.FONT STYLE 0.55
5 FigureAttributeConstant.equals(...) 0.55
6 TextFigure.getFont() 0.52
7 TextFigure.TextFigure() 0.52
8 FigureAttributeConstant.FONT NAME 0.49
9 TextFigure.drawFrame(...) 0.42
10 TextFigure.setFont(...) 0.41
11 DecoratorFigure.getAttribute(...) 0.40
12 GraphicalCompositeFigure.getAttribute(...) 0.40
13 AtttributeFigure.setAttribute(...) 0.39
14 AttributeFigure.getAttribute(...) 0.37
15 DecoratorFigure.setAttribute(...) 0.36
16 GraphicalCompositeFigure(...).setAttribute(...) 0.36
17 GroupFigure.setAttribute(...) 0.32

Table 6: Filtered suggestion set for JHotDraw: second iteration

# Element Degree
1 TextFigure.createCurrentFont(...) 0.89
2 DrawApplication.createFontStyleMenu() 0.86
3 DrawApplication.createFontSizeMenu() 0.86
4 TextFigure.fFont 0.78
5 DrawApplication.createFontMenu() 0.78
6 DrawApplet.createFontChoice() 0.78
7 ColorMap.color(...) 0.72
8 FigureAttributeConstant.FigureAttributeConstant(...) 0.72
9 FigureAttributeConstant.getConstant(...) 0.72
10 AttributeFigure.initializeAttributes() 0.64
11 AttributeFigure.writeObject(...) 0.64
12 FigureAttributeConstant.getName() 0.62

the mechanism. Elements 13 and 14 are rejected because they deal
with general attributes not specific to TextFigure, and all other
elements are rejected because they are simply wrappers forwarding
calls to setAttribute and getAttribute.

After this first iteration, we created a second set of interest by
adding all the elements selected in the suggestion set to the initial
set of interest and raising their degree to 1.0. We then applied the
algorithm to this second set of interest to generate a broader sug-
gestion set. The suggestion set generated in this way contained
58 new elements scattered in 25 different classes. In such a case,
the possibility of filtering off elements based on their membership
degree becomes a necessity. Since there were 28 elements in the
suggestion set with a membership degree equal to or above 0.5, we
filtered with the more restricting value of 0.6 instead, yielding the
following suggestion set of 12 elements shown in Table 6.

Among these 12 elements, only two (7 and 11) are not relevant.
Most other elements can be considered very relevant. In particular,
element 1 creates the default font used for new text figures, and el-
ements 2, 3, and 5 create the menus that allow users to modify the
font attributes of text figures. A developer wishing to add a new at-
tribute would most likely have to understand these methods. Within
the elements with membership degree lower than 0.60, a detailed
inspection finds that only two other elements would also clearly be
useful to investigate. These elements are listed in Table 7 with their
order in the sorted list of members, and their memberships degree.
The complete suggestion set produced is available on our website. 9

This case study illustrates that our algorithm can be used to
quickly identify a core set of elements of interest. Because the
algorithm only selects direct dependencies to elements in the input

9http://www.cs.mcgill.ca/˜martin/esecfse2005



Table 7: Other relevant elements in the second suggestion set
for JHotDraw

# Element Degree
15 FigureAttributeConstant.getID() 0.58
35 DrawApplet.setupAttributes() 0.42

set, it is clear that a single iteration does not produce the complete
set of elements of interest to a developer. However, applying the al-
gorithm for a small number of iterations can mitigate the painstak-
ing manual inspection of dependencies needed to build a core set
of elements to investigate. Since there is evidence that a a good
starting point can lead to more productive program investigation
activities [17], techniques that can inexpensively provide this start-
ing set have to potential to lead to a significant improvement in the
efficiency of program investigation activities.

6.2 Azureus Study
Our first case study provides basic evidence of the usefulness of

the algorithm, but is subject to investigator bias. We performed
a second case study to gather similar evidence that would not be
biased in the same way. For this study, we chose to generate a
suggestion set intended to help a developer understand the file al-
location concern of the Azureus system. In Azureus, disk space
for files that are to be downloaded can be allocated using differ-
ent strategies, and their implementation is scattered across multiple
classes. Some of the implementation of the file allocation concern
is located in the file DiskManagerImpl. As described in Section 5,
this a large, complex class that has been modified multiple times.
As a result, it is a target of choice for our analysis. As our set of
interest, we selected all the members of DiskManagerImpl that
had the word “allocation” or a variant in it. This resulted in a set
of one field and three methods. We applied our algorithm on this
set of interest with CHA and α = 0.3. The resulting suggestion
set comprised 54 elements, which we merged with the set of inter-
est to produce a set of fields and methods of potential interest to
a developer wishing to understand the implementation of the file
allocation concern.

We then asked two experts to evaluate the results and to qualify
each element in the set according to its relevance. The two experts
were graduate students who had conducted a detailed analysis of
the file allocation concern in Azureus as part of a course project.
The experts had performed their analysis using the FEAT concern
modeling tool,10 the SA4J static analysis tool,11 the JProbe pro-
filer,12 and manual analysis of the source code.

The experts were asked to look at each element in the merged
set and answer the question “is this element relevant to a developer
trying to understand how files are allocated in Azureus?”, using
the answers “Yes”, “No”, and “Somewhat”. The experts were also
asked to justify their decisions. The experts were unaware of the
reason why their expertise was required or how the list of elements
had been generated. The degree value for each element in the set
was not revealed.

Working as a team for over one hour and using the features of
Eclipse, the experts produced a qualification of each element in the
suggested set. Out of 58 elements in the list, 31 (53%) were marked
as relevant, 12 (21%) were marked as somewhat relevant, and 15
(26%) were marked as not relevant. Since the experts worked as a
team, their classification was consensual and reflected their overall
combined knowledge of the system.

We then analyzed whether elements identified as relevant by the

10http://www.cs.ubc.ca/labs/spl/projects/feat
11http://www.alphaworks.ibm.com/tech/sa4j
12http://www.quest.com/jprobe/index.asp

experts were associated with high membership degree as generated
by our technique. To this end, we sorted all elements by descending
membership degree and counted the number of relevant, somewhat
relevant, and irrelevant elements in different intervals. Figure 7
shows the results. In the figure, the middle bar represent the ra-
tio over the entire set of 58 elements. Bars to the left represent
intervals of high-degree elements and bars to the right intervals of
low-degree elements. From this figure, we clearly see that, over-
all, elements marked by our algorithm with a high degree were also
relevant to developers. For example, among the 10 elements with
highest degree (including the 4 elements with degree 100 used as
set of interest), 9 are marked as either relevant or somewhat rel-
evant. On the other hand, of the bottom 10 elements only 5 are
marked as relevant or somewhat relevant. In general, for all top
intervals (as calculated with our algorithm), the ratio of relevant
elements (as determined by the experts) is above average, and vice-
versa for bottom intervals. In brief, the Azureus study documents
a realistic case of a program investigation task where high-degree
elements produced by our algorithm corresponded to elements of
interest for a developer performing the task.
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Figure 7: Ratio of relevant elements for different intervals

7. DISCUSSION
7.1 Experimental Critique

The observations of Section 5 are influenced by our choice of
sample sets. These sample sets are come from very specific sources:
members of heavily modified classes in two specific systems. For
these reasons, the quantitative evaluation of our algorithm may not
be representative of the average use by a developer. However, we
surmise that our general observations will generalize since they are
based on results that are consistent over a population of suggestion
sets that greatly vary in size (see Table 3).

The validity of the evidence gathered as part of our case studies is
influenced by a number of factors. We describe the most important
of these factors here, along with our efforts to limit them.

The interpretation of the JHotDraw case study is based on a sub-
jective assessment of the relevance of each element generated by
our technique. However, the complete list of elements generated
is made available, and the detailed justification for the relevance
assessment is included in the paper. This level of detail allows in-
dependent researchers to understand our results in the light of their
own interpretation. The evidence provided by the JHotDraw study
is also corroborated by a second case study where independent ex-
perts evaluated the relevance of the results of the algorithm. This
strategy limits the influence of investigator bias to the selection of
the set of interest associated with the file allocation concern. How-



ever, this set of interest was obtained by pattern-matching a regular
expression and not through an ad-hoc selection. The experts’ eval-
uation is also made public, so that it can be assessed independently.
The case studies thus provide reliable evidence that the technique
can be useful in realistic conditions.

Our studies also did not assess the number of relevant elements
not uncovered by the technique. Given the early development stage
of our technique and the difficulty of obtaining a reliable bench-
mark of all of the code of a system relevant to a concept, we post-
poned the evaluation of recall to future work.

Finally, at this stage of the research it is also difficult to deter-
mine how well the results will generalize to different types of soft-
ware modification tasks. Although our initial experience is encour-
aging, more elaborate empirical testing will be required to help us
answer this question.

7.2 Additional Applications of the Technique
An important number of techniques in software engineering rely

on the creation and maintenance of links between source code and
other artifacts. Examples include many of the techniques discussed
in Section 2, but also approaches to model the implementation of
concerns in source code [16] and to automatically associate source
code with the elements of a UML model [6]. The basic question
many of these approaches try to answer is: given a concept, con-
cern, feature, model, or other high-level construct, what source
code corresponds to this construct? Unfortunately, the answer to
this question is very seldom crisp. For example, if a feature uses
a general library function m, should m be associated with the fea-
ture? While including m may be useful in certain cases, in other
contexts it may not. Our proposed technique can be used to allevi-
ate the problem of deciding which elements to include in a concept
mapping structure by supporting fuzzy boundaries. In other words,
given a crisp set describing program elements associated with a
high-level concept, applying our algorithm is equivalent to auto-
matically extending the boundaries of the set to include elements
directly related (according to specific static dependencies) to the
elements in the set, but whose degree of association with the set is
weighted according to our criteria of specificity and reinforcement.

8. CONCLUSION
In this paper, we presented a technique to automatically suggest

elements of potential interest to a developer involved in a program
investigation task. Our technique takes as input a set represent-
ing elements of interest to a developer and produces a fuzzy set of
related elements, whose degree of membership is calculated by an-
alyzing how specific an element is to the set of interest, and how its
relation to the set of interest is reinforced by existing relations to
other elements in the set of interest. The intuition behind our tech-
nique is that analyzing the topological properties of the structural
dependencies of a software system can help determine the potential
for an element to be worthy of detailed investigation by a developer.
A qualitative study of the results produced for two sets of inter-
est describing useful concepts in medium-size systems shows that
our algorithm can help developers quickly select program elements
worthy of investigation while avoiding less interesting ones.
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