
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Wikifying Software Artifacts

Mathieu Nassif · Martin P. Robillard

Received: date / Accepted: date

Abstract
Context. The computational linguistics community has developed tools, called
wikifiers, to identify links to Wikipedia articles from free-form text. Software
engineering research can leverage wikifiers to add semantic information to
software artifacts. However, no empirically-grounded basis exists to choose an
effective wikifier and to configure it for the software domain, on which wikifiers
were not specifically trained.
Objective. We conducted a study to guide the selection of a wikifier and its
configuration for applications in the software domain, and to measure what
performance can be expected of wikifiers.
Method. We applied six wikifiers, with multiple configurations, to a sample of
500 Stack Overflow posts. We manually annotated the 41 124 articles identified
by the wikifiers as correct or not to compare their precision and recall.
Results. Each wikifier, in turn, achieved the highest precision, between 13%
and 82%, for different thresholds of recall, from 60% to 5%. However, filtering
the wikifiers’ output with a whitelist can considerably improve the precision
above 79% for recall up to 30%, and above 47% for recall up to 60%.
Conclusions. Results reported in each wikifier’s original article cannot be gen-
eralized to software-specific documents. Given that no wikifier performs uni-
versally better than all others, we provide empirically grounded insights to
select a wikifier for different scenarios, and suggest ways to further improve
their performance for the software domain.

Keywords Wikipedia · Wikification · Comparative Evaluation · Stack
Overflow · Knowledge-Driven Software Engineering

M. Nassif · M. P. Robillard
School of Computer Science
McGill University
Montréal, Canada
E-mail: {mnassif, martin}@cs.mcgill.ca

2 Mathieu Nassif, Martin P. Robillard

1 Introduction

Recent work in software engineering has used knowledge bases extensively
to address various challenges associated with knowledge-intensive tasks. For
example, Chen et al. (2018) and Ye et al. (2016c) learn word embeddings
from Stack OverflowA and WikipediaB (respectively) to improve recommender
systems for libraries and software documents, respectively.1 Patil (2017) ag-
gregates bug reports based on an explicit semantic analysis approach using
Wikipedia entries as concepts. Other research work proposes foundational
techniques that can in turn help address software engineering problems. Ex-
amples include a technique to cluster source code elements (Schindler et al.,
2015), and another to categorize technology terms (Nassif et al., 2020), both
of which leverage Wikipedia and/or Stack Overflow as knowledge bases.

With prior efforts devoted to the creation of authoritative software engi-
neering knowledge bases (ISO/IEC/IEEE, 2017; Bourque and Fairley, 2014)
and to the design of techniques to automatically generate them (e.g., Wang
et al., 2019; Zhao et al., 2017), software engineering research on knowledge
management has a large space of resources to leverage. However, a common
challenge in this area is to associate natural language resources, such as code
comments, bug reports, blog posts, or tutorials sections, with relevant entries
in a knowledge base.

Wikification, a prolific sub-area of computational linguistics that matured
over the past decades, addresses this challenge: wikification tools (also known
as wikifiers) can automatically associate concepts mentioned in a natural lan-
guage document to a relevant entry in a knowledge base (typically Wikipedia).
These associations are usually added to the document itself as hyperlinks to
help readers understand unfamiliar terms. Thus, software engineering tech-
niques can leverage mature wikification techniques to automatically link tech-
nical documents to supporting resources, either to help readers better un-
derstand the resource, or to improve other information retrieval techniques.
However, wikification research targets well-written and general-domain docu-
ments (Hoffart et al., 2011; Cheng and Roth, 2013; Brank et al., 2017; Milne
and Witten, 2008),2 and it is unclear how well it can address the peculiarities
of software-specific documents.

Software engineering terminology adds complexity to the wikification task,
because many common terms have a specific technical sense. For example, a
“lock” in the software domain can refer to a concurrent programming concept,
or a file access restriction, but less likely to the physical security device. Simi-
larly, “Python” more often refers to the programming language than a type of
snake. The fast-growing list of technologies, many of them named using com-
mon terms, makes the problem of terminology even more challenging (Nassif
et al., 2020).

1 Uppercase letters in superscript (e.g., A) refer to URLs listed in Appendix A.
2 There are a few exceptions of tools that target specific types of documents, such as

Twitter messages (tweets) (Cassidy et al., 2012).

Wikifying Software Artifacts 3

A second challenge originates from the peculiar format of software re-
sources. They often include code fragments, either in distinct blocks or in-
serted directly in the text. Source code identifiers (e.g., names of variables
and types) can also appear in the text without any special formatting, and
often in different morphological forms (Chen et al., 2017), which makes them
hard to distinguish from natural language words (Ye et al., 2018). This mix
of code and natural language leads to an uncommon syntax and many out-
of-vocabulary tokens, two challenging aspects of natural language processing.
Thus, the impact of the peculiar format of software resources on wikification
is hard to reliably estimate.

Recent work proposed software-specific techniques related to wikification
(Ye et al., 2016a), but no end-to-end wikification technique exists yet for soft-
ware resources, or even evaluations of general techniques on a software-related
dataset. Thus, to facilitate the use of wikification technologies in software
engineering, the main contribution of this article is an in-depth in-
dependent comparative study of the effectiveness of six wikifiers on
Stack Overflow posts. The objective of this study is to determine precisely
how well different wikifiers can identify relevant Wikipedia articles in software
resources. This study gathers substantial empirical evidence on which to base
the selection of a particular wikifier, as well as values for its configuration
parameters.

Perhaps surprisingly, we found that different wikifiers are the most precise
for different recall values, which demonstrates the need to carefully choose
the right wikifier and configuration. Overall, however, the JSI wikifier (Brank
et al., 2017) is the most flexible to accommodate various trade-offs between
precision and recall. Additionally, we contribute:

– an assessment of the performance of wikifiers on Stack Overflow posts as
an example of software resources, which, as the results show, differs greatly
from the performance reported in the original articles;

– empirically grounded insights to improve the performance of wikifiers for
the software domain, either with the use of white- and blacklists to filter
the output, or based on an investigation of the synergy between the output
of different wikifiers;

– a validated list of 1098 Wikipedia titles associated to computing, that can
be used as a seed to scope the coverage of computing concepts of Wikipedia,
especially for knowledge graph research in software engineering.

All data used in this study, as well as the results of the manual annotation
phase and the list of 1098 validated Wikipedia computing titles, is available
in an on-line appendix at https://doi.org/10.5281/zenodo.3727035. This
on-line appendix supports the independent verification and full replication of
the findings of this study.

https://doi.org/10.5281/zenodo.3727035

4 Mathieu Nassif, Martin P. Robillard

Fig. 1: Excerpt from the Software systemD Wikipedia article. Links to other
articles appear in blue boxes.

2 Background on Wikification

The term wikification refers to the process of adding links to relevantWikipedia
articles from a natural language document, so that the reader of the document
can easily find description of pertinent related concepts. The result of this pro-
cess is similar to existing Wikipedia articles (hence the name) which contain
internal links to other articles. The wikification process was originally a manual
process: authors of Wikipedia articles would explicitly add links to other arti-
cles. As the popularity of Wikipedia grew, and authors of non-Wikipedia doc-
uments started to link to Wikipedia (e.g., from Stack OverflowA and RedditC

posts, Vincent et al., 2018), researchers designed tools, called wikifiers, to
automatically perform wikification on custom text inputs. Organizations use
wikifiers, for example, on news articles to refer readers of the document to
contextual or prerequisite knowledge helpful to understand a news item.

For example, Figure 1 shows the first two paragraphs of the Wikipedia ar-
ticle Software system,D which contain fourteen links to eleven unique articles.3
The objective of a wikifier is to automatically discover the same links as those
identified by humans when given the raw text of the article as input.

In the context of wikification, a mention represents the fragment of text
in the document that is associated with the Wikipedia article. In Figure 1,
the first mentions in the first paragraph are system, components, and soft-
ware. Mentions can consist of multiple words, such as computer system. In
some cases, the Wikipedia article associated with a mention has a title that

3 We mark titles of Wikipedia articles with a different Font.

Wikifying Software Artifacts 5

differs from the mention, as is the case for the mention components, associ-
ated with Software component (itself redirecting to Component-based software
engineering).

Typically, to evaluate wikification results, it is not sufficient to identify a
set of related Wikipedia articles. Wikifiers must also associate these articles
to the correct mention. For example, in Figure 1, a wikifier must associate the
article System with the mention system, and not other terms such as inter-
communicating. However, this study targets a variant of the wikification task
that focuses only on the identification of a set of related articles, and disre-
gards the mentions themselves. Thus, the expected outcome of wikifiers, for
this study, is a set of articles (e.g., System software, System, and so on), rather
than a list of mention–article pairs (e.g., <system, System>, <components,
Software component>, and so on). Meij et al. (2012) originally described this
variant of wikification, and Cornolti et al. (2013) named it C2W, for Concepts
to Wikipedia.

This study focuses on C2W because it more naturally maps to potential
applications in software engineering. Once the wikifier identifies relevant ar-
ticles, the exact mentions are not useful to understand the concepts related
to the software-related document. Therefore, these mentions should not affect
the evaluation results. Nevertheless, when discussing the results of wikifiers, we
occasionally refer to the mention associated with an article, when the context
requires it (e.g., to interpret a result).

3 Study Preparation

The preparation for this study required the selection and preprocessing of a
sample of Stack Overflow posts, as well as the selection of the wikifiers to
compare, and which of their parameters to experiment with.

3.1 Types of Software Resources

Software-related resources can take many forms, such as source files, code
comments, various forms of developer communications (e.g., emails, bug re-
ports, forum posts), and technical or end-user documentation. These forms
differ widely in many aspects, such as the level of explicit structure in the
document, the formality and quality of the language, and the ratio of natural
language to code.

At one end of the spectrum, well-written and highly edited software re-
sources aimed at a general audience (e.g., end-user manuals) are similar to the
general-domain documents, such as news articles, used to develop and train
wikification techniques. Thus, we can expect the performance of wikifiers on
these documents to be similar to the performance reported for general-domain
documents.

At the other end of the spectrum, software resources composed entirely
of source code are clearly outside the intended scope of wikifiers, which take

6 Mathieu Nassif, Martin P. Robillard

natural language as input. Hence, although the wikifiers may identify a few
relevant concepts from identifiers in code artifacts, source code does not con-
stitute an appropriate input for evaluation. The results would reflect the ef-
fectiveness of the preprocessing steps (e.g., identifier tokenization, aggregation
into sentences) rather than the performance of wikifiers.

As a middle ground, the evaluation set consists of Stack Overflow posts,
which are mainly written in natural language, but also contain code fragments.
Some of the posts are long and well-structured documents, edited many times
by the community to improve the quality of the language and add thorough
descriptions of related concepts. These posts are similar to smaller versions
of technical documentation and end-user manuals. At the other end of the
spectrum, some posts are closer to fragments of informal discussions, with
short replies and grammatically incorrect sentences. Posts also vary in their
natural language-to-code ratio, from some that contain only text to others with
only code, including posts with code formatted as natural language. In terms
of information content, Stack Overflow covers virtually all computing domains.
Finally, software engineering research often leverage Stack Overflow as a source
of knowledge (Treude and Robillard, 2016; Barua et al., 2014; Ponzanelli et al.,
2013), which makes the results of this study directly applicable to techniques
that use Stack Overflow posts as input data.

3.2 Sample Selection

Our evaluation set contains 500 Stack Overflow posts from the September
2019 Stack Exchange archive.E This set is a uniform random sample from
all 44 016 828 posts (questions and answers alike) with a nonnegative score,4
considering only the most recent version of each post. We chose to discard
posts with negative scores (3.9% of the population) to avoid the bias from
documents explicitly flagged as problematic.

Typically, in quantitative research, the sample size ensures that statistics
computed on the sample generalize to the population within a known error
margin, at a predefined confidence level. This was not possible in our study,
because the statistics used to compare wikifiers (precision and recall) measure
proportions of Wikipedia articles, generated by wikifiers, rather than posts.5
Because the articles are neither independent nor randomly generated, they do
not meet the necessary assumptions for statistical generalization. This situ-
ation is not uncommon when evaluating wikification approaches. Prior work
often reuses standard annotated corpora, which are not random at all, but
instead allow for direct comparison of different approaches (e.g., Moro et al.,

4 The score of a Stack Overflow post is visible next to the post on Stack Overflow, and
represents the number of “upvotes” minus the number of “downvotes” attributed by Stack
Overflow users based on the usefulness and quality of the post.

5 One alternative is to aggregate each statistic per post first, then average them over all
posts. However, this alternative gives more weight to small posts with few related articles,
which would be detrimental to the interpretation and generalizability of the results.

Wikifying Software Artifacts 7

Table 1: Properties of the 500 Selected Stack Overflow Posts (min = minimum
value; Qn = n-th quartile; max = maximum value; avg = average; Edit =
number of full days between the creation of the post and its last editing).

Property Value

Type of post 186 questions, 105 accepted answers, 209 non accepted answers
Score min: 0 Q1: 0 Q2: 1 Q3: 2 max: 96 avg: 2.5
Words min: 0 Q1: 29 Q2: 54 Q3: 102 max: 459 avg: 72.9
Creation year 08-09: 21 10-11: 74 12-13: 95 14-15: 118 16-17: 112 18-19: 80
Edit (days) min: 0 Q1: 0 Q2: 0 Q3: 0 max: 3282 avg: 108

2014; Brank et al., 2017). We discuss the implications of the sampling pro-
cedure and the results of a sensitivity analysis with the threats to validity
(Section 5.5).

Nevertheless, we designed our sample to be representative of the popula-
tion, in the sense that insights gained from this sample should apply to the
whole population. With this regard, despite its small size relative to the popu-
lation, the sample is sufficiently large to contain a non trivial number of posts
related to the popular topics discussed on Stack Overflow, as well as posts
that exhibit common characteristics, such as long and short posts, posts with
and without code fragments, and posts that are more or less well written and
formatted. Hence, the sample size of 500 posts gives us reasonable confidence
that our findings do not merely reflect spurious relations.

Table 1 shows summary statistics for the 500 posts in the sample: the first
row indicates the number of questions and answers, the second and third rows,
the distribution of score and number of words (excluding code blocks) per post,
and the fourth and fifth rows, the year in which the post was created, and the
last time it was edited, in days, relative to its creation date. Each type of
post amounts to a non trivial proportion of the dataset. Almost half (42.8%)
of the posts have a score of 0. Posts contain an average of 72.9 words, with
six of them having no word (i.e., they contain only a code fragment). The
sample contains posts reasonably distributed among the years, although the
early years of the forum unsurprisingly contain fewer posts. Finally, a majority
of posts (86.6%) were not further edited past one day after their creation, with
one notable outlier edited almost nine years after its creation. Overall, these
statistics show that the sample consists of posts that vary in length (from a
few words to multiple paragraphs) and time (they do not only reflect a specific
period). Most, but not all, posts are not heavily edited or highly scored, as
would be, for example, popular blog posts.

3.3 Preprocessing of Posts

The Stack Overflow archive stores the post bodies as HTML-formatted docu-
ments. Although some wikifiers can take as input HTML documents, not all of
them can. To perform an equivalent comparison, we used the jsoupF library,

8 Mathieu Nassif, Martin P. Robillard

version 1.11.2, to convert the HTML posts to plain text, and provided this
text as input to all wikifiers.

Because wikifiers take natural language as input, not code, we removed
code blocks (identified by HTML pre tags) from the post bodies, but kept
inline code fragments (identified by HTML code tags without pre tags). The
rationale behind this decision was to avoid breaking up sentences, and because
users do not consistently format inline code fragments as such: some users use
the “inline code” format option for terms other than code, such as names of
technologies, whereas others do not use this formatting option at all, even for
legitimate code fragments.

We excluded all other information, such as comments or edit messages,
from the input. In particular, we did not include question titles, to avoid
inconsistencies between questions and answers, and because most question
bodies are self-contained.

3.4 Selection Procedure for Wikifiers

For this study, wikifiers must be able to generate a list of Wikipedia articles
about concepts mentioned in an input Stack Overflow post. Prior work has
proposed a large number of wikification techniques, but only a small subset of
these techniques come with an implementation that can wikify custom texts.
We used the following criteria to select wikifiers:
1. The wikifier must be usable immediately, without an intervention from

the user (other than installing the necessary software and possibly writing
short driver code). In particular, the wikifier must not require the user to
provide their own training set.

2. The wikifier must identify Wikipedia articles from a input consisting of
plain text. If the wikifier links concepts to another knowledge base, it
must be possible to associate (most) entries of this knowledge base with
Wikipedia articles in a straightforward manner.

3. The wikifier must be freely available (for non-commercial use), either as a
web service, packaged executable, or source code. For web services, requests
can be limited to a reasonable rate.

4. The wikifier must provide an interface that allows it to be programmati-
cally integrated as a component of a larger software system. In particular,
the wikifier must not be a tool for demonstration only or a replication
package for a specific experiment. The interface must be sufficiently well
documented to be usable with reasonable effort.

5. The wikifier must not be deprecated by a more recent wikifier developed
by the same group.

3.5 Selection Procedure for Configuration Parameters

Each wikifier has a number of configuration parameters, used to tune their
performance. Not all parameters, however, should be tuned by the end users:

Wikifying Software Artifacts 9

for example, some hyperparameters affect the training phase of the wikifier,
and other parameters have their values optimized during the training phase.
For each wikifier, we carefully examined each of their parameters to understand
whether the parameter would likely be tuned by an end user, or be fixed to
an appropriate default value.

All wikifiers have at least one parameter that roughly estimates the confi-
dence that an article is mentioned in the post, and is expressed as a number
in the unit interval. Although this parameter has different names in differ-
ent wikifier implementations, for consistency, we refer to it as the confidence
threshold, except when referring to a specific wikifier. The confidence threshold
is the main parameter that end users employ to tune the wikifier performance,
and our comparative analysis focuses primarily on variations of this parameter.

Some wikifiers also have a secondary numeric parameter that allows to filter
results based on a numerical property different from the confidence threshold.
Other wikifiers have a binary option to select which of two components to
use to perform one of the wikification subtask, or to enable or disable an
optional algorithm. We studied the impact of these parameters on the wikifiers
performance as well.

Finally, some of the configuration parameters that must be tuned by the
end user relate to concrete and objective properties of the wikification task,
such as the input language (e.g., English). Such parameters also include options
to disable key components of the approach, to perform ablation studies on the
wikifier. For those parameters, we selected the most appropriate value based
on the sample of posts: we did not disable any key component, and we selected
values that fit the properties of Stack Overflow posts (e.g., they are written in
English).

We relied on the wikifier’s documentation and preliminary experimenta-
tion to distinguish between parameters that should be tuned, parameters that
should receive a fixed, appropriate value, and training hyperparameters or
parameters that should keep their trained value.

3.6 Selected Wikifiers

We identified six tools that respect the criteria presented in Section 3.4. Each
tool can be used on a computer with 16 Gb of memory and 400 Gb of storage.
Table 2 shows, for each wikifier, the knowledge base it resolves mentions to
and the names of the confidence threshold and additional tuning parameters
studied. The following paragraphs describe each wikifier and their parameters
in more details. The versions of both the wikifiers and their corresponding
knowledge base is given when it is available. We also relate the performance
measures reported in the original articles that present each wikifier.

AmbiverseNLUG (Ambiverse) is an open source natural language under-
standing Java suite that resolves entities to the YAGO knowledge base (Rebele
et al., 2016). It can be added as a Maven dependency to Java projects, or run
from a Docker container. Its entity recognition component, KnowNER (Seyler

10 Mathieu Nassif, Martin P. Robillard

Table 2: Wikifiers Compared in this Study

Wikifier Knowledge Base Confidence Additional Parameter

Ambiverse YAGO confidence NER: knowner/stanford
Babelfy BabelNet score MCS: on/off
DBpedia DBpedia confidence support
Illinois Wikipedia score –
JSI Wikipedia 1-pageRankSqThreshold pageRank
WAT Wikipedia/Wikidata rho tokenizer: opennlp/lucene

et al., 2018), uses several knowledge base derived features in a linear chain
conditional random field (CRF) model to improve the state of the art. Its
disambiguation component, AIDA (Hoffart et al., 2011), uses a linear com-
bination of a prior probability based on popularity, a similarity score, and
a coherence metric. In this study, we used the Maven artifact, version 1.1.0,
with the database dump version aida_20180120_cs_de_en_es_ru_zh_v18. It
is the most resource-consuming wikifier, requiring 16 Gb of memory to parse
English texts and a little under 400 Gb to import the YAGO database. The
performance of AIDA and KnowNER were evaluated separately. Hoffart et al.
(2011) reported a precision of 82% at the 100% recall level for AIDA, and
Seyler et al. (2018) reported F1 scores between 88% and 91% for KnowNER.

The confidence threshold of Ambiverse is named confidence. Ambiverse also
has a secondary numeric parameter, salience, which indicates the relevance of
the named entity to the document. However, because the salience is always 0
on non-named entities (i.e., concepts such as Computer and Debugging), which
constitute most of the mentions, we did not consider it. Ambiverse also has a
binary option: it allows users to use an alternative NER component (stanford),
instead of KnowNER (knowner).

BabelfyH (Moro et al., 2014) is an online wikifier with a REST API that
resolves entities to BabelNet (Navigli and Ponzetto, 2012), which also offers a
REST API. To wikify a document, Babelfy first identifies a large set of can-
didate entities for each (possibly overlapping) mention using string matching
heuristics, then leverages a densest subgraph algorithm to filter among the
entities, so that the entities retained form a coherent set. Both Babelfy and
BabelNet APIs share a daily quota of 1000 daily requests by default (after
registration). This project also has a commercial counterpart, Babelscape. For
this study, we used the non-commercial service. The version of the Babelfy
REST API is not available, but the website states that it uses version 3.0 of
BabelNet. Moro et al. (2014) reported an accuracy6 between 72% and 82%
for Babelfy on the entity linking task, and an F1 score of 87% for the disam-
biguation task only.

The confidence threshold of Babelfy is simply named score. Babelfy also
offers the binary option to activate a fallback strategy, termed “most com-
mon sense” (MCS). When this option is enabled, if the main disambiguation

6 Moro et al. (2014) do not provide an explicit definition for accuracy.

Wikifying Software Artifacts 11

algorithm fails to identify a Wikipedia article for a mention, it uses its most
common sense (i.e., the article with the highest prior probability). All articles
linked with the MCS strategy have a confidence value of 0.

DBpedia SpotlightI (DBpedia) (Mendes et al., 2011; Daiber et al., 2013)
is an online wikifier that resolves entities to DBpedia (Lehmann et al., 2015).
DBpedia Spotlight also identifies candidates using simple string heuristics,
then disambiguates between the candidates with a vector space model to rep-
resent knowledge base entities. The wikifier uses a custom measure derived
from tf-idf, called tf-icf (for “inverse candidate frequency”) and the cosine
similarity metric to weigh and compare vectors. DBpedia Spotlight’s REST
API does not impose any rate limit, but during our study, the server was un-
stable and would often return HTTP 502 or 503 errors for valid requests. The
website does not mention the version of the wikifier, nor the backing knowl-
edge base. Mendes et al. (2011) reported a precision-recall plot of DBpedia,
where precision varies between 40% and 82% for recall values between 12%
and 61%, with a maximal F1 score of 56%.

Similar to Ambiverse, DBpedia’s confidence threshold is named confidence.
However, contrary to all other wikifiers, DBpedia’s confidence score must be
set a priori. We used values between 0 and 1, with 0.1 increment (i.e., 0, 0.1,
0.2, ..., 0.9, 1.0) to sample the parameter space. DBpedia returns a secondary
numeric parameter, support, which is a positive integer that is a property of
the entity (i.e., independent of the associated mention or input text).

Illinois WikifierJ (Illinois) (Cheng and Roth, 2013; Ratinov et al., 2011)
is an open source Java wikifier that resolves entities to Wikipedia. To disam-
biguate mentions to articles, Illinois includes several local and global features
into a linear combination. Local features, which are defined between a men-
tion and a Wikipedia article, use the cosine similarity on tf-idf vectors of the
mention and the article. Global features use the pointwise mutual informa-
tion (PMI) and normalized Google distance (NGD) metrics on the Wikipedia
link graph between all pairs of entities. Finally, Illinois improves the results
by using semantic relations, extracted from the input text, between entities.
Due to many dependencies to outdated maven artifacts, we experienced some
difficulty in importing the wikifier into our project. To solve our issues, we
downloaded a compiled distribution, version 3.0, that includes all dependen-
cies. Cheng and Roth (2013) reported F1 scores between 81% and 93% on four
datasets for Illinois.

Similar to Babelfy, Illinois’ confidence threshold is named score. Illinois also
offers several predefined configurations, of which STAND_ALONE_NO_-
INFERENCE was the most appropriate for custom text (the “with inference”
configuration requires the commercial Gurobi Optimizer software).

JSI WikifierK (JSI) (Brank et al., 2017) is an online wikifier with a REST
API that resolves entities to Wikipedia. At its core, JSI uses an augmented
mention–entity graph of Wikipedia: first, JSI constructs the bipartite graph
with anchor text (mentions) on one side, and articles (entities) on the other,
and edges linking each anchor text to the article they point to. Then, it aug-
ments this graph with edges between articles that are similar, according to a

12 Mathieu Nassif, Martin P. Robillard

similarity metric based on internal links. JSI computes pagerank values (Page
et al., 1999) on the nodes of this graph, and returns the set of articles with
the highest pagerank values. JSI’s REST API requires registration, but does
not impose any rate limit. It does not provide version information on either
the software or backing knowledge base. Brank et al. (2017) reported an F1
score of 59% for JSI.

Instead of using an absolute pagerank value as its confidence threshold,
JSI computes the threshold as a proportion of the sum of the squares of
all pagerank values. Thus, the user-defined proportion constitutes the con-
fidence threshold (named pageRankSqThreshold). Because a lower proportion
leads to a lower recall, for this study, the confidence threshold is actually 1
- pageRankSqThreshold. JSI also returns pageRank values with the results, so
we considered them as a secondary numeric parameter.

WATL (Piccinno and Ferragina, 2014) is an online wikifier with a REST
API that resolves entities to Wikipedia and Wikidata. WAT is the successor of
another wikifier, TagME (Ferragina and Scaiella, 2010). To identify mentions
and candidates, WAT trained a binary classifier with features from Wikipedia
articles, such as redirect titles and anchor text of internal links. To disam-
biguate between candidates, WAT leverages two algorithms. The “voting” al-
gorithm developed for TagME computes the sum of a relatedness measure
between pairs of extracted entities, weighted by a priori probabilities. The
other algorithm is based on a mention–entity graph similar to that of JSI, but
computed only over mentions and entities extracted in the first step. Similar
to JSI, WAT imposes no rate limit, but requires registration. It also does not
provide any version information. Piccinno and Ferragina (2014) reported pre-
cision and recall values respectively between 46% and 49%, and between 51%
and 59%, for different configurations of WAT.

WAT’s confidence threshold is named ρ (rho). The only other parameter
(apart from the input language) is the tokenizer to use: opennlp or lucene.

A notable tool missing from this list is Milne and Witten’s Wikipedia
Miner (Milne and Witten, 2008, 2013). This is one of the first available wiki-
fiers, and it has served as a baseline for the evaluation of many other wikifiers.
However, the web service is no longer operational, and we could not find the
source code with pre-trained models.

4 Data Annotation

The evaluation of wikifiers consisted of executing all of them on the posts
from the dataset, collecting all generated pairs of articles and posts, and man-
ually annotating each pair as correct or incorrect. This procedure generated a
reference set to assess the precision and recall of each wikifier.

The usual method to evaluate a wikifier is to compare its output with a
gold standard (e.g., Moro et al., 2014; Brank et al., 2017), which allows to
automatically discriminate false positives (FP) from true positives (TP) and
list all false negatives (FN). Figure 2 shows a sentence with a corresponding

Wikifying Software Artifacts 13

Java programs are compiled before being executed.

Java (programming language)

Computer program

Execution (computing)

Fig. 2: Sample sentence with a gold standard wikification: Titles in round boxes
indicate the expected Wikipedia article that wikifiers should identify.7 Exact
mentions (in bold and underlined) are shown for better understandability, but
are not evaluated.

gold standard.7 Three articles are expected to be found by the wikifiers. If
a wikifier outputs the two articles Java (programming language) (correct) and
Compilation (album) (incorrect), there would be one true positive, one false
positive, and two false negatives. From these counts, it is possible to compute
the precision and recall.8 The wikifier in the previous example would have a
precision of 0.5 (i.e., 1/2) and a recall of 0.3 (i.e., 1/3). F1 scores9 are also
commonly reported for wikifier evaluations, as a single objective function that
balances precision and recall. However, in the context of our study, a sin-
gle arbitrary objective function would only hide the more precise information
captured by precision and recall, so we chose to present the latter metrics
separately.

With such a method of evaluation, the most effort-intensive and critical
task is to generate the gold standard. Creating a high quality evaluation
dataset is hard, especially when such concepts are not named entities, as hu-
mans do not always agree on the concepts that should be linked. Because
of this difficulty, wikifiers are commonly evaluated against standard golden
datasets, such as AIDA-CoNLL, which consists of 1393 news articles manually
annotated by Hoffart et al. (2011).10 For example, Brank et al. (2017) used
this dataset as a gold standard, and Moro et al. (2014) used six different gold
standards, including AIDA-CoNLL.

None of these available gold standards are specific to software engineering,
and in particular, none of them uses Stack Overflow posts. To mitigate the
cost of creating a new, high quality evaluation dataset, we used a slightly dif-
ferent approach. We generated a reference set, rather than a gold standard, to
compare the relative, rather than absolute, performance of wikifiers. We exe-

7 At the time of writing, Wikipedia did not have an article specifically on source code
compilation, but only an article about Compiler. For this study, we considered the distinction
between the two concepts (a process and tools to perform it) significant enough to reject
the article Compiler for the mention compiled.

8 precision = T P
T P +F P

; recall = T P
T P +F N

9 F1 score is the unweighted harmonic mean of precision and recall, or 2×precision×recall
precision+recall

10 The AIDA-CoNLL dataset only links proper nouns (i.e., named entities), but other
datasets exist for both named entities and concepts.

14 Mathieu Nassif, Martin P. Robillard

cuted all wikifiers on each post, with parameters that maximize recall. We then
manually annotated each association between an article and a post as correct
or incorrect (without knowing which wikifier produced which associations).11

The reference set generated with this procedure is sufficient to discriminate
false positives from true positives, and have a consistent list of false negatives
across all wikifiers.

The precision values computed with this procedure are equivalent to those
that would be derived from a gold standard. However, recall values are only
relative to all true positives found by any of the six wikifiers, instead of all
theoretically possible true positives. Thus, the ratios of recall values between
wikifiers is consistent with the ratios that would be derived from a gold stan-
dard, but their absolute magnitudes are not.

Using this procedure, it is possible to accept multiple articles for the same
mention, which would not be possible with a gold standard. For example, for
the sentence “Paypal is a payment system.”, standard datasets would asso-
ciate the mention payment system with either Payment system or E-commerce
payment system. But, using our reference set, both of them are correct associ-
ations.

4.1 Annotation Task

The annotation task consisted of answering, for each article–post pair, the
single question

Is the concept represented by the Wikipedia article related to computing and
explicitly mentioned in the Stack Overflow post?

The above question is the result of an iterative process over a pilot set to
mitigate the subjectivity of the task as much as possible, so that the results
would be objective and lead to an unambiguous interpretation. It requires two
conditions for an article–post pair to be correct (i.e., for a positive answer to
the question): the article must be explicitly mentioned in the post, and it must
be related to computing. The following paragraphs discuss in details why we
needed to include these conditions.

Condition 1 (Explicit Mention): Some concepts do not have an associated
Wikipedia article. For example, there is no article dedicated to the HTTP
GET method (it is described in a section of Hypertext Transfer Protocol). When
concepts with no Wikipedia article appear in a document, wikifiers sometimes
link the mention to a related article (e.g., linking GET to Hypertext Transfer
Protocol). However, for the annotation task, we require that related articles
(including articles about hypernyms and holonyms) be marked as “incorrect”.
11 The term “annotate”, in the wikification community, often refers to the wikification
process itself, or a variant. In this article, we use “annotate” (and its derivatives) only
when referring to the manual annotation of human experts to assess the correctness of an
article–post pair.

Wikifying Software Artifacts 15

Only articles about concepts that are actually mentioned in the post can be
“correct”. This condition is necessary to avoid an ambiguous or subjective def-
inition of relatedness threshold, and favors wikifiers that link specific mentions
(e.g., Java) to specific articles (e.g., Java (programming language)) instead of
general ones (e.g., Programming language).

Condition 2 (Related to Computing): The pilot annotation task revealed that
wikifiers often correctly identify mentions that are nonetheless irrelevant to
the context, such as phatic expressions (e.g., Thanks), figures of speech (e.g.,
idioms and metaphors), common functional phrases (e.g., There exists), and
terms related to the Q&A nature of Stack Overflow (e.g., question and answer).
Typical wikification guidelines, such as those from the Wikipedia Manual of
Style on linking,N suggest to only link relevant mentions, and avoid “everyday
words understood by most readers in context” (Wikipedia, 2019). However,
relevance is often subjective. To avoid this subjectivity, an article is considered
relevant if and only if it is related to computing.12 Consequently, we reject
genuinely relevant but non-computing articles, such as Azimuth in a post about
astronomy-related libraries,O but such articles are rare in a computing-related
forum.13

To help annotators, we designed an extensive annotation guide that dis-
cusses corner cases (e.g., different parts of speech, synonyms, and antonyms)
and what exactly is related to computing. Elements of this guide are moti-
vated in part by the structure and conventions of Wikipedia, and in part by
the lessons learned during the pilot annotation task. The guide also contains
a curated list of five Stack Overflow posts from the pilot set, with all asso-
ciated concepts annotated jointly by the authors, to serve as an example for
annotators. This annotation guide is available in our on-line appendix.M

4.2 Annotators

Despite the extensive annotation guide, the annotation task still required a
considerable effort from the annotators. The difficulty of the annotation task

12 We express our criterion in terms of computing-related articles, rather than only those
specific to software engineering, because the precise boundary of software engineering is less
well defined than that of computing, especially among Wikipedia articles.
13 There are concepts that can conceivably be related to computing in some contexts, but
part of a general body of knowledge in others. Blog is such a concept: We consider that,
when referring to a specific post, the concept is not a technical term, but when discussing
the creation of a blogging platform, this term becomes related to computing.

16 Mathieu Nassif, Martin P. Robillard

Table 3: Agreement between annotators, using Cohen’s κ statistic (Cohen,
1960). The number of common article–post pairs are shown in parentheses.

Author A Author B External 1 External 2

Author A – 0.83 (940) 0.72 (1007) 0.74 (1007)
Author B 0.83 (940) – 0.60 (569) 0.64 (569)
External 1 0.72 (1007) 0.60 (569) – 0.67 (1576)
External 2 0.74 (1007) 0.64 (569) 0.67 (1576) –

arises from quality issues from the Stack Overflow posts,14 as well as poten-
tially misleading Wikipedia titles.15

These difficulties related to the annotation task result in a steep learning
curve for the annotators, and an increased threat of quality degradation that
would be hard to detect if a careless external annotator wishes to finish the task
too quickly. Consequently, we could not efficiently distribute the annotation
task to many external annotators, and the two authors annotated all pairs.
After the initial learning curve, the authors were able to annotate roughly
1000 pairs per hour.

Investigator bias, common in situations where the investigators perform
the annotation, is minimal in this study, because it is an independent evalua-
tion of already existing tools. Nevertheless, we took great care to mitigate even
the threat of this bias as much as possible. Annotators were not able to dis-
cern which concept was produced by which wikifier, preventing unintentional
biases. Furthermore, the set of pairs to annotate was split into two mostly
disjoint sets, for efficiency reasons, but both annotators annotated a common,
unmarked set, to estimate their agreement on the complete set. Finally, we
hired two additional annotators, external to our research group, to re-annotate
a subset of pairs, to better understand the difficulty and subjectivity of the
task, and further control any biases that could arise. Table 3 shows the agree-
ment between each annotator, using Cohen’s κ statistic (Cohen, 1960). The
agreement between external coders and the authors are between 0.60 and 0.74,
which Landis and Koch (1977) consider “substantial”, and the agreement be-
tween both authors, who annotated the complete dataset, is “almost perfect”
(0.83).

14 In addition to making grammatical errors, post authors often use natural language
shortcuts such as abbreviations, acronyms, omissions, and ambiguous terms, which require
additional effort from annotators to resolve. The misuse of formatting options, such as
formatting code blocks as inline code, also makes posts harder to understand. For example,
the scope keyword “until successful” can easily be misread as a preposition and an adjective
if it is not formatted as inline code.Q
15 Annotators cannot assume the topic of a Wikipedia article only by its title. For example,
the article Java does not describe the programming language, but the Indonesian island. Also,
although most titles that consist only of three capital letters lead to disambiguation pages,
the article URL does not. Redirect titles further add to the possible disconnect between titles
and article content. Thus, annotators must make the effort to scan the article to verify what
it actually describes.

Wikifying Software Artifacts 17

Dev

Author B (183 + 56)Author A (183 + 57)

A BC

D E

2 External annotators (20)

All Authors (25)

Empty No annotator (6)

F G

Fig. 3: Annotation sets, with their respective annotator(s). The letters identify
each partition, and the total number of posts for each annotation set is shown
in parentheses.

Following the computation of the agreement scores, the authors jointly
resolved all conflicts in the overlapping sets by discussing each conflicting pair
and deciding on the correct annotation.

4.3 Annotation Sets

The wikification of all 500 posts produced 41 124 article–post pairs to annotate.
We performed the annotation in two phases. In the initial phase, we annotated
the pairs from 385 posts. To gain additional confidence in the reliability of our
results, we then conducted a second annotation phase, in which we annotated
the pairs from the remaining 115 posts. These two phases allowed us to as-
sess the generalizability of our conclusions by observing the variation in the
performance of wikifiers when augmenting the sample by 29.9%. Indeed, we
observed very little variation (less than 2 percentage points of precision and
recall).

Pairs formed four (non disjoint) sets: one development set, two main sets,
and one external validation set.

To improve the efficiency of the annotation task, all pairs from the same
post are put in the same set, so that each annotator has fewer posts to read.
Therefore, in the following, we describe annotation sets by referring to the
Stack Overflow posts they contain, rather than the article–post pairs. Figure 3
summarizes these sets.

Six of the 500 posts (four from the first phase and two from the second
phase) happened to contain only a code block, which is removed at the pre-
processing stage. Thus, these six posts produced no article for any wikifier,
and were naturally not considered when creating the annotation sets.

Of the remaining 494 posts, 25 constituted the development (dev) set, used
for the iterative pilot. Both authors annotated this set to refine the annotation
task and guide. In contrast to many other evaluations, where development sets

18 Mathieu Nassif, Martin P. Robillard

are discarded from the final results, the results include the final annotations
of this set, as they constitute valid information that does not threaten the
validity of the results. In fact, these annotations are possibly of higher quality
due to the many iterations to reach a consensus.

The empty and development sets are disjoint from the other sets. We split
the remaining 471 posts into seven partitions: two large partitions of 163 posts
each (A and B), three small partitions of 10 posts each (C, D, and E), and
two additional partitions of 57 and 56 posts for the second phase (F and G).
Author A annotated the first main set, consisting of partitions A, C, and D in
the first phase, and partition F in the second phase. Author B annotated the
second main set, consisting of partitions B, C, and E in the first phase, and
partition G in the second phase. Each external annotator annotated the same
validation set, consisting of partitions D and E. We designed this strategy
so that the overlap between any two annotators consists of all pairs from at
least ten distinct posts, to compute the inter-rater agreement scores shown in
Table 3.

5 Results

Of all 500 posts, 41 (8.2%) did not link to any correct article, and the two
postsRS with the most links have 37 and 28 linked articles (average: 6.1, me-
dian: 5). We analyze the results according to three perspectives, each related
to one of the following research questions:

1. How do wikifiers compare to each other, in terms of performance, to wikify
Stack Overflow posts? (Section 5.1)

2. How do the additional parameters affect the performance of each wikifier?
(Section 5.2)

3. To what degree do different wikifiers identify similar sets of articles? (Sec-
tion 5.3)

A considerable artifact of this study is the outcome of the annotation task,
a manually verified list of 1098 computing-related Wikipedia titles, and 10 854
negative examples.16 Section 5.4 explores possible ways to use this list to
further improve the performance of wikifiers.

5.1 Wikifiers Performance

This section describes how wikifiers compare to each other, with the explicit
objective of helping software engineering researchers select a wikifier that best
suits their need. For this comparison, only the confidence threshold of each
wikifier varies. Additional parameters are set to optimal values, described in
Section 5.2. To compare wikifiers, we use the precision and relative recall
16 The number of distinct articles is slightly less than 1098 and 10 854, respectively, because
some titles are actually redirect pages to other articles.

Wikifying Software Artifacts 19

●●
●

●●
●●●●●

●

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6
recall

pr
ec

is
io

n

wikifier

● ambiverse

babelfy

dbpedia

illinois

jsi

wat

Fig. 4: Precision-Recall curves of all six wikifiers. Markers indicate each 0.1
increment of the confidence threshold (some markers overlap). For DBpedia, a
linear interpolation estimates precision and recall values for confidence values
that are not exact multiple of 0.1.

metrics (see Section 4), which have an intuitive interpretation and are not
affected by true negatives, irrelevant in the context of wikification.

Figure 4 compares the performance of all six wikifiers, in terms of preci-
sion and recall, for all confidence thresholds between 0 and 1. Each marker
indicates an increment of 0.1 of the confidence. In the case of Babelfy, no con-
fidence score was below 0.7, which explains why only four markers appear on
the plot. The performance of all six wikifiers shows the difficulty of wikifying
software resources, with precision levels hardly reaching 70% even for low rel-
ative recall values (10%), and rapidly decreasing under 50% for higher recall
values. Interestingly, no single wikifier completely outperforms another: each
one achieves the highest precision for a portion of the recall range. Therefore,
before choosing a wikifier, it is important to decide on the acceptable preci-
sion or recall values for the specific application, as the optimal wikifier (and
confidence threshold) depends on this decision.

Another interesting observation is the difference in the precision and re-
call ranges. Variations in the confidence threshold of some wikifiers, such as
DBpedia and JSI, will greatly affect the recall, with the expected degradation
in precision as recall increases, whereas other wikifiers, such as Babelfy and
Illinois, have a much lower degradation in precision, but cannot achieve the

20 Mathieu Nassif, Martin P. Robillard

Table 4: Comparison of the precision (Pr.) of each wikifier for selected recall
(Rec.) values, along with the respective confidence threshold (CT). Dashes [-]
indicate that the wikifier did not achieve such recall. DBpedia values (marked
by an asterisk [*]) are linear interpolations. For each recall, the best precision
is shown in bold. All precision and recall values are percentages.

Ambiverse Babelfy DBpedia* Illinois JSI WAT
Rec. CT Pr. CT Pr. CT Pr. CT Pr. CT Pr. CT Pr.

5 - - - - 0.98 82 - - 0.56 47 0.78 76
10 - - - - 0.87 65 - - 0.44 46 0.36 59
15 0.94 38 - - 0.59 56 0.52 61 0.37 46 - -
20 0.79 36 0.99 48 0.45 46 0.41 42 0.30 42 - -
25 0.66 36 0.93 46 0.39 39 0.13 41 0.26 40 - -
30 0.54 36 0.85 44 0.36 32 - - 0.22 39 - -
35 0.42 34 0.75 41 0.33 25 - - 0.18 36 - -
40 0.32 33 - - 0.31 18 - - 0.15 33 - -
45 0.20 31 - - - - - - 0.12 30 - -
50 - - - - - - - - 0.08 26 - -
55 - - - - - - - - 0.05 22 - -
60 - - - - - - - - 0.00 13 - -

same recall. The former wikifiers can be used in more varied contexts, but the
latter wikifiers perform more consistently.

Finally, some wikifiers, including Illinois and JSI, exhibit a decline in preci-
sion for the highest confidence values. This counter-intuitive drop in precision
is possibly due to these wikifiers typically giving higher confidence values only
to concepts from popular domains, due to their high prior probability. For
example, two of the articles associated with the highest confidence values by
JSI are Worldwide Exchange (about a television business news program) and
Midfielder (a position of football/soccer). Such concepts are more likely to ap-
pear in news articles targeted to a general audience, which are used to train
wikifiers, than computing concepts, so they are more likely to receive favorable
biases during the training phase of wikifiers.

Table 4 shows the value of the confidence threshold needed to achieve dif-
ferent recall values (from 5% to 60%, in steps of 5%), with the associated
precision. The highest precision in each row is indicated in bold. For example,
a user who wants to wikify Stack Overflow posts with 25% recall should use
Babelfy with a confidence of 0.93, and expect a precision around 46%. Con-
versely, if the user requires a precision of at least 60%, they should choose
Illinois, with a confidence around 0.52, and expect a recall around 15%.

Result: All wikifiers have a precision under 50% for relative recall values
over 20%. These values greatly differ from the performance reported in the
original articles that describe each wikifier. For different recall values, all
wikifiers in turn achieves the highest precision, which means that no wikifier
is irrelevant.

Wikifying Software Artifacts 21

10

100

1000

10000

1e+05

0.0 0.5 1.0
confidence

su
pp

or
t

0.00

0.25

0.50

0.75

1.00
precision

(a) DBpedia, Precision

10

100

1000

10000

1e+05

0.0 0.5 1.0
confidence

su
pp

or
t

0.0

0.1

0.2

0.3

0.4

recall

(b) DBpedia, Recall

0.1

0.001

1e−05

1e−07

0 0.5 1
sqthreshold

pa
ge

ra
nk

0.00

0.25

0.50

0.75

1.00
precision

(c) JSI, Precision

0.1

0.001

1e−05

1e−07

0 0.5 1
sqthreshold

pa
ge

ra
nk

0.0

0.1

0.2

0.3

0.4

0.5

0.6
recall

(d) JSI, Recall

Fig. 5: Precision and Recall of DBpedia and JSI for different combinations of
their main and secondary numeric parameters. When the wikifier does not re-
turn any Wikipedia article for all Stack Overflow posts, we define the precision
(typically undefined) to be 0.

5.2 Effect of Additional Parameters

The previous section compares all wikifiers, varying only the confidence thresh-
old. Additional parameters allow to further fine-tune the wikifiers, but, as the
result will show, at least in the context of Stack Overflow posts, there is gen-
erally little incentive to modify the default parameter values.

Secondary Numeric Parameters (DBpedia/support and JSI/pageRank): Both
DBpedia and JSI have a secondary numeric parameter, respectively support
and pageRank, that can further influence the balance between precision and
recall. To visualize the effect of these parameters, Figure 5 shows their effect,
combined with the confidence threshold, on precision and recall. The axes
range from the lowest to the highest value that impacts the results.

22 Mathieu Nassif, Martin P. Robillard

2
1386567

3725

24474
0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3 0.4
recall

pr
ec

is
io

n

(a) DBpedia (secondary: support)

0.00151
0.00322

0.00686

0.0146

0.0312

0.0665

0.142

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6
recall

pr
ec

is
io

n

(b) JSI (secondary: pageRank)

Fig. 6: Precision-Recall curves of DBpedia and JSI for various values (equidis-
tant on a logarithmic scale) of their secondary numeric parameter. The numeric
labels on the graph indicate the parameter value associated with each curve.

In the case of DBpedia (Figures 5a and 5b), we observe that applying a
minimum support threshold has little impact on the precision, but gradually
reduces the recall. Around a minimum support value of 10 000, the precision
slightly increases, but at the cost of near-zero recall. Similarly, for the highest
confidence level, increasing the support threshold slightly increases the pre-
cision, which reaches almost 100%, but again leads to a very low recall. A
possible explanation for the ineffectiveness of support to increase precision is
that the distribution of the support values of computing-specific articles, which
are the focus of this study, is too similar to the distribution of more general
domain articles to be an effective discriminating factor.

The case of JSI differs. Below 0.001, the minimum pageRank threshold
barely affects the precision and recall. However, between 0.1 and 0.001, in-
creasing the pageRank threshold leads to the expected increase in precision,
with a corresponding decrease in recall. This suggests that some combination
of minimal pageRank and pageRankSqThreshold could allow JSI to achieve
precision levels similar to the other tools, without entirely sacrificing recall.

Figure 6 gives a different view of these phenomena by showing the effect
of the secondary parameters on the precision-recall curves from Figure 4. To
keep the graphs readable, only the most interesting portion of the secondary
parameter range is shown, rather than the same range as in Figure 5.

DBpedia’s curves strengthen the interpretation from the heatmaps. In-
creasing the minimum support brings the curve more to the left (i.e., decreases
the recall), without considerably lifting it up (i.e., increasing precision). In the
case of JSI, increasing the pageRank threshold moves the curve closer to the
left and up. This makes JSI a very flexible wikifier, that can adapt to various
needs. However, comparing Figure 6b with Figure 4, the gain in precision is
generally not worth the loss in recall, as other tools can achieve higher recall
for similar levels of precision.

Wikifying Software Artifacts 23

Result: A higher threshold for DBpedia’s support parameter does not in-
crease precision in most cases. We suggest keeping this value to 0.

Result: Using a minimum pageRank threshold for JSI, in addition to pageR-
ankSqThreshold, makes JSI a very flexible wikifier. However, when optimized
for precision (non zero pageRank threshold), JSI is still less precise than other
wikifiers. We suggest either using JSI with a pageRank minimum of 0, or other
wikifiers.

Babelfy (MCS on or off): Because Babelfy’s MCS option is a fallback strategy
that links unmatched mentions to their most common sense, they do not affect
results previously matched by the main algorithm. Furthermore, because MCS
matches do not have an associated confidence score, it is impossible to filter
among them: a user must either take all or them, or none.

With MCS disabled, and with the lowest value for the confidence threshold,
Babelfy identified 2842 articles for the 500 posts, with a precision of 40%
and a recall of 37%. Enabling MCS adds an additional 2599 articles,17 nearly
doubling the number of articles. However, the precision of the MCS articles
is only 5.9%. This means that the large decrease in precision (40% to 23%)
is balanced by only a small increase in recall (37% to 42%). Furthermore,
with MCS enabled, increasing the confidence threshold will actually decrease
precision, which will converge towards the precision of only the MCS matches,
5.9% (with a confidence threshold of 1, almost all articles are identified by the
MCS strategy). Therefore, in most cases, the slight increase from the MCS
strategy is not worth the loss in recall.

Result: Babelfy’s MCS option has very low precision. Because there is no
way to distinguish between the MCS matches, we suggest not to use this
option.

Ambiverse (Stanford or KnowNER recognition): Ambiverse includes two com-
ponents to perform entity recognition: a Stanford NER tool and the KnowNER
tool by the Ambiverse authors. We observed that KnowNER leads to a better
performance, but the difference is minimal: for any given recall value, the pre-
cision with KnowNER is between 0.3 and 2.6 percentage points above that of
Stanford NER. The superiority of KnowNER is consistent over the range of
recall. Both components achieve a maximum recall just under 47%.

Result: Ambiverse’s KnowNER component performs slightly, but consis-
tently, better than the Stanford NER alternative.

WAT (OpenNLP or Lucene tokenizer): WAT offers a choice between two com-
ponents for the tokenization step: OpenNLP, which is the default option, and
Lucene, which is described as better suited for ill-formed text. Figure 7 shows
17 An additional 15 previously identified articles become MCS matches, due to unpre-
dictable factors of the wikification algorithms.

24 Mathieu Nassif, Martin P. Robillard

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4
recall

pr
ec

is
io

n wikifier

● wat.lucene

wat.opennlp

Fig. 7: Precision-Recall curves for WAT with two different tokenizers: Lucene
and OpenNLP

the precision-recall curves of both tokenizers. Contrary to the choice of NER
component for Ambiverse, the choice of tokenizer has a noticeable impact on
the peformance of WAT. Lucene allows WAT to achieve much greater recall,
but quickly drops in precision, whereas OpenNLP generally retains a higher
precision, but at a much lower recall. Therefore, depending on which of the pre-
cision or recall is preferred, both tokenizers can be relevant. However, when
compared to other wikifiers, Lucene’s gain in recall is not worth its loss in
precision. Therefore, in most cases, either OpenNLP is more appropriate, or
another wikifier is.

Result: WAT’s OpenNLP tokenizer achieves higher precision, whereas the
Lucene tokenizer leads to higher recall. However, the gain in recall is less
impressive when compared to other wikifiers. We suggest using WAT with
OpenNLP, or other wikifiers.

5.3 Correlation Between Wikifiers

Although all six wikifiers claim to solve the same general task, wikification,
it is not clear whether all approaches converge towards the same results, or
the results of one can cover the blind spots of another. Understanding such
correlation between the results of wikifiers can help to improve each individual

Wikifying Software Artifacts 25

Table 5: Actual and expected overlap between the correct results of each wik-
ifier. The expected overlap (in parentheses) assumes a uniform random sam-
pling.

Ambiverse Babelfy DBpedia Illinois JSI WAT

1423 703 (533) 586 (605) 353 (370) 965 (867) 206 (179) Ambiverse
– 1123 596 (477) 432 (292) 824 (685) 252 (177) Babelfy
– – 1274 475 (332) 898 (777) 261 (161) DBpedia
– – – 780 529 (475) 229 (98) Illinois
– – – – 1827 324 (230) JSI
– – – – – 378 WAT

Table 6: Correlation between the wikifiers results. The correlation is expressed
as Kendall’s τb statistics (Kendall, 1938) computed over the overlap of results
of each pair of wikifers (see Table 5). The confidence interval at the 0.95 level
is shown in parentheses.

Babelfy DBpedia Illinois JSI WAT

0.43 (±0.05) 0.37 (±0.05) 0.44 (±0.06) 0.19 (±0.04) -0.21 (±0.10) Ambiverse
– 0.33 (±0.06) 0.36 (±0.07) 0.22 (±0.05) -0.07 (±0.09) Babelfy
– – 0.04 (±0.07) 0.36 (±0.04) 0.01 (±0.09) DBpedia
– – – 0.09 (±0.06) 0.02 (±0.09) Illinois
– – – – -0.06 (±0.07) JSI

approach, as well as develop ensemble methods to mitigate the blind spots of
different wikifiers.

Table 5 presents, for each pair of wikifiers, the number of articles correctly
identified by both wikifiers (with a confidence threshold of 0), as well as the
expected number of articles, in parentheses. The expected value assumes that
all wikifiers select independently and uniformly randomly articles from the
set of correct matches, keeping the recall constant. For example, Ambiverse
correctly identified 1423 of the 2997 articles (recall = 47.48%), and Babelfy
correctly identified 1123 articles (recall = 37.47%). Therefore, assuming inde-
pendence, the number of articles identified by both Ambiverse and Babelfy
should be 47.48% × 37.47% × 2997 = 533.

Typically, one could expect the actual overlap between wikifier results to
be greater than the expected overlap under the assumption of independence,
because they attempt to solve the same task. However, Ambiverse with both
DBpedia and Illinois actually has a smaller overlap than expected. This could
suggest that Ambiverse’s results complement those of DBpedia and Illinois,
and that combining the ideas from Ambiverse and Illinois or DBpedia into a
mixed approach would result in a higher improvement than combining other
approaches. For other wikifiers, with an overlap larger than the expected value,
a simple ensemble approach, such as majority voting, can improve individual
performances.

26 Mathieu Nassif, Martin P. Robillard

To further understand the correlation between wikifiers, Table 6 shows
Kendall’s τb statistic between each pair of wikifiers, computed over the over-
lap between the results of the two wikifiers.18 Kendall’s τ coefficient is a non
parametric rank correlation statistic that estimates the probability that the
two wikifiers will agree on which of two random articles have a higher con-
fidence score (Kendall, 1938). The probability value is rescaled from [0, 1] to
the [−1, 1] range to produce a correlation score. Therefore, τ = 0 indicates an
agreement probability of 50% (no correlation), τ = −1 indicates a 0% prob-
ability of agreement, or 100% of disagreement (perfect negative correlation),
and τ = 0.43, as for Ambiverse and Babelfy, indicates a probability of 72% of
agreement.19

Table 6 provides a more detailed insight into the complementarity of differ-
ent wikifiers. WAT shows a peculiar behavior, with correlation scores hovering
around zero for most wikifiers, except for Ambiverse, where the correlation is
negative. This surprising result indicates that among articles correctly iden-
tified by both Ambiverse and WAT, those with a high confidence Ambiverse
score tend to have a low WAT score, and vice versa.

Apart from WAT, almost all pairs of wikifiers have a significant positive
correlation, ranging from 0.19 to 0.44. The only exception is Illinois, with DB-
pedia and JSI, which has a near-zero correlation. In particular, Ambiverse
with DBpedia and Illinois show a strong positive correlation, despite having a
smaller than expected overlap. These results are encouraging, as they suggest
that different wikifiers (with the exception of WAT) actually have a similar
objective. Therefore, choosing one over another is less likely to introduce un-
wanted biases.

Result: The confidence score used by all wikifiers is positively correlated,
with the notable exception of WAT. Confidence scores between Ambiverse
and WAT are even negatively correlated, which is a surprising result.

5.4 Validated List of Computing Concepts

The list of validated computing-related Wikipedia titles, obtained as a result
of the annotation task, is an important contribution of this study. Because
we generated the list using six state-of-the-art wikifiers configured to optimize
recall, with a representative sample of a large programming forum, it represents
the current range of Wikipedia articles on computing and can serve as a basis
to precisely identify the full extent of computing articles.

18 Instead of restricting the correlation to the overlap, another possible approach would
have been to use all articles, and assign a confidence of 0 to articles not found by wikifiers.
This approach, however, is sensible to noise due to differences in the knowledge bases (and
their version) used to train the wikifiers. Using this approach, we observed correlation scores
all near zero. Therefore, we present the more useful results using only the overlaps.
19 The τb variant of the statistics is explicitly tuned to account for ties, which is especially
important for the discretized confidence scores of DBpedia’s results.

Wikifying Software Artifacts 27

●●

●

●

●

●

●
●

●
●

●

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6
recall

pr
ec

is
io

n

wikifier

● ambiverse

babelfy

dbpedia

illinois

jsi

wat

Fig. 8: Precision-Recall curves of all six wikifiers, using the whitelist strategy
to improve precision. Note that the y axis differ from Figure 4, to improve
readability.

We studied two approaches to use this list as a filter to improve the out-
put of wikifiers. The first approach uses the validated computing titles as a
whitelist, and rejects other articles. The second approach instead uses negative
examples (i.e., articles marked as “incorrect” by the annotators) as a blacklist
of articles to reject. To allow others to use the same strategies to improve the
performance of wikifiers, we distribute the complete annotated dataset in our
on-line appendix.M

Computing Titles as a Whitelist: The first strategy is to remove from the
output of wikifiers all articles not on a whitelist, i.e., the validated list of
computing-related articles. In the ideal case, where the whitelist contains all
computing articles of Wikipedia, this strategy will increase precision with no
impact on recall, because it filters out only non-computing, thus incorrect,
articles.

To evaluate this strategy, we used the list of 1098 articles to filter the
output of all six wikifiers. Figure 8 shows the result of this strategy on the
precision-recall curves. The whitelist considerably augments the precision. For
example, for a recall threshold of 20%, the precision of all wikifiers goes from
less than 50% to over 74% (except for WAT, which does not achieve such re-
call). Nevertheless, there is still a non trivial proportion of computing-related
false positives, especially for low confidence values (e.g., to achieve 60% recall,

28 Mathieu Nassif, Martin P. Robillard

JSI’s precision drop to 47%). For example, although Source code is often cor-
rectly linked to the mentions source and code, it can be linked to misleading
terms, for example when source indicates the provenance of information in a
post.T

A limitation of this approach is the need for an extensive whitelist. Al-
though our list of 1098 articles is a good start, it may not contain articles about
rarer computing concepts or technologies. For example, we took a random sam-
ple of 30 articles marked as “incorrect” only once, and found four computing
articles among them: Message authentication code (matched to HTML codes),
32-bit (matched to the number 32), Arithmetic overflow (matched to HTML
content overflow), and Graphics Environment Manager (matched to Ruby’s gem
command). To avoid the possibility of rejecting such articles, users can com-
bine two configurations (or two wikifiers): one optimized for recall that uses
the whitelist, and the other optimized for precision which does not use the
whitelist.

Result: Using the list of articles as a whitelist showed a precision improve-
ment, reaching values between 74% and 89%. However, computing-related
false positives are still present in non-negligible ratios for configurations that
optimize recall.

Negative Examples as a Blacklist: To circumvent the limitations of the whitelist
strategy, another strategy is to only reject articles from an explicit blacklist.
An extensive list of all non-computing articles would be equivalent to an exten-
sive whitelist. However, the blacklist can focus on articles that are especially
problematic for a wikifier, i.e., articles that are most often false positives. The
objective of this strategy is to maximize the increase of precision by exclud-
ing common irrelevant terms (e.g., Canning, which is often matched to the
modal auxiliary verb can) and artifacts of the training phase (e.g., Burmese
language20 and On Your Toes21).

In addition to the list of 1098 computing articles, the annotation task gen-
erated a set of 10 854 distinct articles marked as “incorrect” at least once.
Articles that were rejected the most often (e.g., 781 articles were rejected at
least ten times) can serve as a basis to create the blacklist. However, even
some of these most often rejected articles are related to computing. For ex-
ample, although This (computer programming) is a computing concept, WAT
with the Lucene tokenizer often associates it with the demonstrative pronoun
this, creating many false positives. Including these articles in the blacklist can
improve precision at the cost of known blind spots, but this tradeoff must be
tailored to each wikifier (e.g., associating This (computer programming) is not
a common issue for other wikifiers than WAT).

20 The ISO two-letter code for the Burmese language is “my”, an homograph of the pos-
sessive determiner, which appears in many posts.
21 This musical is often linked to the word your, an obvious incorrect artifact from the
training phase.

Wikifying Software Artifacts 29

Result: A blacklist does not prevent rarer articles from being detected. It
optimizes the gain in precision by targeting the weaknesses of wikifiers. How-
ever, some computing articles are often confounded with other terms, and
thus often marked as “incorrect”. With a careful configuration, the blacklist
strategy can optimize the gain in precision at the cost of known blind spots
for such articles.

5.5 Threats to Validity

Internal Validity: The dynamic nature of Wikipedia affects the internal valid-
ity of the results. Because Wikipedia is in constant evolution, identifying an
article by title is ambiguous, as it can refer to multiple versions. This evolu-
tion impacts wikifiers trained with older versions of Wikipedia, or with other
knowledge bases which themselves rely on old Wikipedia versions. In addi-
tion to being oblivious to more recent articles, these wikifiers may refer to
articles that were significantly changed. As an example, the article Database
management system was merged in 2013 with the article Database.U There-
fore, a wikifier trained on a Wikipedia version older than 2013 will consider
Database and Database management system as two different articles, whereas
more recent wikifiers will only consider them as one. This divergence, however,
is inevitable, as researchers who may wish to use a wikifier without having to
re-train it will be similarly affected.

By the same argument, the evolution of Stack Overflow posts between the
wikification and the completion of the annotation task causes another threat.
To mitigate it, all data used in this study was only a few months old, greatly
reducing the threat of divergence.

External Validity: Threats to external validity depend on the level of gener-
alization considered. The first level of generalization is from the sample of
500 posts to all Stack Overflow posts. The simple random sample of posts
is sufficient to support a statistical generalization of proportions computed
over posts to the whole population within an error of 0.05 with 95% confi-
dence. However, most of the results of this study are proportions computed
over article–post pairs. This situation benefits us, as proportions of pairs rep-
resent a much larger number of annotations (41 124 article–post pairs in total),
but statistical generalization from these proportions is more complex, because
the sample of pairs is not random. Despite the lack of statistical generaliza-
tion, the unbiased sampling of posts and the absence of evident imbalance
in the wikifications (e.g., there was not a small subset of posts that received
all correct wikifications) give sufficient confidence in the representativeness of
the findings. Furthermore, the objective of this study is not to identify the
best performing wikifier, but to understand their relative performance to help
potential users make informed decision on which wikifier to use. In such con-
text, small performance differences, statistically significant or not, should not
influence the choice of a wikifier the way larger differences would.

30 Mathieu Nassif, Martin P. Robillard

We performed a sensitivity analysis to further assess the threat of spurious
results. We generated 300 trimmed samples by removing 5%, 10%, and 20%
of the 500 posts, 100 times for each proportion. For each trimmed sample, we
computed the precision and recall of all wikifiers, for 21 confidence thresholds
ranging from 0 to 1, in increments of 0.05. We then compared those precision
and recall values to the precision and recall computed on the full sample, for
the same confidence thresholds. For all six wikifiers, the maximum variation in
recall, for all three proportions, was 1.8%. In terms of precision, the maximum
variation was of 4.2% for Ambiverse, Babelfy, DBpedia, and Illinois for all
three proportions. We observed larger variations in precision for JSI and WAT
when the confidence threshold was near 1, which can be expected, as very
few results are returned (and thus, the effect of one additional true or false
positive is much larger). However, for lower thresholds (0.70 or less for JSI
and 0.95 or less for WAT), the variation is similar to that of the other tools
(below 7.5%). Considering that these values represent the maximum variation
over 300 independent perturbations of up to 20% of the sample, the small
observed variations suggest that the results can reliably be generalized to the
population of Stack Overflow posts within a small margin of error.

The study design supports an analytic generalization from the sampled
population, i.e., Stack Overflow posts, to the concept of a “software resource”.
In contrast to other types of documents, a software resource contains a mix
of natural language and code, either in blocks or embedded in the main text,
software-specific jargon, and references to a fast growing list of technologies.
The considerable variance of posts in a number of dimensions, such as the
formality and quality of the language, the length of a post, the sub-area of
computing, and the intent of the post (e.g., question, description, explanation,
step-by-step guide), allows this analytic generalization. Nevertheless, because
this study is the first to focus on the wikification of software resources, further
replication studies with resources from other sources are required to strenghten
this generalization. In particular, Stack Overflow posts exhibit a number of
idiosyncrasies. For example, posts edited to add content often include the
new content under an “Edit” header, and questions sometimes end with a
“Thank you”, which wikifiers would link to the Wikipedia articles Editing and
Gratitude, respectively. Although such phrases are unlikely to appear in other
types of software resources, it is reasonable to assume that any source has its
own idiosyncrasies, and wikifiers should be able to ignore them.

Construct Validity: Construct validity concerns the relation between the met-
rics used (precision and recall) and the constructs under study (wikifier perfor-
mance). The two metrics are commonly used in software engineering research,
and both have an intuitive interpretation that allows the reader to understand
what exactly is measured (as opposed to, e.g., F1 score). The more important
threat to construct validity comes from the formulation of the annotation task.
The details of the task, discussed in Section 4.1, may diverge from others’ in-
terpretation of wikification, especially regarding the rejection of relevant, but

Wikifying Software Artifacts 31

non-computing articles. This decision was however necessary to mitigate the
subjectivity of the task and the influence of irrelevant results.

Conclusion Validity: The findings of this study suggest different strategies to
use wikifiers. These suggestions are backed by empirical evidence, but there
are many other factors that can influence the choice of a wikification proce-
dure, such as the time budget, the number of documents to wikify, and the
amount of human effort that can be devoted to the task (e.g., to experiment
between different configurations or manually validate some of the output). To
mitigate this threat, we discussed findings from all wikifiers, not just the best
performing ones.

6 Related Work

The wikification task finds its roots in two related sub-areas of computational
linguistics: named entity recognition (NER) and named entity disambiguation
(NED). The recognition task aims at identifying, from a natural language text,
mentions of named entities. The disambiguation task aims at identifying, for a
given mention in a natural language document, the correct sense of this term,
usually by associating the term with an entry of a knowledge base. Named
entities are real life entities with a proper noun, such as people, organizations,
and geographical locations.

The two tasks, NER and NED, are sometimes jointly referred to as named
entity recognition and disambiguation (NERD) or entity linking (EL). When
considering any term, not just named entities, the disambiguation task is also
called word sense disambiguation (WSD). The equivalent of NERD for any
term is called concept linking (CL), which thus subsumes the NERD problem.
For any of the disambiguation tasks, different knowledge bases can be used,
such as WordNet (Fellbaum, 1998), DBpedia (Lehmann et al., 2015), and
YAGO (Rebele et al., 2016). Hence, wikification is simply concept linking
with Wikipedia as the knowledge base.

A large number of different techniques exist to solve any of these tasks. The
popularity of concept linking is in part due to several challenges and shared
tasks developed by the community, such as those of the Message Understand-
ing Conferences (see, for example, Sundheim, 1995), Senseval/SemEval (e.g.,
Mihalcea et al., 2004; Navigli et al., 2013), and CoNLL (e.g., Tjong Kim Sang
and De Meulder, 2003). Lists of concept linking techniques can be found in the
proceedings of any of the shared tasks. Shen et al. (2015) present a synthesized
summary of the state of concept and entity linking (as of 2015), in terms of
techniques, evaluation, and applications. Although not specifically focusing on
concept linking, Xun et al. (2017) discuss many of the techniques underlying
concept linking. More recently, Szymański and Naruszewicz (2019) surveyed
wikification techniques specifically. However, to the best of our knowledge, no
prior work surveys or independently evaluates the problem of concept linking
specifically in the context of software engineering.

32 Mathieu Nassif, Martin P. Robillard

The large amount of concept or entity linking techniques, each described
with inconsistent terms, led to a community effort to generate a new, standard
terminology to clearly discuss each variant of the concept linking task (Usbeck
et al., 2015). According to Usbeck et al.’s terminology, the exact task evalu-
ated in this study is Concepts to Knowledge Base (C2KB), or more precisely
Concepts to Wikipedia (C2W). However, all wikifiers from this study actually
solve the Annotation to Knowledge Base (A2KB) task, which subsumes C2KB.
The outcome of this community effort also includes a framework, GERBIL, to
evaluate concept linking techniques with consistent methodology and metrics.
In the present study, however, we could not use GERBIL to compare wikifiers,
because it requires a gold standard as input to the evaluation procedure.

In the software engineering community, prior work has addressed some
of the specific issues related to natural language processing for software re-
sources. To leverage the information contained in identifiers, Carvalho et al.
(2015) developed an approach to expand and tokenize source code identifiers
that goes beyond the trivial camelCase and snake_case-based splitting. Chen
et al. (2017) present an approach to aggregate the many morphological forms
software entities can take (e.g., the authors give the example of the Microsoft
Visual C++ IDE, which is commonly referred to by vc++, msvc, ms vc++,
and other forms). Closer to an eventual software-specific concept linking tool,
Ye et al. (2016a) developed S-NER, a named entity recognition technique
specifically tailored for software entities. We are not aware, however, of an
end-to-end approach for concept linking of software-related concepts.

Finally, the wikification task, which links mentions of concepts toWikipedia
articles, can be construed as a traceability problem. Traceability has been exten-
sively studied in software engineering, to explore how different types of software
artifacts can be linked (Cleland-Huang et al., 2014). Our study explores the
use of state-of-the-art wikifiers for this purpose, so that future work can build
on a mature foundation to link software artifacts to knowledge base entries,
or leverage ideas from the wikification domain to improve other traceability
recovery approaches, such as resolving mentions of API elements in natural
language documents (Rigby and Robillard, 2013; Ye et al., 2016b, 2018; Ma
et al., 2019). These works, however, focus on named entities (e.g., API ele-
ments or assets of a software project), which are typically better defined than
abstract concepts. Because wikifiers can identify both kinds of entities, their
use can complement other software-specific information retrieval techniques.

7 Conclusion

Software engineering techniques leverage wikification to automatically embed
documents into the rich semantic space defined byWikipedia articles. However,
although research on wikification techniques continues to grow, there is little
evidence on the ability of state-of-the-art wikifiers to overcome issues specific
to software resources, such as the quickly expanding software jargon, which in-
cludes many terms that have another generic sense (e.g., the Python language,

Wikifying Software Artifacts 33

the Spring framework), and the presence of code integrated directly into doc-
uments. Furthermore, the number of available wikifiers, each with different
configuration parameters, makes it harder to choose an optimal wikification
procedure.

To address these issues and encourage software engineering researchers to
use available wikifiers, we conducted an empirical comparison of six wikifiers
that can wikify custom text inputs. The comparison uses a random sample
of 500 Stack Overflow posts as input for the wikifiers, and we manually an-
notated the 41 124 Wikipedia articles identified for each post as correct or
incorrect. The results of this comparison confirm that it is challenging to se-
lect an optimal wikifier: no wikifier outperforms another wikifier completely,
and none of them perform as well as reported in their associated research arti-
cles. However, it is possible to achieve decent wikification precision and recall
on software documents. In addition to the empirical evidence to support the
choice of wikifier and configuration, we also contribute suggestions to improve
the performance of wikifiers for software resources, including by leveraging the
manually validated list of 1098 Wikipedia titles related to computing obtained
as a result of the annotation task.

Acknowledgements We are grateful to the external annotators for helping with the man-
ual annotation of the wikifiers output. This work is funded by the Natural Sciences and
Engineering Research Council of Canada (NSERC).

A List of Links to External Resources

A. https://stackoverflow.com/questions
B. https://en.wikipedia.org/wiki/Main_Page
C. https://www.reddit.com/
D. https://en.wikipedia.org/wiki/Software_system
E. https://archive.org/details/stackexchange
F. https://jsoup.org/
G. https://github.com/ambiverse-nlu/ambiverse-nlu
H. http://babelfy.org/
I. https://www.dbpedia-spotlight.org/
J. https://cogcomp.seas.upenn.edu/page/software_view/Wikifier
K. http://wikifier.org/
L. https://services.d4science.org/web/tagme/wat-api
M. https://doi.org/10.5281/zenodo.3727035
N. https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Linking
O. https://stackoverflow.com/questions/2348415
P. https://stackoverflow.com/questions/55228245
Q. https://stackoverflow.com/questions/41998618
R. https://stackoverflow.com/questions/55893389
S. https://stackoverflow.com/questions/21646135
T. https://stackoverflow.com/questions/16516936
U. https://en.wikipedia.org/w/index.php?title=Database_management_system&diff=544579037&

oldid=544577010

https://stackoverflow.com/questions
https://en.wikipedia.org/wiki/Main_Page
https://www.reddit.com/
https://en.wikipedia.org/wiki/Software_system
https://archive.org/details/stackexchange
https://jsoup.org/
https://github.com/ambiverse-nlu/ambiverse-nlu
http://babelfy.org/
https://www.dbpedia-spotlight.org/
https://cogcomp.seas.upenn.edu/page/software_view/Wikifier
http://wikifier.org/
https://services.d4science.org/web/tagme/wat-api
https://doi.org/10.5281/zenodo.3727035
https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Linking
https://stackoverflow.com/questions/2348415
https://stackoverflow.com/questions/55228245
https://stackoverflow.com/questions/41998618
https://stackoverflow.com/questions/55893389
https://stackoverflow.com/questions/21646135
https://stackoverflow.com/questions/16516936
https://en.wikipedia.org/w/index.php?title=Database_management_system&diff=544579037&oldid=544577010
https://en.wikipedia.org/w/index.php?title=Database_management_system&diff=544579037&oldid=544577010

34 Mathieu Nassif, Martin P. Robillard

References

Barua A, Thomas SW, Hassan AE (2014) What are developers talking about? an analysis
of topics and trends in stack overflow. Empirical Software Engineering 19(3):619–654

Bourque P, Fairley RE (2014) Guide to the Software Engineering Body of Knowledge, 3rd
edn. IEEE Computer Society Press, URL www.swevok.org

Brank J, Leban G, Grobelnik M (2017) Annotating documents with relevant wikipedia con-
cepts. In: Proceedings of the Slovenian Conference on Data Mining and Data Warehouses,
p 4 p.

Carvalho NR, Almeida JJ, Henriques PR, Varanda MJ (2015) From source code identifiers
to natural language terms. Journal of Systems and Software 100:117–128

Cassidy T, Ji H, Ratinov LA, Zubiaga A, Huang H (2012) Analysis and enhancement of wik-
ification for microblogs with context expansion. In: Proceedings of the 24th International
Conference on Computational Linguistics, pp 441–456

Chen C, Xing Z, Wang X (2017) Unsupervised software-specific morphological forms infer-
ence from informal discussions. In: Proceedings of the 39th International Conference on
Software Engineering, p 450–461

Chen C, Xing Z, Liu Y (2018) What’s Spain’s Paris? Mining analogical libraries from Q&A
discussions. Empirical Software Engineering 24(3):1155–1194

Cheng X, Roth D (2013) Relational inference for wikification. In: Proceedings of the Con-
ference on Empirical Methods in Natural Language Processing, pp 1787–1796

Cleland-Huang J, Gotel OCZ, Huffman Hayes J, Mäder P, Zisman A (2014) Software trace-
ability: Trends and future directions. In: Proceedings of the on Future of Software Engi-
neering, p 55–69

Cohen J (1960) A coefficient of agreement for nominal scales. Educational and psychological
measurement 20(1):37–46

Cornolti M, Ferragina P, Ciaramita M (2013) A framework for benchmarking entity-
annotation systems. In: Proceedings of the 22nd International Conference on World Wide
Web, pp 249–260

Daiber J, Jakob M, Hokamp C, Mendes PN (2013) Improving efficiency and accuracy in
multilingual entity extraction. In: Proceedings of the 9th International Conference on
Semantic Systems, pp 121–124

Fellbaum C (1998) WordNet: An electronic lexical database. MIT press
Ferragina P, Scaiella U (2010) TAGME: on-the-fly annotation of short text fragments (by

wikipedia entities). In: Proceedings of the 19th ACM International Conference on Infor-
mation and Knowledge Management, pp 1625–1628

Hoffart J, Yosef MA, Bordino I, Fürstenau H, Pinkal M, Spaniol M, Taneva B, Thater S,
Weikum G (2011) Robust disambiguation of named entities in text. In: Proceedings of
the ACL Conference on Empirical Methods in Natural Language Processing, pp 782–792

ISO/IEC/IEEE (2017) International standard – Systems and software engineering – Vocab-
ulary. Standard 24765:2017, ISO/IEC/IEEE

Kendall MG (1938) A new measure of rank correlation. Biometrika 30(1/2):81–93
Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data.

Biometrics 33(1):159–174
Lehmann J, Isele R, Jakob M, Jentzsch A, Kontokostas D, Mendes PN, Hellmann S, Morsey

M, van Kleef P, Auer S, Bizer C (2015) Dbpedia – a large-scale, multilingual knowledge
base extracted from wikipedia. Semantic Web 6(2):167–195

Ma S, Xing Z, Chen C, Chen C, Qu L, Li G (2019) Easy-to-deploy api extraction by
multi-level feature embedding and transfer learning. IEEE Transactions on Software En-
gineering p 15 pages, to appear

Meij E, Weerkamp W, de Rijke M (2012) Adding semantics to microblog posts. In: Pro-
ceedings of the 5th ACM International Conference on Web Search and Data Mining, pp
563–572

Mendes PN, Jakob M, Garcia-Silva A, Bizer C (2011) DBpedia Spotlight: Shedding light on
the web of documents. In: Proceedings of the 7th International Conference on Semantic
Systems, pp 1–8

www.swevok.org

Wikifying Software Artifacts 35

Mihalcea R, Chklovski T, Kilgarriff A (2004) The senseval-3 English lexical sample task. In:
Proceedings of the third International Workshop on the Evaluation of Systems for the
Semantic Analysis of Text, pp 25–28

Milne D, Witten IH (2008) Learning to link with wikipedia. In: Proceedings of the 17th
ACM conference on Information and Knowledge Management, pp 509–518

Milne D, Witten IH (2013) An open-source toolkit for mining wikipedia. Artificial Intelli-
gence 194:222–239

Moro A, Raganato A, Navigli R (2014) Entity linking meets word sense disambiguation: a
unified approach. Transactions of the Association for Computational Linguistics 2:231–
244

Nassif M, Treude C, Robillard MP (2020) Automatically categorizing software technologies.
IEEE Transactions on Software Engineering 46(1):20–32

Navigli R, Ponzetto SP (2012) BabelNet: The automatic construction, evaluation and appli-
cation of a wide-coverage multilingual semantic network. Artificial Intelligence 193:217–
250

Navigli R, Jurgens D, Vannella D (2013) SemEval-2013 task 12: Multilingual word sense
disambiguation. In: Second Joint Conference on Lexical and Computational Semantics,
Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation,
pp 222–231

Page L, Brin S, Motwani R, Winograd T (1999) The PageRank citation ranking: Bringing
order to the web. Technical Report 1999-66, Stanford InfoLab

Patil S (2017) Concept-based classification of software defect reports. In: Proceedings of the
14th International Conference on Mining Software Repositories, p 182–186

Piccinno F, Ferragina P (2014) From TagME to WAT: a new entity annotator. In: Pro-
ceedings of the first International Workshop on Entity Recognition & Disambiguation,
pp 55–62

Ponzanelli L, Bacchelli A, Lanza M (2013) Seahawk: Stack overflow in the ide. In: Proceed-
ings of the 35th International Conference on Software Engineering, pp 1295–1298

Ratinov L, Roth D, Downey D, Anderson M (2011) Local and global algorithms for disam-
biguation to wikipedia. In: Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies – Volume 1, pp 1375–1384

Rebele T, Suchanek F, Hoffart J, Biega J, Kuzey E, Weikum G (2016) YAGO: A multi-
lingual knowledge base from wikipedia, wordnet, and geonames. In: Proceedings of the
International Semantic Web Conference, pp 177–185

Rigby PC, Robillard MP (2013) Discovering essential code elements in informal documen-
tation. In: Proceedings of the 35th IEEE/ACM International Conference on Software
Engineering, pp 832–841

Schindler M, Fox O, Rausch A (2015) Clustering source code elements by semantic similar-
ity using wikipedia. In: Proceedings of the Fourth International Workshop on Realizing
Artificial Intelligence Synergies in Software Engineering, p 13–18

Seyler D, Dembelova T, Del Corro L, Hoffart J, Weikum G (2018) A study of the impor-
tance of external knowledge in the named entity recognition task. In: Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), pp 241–246

Shen W, Wang J, Han J (2015) Entity linking with a knowledge base: Issues, techniques,
and solutions. IEEE Transactions on Knowledge and Data Engineering 27(2):443–460

Sundheim BM (1995) Overview of results of the MUC-6 evaluation. In: Proceedings of the
6th Conference on Message Understanding, p 13–31

Szymański J, Naruszewicz M (2019) Review on wikification methods. AI Communications
32(3):235–251

Tjong Kim Sang EF, De Meulder F (2003) Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In: Proceedings of the Seventh Confer-
ence on Natural Language Learning at HLT-NAACL, pp 142–147

Treude C, Robillard MP (2016) Augmenting API documentation with insights from stack
overflow. In: Proceedings of the IEEE/ACM 38th International Conference on Software
Engineering, pp 392–403

Usbeck R, Röder M, Ngonga Ngomo AC, Baron C, Both A, Brümmer M, Ceccarelli D,
Cornolti M, Cherix D, Eickmann B, Ferragina P, Lemke C, Moro A, Navigli R, Piccinno

36 Mathieu Nassif, Martin P. Robillard

F, Rizzo G, Sack H, Speck R, Troncy R, Waitelonis J, Wesemann L (2015) GERBIL: Gen-
eral entity annotator benchmarking framework. In: Proceedings of the 24th International
Conference on World Wide Web, pp 1133–1143

Vincent N, Johnson I, Hecht B (2018) Examining Wikipedia with a broader lens: Quanti-
fying the value of Wikipedia’s relationship with other large-scale online communities. In:
Proceedings of the CHI Conference on Human Factors in Computing Systems, pp 1–13

Wang C, Peng X, Liu M, Xing Z, Bai X, Xie B, Wang T (2019) A learning-based approach
for automatic construction of domain glossary from source code and documentation. In:
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, p 97–108

Wikipedia (2019) Wikipedia:Manual of Style/Linking. URL https://en.wikipedia.org/
wiki/Wikipedia:Manual_of_Style/Linking, accessed 2020-01-06

Xun G, Jia X, Gopalakrishnan V, Zhang A (2017) A survey on context learning. IEEE
Transactions on Knowledge and Data Engineering 29(1):38–56

Ye D, Xing Z, Foo CY, Ang ZQ, Li J, Kapre N (2016a) Software-specific named entity
recognition in software engineering social content. In: Proceedings of the IEEE 23rd In-
ternational Conference on Software Analysis, Evolution, and Reengineering, pp 90–101

Ye D, Xing Z, Foo CY, Li J, Kapre N (2016b) Learning to extract api mentions from
informal natural language discussions. In: IEEE International Conference on Software
Maintenance and Evolution, pp 389–399

Ye D, Bao L, Xing Z, Lin SW (2018) APIReal: an api recognition and linking approach for
online developer forums. Empirical Software Engineering 23(6):3129–3160

Ye X, Shen H, Ma X, Bunescu R, Liu C (2016c) From word embeddings to document
similarities for improved information retrieval in software engineering. In: Proceedings of
the 38th International Conference on Software Engineering, p 404–415

Zhao X, Xing Z, Kabir MA, Sawada N, Li J, Lin SW (2017) HDSKG: Harvesting domain
specific knowledge graph from content of webpages. In: Proceedings of the IEEE 24th
International Conference on Software Analysis, Evolution and Reengineering, pp 56–67

https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Linking
https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Linking

	Introduction
	Background on Wikification
	Study Preparation
	Data Annotation
	Results
	Related Work
	Conclusion
	List of Links to External Resources

