Noname manuscript No.
(will be inserted by the editor)

Information Correspondence between Types of
Documentation for APIs

Deeksha M. Arya - Jin L.C. Guo -
Martin P. Robillard

Received: date / Accepted: date

Abstract Documentation for programming languages and their APIs takes
many forms, such as reference documentation, blog posts or other textual
and visual media. Prior research has suggested that developers switch be-
tween reference and tutorial-like documentation while learning a new APIL
Documentation creation and maintenance is also an effort-intensive process
that requires its creators to carefully inspect and organize information, while
ensuring consistency across different sources. This article reports on the rela-
tionship between information in tutorials and in API reference documentation
of three libraries on the topics: regular expressions, unified resource location
and Input/Output in the two programming languages Java and Python. Our
investigation reveals that about half of the sentences in the tutorials studied
describe API Information, i.e. syntax, behaviour, usage and performance of
the API, that could be found in the reference documentation. The remaining
are tutorial specific use-cases and examples. We also elicited and analyzed six
types of correspondences between sentences in tutorials and reference docu-
mentation, ranging from identical to implied. Based on our findings, we propose
a general information reuse pattern as a structured abstraction to represent
the systematic integration of information from the reference documentation
into a tutorial. We report on the distribution of 38 instances of this pattern,
and on the impact of applying the pattern automatically on the existing tuto-
rials. This work lays a foundation for understanding the nature of information

Deeksha Arya
McGill University
E-mail: deeksha.arya@mail.mcgill.ca

Jin L.C. Guo
McGill University
E-mail: jguo@cs.mcgill.ca

Martin P. Robillard
McGill University
E-mail: martin@cs.mcgill.ca

2 Deeksha M. Arya et al.

correspondence across different documentation types to inform and assist doc-
umentation generation and maintenance.

Keywords Software Documentation - Application Programming Interface -
Qualitative Analysis - Exploratory Study

1 Introduction

Complete, correct and consistent documentation for application programming
interfaces (APIs) is a boon for developers to understand the functionalities of
software and to master their usage. API documentation may be presented in
many forms, including reference documentation and tutorials. We define ref-
erence documentation as a dictionary-style document indexed by API element
and intended mostly for retrieving specific technical information. In contrast,
we define a tutorial as a document intended primarily to teach its users how to
use a technology, without specific constraints on the structure of the document
(such as a direct mapping to the underlying APT).

Despite the availability of documentation, Robillard (2009) and Uddin and
Robillard (2015) observed that API reference documentation lacks, in many
cases, the kind of information that users seek, such as examples and how-to-
use descriptions. Meng et al. (2018, 2019) discovered that developers often
have to switch between reference and tutorial documentation during software
development to retrieve the information they need. There is thus evidence
that developers need different types of documentation when learning and us-
ing technology. To fulfill this need, popular technology platforms are usually
supported by a documentation ecosystem that includes a variety of document
types that synergistically complement each other. Although it is not rare to
observe extensive information overlap between document types, we are not
aware of any documentation creation or maintenance process where the corre-
spondence between different documentation types is taken into account. More
generally, very little is known about the correspondence between different types
of API documentation.

To improve our understanding of documentation ecosystems and inform
the future development of advanced documentation systems, we conducted a
case study to explore the question: what is the correspondence between in-
formation contained in tutorials and reference documentation for application
programming interfaces (APIs)? Based on an initial observation that the struc-
ture and style of tutorial documentation is not uniform even across tutorials
by a single technology provider, we structured our inquiry as a multiple case
study (Runeson et al., 2012), investigating the relationship between the API
reference documentation and tutorials for three API-supported features (reg-
ular expressions, URL handling, and Input/Ouput) in two programming lan-
guages (Java and Python). For analyzing each case, we relied on a systematic
manual analysis of the content of tutorials as reference documentation, follow-
ing a qualitative content analysis (Krippendorff, 2018).

Information Correspondence between Types of Documentation for APIs 3

We followed an inductive research process organized in three phases. First,
we determined the API library topics and identified the corresponding tutorial
and reference documentation (Section 2). Second, for each sentence in the six
tutorials, we manually analyzed whether it constituted API Information or
Supporting Text (see Section 3.1). If the sentence constituted API Informa-
tion, we determined whether there was any sentence in the reference docu-
mentation that contained the same information as the tutorial sentence. We
classified each identified sentence pair from tutorials and reference documen-
tation according to the extent to which the two sentences match (Section 3.2).
Finally, we identified frequently occurring structures in the tutorials that map
to information in reference documentation as instances of an information reuse
pattern between tutorials and reference documentation (Section 4).

Our detailed analysis of 2445 tutorial sentences revealed that, depending
on the tutorial, between 46% and 76% of the tutorial sentences constitute APl
Information. The nature of the correspondence between these sentences and
those in the reference documentation varies across a spectrum from identical
to implied, with between 15% to 45% of API Information tutorial sentences
remaining unmatched. We devised an abstract structure that systematical in-
tegrates API reference information into tutorials. We call this structure an
information reuse pattern. We noted 38 instances of this pattern across four
major API element types in the six tutorials studied, indicating a practice
of systematic reuse of information across document types. Further more, we
discovered for each tutorial, over 64% of the individual sentences not covered
by a pattern instance are found at arbitrary or low-prominence locations in
the reference documentation.

This study is the first to report on a systematic analysis of the correspon-
dence between tutorials and reference documentation for APIs that employs
a painstaking manual classification process to take into account the nuances
of differences in sentence semantics. This imperative process cannot be re-
placed by existing natural language processing techniques, which are inca-
pable of accurately determining the level of relatedness between highly tech-
nical text (Cleland-Huang and Guo, 2014; Al Omran and Treude, 2017). Our
findings provide empirically-based insights about the content of popular tu-
torials and their correspondences in reference documentation. In particular,
we document how the information in documentation is currently related, and
provide insights on how the level of correspondence can be further increased
and supported by more advanced technology, promoting consistency across
documentation types as a favorable by-product.

Data artifact

This article is complemented by a data artifact available on-line at https://
doi.org/10.5281/zenodo.3959240. This artifact comprises data annotation
guidelines, and our data set.

https://doi.org/10.5281/zenodo.3959240
https://doi.org/10.5281/zenodo.3959240

4 Deeksha M. Arya et al.

Table 1: Documentation data set along with their associated topic, correspond-
ing resources and the number of sentences we extracted from the tutorials.
For reference documentation, the resources include all API elements under
the stated package or module. For tutorials, we state the title of the tutorial.

Language Doc Type Topic Resource # of Sentences
Java Reference REGEX java.util.regex (3] -
Platform URL java.net (4] -
SE v8 I/0 java.nio. file (5] E
Tutorial REGEX Lesson: Regular Expressions [6) 402
URL Lesson: Working with URLs [7] 183
I/0 File 1/O (Featuring NIO.2) [s) 1200
Python Reference REGEX re |9 -
v3.7.2 URL urllib [10] -
I/0 Built-in Functions [11] -
Tutorial REGEX Regular Expression HOWTO 1121 402
HOWTO Fetch
URL Internet Resources Using 135
The urllib Package [13]
I/0 Input and Output [14] 123

2 Data Collection

We selected our cases across two dimensions - programming languages and
their APIs and topic (or functionality supported by the API). For program-
ming languages, we selected Java and Python because they are two popular
languages that support general application development yet have significant
differences in syntax and library organization. For topics, we selected three
basic functionalities likely to be used in a large variety of development con-
texts: Regular Expressions (REGEX), URL connectivity and handling (URL) and
Input/Output (I/0). This selection introduces diversity in our cases in terms
of writing style, information content and length (see Table 1). Henceforth, we
use the format of programming language—topic to refer any of our six cases. For
example, Java—REGEX refers to the tutorial and reference documentation of reg-
ular expressions API in Java, while *~1/0 refers to the tutorial and reference
documentation of input and output API across both programming languages.

For each topic, we retrieved the corresponding reference and tutorial doc-
umentation resources (HTML files) for the Java Platform Standard Edition
version 8 and Python version 3.7.2. The organization of the functional top-
ics in the documentation resources is different between Java and Python. For
example, connection via sockets is provided within the java.net package f
whereas, in Python, socket 2 is a separate module, outside the urllib pack-
age.

Among our target documentation resources, we transformed every tutorial
file into a sequence of sentences. Splitting sentences from HTML documents
is not a trivial problem. To preserve the accuracy of sentence splitting, we

TLinks to documentation are referenced at the end of this article under “References to
Documentation Sources”.

Information Correspondence between Types of Documentation for APIs 5

designed heuristics to handle documentation files for Java and Python and
proceeded to manually verify the results. We describe the heuristics in Ap-
pendix A. We also replaced code blocks by a single token CODE for sentence
readability, but did not alter inline code. Finally, because the quality of the
sentence data set is of high importance in our study, we manually corrected
all incorrect splits, which involved merging seven and splitting 76 data items
produced by the splitting algorithm. Table 1 lists the documentation elements
we studied, along with their associated topic, corresponding resource files and
the final number of sentences we extracted from the tutorials. Our study de-
sign did not require that we split sentences in the reference documentation
(see Section 3).

3 Information Correspondence between Documentation Types

We analyzed to what extent information contained in tutorials corresponds
to information present in the reference documentation. We used the tutorial
sentence as a unit of information which we match to reference documenta-
tion. Although, in some cases, reference documentation is created first and
other documentation types are produced as the project evolves (Dagenais and
Robillard, 2010, p. 6), this part of our analysis (the correspondence between
documentation types) is not dependent on the temporal order in which docu-
ments of different types are created.

3.1 Initial Classification of Tutorial Sentences

Not all sentences in a tutorial capture information about an API. A certain
fraction of the text is employed for general pedagogical purposes, way-pointing,
segues, and to dissect specific example scaffolding. For instance the following
sentence provides general background and motivation for some of the tuto-
rial’s content: “You must learn a specific syntax to create regular expressions—one that goes
beyond the normal syntax of the Java programming language.” 15 For sentences that do
not capture information about the API, it is unlikely that we would find a
corresponding sentence in the reference documentation, and even then such a
correspondence would be spurious. To determine a baseline for the informa-
tion that can be matched between document types, we manually classified each
sentence in the tutorials as either capturing API Information or containing
Supporting Text. For a tutorial sentence to qualify as API Information, it must
describe the syntax, behaviour, usage, performance and/or support of the API
under consideration. For example, we categorize the following sentence as A PI
Information because it documents the behavior of the matching functions for
regular expressions: “By default, case-insensitive matching assumes that only characters in
the US-ASCII charset are being matched.” [16]

We designed a coding guide to discriminate sentences between API Infor-
mation and Supporting Text by following an iterative content analysis process

6 Deeksha M. Arya et al.

Table 2: Frequency of sentences containing API Information in each tutorial.
The last row and column each contain the average percentage and in parenthe-
ses, the total number of tutorial sentences containing the relation type across
the respective row and column.

Language Relation to API REGEX URL I/0 Average (Total)
Java API Information 46% (183) 58% (107) 52% (619) 51% (909)
Supporting Text 54% (219) 42% (76) 48% (581) 49% (876)
Python APT Information 49% (198) 76% (102) 62% (76) 57% (376)
Supporting Text 51% (204) 24% (33) 38% (47) 43% (284)
Average (Total) API Information 47% (381) 66% (209) 53% (695) 53% (1285)
Supporting Text 53% (423) 34% (109) 47% (628) 47% (1160)

Table 3: Contingency Matrix of annotations of a random, stratified sample of
332 tutorial sentences between the author and the external annotator.

External Annotator
API Information Supporting Text

API Information

Author Supporting Text

20 139

121 52 ‘

whereby three authors first independently coded a subset of 195 sentences from
*_REGEX tutorials and resolved issues and disagreements. After improving the
coding guide, the first author coded the remainder of the sentences as either
API Information or Supporting Text. Table 2 shows the frequency of sentences
containing API Information in each tutorial.

The annotation process we followed is not devoid of subjectivity. We mea-
sured the subjectivity of the task by asking an annotator not associated with
this project to independently code a stratified random sample of 332 sen-
tences.* Our observed agreement with the independent annotator was 260/332 =
0.783, yielding a Cohen’s kappa value of 0.57, which quantifies the subjectiv-
ity of the task. Table 3 shows the direction of the disagreements: our analysis
was more liberal in including sentences as API information. Sentences marked
as API Information by the first author but not by the external annotator
frequently described information about an underlying concept or its use-case
such as “An absolute URL contains all of the information necessary to reach the resource in
question.” n7). Section 3.4 discusses the implications of the subjectivity of this
initial classification task.

FWe selected a sample size of 332 using as guide the sample size for a minimum confidence
interval of 5% for the proportion of sentences in agreement based on simple random sampling.
We used stratified sampling, where a number of sentences is randomly drawn from each of
the six tutorials in proportion to the number of sentences in the tutorial. This prevents the
calculation of an exact confidence interval.

Information Correspondence between Types of Documentation for APIs 7

For each tutorial sentence (S):

1. If S contains a hyperlink to the reference documentation, we follow the
hyperlink and proceed to Step 4.

2. We search for a hyperlink in relevant neighboring sentences of S; if we find
one, we follow it and proceed to Step 4.

3. We identify elements such as class, method or constant names in S or its
closest relevant neighbors. We then refer to the reference documentation
containing the elements identified and proceed to Step 4.

4. We inspect the reference documentation for S. If a match is found, we pro-
ceed to Step 7.

5. We inspect the reference documentation for coherent subphrases of S until
a match to it is found or all meaningful subphrases have been exhausted. If
a match is found, we proceed to Step 7.

6. We search for a sentence that provides the same information as S in the
reference documentation. If found, we proceed to Step 7. Otherwise, we
proceed to Step 10.

7. For each matched sentence, we assess if it provides the same information as
S. If it does not, we discard the reference documentation sentence.

8. If no reference documentation sentences remain, we proceed to Step 10.

9. We identify the sentence among the matched sentences closest in correspon-
dence to S. We discard all other reference documentation sentences.

10. We assess the extent to which the matched sentence corresponds to S, or
annotate the tutorial sentence as Unmatched.

Fig. 1: Procedure used to find correspondences of tutorial API Information
sentences in the relevant reference documentation.

3.2 Matching Tutorial Sentences to Reference Documentation

For each of the 1285 tutorial sentences we labeled as capturing API informa-
tion, we attempted to match it to a corresponding sentence in the reference
documentation.

We chose to manually match the sentences for two main reasons. First,
an extensive knowledge of the target API is required to fully understand the
content of the sentences and to establish their relations. For example, the sen-
tence in the Python-REGEX tutorial: “Groups are numbered starting with 0.” 12 refers
to the behaviour of the method group(). In contrast, a misleadingly similar
sentence in the reference documentation refers to the concept of groups within
regular expression syntax: “Groups are numbered starting from 1" 0. Second, the ex-
tent to which two sentences in different documents can relate to each other
varies greatly.® We thus devised the matching process described in Fig 1.

The first author followed this process to examine all the tutorial sentences
containing API information. As a result, we identified the following seven types

§We experimented with an automated technique based on computing the Jaccard index
between sentences. Not surprisingly, the precision and recall were so low that producing a
reliable analysis required a manual review as onerous as a complete manual inspection.

8 Deeksha M. Arya et al.

Tutorial Sentences
Relation to API APl information Supporting text
T 1

I T T T T

id’::f@ } {Equivalent} { Similar } {Partial} {Implied

|)\ J
[l

Substitutable Matches Unsubstitutable Matches

Match Type { Identical }

Unmatched }

Fig. 2: Taxonomy for tutorial sentences

of correspondences between API Information sentences in tutorials and their
corresponding reference documentation. Fig 2 summarizes our taxonomy for
tutorial sentences.

Identical: The tutorial sentence is a verbatim copy of a sentence in the refer-
ence documentation. For example, in Java-REGEX:

Tutorial: Reference documentation:
By default, matching does not take canonical | By default, matching does not take canonical
equivalence into account. [16] equivalence into account. [18]

Near-identical: The tutorial sentence is exactly the same as a sentence in the
reference documentation except for minor variations in choice of words that
do not alter the meaning of the sentence. The difference between the following
sentences from Python—-REGEX are in italics:

Tutorial: Reference documentation:
Usually ~ matches only at the beginning of | By default, "' matches only at the beginning
the string, and $ matches only at the end of | of the string, and ‘$’ only at the end of the
the string and immediately before the new- | string and immediately before the newline (if
line (if any) at the end of the string. [12] any) at the end of the string. (9]

FEquivalent: The tutorial sentence is semantically equivalent with one in the
reference documentation, but is phrased in a different way, e.g., it uses the
passive voice instead of the active. Equivalent sentences can be substituted
with each other with no impact on the coherence of the host text. In Python—
URL, the following sentences describe the default behaviour of the Request
method in urllib.request:

Tutorial: Reference documentation:
If you do not pass the data argument, urllib | The default is ‘GET’ if data is None or
uses a GET request. [13] ‘POST’ otherwise. [10]

Similar: Although the tutorial sentence is semantically equivalent with one in
the reference documentation, the two sentences cannot be substituted for each
other because it would impact the coherence of the text or add excessive in-
formation to the tutorial. Additional details on the classification criterion can
be found in Appendix B. The following Java—URL tutorial sentence describes a

Information Correspondence between Types of Documentation for APIs 9

particular example before providing information about the API (in italics). If
replaced by the API reference documentation sentence, the reference to the ex-
ample that prompts this information would be lost. However, the non-italicised
sentence fragment contains Supporting Text, and so this is not considered a
partial correspondence.

Tutorial:

Encoding the special character(s) in this ex-
ample is easy as there is only one character
that needs encoding, but for URL addresses

Reference documentation:

The multi-argument constructors quote ille-
gal characters as required by the components
in which they appear. [19]

that have several of these characters or if
you are unsure when writing your code what
URL addresses you will need to access, you
can use the multi-argument constructors of
the java.net.URI class to automatically take
care of the encoding for you. [17]

Partial: Some, but not all, of the information in the tutorial sentence is
present in the reference documentation. The Java-REGEX documentation con-
tains the sentence below. The reference documentation explicitly states that
the lookingAt () method begins at the beginning of the input string, but it
does not describe anywhere that the matches () method does too. Hence only
some of the information provided in the tutorial sentence can be sourced from
the reference documentation.

Tutorial:

Both methods [lookingAt() and matches()]

always start at the beginning of the input
string. [20]

Reference documentation:

public boolean lookingAt() Attempts to
match the input sequence, starting at the be-
ginning of the region, against the pattern. [21]

Implied: The information in a tutorial sentence can be implied from infor-
mation in the reference documentation, provided the reader has the relevant
domain knowledge. Identifying this type of correspondence can be subjective
as it depends on the experience and expertise of a reader. The sentence pair
below is from Java-10. Here, the tutorial states that the varargs argument
of the Files.readAttributes methods accept the constant NOFOLLOW_LINKS.
The API reference documentation makes no explicit statement, but describes
the method’s behaviour if this constant was to be passed as an argument.
An experienced user would likely be able to infer that NOFOLLOW_LINKS is an
acceptable input and should be passed in the varargs argument.

Tutorial:
The varargs argument currently supports the
LinkOption enum, NOFOLLOW_LINKS. [22]

Reference documentation:
If the option NOFOLLOW_LINKS is present
then symbolic links are not followed. [23]

Unmatched: Sentences we classified as capturing API Information in Section
3.1, but were unable to locate any corresponding sentences in the reference
documentation.

Fig 3 shows the frequency of different types of correspondence relative to
all the sentences capturing API information. In Java-REGEX, 37% of these sen-
tences are identical to sentences in the reference documentation. In contrast,

10 Deeksha M. Arya et al.

100%
90%
80%
70%
60%
50%

40%

Percentage

30%
20%
10%

0%

Java Python
REGEX URL /0 REGEX URL /0
Identical 67 (37%) 0(0%) 1(0%) 14 (7%) 1(1%) 0(0%)
Near-identical 15 (8%) 2(2%) 27 (4%) 10 (5%) 0(0%) 0(0%)
Equivalent 20 (11%) 20 (19%) 105 (17%) 32 (16%) 10 (10%) 12 (16%)
== Substitutable 56% 21% 21% 28% 1% 16%
Similar 19 (10%) 23 (21%) 138 (22%) 43 (22%) 23 (22%) 28 (37%)
Partial 1(0%) 1(1%) 16 (3%) 6(3%) 5(5%) 2(2%)
Implied 34 (19%) 16 (15%) 65 (11%) 36 (18%) 17 (17%) 9 (12%)
== Unsubstitutable 29% 37% 36% 43% 44% 51%
Unmatched 27 (15%) 45 (42%) 267 (43%) 57 (29%) 46 (45%) 25 (33%)

Fig. 3: Frequency of correspondence between API Information sentences in
tutorials and sentences in reference documentation.

in Python-REGEX, only 7% of the sentences are identical matches. *~URL tuto-
rials paint a different picture. We did not find any identical correspondences
in Java-URL, and only one in Python-URL. Our observations in *-1/0 documen-
tation are similar to *~URL. In Java, only one identical correspondence exists
whereas Python has none. The percentage of unmatched sentences in Python-10
lies in-between that in Python—REGEX and Python-URL with 33% cases but form
the majority in Java with 43% occurrences. Equivalent and similar matches
occur nearly equally frequently in Java. In all six cases, near-identical and
partial matches are infrequent (at most 8% and 5% respectively).

Our taxonomy characterizes the correspondence between matched pairs
into a spectrum from identical to implied. We further split this spectrum
into two coarse-grained categories: substitutable and unsubstitutable correspon-
dences (see Fig 2).

— Substitutable: refers to a pair of sentences that provide the same informa-
tion such that the sentence in the tutorial can be replaced by its corre-
sponding one in the reference documentation without altering the meaning
of the text or disrupting its coherence. This category includes identical,
near-identical and equivalent matches.

— Unsubstitutable: refers to matched pairs of sentences where the tutorial
sentence provides slightly less or more than its corresponding reference
documentation sentence or can not be replaced by it in the tutorial because
it would break the coherence of the text. This category includes similar,
partial and implied matches.

Information Correspondence between Types of Documentation for APIs 11

The correspondence between API Information sentences in tutorials and
reference documentation varies across programming language and topic. We
found that information reuse is topic-dependent, especially in the case of *-
URL, which shows similarity in the distribution of correspondence types in Java
and Python. Substitutable matches form the majority in Java-REGEX, and cor-
respond to a quarter of the other Java tutorials and Python-REGEX. In general,
Python shows less correspondences of API documentation than Java.

Classification of Unmatched Tutorial Sentences. The proportion of unmatched
tutorial sentences varies between 15% to 45% across our data set. We cate-
gorized each unmatched sentence following an open coding process, eliciting
ten categories of unmatched sentences. Table 4 provides the frequency distri-
butions, and the categories are explained in detail in Appendix C. In three
tutorials, unmatched sentences predominantly describe usage of an API, as
expected. In the other tutorials, the majority of unmatched sentences describe
the underlying topic, behaviour or internal behavior of the API.

Table 4: Percentage distribution of categories of unmatched tutorial sentences
rounded to the nearest integer. For each tutorial, the most frequent category is
in bold. The decimals indicate exact half values and are not rounded to avoid
totaling inconsistencies.

Theme Java Python
REGEX URL I/O REGEX URL I/O

Underlying Topic 69 29 19 23 22 12
Behaviour 0 11 9 2 26 52
Usage 15 36 25 12.5 39 24
Internal Behavior 0 2 16 30 4.5 0
Use-case 8 22 13 18 4.5 8
Performance 4 0 3 12.5 2 4
Version Info 4 0 4 2 2 0
Environment 0 0 7 0 0 0
Input Configuration Details 0 0 3 0 0 0
API support 0 0 1 0 0 0

3.3 Positional Distribution of Matched Sentences in Tutorials

In addition to the degree of correspondences from tutorial sentences to sen-
tences in the reference documentation, we also investigated the positional dis-
tribution of matched sentences within the tutorials.

Fig 4 shows a visualization of the sentence category distribution in tuto-
rials. Each shade-coded vertical bar corresponds to the sentence classification
for the sentence at the corresponding normalized position in the tutorial. Sen-
tences are ordered from left to right.

Deeksha M. Arya et al.

=== Substitutable === Unsubstitutable

[LIRURILTT (Al 11

(a) Java—REGEX
QCTE O T | I

(c) Java-URL

VRN R LT T T T

(e) Java—-10

Unmatched Supporting Text

L ANV AT AT AT

(b) Python—-REGEX
T MR A AT | 0
(d) Python-URL

(f) Python-10

Fig. 4: Visualization of the sentence category distribution in tutorials. Each
shaded vertical bar corresponds to the sentence classification for the sentence
at the corresponding normalized position in the tutorial. Sentences are ordered
from left to right.

At this macroscopic level, no obvious pattern is apparent, but the figure
shows evidence of different styles of correspondence in the tutorials. For exam-
ple, many substitutable correspondences in Java—REGEX take the form of large
blocks of text, something we do not observe in any one of our other cases except
for one instance in Java-URL. The other feature apparent from this visualization
is that sentence correspondence for Python-REGEX and Java-10 is fine-grained,
with most interleavings occurring at the level of individual sentences.

We illustrate how corresponding information in different document types
can relate with an excerpt from the Python—-REGEX case. Fig 5 shows the descrip-
tion of the method sub. The left column contains text about the Pattern.sub
method in the tutorial 2y and the right contains a snippet from the API
reference documentation (9 describing re.sub.

These two methods are comparable as the method definition for Pattern. sub
in the reference documentation states that it is: “Identical to the sub() function, using
the compiled pattern.” o) where sub() is a hyperlink reference to the documenta-
tion of re.sub. We can observe that the two arguments of the method have
been described in a different order than in the original reference. However,
the change in order of description of the arguments does not seem to hold
significance in the tutorial. Further, the reference documentation contains all
paragraphs (with examples) indented under the method definition. However,
the same information provided in the tutorial, has indented only the first and
second paragraph, while the rest align under the parent section (not shown
here). Python-REGEX contains two such method description embeddings, both
of which display this indentation inconsistency. Whether this is intended is
difficult to assess. This observation is unique to Python-REGEX, however, as no

Information Correspondence between Types of Documentation for APIs 13

. sub(replacement, string[, count=0])
Returns the string obtained by replacing the leftmost non-
overlapping occurrences of the RE in string by the replace-
ment replacement. If the pattern isn’t found, string is re-
turned unchanged.

The optional argument count is the maximum number of
pattern occurrences to be replaced; count must be a non-
negative integer. The default value of 0 means to replace all
occurrences.

Here's a simple example of using the sub() method. It re-
places colour names with the word colour:

>>> p = re.compile(' (blue|white|red)')

>>> p.sub('colour’', 'blue socks and red shoes')
‘colour socks and colour shoes'
>>> p.sub('colour’, 'blue socks and red shoes', count

‘colour socks and red shoes'

The subn() method does the same work, but returns a 2-tuple
containing the new string value and the number of replace-
ments that were performed:

>>> p = re.compile(' (blue|white|red)')

>>> p.subn('colour', 'blue socks and red shoes')
('colour socks and colour shoes', 2)
>>> p.subn('colour', 'no colours at all')

('no colours at all', 0)

Empty matches are replaced only when they're not adjacent to
a previous empty match.

>>> p = re.compile('x*')
>>> p.sub('-', 'abxd')
‘-a-b--d-'

If replacement is a string, any backslash escapes in it are pro-
cessed. That is, \n is converted to a single newline character,
\r is converted to a carriage return, and so forth. Unknown es-
capes such as \& are left alone. Backreferences, such as \s, are
replaced with the substring matched by the corresponding
group in the RE. This lets you incorporate portions of the origi-
nal text in the resulting replacement string.

re. sub(pattern, repl, string, count=0, flags=0)

Return the string obtained by replacing the leftmost non-
overlapping occurrences of pattern in string by the replace-
ment repl. If the pattern isn’t found, string is returned un-
changed. rep/ can be a string or a function; if it is a string,
any backslash escapes in it are processed. That is, \n is
converted to a single newline character, \r is converted to
a carriage return, and so forth. Unknown escapes of ASCII
letters are reserved for future use and treated as errors.
Other unknown escapes such as \& are left alone. Backref-
erences, such as \6, are replaced with the substring
matched by group 6 in the pattern. For example:

>>> re.sub(r'def\s+([a-2zA-Z_][a-2zA-Z_0-9]*)\s*\{\s
cee r'static PyObject*\npy_\1(void)\n{',
‘def myfunc():')

'static PyObject*\npy myfunc(void)\n{'

If repl is a function, it is called for every non-overlapping
occurrence of pattern. The function takes a single match
object argument, and returns the replacement string. For
example:

>>> def dashrepl(matchobj):

if matchobj.group(0) == '-': return ' '
. else: return '-'
>>> re.sub('-{1,2}', dashrepl, 'pro----gram-files'
'pro--gram files'
>>> re.sub(r'\sAND\s', ' & ', 'Baked Beans And Spe

‘Baked Beans & Spam’
The pattern may be a string or a pattern object.

The optional argument count is the maximum number of
pattern occurrences to be replaced; count must be a non-
negative integer. If omitted or zero, all occurrences will be
replaced. Empty matches for the pattern are replaced only
when not adjacent to a previous empty match, so
sub('x*', '-', 'abxd') returns '-a-b--d-'.

Fig. 5: Visualization of reordering of documentation during reuse across doc-
umentation types. Sentences from the reference documentation (o) (right) are
reused in the tutorial i2) (left) but are reordered and inconsistently indented.

other tutorial contains such method descriptions explicitly embedded in the

content.

3.4 Discussion

Our analysis reveals that between half and three quarters of the sentences
in the tutorials we studied contain API Information (see Table 2), with the
remainder consisting of Supporting Text. The high proportion of API Infor-
mation of some tutorials (e.g., Python-URL, 76% of API Information) suggests
that, in addition to Supporting Text, tutorials also serve the function of pro-
viding a different perspective on the information available in reference format.
This observation is consistent with that of Meng et al. (2018, 2019), who noted
how software developers made use of different types of documentation.

We also find a surprisingly high level of close correspondence between sen-
tences in the reference documentation and tutorials (see Fig 3). Some of the
text is so similar that we estimate that, depending on the tutorial, between

14 Deeksha M. Arya et al.

11% and 56% of the tutorial sentences that describe API information are
directly substitutable by sentences from the reference documentation. This in-
dicates that a significant amount of reuse can be achieved when creating API
documentation. Furthermore, our estimates are evidence of only a fraction of
the leverage that can be achieved because, as far as we know, the tutorials
were created without any systematic support for content reuse (beside arbi-
trarily copying and pasting text). We observed that an additional 29% to 51%
of tutorial sentences containing API information which, although not directly
substitutable, had a corresponding sentence with related information. With
support for systematic documentation reuse, it is conceivable that a fraction
of these sentences could also be integrated from the reference documentation,
further increasing the impact of reuse.

Our analysis of the positional distribution of matched sentences (see Fig 4)
shows the absence of any obvious pattern of information correspondence at the
level of the entire tutorial. For example, we do not find that matched sentences
necessarily occur towards the end of a tutorial, or occur in large sequential
blocks (except for a few exceptions in Java-REGEX and Java-URL). In Section 4,
we expand our analysis of information correspondences to better understand
how this systematic reuse of information content could be supported.

Threats to Validity

The main threat for the results described in this section is investigator bias in
the coding of sentences as API Information or Supporting Text (Section 3.1).
The threat originates from the fact that the task is subjective because some
sentences are inherently difficult to classify. To mitigate this threat, we ex-
plicitly measured the subjectivity of the task with the help of an external
annotator. The data we collected as part of this procedure help interpret the
ratios described in Fig 2. Specifically, the ratio of sentences capturing API
information can vary by an amount in the order of 15% (52/322 sentences
not coded as API Information by the external annotator in disagreement with
our coding). Although it will never be possible to determine the ratio of API
information exactly due to the inherent subjectivity of the task, the resulting
variability does not invalidate our main observation, namely that around half
of a tutorial can consist of sentences describing API information. The impact
of potential ambiguity in our initial classification stage is further mitigated by
the second stage in our analysis, which seeks to precisely map corresponding
sentences.

For the matching procedure (Section 3.2), the threat is of false negatives,
namely that we may have missed some sentences in the reference documenta-
tion that would be linked to the tutorial. This threat is mitigated by the fact
that tutorials are focused on a specific topic. Nevertheless, our observations
on sentence correspondence can be assumed to be conservative, meaning that
it is possible that some sentences we classified as unmatched may actually
correspond to a sentence in the reference documentation. The impact of this

Information Correspondence between Types of Documentation for APIs 15

eventuality on our observation is limited, given that we focus our interest on
matched sentences. As for threats to the classification itself, it is nonexistent
for identical and minimal for near-identical and equivalent matches, but non-
trivial for unsubstitutable matches. However, our conclusions are not strongly
affected by unsubstitutable sentences, as we focus our analysis on substitutable
ones.

Finally, our overall research method is that of the exploratory case study.
Our observations avoid the threat of making observations overly influenced by
a specific context because we studied six different cases across two languages,
three topics, and two documentation types. However, we do not claim that
the precise ratios we observed would generalize to other contexts, as indeed
we observe important differences between our six cases.

4 Systematic Information Reuse

Having established the frequency of different types of sentence correspondence
between tutorial and reference documentation (Fig 3), and the relative po-
sition of these correspondences (Fig 4), we investigated whether groups of
substitutable sentences formed recognizable patterns. Here, we focus on the
scenario in which a tutorial is created after reference documentation. We for-
malize our observations as an information reuse pattern. The pattern acts as
a template for organizing sentences from reference documentation to convey
information about particular aspects of the API in a tutorial. We use the
pattern to aide the study of characteristics of systematic reuse of reference
documentation in tutorials.

4.1 Pattern Elicitation

Fig 6 summarizes the procedure we adopted to elicit a common structure for
information reuse. The concrete elicitation of the pattern enables its use in an
automated manner. However, since we inferred the structure inductively, not
all the instances of the pattern that we identified follow the formal structure
strictly. We report on the discrepancies in Section 4.2.

We define the structure formally as the information reuse pattern and
describe its elements in Fig 7. The pattern has three elements: the intent of
information reuse, the structure using which the sentences from the reference
document should be arranged in the tutorial, and the two parameters that
users of the patterns can set to define the specific scope of the information
use. The element_type parameter specifies the API element of interest for each
pattern instance. In our case studies, we observed pattern instances that are
relevant to four API element types: TYPE (classes, interfaces, etc.), METHOD,
CONSTANT, and INPUT FORMAT OPTIONS.

Fig 8, from Java—REGEX, describes the list of accessor METHODs available
for a URL object. The left column shows the tutorial (24, and the right col-

16 Deeksha M. Arya et al.

1. For each substitutable tutorial sentence:

(a) We noted its immediate structural context, such as a list or paragraph
within a section.

(b) We looked up the corresponding sentence in the reference documenta-
tion and noted its immediate structural context (e.g., method or class
description) and the relative location of the sentence within the docu-
mentation for this structure (e.g., leading sentence).

2. We grouped adjacent tutorial sentences positioned within the same structure
and whose reference sentences laid in the same structural context. These
groups form instances of information reuse.

3. We grouped information reuse instances extracted from the same type of
structural context (e.g., class, method). These groups form our information
correspondence patterns.

4. We abstracted a formal structure for representing the pattern.

Fig. 6: Procedure to capture information reuse patterns in tutorials.

INFORMATION REUSE PATTERN

Intent: Provide a brief overview of a selection of cohesive API
elements (classes, interfaces, methods, constants or input
format options).

Structure: List, where each item consists of the name of the API
element followed by sentences extracted from the element’s
reference documentation.

Parameters:

1. element_type: the type of the API elements being de-
scribed (eg. METHOD or CONSTANT).

2. element_descriptors: a list in which each entry is given
by the tuple (element, extract), where element refers
to the name of the API element and extract is a tu-
ple (paragraph, sentences). Paragraphs and sentences
are referenced using an ordinal index (e.g., 1 for the
first paragraph or sentence), a range (e.g., [2-4] for
the second to fourth paragraphs or sentences), or the
universal quantifier * for all sentences or paragraphs.
For example, (*,1) refers to the first sentence of each
paragraph, whereas ([1,2],*) refers to all the sentences
of the first two paragraphs.

Fig. 7: The information reuse pattern observed in the six tutorials under study.

Information Correspondence between Types of Documentation for APIs 17

The URL class provides several methods that let you query URL objects. You can get the protocol,
authority, host name, port number, path, query, filename, and reference from a URL using these
accessor methods:

getProtocol
Returns the protocol identifier component of the URL.
getAuthority public String getAuthority()
Returns the authority component of the URL.
getHost
Returns the host name component of the URL.
getPort
Returns the port number component of the URL. The getPort method returns an integer
that is the port number. If the port is not set, getPort returns -1.

Gets the authority part of this URL.

getPath

Returns the path component of this URL. \ public String getPath()
getQuery

Returns the query component of this URL. ——Gets the path part of this URL.
getFile

Returns the filename component of the URL. The getFile method returns the same as
getPath, plus the concatenation of the value of getQuery, if any.

getRef
Returns the reference component of the URL.

Fig. 8: An instance of information reuse for METHOD in Java-REGEX where
fragments from the method description in the reference documentation izs
(right) correspond to the content in the tutorial 24 (left).

\D
Matches any non-digit character; this is equivalent to the
class [*0-9].
\s a
- b . D
Matches any whitespace character; this is equivalent to the Matches any character which is not a decimal digit. This is

class [\t\n\r\f\v]. the opposite of \d. If the ascz1 flag is used this becomes

the equivalent of [~0-9].
\s

Matches any non-whitespace character; this is equivalent to
the class [~ \t\n\r\f\v].

\w
Matches any alphanumeric character; this is equivalent to
the class [a-zA-20-9_].

Fig. 9: Instance of information reuse for INPUT FORMAT OPTIONS in
Python-REGEX where fragments from the reference documentation 2 (right)
correspond to the content in the tutorial (left) .

umn has two fragments of the reference documentation 257 with descriptions
corresponding to the selected methods.

As an example of the pattern for INPUT FORMAT OPTIONS, Fig 9 contains,
on the left, the list of input format options in the Python-REGEX tutorial [z,
of which the description of one option is highlighted. On the right, the source
reference documentation (o) from which the sentence is reused is highlighted.

4.2 Instances of Information Reuse
Table 5 reports the distribution of pattern instances in our six cases. In the

columns, “I” refers to the number of instances and “S” refers to the total
number of sentences in the instances. The remaining five columns report our

18 Deeksha M. Arya et al.

Table 5: Frequency distribution of pattern instances and impact of strict pat-
tern application. Column ‘I’ refers to the number of instances of the pattern,
while all other columns have as values the number of sentences.

No. of Retained Eliminated

Element Type Topic Language Added
I S SC Uuc U ST

TYPES REGEX Java 2 4 4 0 0 0 0

Python 0 0 - - - - -

URL Java 0 0 - - - - -

Python 0 0 - - - - -

I/0 Java 1 11 9 1 1 0 0
Python 0 0 - - - - -
METHODS REGEX Java 8 41 41 0 0 0 11
Python 2 7 7 0 0 0 5
URL Java 1 11 11 0 0 0 2
Python 0 0 - - - - -
I/0 Java 10 35 24 6 4 1 1
Python 0 0 - - - - _
CONSTANTS REGEX Java 1 36 35 0 O 1 1
Python 1 26 15 1 3 7 10
URL Java 0 0 - - - - -
Python 0 0 - - - - -
I/0 Java 5 39 22 125 0 7
Python 0 0 - - - - -
INPUT REGEX Java 2 6 6 0 O 0 0
FORMAT Python 3 42 14 13 3 12 -
OPTIONS
URL Java 0 0 - - - - -
Python 0 0 - - - - -
I/0 Java 2 6 4 2 0 0 2
Python 0 0 - - -
I — Number of instances,
S — Total number of sentences in all instances,
SC — Substitutable correspondences,
UC — Unsubstitutable correspondences,
U — Unmatched sentences,

ST — Supporting Text

Information Correspondence between Types of Documentation for APIs 19

analysis on the discrepancies between the pattern instances and the text that
would be generated by applying the pattern strictly. The column Retained -
SC' contains the number of substitutable sentences that would be retained,
Eliminated - UC, U and ST refers to the number of sentences that would be
eliminated and Added is the number of additional API reference sentences that
would be injected in the tutorial. This analysis helps us estimate the potential
impact of automatically applying the information reuse pattern when creating
tutorials. Eliminated sentences only comprise of unsubstitutable sentences,
unmatched sentences, and Supporting Text. Although it is technically possible
that some substitutable sentences could be lost (e.g., if they are sourced from
a location outside the structure covered by a pattern), we did not observe this
phenomenon in our study.

We observed that the impact of adopting our information reuse pattern
is minimal for most of our cases studied. For the case of Python-REGEX, 28
sentences would be eliminated over three pattern instances for INPUT FORMAT
OPTIONS. The threatened unsubstitutable sentences for this scenario generally
provide a use case for the format option, such as “To match a literal '$’, use \$ or
enclose it inside a character class, as in [$]." 127 We also observed that the Supporting
Text demonstrated the behaviour of the format option with an example such
as that of | character: “Crow|Servo will match either 'Crow’ or 'Servo’, not 'Cro’, a 'w’
or an 'S’, and 'ervo’."12) As for the injection of additional sentences, automatic
pattern reuse would result in a maximum of 11 additional sentences, hardly a
documentation bloat.

4.3 Scattered Correspondences

As expected, some substitutable correspondences are not covered by the pat-
tern. However this percentage varies widely across topic and programming
language. We refer to matched substitutable sentences not covered by the pat-
tern as scattered correspondences. Table 6 shows the distribution of scattered
correspondences for different types of matches. Each cell includes the num-
ber of scattered correspondences of a given type, with the percentage with
respect to the total number of correspondences with that match type. All of
the 67 identical correspondences in Java-REGEX and the one such correspon-
dence in Java-URL are covered by the pattern. In contrast, 15 of 20 (75%) of the
equivalent correspondences in Java—-REGEX are not covered by the pattern. We
observe a general trend of more scattered correspondences with the decrease
in the extent of the match.

However, the information reuse pattern we identified is only one, very sys-
tematic, way to reuse text between documentation types. Alternatives include
referencing prominent (e.g., leading) sentences from the documentation di-
rectly. To determine the potential impact of this practice, we investigated to
what extent scattered correspondences mapped to prominent sentences in the
reference documentation that would be straightforward to link to.

20 Deeksha M. Arya et al.

Table 6: Distribution of sentences in tutorials not belonging to any instance of
the information reuse pattern (scattered correspondences). Each cell includes
the absolute number of correspondences as well as the the percentage with re-
spect to the total number of sentences with that match type in the documenta-
tion. Hyphens (-) indicate there are no sentences at all for the correspondence
type in the documentation.

Correspondence Type Java Python

REGEX URL I/0 REGEX URL I/0
Identical 0 (0%) - 1 (100%) 0 (0%) 1(100%) -
Near-identical 2 (13%) 2 (100%) 6 (22%) 2 (22%) - -
Equivalent 15 (75%) 9 (45%) 66 (62%) 12 (37%) 10 (100%) 12 (100%)

Table 7: Distribution of locations of reference documentation sentences that
belong to substitutable correspondences. Scattered refers to those sentences
that are not covered by a pattern instance. Total indicates the total reference
documentation sentences in substitutable correspondences. The percentage of
sentences at a particular location per reference documentation are in paren-
theses.

Language Location REGEX URL 1/0
Scattered All Scattered All Scattered Total

Java Description 0 54 (53%) 0 10 (45%) 0 10 (11%)
Leading-A 0 21 (21%) 2 (18%) 2 (9%) 16 (22%) 51 (38%)
Leading-B 0 0 0 1 (5%) 0 0
Arbitrary 26 (100%) 27 (26%) 9 (82%) 9 (41%) 58 (78%) 68 (51%)
Total 26 (100%) 102 (100%) 11 (100%) 22 (100%) 74 (100%) 129 (100%)

Python Description 0 3 (5%) 0 0 0 0
Leading-A 4 (20%) 14 (25%) 3 (27%) 3 (27%) 3 (25%) 3 (25%)
Leading-B 1 (5%) 1 (2%) 1 (9%) 1 (9%) 1 (8%) 1 (8%)
Arbitrary 15 (75%) 38 (68%) 7 (64%) 7 (64%) 8 (67%) 8 (67%)
Total 20 (100%) 56 (100%) 11 (100%) 11 (100%) 12 (100%) 12 (100%)

For this purpose, we assigned each substitutable sentence to one of the
four categories based on its location in the reference documentation and the
context of its inclusion in the tutorial:

— Description: The sentence is a part of the entire description of an API
element, and the entire description is present in the tutorial;

— Leading-A: The sentence is the leading sentence of an API element de-
scription;

— Leading-B: The sentence is the leading sentence of an explicitly defined
block, such as a warning;

— Arbitrary: The sentence is at a location not covered by the above cate-
gories.

Information Correspondence between Types of Documentation for APIs 21

Table 7 shows the percentage distribution of the four categories above. We
note that all correspondences of type Description are covered by the pattern.
For the remaining (scattered) correspondences, this analysis shows to what
extent it would be straightforward to refer to individual sentences in the ref-
erence documentation explicitly when constructing a tutorial, as opposed to
copying and pasting them. Across our six cases, between 0 and 16 scattered
sentences can be linked to prominent sentences of the reference documentation.

4.4 Discussion

We identified 38 instances of the information reuse pattern for four API ele-
ment types in the six tutorials we studied, which varied across programming
language and topic. These instances represent the systematic integration of
reference documentation within a tutorial. They thus constitute preliminary
evidence that generative technologies could help increase the level of automa-
tion that can support the creation of reference documentation.

The applications of the pattern we identified are not, however, completely
systematic, as we observed some divergences between an exact correspondence
between a pattern’s structure and the content of the tutorial (see Table 5).
These divergences can originate from one of two processes. On the one hand,
the divergence can be intentional, if an author feels the structured information
needs to be complemented by additional text. To accommodate for necessary
variations, templating technology would require support for fine-grained cus-
tomization. Determining the right level of granularity for content injection in
tutorials is an interesting avenue for future work. On the other hand, diver-
gences between pattern instances and tutorial text can also be unintentional,
and either caused by an ad hoc approach to tutorial creation, or by soft-
ware evolution that causes the tutorial text to become obsolete (Dagenais and
Robillard, 2014). In this case, explicit use of information reuse patterns has
great potential to help preserve the quality of the tutorial by limiting errors
of omission.

We also observed that opportunities for information reuse beyond the sys-
tematic application of a pattern, with a few tutorial sentences in all but one
case referring directly to prominent sentences in the reference documentation.
The attribution of special status to certain sentences in natural language doc-
uments is not uncommon. For example, the Checkstyle tool can check that
the first sentence of a Javadoc block ends with a period (jav, 2020); Git treats
the first line of a commit message as the commit subject (git, 2020); the
Wikipedia manual of style stresses the importance of an article’s leading sec-
tion (Wikipedia contributors, 2020), etc. With explicit support for linking to
leading and other prominent sentences in reference documentation, we can ex-
pect this practice to gain adoption much beyond the tacit levels we observed
in our case study.

22 Deeksha M. Arya et al.

Threats to Validity

It is possible that there exist information reuse patterns and pattern instances
beyond the ones we have identified in our data set. Furthermore, it is possible
to observe other patterns if our analysis was to be applied to tutorials beyond
the six tutorials. Hence, we do not claim that the information reuse pattern we
elicited is exhaustive. Similar to sentence correspondence, our observation of
instances of reuse patterns is conservative in nature. The potential existence
of other patterns and instances does not invalidate the results presented here.
Any surfacing information correspondence pattern can be added to the the one
we document here, as the patterns are mutually independent. Any occurrences
of other instances would not alter our main outcome about the presence of
recurring information correspondence patterns.

5 Related Work

Prior work has attempted to categorize the different types of software docu-
mentation and evaluate their quality (Section 5.1), assess the needs and prefer-
ences of users (Section 5.2), improve the quality of documentation (Section 5.3)
and elicit patterns for documentation reuse (Section 5.4).

5.1 Documentation Types and Sets

Developers often draw upon multiple different resources while learning a new
language. Parnin and Treude (2011) studied the type of information sources
of the top ten web search results for JQuery API methods. While for 99.4% of
methods tested, the official API documentation was in the top ten resources,
other official documentation appeared only for 30.1% of methods. Blog posts
were the next most frequently occurring at 87.9% of which about 49% were
tutorials.

Watson (2012) developed a heuristic to evaluate whether API reference
documentation contains important elements that help developers learn the
features of a new API. At a broad level, Watson et al. (2013) evaluated doc-
umentation sets, i.e. the collection of different types of documentation for a
software, based on initial impression, experience provided to a reader and any
additional data that exists. They found that documentation components that
developers prefer such as tutorials and sample applications were found in less
than half of the 35 libraries studied.

Angelini (2018) studied the API documentation of eight web applications
with the intention of better understanding technical writing patterns. All the
web applications documentation sets studied contained at least one among an
Overview/Introduction, a Get Started, a Best practices/Usage guidelines and
a Tutorial, collectively referred to as additional documentation. However, no
documentation set comprised the full set of supplementary additional doc-
umentation, confirming Watson’s previous study. While standards exist for

Information Correspondence between Types of Documentation for APIs 23

documentation of computer software (Phoha, 1997; Ries, 1990; IEEE Stan-
dard, 2009), there is no such standards for structuring documentation sets, or
collections of different documents, across languages and their APIs.

5.2 User Needs and Preferences of Documentation

Prior work to assess developer needs and preferences during development and
maintenance has involved performing surveys and interviews. Work done by
Robillard (2009), Robillard and Deline (2011), and Uddin and Robillard (2015)
reiterates that among other preferences, developers would like more explained
code examples, which are usually found in tutorials. Based on surveys of 25
participants, Garousi et al. (2013) concluded that, in industry, technical docu-
mentation (such as requirement specifications and design documents), source-
code, communication with teammates and developers’ existing knowledge are
all approximately equally used during the development process. Josyula and
Panamgipalli (2016) determined that for product architecture, learning new
programming skills, and clarifying requirements, API reference documentation
and online tutorials are frequently used information sources. Meng et al. (2018)
observed that, when looking at a new API, their research participants asked
“What can I do with this API” as their first question. This is also analogous
to specific scenarios that tutorials and user guides can support. Meng et al.
(2019) reported that participants spent 49% of their development time looking
at the documentation, among which API reference documentation and cook
book-like documentation are used nearly equally frequently. This confirms de-
velopers’ multi-resource use, and calls for an analysis into the complementary
nature between different types of documentation.

5.3 Assisting Developers and Improving Documentation

Various research projects have aimed to improve documentation, including
work done to augment information from other resources such as source code
(Kramer, 1999), make inferences from documentation that are less explicit
(Zhong et al., 2009), or highlight directives in documentation (Dekel and
Herbsleb, 2009). Rupakheti (2012) created CriticAL (A Critic for APIs and
Libraries) that provides recommendations and descriptions for client code us-
ing the API. Treude et al. (2014) developed TaskNav, a tool for users to refer
to a list of extracted tasks and how to perform them from textual documen-
tation. Two developers rated the extracted tasks, resulting in 70% of them
being meaningful to at least one of the two developers. Hence previous work
shows that scenario-based instruction is an integral resource for developers, in
addition to reference documentation.

Treude and Robillard (2016) took advantage of content similarity between
software artifacts to use supervised machine learning techniques to identify
and recommend insight sentences from Stack Overflow. Similarly, Jiang et al.

24 Deeksha M. Arya et al.

(2017) built a model to identify fragments from tutorials that are relevant to
the corresponding APIs. In application, Caponi et al. (2018) created SSE, a
tool which templates the reuse of documentation fragments for new HTML-
like formatted documentation. Such work is based on the idea that information
provided in different documentation on the same topic complement one an-
other.

The most in line with the goals of our work, is that of Oumaziz et al.
(2017) who studied the reuse of documentation tags in source code to gener-
ate reference documentation. They created a duplication detector to identify
the duplicate documentation tags in seven Java APIs that use JavaDoc and re-
ported that the most commonly duplicated tags are param and throws where
20% to 40% of these tags are duplicated. They determined that at least 57% of
duplications were unintended “copy-pastes”. They further proposed a simple
documentation tag reuse mechanism to avoid duplicate information in docu-
mentation.

Surveys of 48 developers and managers conducted by Forward and Leth-
bridge (2002) revealed a number of interesting insights on the expectations
of documentation by its users. One outcome, was that 82% of the partici-
pants agreed that tools must not only assist documentation creation, but also
track changes in software to update and maintain documentation. Based on re-
sponses to their survey, they elicited a few high level requirements of documen-
tation technologies, which include the need to support inter-documentation re-
lationships to ensure consistency in documentation updation. Our work iden-
tifies this inter-documentation correspondence at the sentence level.

5.4 Patterns in Documentation

Dagenais and Robillard (2014) defined documentation patterns as coherent
sets of code elements that are documented together. They proposed AdDoc, an
automated method to capture these patterns in the documentation of frame-
works and report inconsistencies between code and documentation during the
development and maintenance processes of either artifact. They also create
and evaluate a recommender system for changes in documentation based on
AdDoc that intends to reduce the time and effort taken by documentation
maintainers to keep track of all changes that would need to be made. This
recommender was able to detect 99% of references in tutorials that pointed to
deprecated or deleted code elements. Prior work has also attempted to bridge
the gap between software clone detection and software documentation to iden-
tify and extract duplicate textual information in documents. These are useful
in highlighting and mitigating redundancies and inconsistencies in documenta-
tion. Luciv et al. (2016), Koznov et al. (2015) and Luciv et al. (2018) proposed
methods to automate the detection of repeated fragments of text in technical
documentation. They also suggested methods to modify, refactor and manage
the document based on the texts identified, to improve the quality of doc-
umentation (Koznov et al., 2017). These works perform duplicate detection

Information Correspondence between Types of Documentation for APIs 25

within a single documentation type and propose changes and refactoring on
individual documents. On the other hand, we analyzed the correspondence of
textual information across two documentation types and in our work, propose
a pattern to reuse this information to aid documentation generation and pro-
mote consistency across documentation of APIs.

Previous related work has mainly focused on content and structure of Java
API reference documentation. The only known prior work of direct compari-
son between documentation in Java and Python is conducted by Wildermann
(2014) which reproduced and expanded on the work by Maalej and Robillard
(2013) that identified knowledge types in Java API documentation. Fourney
and Terry (2014) described the challenges presented when attempting to dis-
sect tutorial-like material for automated understanding and processing. They
found the need to formalize the content present in a tutorial with the purpose
of templating online tutorials. While a number of work has focused on doing
this in API documentation (Maalej and Robillard, 2013; Monperrus et al.,
2012), tutorials seem to be far less explored, possibly because, as Fourney and
Terry point out, even something as seemingly simple as determining what a
step in the tutorial is, is a difficult problem.

In this work, we analyzed the information in tutorials with respect to the
API reference documentation in both Java and Python. This would help bet-
ter understand programming language documentation practices and the trend
of commonly occurring API documentation and lack of sufficient tutorials, de-
spite developers having voiced their needs for such materials. Our work aug-
ments previous cross programming language studies by providing insight into
the extent of generalizability of relationships between documentation types in
terms of their information content.

6 Conclusion

Our analysis of the correspondence of information between tutorials and ref-
erence documentation for API modules supporting regular expressions, URLs
and Input/Output in Java and Python reveals that a large portion of the sen-
tences (between 45% and 76%) contain API information in contrast to general
supporting text. The sentences comprising API Information exhibit different
level of correspondences to their possible sources in the API reference docu-
mentation, ranging from identical to implied. The percentages of occurrence
of correspondence types vary across programming languages and API topics
and do not follow any regularity throughout the tutorials. Our observation
that 11% to 56% of the matched sentences can be directly substituted by the
corresponding sentences in API reference prompts the potential for templating
information reuse from one documentation type to another.

To this end, we defined a pattern for describing systematic documentation
reuse in the tutorials. We found a total of 38 instances of this information
reuse pattern in our case studies. This result supports the use of the elicited

26 Deeksha M. Arya et al.

pattern as a template during documentation generation. Moreover, such a
template could address the divergence between content in different documen-
tation types. For example, during our analysis, we discovered that the Java—URL
tutorial 17 and reference documentation 271 provide inconsistent information
for the resolution of a relative URL input to the URL constructor. Instead, a
template for information reuse would effectively eliminate this kind of incon-
sistency.

In addition to this systematic reuse following a strict pattern, we also ob-
served many instances where the information from the reference documenta-
tion found in the tutorial originated from a prominent location in the reference
documentation. This practice indicates potential for better integration of doc-
ument types through explicit linking between them.

Our corpus of correspondences between sentences in tutorials and refer-
ence documentation and the elicitation of the information reuse pattern can
inform the development of advanced documentation creation technology. Such
technology would mitigate the effort of documentation authors, potentially im-
prove the quality of the documentation and provide familiarity for users when
reading documentation of different APIs in different programming languages.
This study, hence, provides a foundation towards a better understanding of
the relationships between different documentation types in terms of informa-
tion correspondence that could help bridge the gap between documentation
content and the information needs of readers.

References to Documentation Sources

Below is the list of web URLs referenced in this paper. In the case of snip-
pets of documentation used as examples, the corresponding URL defines the
particular file in which the example text can be found.

[1] docs.oracle.com/javase/8/docs/api/java/net/ServerSocket.html

[2] docs.python.org/3/library/socket.html

[3] docs.oracle.com/javase/8/docs/api/java/util/regex/package-summary.html
[4] docs.oracle.com/javase/8/docs/api/java/net/package-summary.html

[5] docs.oracle.com/javase/8/docs/api/java/nio/file/package-summary.html
[6] docs.oracle.com/javase/tutorial/essential/regex/index.html

[7] docs.oracle.com/javase/tutorial/networking/urls/index.html

[8] docs.oracle.com/javase/tutorial/essential/io/index.html

[9] docs.python.org/3/library/re.html

[10] docs.python.org/3/library/urllib.html

[11] docs.python.org/3/library/functions.html

[12] docs.python.org/3/howto/regex.html

[13] docs.python.org/3/howto/urllib2.html

[14] docs.python.org/3/tutorial/inputoutput.html

[15] docs.oracle.com/javase/tutorial/essential /regex/intro.html

[16] docs.oracle.com/javase/tutorial/essential/regex/pattern.html

[17] docs.oracle.com/javase/tutorial /networking/urls/creatingUrls.html

[18] docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

[19] docs.oracle.com/javase/8/docs/api/java/net/URI html

[20] docs.oracle.com/javase/tutorial/essential/regex/matcher.html

https://docs.oracle.com/javase/8/docs/api/java/net/ServerSocket.html
https://docs.python.org/3/library/socket.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/net/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/package-summary.html
https://docs.oracle.com/javase/tutorial/essential/regex/index.html
https://docs.oracle.com/javase/tutorial/networking/urls/index.html
https://docs.oracle.com/javase/tutorial/essential/io/index.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/urllib.html
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/howto/regex.html
https://docs.python.org/3/howto/urllib2.html
https://docs.python.org/3/tutorial/inputoutput.html
https://docs.oracle.com/javase/tutorial/essential/regex/intro.html
https://docs.oracle.com/javase/tutorial/essential/regex/pattern.html
https://docs.oracle.com/javase/tutorial/networking/urls/creatingUrls.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/8/docs/api/java/net/URI.html
https://docs.oracle.com/javase/tutorial/essential/regex/matcher.html

Information Correspondence between Types of Documentation for APIs 27

[21] docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html
[22] docs.oracle.com/javase/tutorial/essential/io/fileAttr.html

[23] docs.oracle.com/javase/8/docs/api/java/nio/file/Files.html

[24] docs.oracle.com/javase/tutorial/networking/urls/urlIlnfo.html

[25] docs.oracle.com/javase/8/docs/api/java/net/URL.html

[26] docs.oracle.com/javase/tutorial/essential/io/file.html

[27] docs.python.org/3/library/json.html

[28] docs.oracle.com/javase/tutorial /networking/urls/readingURL.html
[29] docs.oracle.com/javase/tutorial/essential/regex/groups.html

[30] docs.oracle.com/javase/tutorial/essential/regex/unicode.html

[31] docs.oracle.com/javase/tutorial/essential/io/pathClass.html

[32] docs.oracle.com/javase/tutorial/essential/io/formatting.html

[33] docs.oracle.com/javase/tutorial/essential/io/walk.html

[34] docs.oracle.com/javase/8/docs/api/java/nio/file/FileVisitor.html
[35] docs.oracle.com/javase/8/docs/api/java/nio/file/FileVisitResult.html

References

(2020) Checkstyle - JavadocStyle. URL https://checkstyle.sourceforge.
io/config_javadoc.html#JavadocStyle, [Online; accessed 07-May-2020)

(2020) Git-commit. URL https://git-scm.com/docs/git-commit, [Online;
accessed 07-May-2020]

Al Omran FNA, Treude C (2017) Choosing an nlp library for analyzing soft-
ware documentation: a systematic literature review and a series of experi-
ments. In: 2017 IEEE/ACM 14th International Conference on Mining Soft-
ware Repositories (MSR), IEEE, pp 187-197

Angelini G (2018) Current Practices in Web API Documentation. In: European
Academic Colloquium on Technical Communication, p 70

Caponi A, Di Iorio A, Vitali F, Alberti P, Scatd M (2018) Exploiting pat-
terns and templates for technical documentation. In: Proceedings of the
ACM Symposium on Document Engineering 2018, Association for Comput-
ing Machinery, New York, NY, USA, DocEng 18

Cleland-Huang J, Guo J (2014) Towards more intelligent trace retrieval al-
gorithms. In: Proceedings of the 3rd International Workshop on Realizing
Artificial Intelligence Synergies in Software Engineering, pp 1-6

Dagenais B, Robillard MP (2010) Creating and Evolving Developer Docu-
mentation: Understanding the Decisions of Open Source Contributors. In:
Proceedings of the 18th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, pp 127-136

Dagenais B, Robillard MP (2014) Using Traceability Links to Recommend
Adaptive Changes for Documentation Evolution. IEEE Transactions on
Software Engineering 11:1126-1146

Dekel U, Herbsleb JD (2009) Improving APT Documentation Usability with
Knowledge Pushing. In: Proceedings of the 31st International Conference
on Software Engineering, pp 320-330

Forward A, Lethbridge TC (2002) The Relevance of Software Documentation,
Tools and Technologies: A Survey. In: Proceedings of the ACM Symposium
on Document Engineering, pp 26-33

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html
https://docs.oracle.com/javase/tutorial/essential/io/fileAttr.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Files.html
https://docs.oracle.com/javase/tutorial/networking/urls/urlInfo.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
https://docs.oracle.com/javase/tutorial/essential/io/file.html
https://docs.python.org/3/library/json.html
https://docs.oracle.com/javase/tutorial/networking/urls/readingURL.html
https://docs.oracle.com/javase/tutorial/essential/regex/groups.html
https://docs.oracle.com/javase/tutorial/essential/regex/unicode.html
https://docs.oracle.com/javase/tutorial/essential/io/pathClass.html
https://docs.oracle.com/javase/tutorial/essential/io/formatting.html
https://docs.oracle.com/javase/tutorial/essential/io/walk.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/FileVisitor.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/FileVisitResult.html
https://checkstyle.sourceforge.io/config_javadoc.html#JavadocStyle
https://checkstyle.sourceforge.io/config_javadoc.html#JavadocStyle
https://git-scm.com/docs/git-commit

28 Deeksha M. Arya et al.

Fourney A, Terry M (2014) Mining Ounline Software Tutorials: Challenges and
Open Problems. In: Proceedings of Extended Abstracts on Human Factors
in Computing Systems, pp 653—664

Garousi G, Garousi V, Moussavi M, Ruhe G, Smith B (2013) Evaluating Usage
and Quality of Technical Software Documentation: An Empirical Study.
In: Proceedings of the 17th International Conference on Evaluation and
Assessment in Software Engineering, pp 24-35

IEEE Standard (2009) Ieee standard for information technology—systems
design—software design descriptions. IEEE STD 1016-2009 pp 1-35

Jiang H, Zhang J, Ren Z, Zhang T (2017) An Unsupervised Approach for
Discovering Relevant Tutorial Fragments for APIs. In: Proceedings of the
39th International Conference on Software Engineering, pp 3848

Josyula JRA, Panamgipalli SSSC (2016) Identifying the Information Needs
and Sources of Software Practitioners: A Mixed Method Approach. Master’s
thesis, URL http://urn.kb.se/resolve?urn=urn:nbn:se:bth-12832

Koznov D, Luciv D, Basit HA, Lieh OE, Smirnov M (2015) Clone Detection
in Reuse of Software Technical Documentation. In: Proceedings of Inter-
national Andrei Ershov Memorial Conference on Perspectives of System
Informatics, pp 170-185

Koznov D, Luciv D, Chernishev G (2017) Duplicate Management in Software
Documentation Maintenance. In: Proceedings of the 5th International Con-
ference on Actual Problems of System and Software Engineering. CEUR
Workshops proceedings, vol 1989, pp 195-201

Kramer D (1999) API Documentation from Source Code Comments: A Case
Study of Javadoc. In: Proceedings of the 17th Annual International Confer-
ence on Computer Documentation, pp 147-153

Krippendorff K (2018) Content Analysis: An Introduction to its Methodology.
Sage Publications

Luciv D, Koznov D, Basit H, Terekhov A (2016) On Fuzzy Repetitions De-
tection in Documentation Reuse. In: Programming and Computer Software,
vol 42, pp 216-224

Luciv D, Koznov D, Chernishev G, Terekhov A, Romanovsky KY, Grigoriev
D (2018) Detecting Near Duplicates in Software Documentation. In: Pro-
gramming and Computer Software, vol 44, pp 335-343

Maalej W, Robillard MP (2013) Patterns of Knowledge in API Reference
Documentation. In: IEEE Transactions on Software Engineering, vol 39, pp
1264-1282

Meng M, Steinhardt S, Schubert A (2018) Application Programming Inter-
face Documentation: What do Software Developers Want? In: Journal of
Technical Writing and Communication, vol 48, pp 295-330

Meng M, Steinhardt S, Schubert A (2019) How Developers use API Docu-
mentation: An Observation Study. In: Communication Design Quarterly
Review, vol 7, pp 40-49

Monperrus M, Eichberg M, Tekes E, Mezini M (2012) What Should Developers
be Aware of? An Empirical Study on the Directives of API Documentation.
In: Empirical Software Engineering, vol 17, pp 703-737

http://urn.kb.se/resolve?urn=urn:nbn:se:bth-12832

Information Correspondence between Types of Documentation for APIs 29

Oumaziz MA, Charpentier A, Falleri JR, Blanc X (2017) Documentation
Reuse: Hot or Not? An Empirical Study. In: Proceedings of International
Conference on Software Reuse, pp 12-27

Parnin C, Treude C (2011) Measuring API Documentation on the Web. In:
Proceedings of the 2nd International Workshop on Web 2.0 for Software
Engineering, pp 25-30

Phoha V (1997) A Standard for Software Documentation. In: Computer,
vol 30, pp 97-98

Ries R (1990) IEEE Standard for Software User Documentation. In: Interna-
tional Conference on Professional Communication, Communication Across
the Sea: North American and European Practices, pp 66—68

Robillard MP (2009) What Makes APIs Hard to Learn? Answers from Devel-
opers. In: IEEE software, vol 26, pp 27-34

Robillard MP, Deline R (2011) A Field Study of API Learning Obstacles. In:
Empirical Software Engineering, vol 16, pp 703-732

Runeson P, Host M, Rainer A, Regnell B (2012) Case Study Research in
Software Engineering: Guidelines and Examples. John Wiley & Sons

Rupakheti CR (2012) A critic for api client code using symbolic execution.
PhD thesis, Clarkson University

Treude C, Robillard MP (2016) Augmenting API Documentation with Insights
from Stack Overflow. In: Proceedings of 38th International Conference on
Software Engineering, pp 392-403

Treude C, Robillard MP, Dagenais B (2014) Extracting Development Tasks
to Navigate Software Documentation. In: IEEE Transactions on Software
Engineering, vol 41, pp 565-581

Uddin G, Robillard MP (2015) How API Documentation Fails. In: IEEE Soft-
ware, vol 32, pp 68-75

Watson R, Stamnes M, Jeannot-Schroeder J, Spyridakis JH (2013) API Docu-
mentation and Software Community Values: A Survey of Open-source API
Documentation. In: Proceedings of the 31st ACM International Conference
on Design of Communication, pp 165-174

Watson RB (2012) Development and Application of a Heuristic to Assess
Trends in API Documentation. In: Proceedings of the 30th ACM Inter-
national Conference on Design of Communication, pp 295-302

Wikipedia contributors (2020) Wikipedia: Manual of Style/Lead section.
URL https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/
Lead_section, [Online; accessed 07-May-2020]

Wildermann S (2014) Messung der Informationstypen-Haufigkeiten in der
Python-Dokumentation. Bachelor’s thesis

Zhong H, Zhang L, Xie T, Mei H (2009) Inferring Resource Specifications from
Natural Language API Documentation. In: Proceedings of the International
Conference on Automated Software Engineering, pp 307-318

https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Lead_section
https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Lead_section

30 Deeksha M. Arya et al.

A Preprocessing Steps

In general, the following rules and preprocessing techniques for sentence extraction were
adhered to:

— Remove HTML tags script, style, table

— Insert a comma after the tokens ‘e.g.” and ‘i.e.’

— Insert a comma after the token ‘etc.’ if the word following this one began with a lower
case alphabet.

— Replace multiple adjacent commas (occurring as a result of previous preprocessing steps)
with a single comma.

— Replace newlines with spaces

— Replace multiple adjacent spaces with a single space

— Replace multiple adjacent periods (...) with a single period (.)

— In general, blockquotes, code blocks, images and the equivalents across the files were
replaced by a single token BLOCKQUOTE, CODE and IMAGE respectively. These
blocks were identified as being of a specific HTML tag type or having a specific HTML
class.

— If a list item did not end in a period, the following item would be concatenated to the
previous, separated by a semicolon.

— Finally, split on on a period followed by a space (‘. ’) and an exclamation followed by a
space (‘! ’) to produce individual sentences

It is important to note here that inline HTML code tags in the sentence (inline and
hence, did not involve line breaks) were maintained as is. Usually such pieces were names of
the library or method being described. For example, “The java.util.regex package primarily
consists of three classes: Pattern, Matcher, and PatternSyntaxException”[15].

B Reasons for Similar Correspondences

The reason for a two matched sentences to be considered similar but not equivalent could
be one of the following:

— The sentence is a rephrased version of two non-neighbouring reference documentation
sentences. As a result, these sentences cannot necessarily be systematically identified
and merged without advanced mechanisms to merge the sentences coherently, efficiently
and favorably for the reader in a human-like writing style. For example, consider the
highlighted sentence in from Java-I/0 tutorial [26].

Both newByteChannel methods enable you to specify a list of OpenOption options. The same open options
used by the newDutputStream methods are supported, in addition to one more option: READ is required
because the SeekableByteChannel supports both reading and writing.

Specifying READ opens the channel for reading. Specifying WRITE or APPEND opens the channel for writing. If
none of these options is specified, the channel is opened for reading.

The description in the reference documentation of newByteChannel method to which
it refers mentions this information in two separate non-consecutive sentences, as high-
lighted in the figure below [23].

Information Correspondence between Types of Documentation for APIs 31

The options parameter determines how the file is opened. The READ and WRITE options determine if the file
should be opened for reading and/or writing. If neither option (or the APPEND option) is present then the file is
opened for reading. By default reading or writing commence at the beginning of the file.

In the addition to READ and WRITE, the following options may be present:

Option Description

If this option is present then the file is opened for writing and each invocation of the
channel's write method first advances the position to the end of the file and then writes
the requested data. Whether the advancement of the position and the writing of the
data are done in a single atomic operation is system-dependent and therefore
unspecified. This option may not be used in conjunction with the READ or
TRUNCATE_EXISTING options.

APPEND

Combining these sentences to generate a coherent sentence as in the tutorial is beyond
the scope of our work.

— The sentence references or is in conjunction with a specific example. Sentences that pro-
vide example-specific information are marked as Supporting Text. However, sentences
that provide general information about the API in the context of an example are con-
sidered to have similar matches. Python-I/0 tutorial [14] contains one such instance:

If you have an object x, you can view its JSON string representation with a
simple line of code:

>>> import json
>>> json.dumps([1l, 'simple', 'list'])
'‘[1, "simple", "list"]'

Our preprocessing steps result in the sentence extracted in the following format: “If you
have an object x, you can view its JSON string representation with a simple line of code:
CODE."114]

The code snippet within this sentence as seen from the screenshot informs that the
JSON string representation of an object can be viewed using the dumps method. The
description for the method in the reference documentation [27] states:

json. dumps(abj, * skipkeys=False, ensure_ascii=True,
check_circular=True, allow_nan=True, cls=None, indent=None,
separators=None, default=None, sort_keys=False, o)

Serialize objto a JSON formatted str using this conversion table.

Hence, replacing this tutorial sentence by its corresponding reference documentation
sentence will result in a loss of the example which is integral for this sentence to provide
useful information.

— It introduces a use-case for the reference API documentation. For example, in the
Java-URL tutorial, the following sentence exists: “After you've successfully created a
URL, you can call the URL's openStream() method to get a stream from which you can
read the contents of the URL." (28] Here, the bold phrase describes when the openStream
method can and should be used as opposed to the corresponding reference documenta-
tion that simply says: “Opens a connection to this URL and returns an InputStream for
reading from that connection.” [25], describing what the method performs.

— The matched API sentence may be providing excessive technical information. For exam-
ple, the Java-REGEX tutorial states “The regular expression syntax in the java.util.regex API
is most similar to that found in Perl.” [15]) On the other hand, the reference documentation
goes into deeper details: “The Pattern engine performs traditional NFA-based matching

32 Deeksha M. Arya et al.

with ordered alternation as occurs in Perl 5.”[1s] A tutorial author might decide to omit
technical details that the reference documentation contains which a reader referring to
the tutorial would not be expected to benefit.

C Reasons for Unmatched Sentences

‘We describe the reasons for unmatched sentences in tutorials in detail below based on the
ten categories listed in Table 4.

The majority of unmatched sentences in Java-REGEX provide information about the
underlying topic, usually describing the general behaviour of the fundamental concept behind
the API. The definition and description of a regular expression, its syntax, the behaviour
of special characters or definitions of related terminology are examples of this category that
we found in tutorial but not in the reference. For example, the following sentence defines
a set of methods having similar functionality: “Capturing groups are a way to treat multiple
characters as a single unit.” [29]

We discovered that usage, i.e. general information on how an API is expected or intended
to be used, is the most frequent category for unmatched in Java-URL, Python-URL, and
Java-I/0. The Java-URL tutorial recommends how to handle a MalformedURLException:
“Typically, you want to catch and handle this exception by embedding your URL constructor
statements in a try/catch pair, like this: CODE."” [17]

In Python-REGEX, the most commonly unmatched sentence category is that of internal
behaviour with 30% of the sentences describing such information. For example, the following
sentence was found in the tutorial, but not reference documentation: “Regular expression
patterns are compiled into a series of bytecodes which are then executed by a matching engine
written in C."[12]

A surprising 52% of sentences describe API behaviour in Python-I/0. It can be expected
that descriptions of the way in which an API component performs is presented in the refer-
ence documentation, and so this finding is of interest. For example, the following sentence
describes a particular behaviour of the read method on a file object: “If the end of the file
has been reached, f.read() will return an empty string (*').” [14]

We found that sentences describing specific use-cases in which the API could be or
is intended to be used, usually with the intention of motivating and justifying the useful-
ness of the API, were also not matched with reference documentation. This sentence from
Java-REGEX is one such example: “The split method is a great tool for gathering the text that
lies on either side of the pattern that's been matched.” [16]

Sentences regarding performance of the API in terms of efficiency and scalability can
also be observed in the tutorial, but their match could not be found in the reference docu-
mentation. The following sentence from Python-I/0 is an example: “This is memory efficient,
fast, and leads to simple code: CODE." [14]

We observed that some sentences providing version information and backward compati-
bility were not matched in the reference documentation. One example of a sentence providing
information regarding content of a particular version is this sentence in Java-REGEX: “As of
the JDK 7 release, Regular Expression pattern matching has expanded functionality to support
Unicode 6.0." [30] This is a surprising finding because deprecation and enhancement informa-
tion are generally specified in the reference documentation, in order to caution developers
about no longer supported API components, or introduce them to new ones. We expect
that this kind of information can be found in the version release notes and we leave the
exploration of this documentation type to future work.

Some of our observations are unique to Java-I/0 documentation. This, we theorize, is
likely due to its large length and diverse range of sub-topics, providing greater scope for
writing style variation. We found non-matched sentences providing environment and plat-
form specific information, API support and input configuration details information only in
this documentation. While describing the typical syntax of a file location, the documenta-
tion provides the following platform specific information: “In the Solaris OS, a Path uses the
Solaris syntax (/home/joe/foo) and in Microsoft Windows, a Path uses the Windows syntax
(C:\home\joe\foo).” 31] Another sentence describes whether a file system may be able to

Information Correspondence between Types of Documentation for APIs 33

support the API components provided: “A specific file system implementation might support
only the basic file attribute view, or it may support several of these file attribute views.” [22]

Sentences containing input configuration details information are ones which describe
the structure of the input to an API. For example, in the JAVA-IO tutorial, the width is
an element of the format specifier in the format API. The sentence provides the following
information about width: “By default the value is left-padded with blanks.” [32] The default
behaviour of this element of the format specifier is not mentioned in the reference documen-
tation.

We also identified one sentence describing a method for which the corresponding de-
scription in the API documentation was not descriptive enough to consider it as a match.
While the tutorial states: “visitFile - Invoked on the file being visited.” (33 The description
of the visitFile method in the reference documentation is simply: “Invoked for a file in a
directory.” [34) While the sentences provide little explanation, the tutorial clarifies that this
method is invoked when a file is visited as opposed to the reference documentation. We
chose to treat this as an anomaly and not to categorize it as a separate unmatched category
because of its low occurrence. Further, we found two more instances of descriptions in refer-
ence documentations that could have been matches for an tutorial sentence but were either
incomplete or not clear in explanation. We consider both cases as implied matches because
their meanings can be deduced given familiarity with the API. One example is shown below:

Tutorial: Reference documentation:
CONTINUE - Indicates that the file public static final FileVisitResult CONTINUE
walking should continue. [33] Continue. [35]

It is important to note that these categories are not exclusive to unmatched sentences.
There may be sentences which are matched to reference documentation that provide in-
formation on these categories. We leave the detailed comparison of documentation at the
category level to future work.

	Introduction
	Data Collection
	Information Correspondence between Documentation Types
	Systematic Information Reuse
	Related Work
	Conclusion
	Preprocessing Steps
	Reasons for Similar Correspondences
	Reasons for Unmatched Sentences

