
Empir Software Eng (2011) 16:703–732
DOI 10.1007/s10664-010-9150-8

A field study of API learning obstacles

Martin P. Robillard · Robert DeLine

Published online: 14 December 2010
© Springer Science+Business Media, LLC 2010
Editor: Premkumar Thomas Devanbu

Abstract Large APIs can be hard to learn, and this can lead to decreased program-
mer productivity. But what makes APIs hard to learn? We conducted a mixed ap-
proach, multi-phased study of the obstacles faced by Microsoft developers learning a
wide variety of new APIs. The study involved a combination of surveys and in-person
interviews, and collected the opinions and experiences of over 440 professional
developers. We found that some of the most severe obstacles faced by developers
learning new APIs pertained to the documentation and other learning resources. We
report on the obstacles developers face when learning new APIs, with a special focus
on obstacles related to API documentation. Our qualitative analysis elicited five
important factors to consider when designing API documentation: documentation
of intent; code examples; matching APIs with scenarios; penetrability of the API;
and format and presentation. We analyzed how these factors can be interpreted to
prioritize API documentation development efforts

Keywords Application programming interfaces · Software libraries · Programming ·
Documentation

1 Introduction

Recently, much effort has been spent trying to improve the usability of Application
Programming Interfaces (APIs), including frameworks for estimating API usability
based on its structure (Clarke 2004), API design assessment studies, and empirical

M. P. Robillard (B)
School of Computer Science, McGill University, 3480 University St., #318,
Montréal, QC, H3A 2A7, Canada
e-mail: martin@cs.mcgill.ca

R. DeLine
Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
e-mail: rob.deline@microsoft.com

704 Empir Software Eng (2011) 16:703–732

studies of API documentation (see Section 2). Researchers are also continually
proposing new tools to facilitate learning and using APIs, including advanced
documentation systems (Berglund 2003), usage example finding tools (Holmes et al.
2006), and various types of library usage checkers (Feilkas and Ratiu 2008).

In this space of design and innovation for APIs (Stylos and Myers 2007), it can
be difficult to judge where further research and development investments should
be directed to achieve significant impact. There exists little data about the nature
of the challenges associated with learning APIs, and the data that does exist is
fragmented. A few studies targeted the types of questions developers ask when
conducting maintenance tasks (Hou et al. 2005; Ko et al. 2007; Sillito et al. 2008),
but only a small subset of the questions elicited had to do specifically with APIs.
Industrial API usability studies have also been reported (Jeong et al. 2009; McLellan
et al. 1998; Nykaza et al. 2002), but these all targeted a single, generally small API.
In this context, we were interested in determining, more broadly: what are the major
difficulties for developers learning new APIs?

To answer this question, we conducted a series of surveys and interviews with
professional software developers to determine, both broadly and specifically, the
nature of the obstacles they faced when learning new APIs. The series of studies
consisted of:

1. An exploratory survey to determine the broad classes of obstacles, and insights
to guide further research;

2. A set of qualitative interviews to collect informed opinions and detailed stories
about API learning in the workplace;

3. A follow-up survey to confirm our general findings and collect additional data
on the demographic factors that could impact API learning obstacles.

We know of no existing general theory about the obstacles professionals face when
learning APIs, so we used a grounded approach to help move us towards a deeper
understanding of the factors that impact the API learning experience of software
developers. Our overarching methodological goal for all phases of the study was
therefore to collect data that was grounded in developers’ experience.

The preliminary results collected as part of the exploratory survey and the initial
interviews identified API learning resources as a critical element in developers’ API
learning experience. As summarized by a participant in our study:

The biggest hurdle when learning an API is the documentation. If the docu-
mentation for an API is good, it solves 99% of your problems [Participant 20,
see Table 2].

These preliminary findings are described in a previous report (Robillard 2009).
Based on these findings, we focused the remainder of the study (part of the interviews
and the follow-up survey) on isolating the elements of API learning resources that
influenced our participants’ experience, and on recording the nature of this influence.

The contributions of this paper include our findings about the obstacles develop-
ers face when learning new APIs, an in-depth analysis of the nature of the obstacles
faced by developers, and corresponding insights for prioritizing API documentation
development efforts. Our analysis of documentation-related challenges revealed five
important factors that impacted developers’ API learning experience: (1) documen-
tation of intent; (2) code examples; (3) cookbooks for mapping usage scenarios

Empir Software Eng (2011) 16:703–732 705

to API elements; (4) penetrability of the API; (5) format and presentation of the
documentation.

Although this study was conducted within a single organization (Microsoft), this
corporate environment provides excellent conditions for a broad study of API usage.
First, Microsoft’s development staff consists of over 30,000 engineers, distributed
worldwide, with varying levels of experience. As such it represents a non-trivial
segment of the software development population at large. Second, Microsoft de-
velopers work on a large variety of APIs that are public and widely used outside
the company. Finally, since most of the APIs developers reported on in this study
were also developed at Microsoft, we were in a unique position to reason about the
various explanations for the API learning obstacles we observed. With data collected
from over 440 different professional developers, this study is, to the best of our
knowledge, the first comprehensive field study of API learning obstacles. With a
specific focus on API documentation, the implications of our study provide clear in-
sights that can help prioritize API documentation and API tool support efforts in the
future.

In the rest of this paper, we first provide an overview of previous empirical work
related to API usability (Section 2). We then provide an overview of the research
(Section 3) where we describe the methodology followed and intermediate results
obtained in each phase of our study. In Section 4, we report on the quantitative
findings that steered the research, and in Section 5 we present our principal quali-
tative results, which focus more specifically on documentation-related obstacles. We
discuss the validity of the study in Section 6 and conclude in Section 7.

2 Related Work

Pioneering Work The earliest work related to API usability includes a number
of lab studies conducted in the late 1990s. Rosson and Carroll (1996) investigated
the reuse strategies of experts learning a graphical user interface (GUI) API in
SmallTalk. A study by Shull et al. (2000) also investigated how subjects learned
a GUI-framework in C++, but this study involved student programmers. A study
by McLellan et al. (1998) focused on the usability of APIs for specialized hardware
and involved professional programmers. Despite their widely varying experimental
contexts and populations, all three studies report on extensive use of examples in
the participant’s strategies for learning the API, an observation that was consistently
asserted in most subsequent studies.

Information Needs of Developers Many more recent studies on the topic have
focused on the information needs of developers engaged in maintenance tasks.
Based on two users studies involving, respectively, nine graduate students and 16
professional programmers, Sillito et al. (2008) provided a catalog of 44 questions
programmers ask during software evolution tasks. In a later study, Ko et al. (2007)
observed 17 professional developers during their work and produced a different
catalogue of 21 information types developers seek during their work. Although both
studies report questions representing different levels of abstractions, their catalogues
show evidence of a marked concern for matching scenarios in the application

706 Empir Software Eng (2011) 16:703–732

domain with the corresponding program behavior. Hou et al. (2005) also studied
the questions of programmers, but as reflected through a sample of 300 messages
posted on mailing lists for the Swing framework. Their study identified a list of API
design and documentation aspects that were often reflected in newsgroup questions.
In a separate study, Hou (2008) investigated the effect of framework design on
reuse patterns through a detailed inspection of 11 student projects. Seaman (2002)
investigated the information gathering strategies of software maintainers, reporting
on extensive use of the source code to understand software. Ko et al. (2004) also
studied learning barriers faced by non-programmers in their attempts to use a simple
programming system. This study elicited a detailed description of six different types
of barriers. Finally, a number of studies conducted in industry assessed the usability
of specific APIs (Beaton et al. 2008; Bore and Bore 2005). The above studies yielded
a valuable body of knowledge on programmers’ information needs and learning
strategies, but do not broadly address the challenges of learning APIs in the field:
the studies either targeted students, a single API, or general change tasks with no
specific focus on API usage.

API Usability Studies In addition to the exploratory studies described above, a
number of research projects have specifically targeted the evaluation of the usability
of an API’s structure. Clarke (2004) proposed a framework of cognitive dimensions
for assessing API usability. This framework captures important practical knowledge
and has been used to reason about API usability by other researchers at Microsoft.
Formal API usability studies include that of Stylos and Clarke (2007), who inves-
tigated the impact of various design guidelines on API usability, including the use
of parameters in object constructors, the use of the Factory design pattern (Ellis
et al. 2007), and method placement choices (Stylos and Myers 2008). This work,
usually conducted in the form of lab experiments, was able to demonstrate that API
design decisions have significant impact on API usability in the conditions studied.
Stylos et al. (2008) also followed-up with a case study of user-centered API redesign
for usability in an industrial context, which further demonstrated the impact of
API structure on usability. As opposed to our field study, the above studies were
deductive (hypothesis-testing), and focused exclusively on API structure, excluding
other factors such as API documentation or the learning process.

Documentation Studies In contrast to studies focusing on API structure, additional
related work specifically targeted API documentation. Lutters and Seaman (2007)
conducted a qualitative study of the use of documentation in an industrial setting
through the elicitation of “war stories”, a technique we have integrated as part of
our study. In this study they report on the pivotal role of individuals as pointers,
gatekeepers, or barriers to documentation. Nykaza et al. (2002) conducted a needs
assessment study for a domain-specific API through surveys and interviews of
developers, and Jeong et al. (2009) examined the use of user studies to improve
the documentation for a specific Service Oriented Architecture system. Nykaza’s
et al.’s study identified, among other requirements, the importance of an overview
section in API documentation. Jeong’s study identified 18 guidelines they believe
would lead to increased documentation quality for the system under study, including
“explaining starting points” for using the API. Another recent study by Brandt et al.
(2009) reports on the use of on-line resources by programmers involved in software

Empir Software Eng (2011) 16:703–732 707

reuse. In this study, the authors observed consistent differences in query styles and
durations that may be linked to the purpose of the query. Our study complements
the work described above by focusing on documentation-related obstacles as only
one facet to API learnability, and in the broader context of multiple APIs.

Documented Practical Experience The empirically-derived body of knowledge gen-
erated by the studies described in this section is complemented by the work of
expert API designers, who have shared their accumulated knowledge through books
(Cwalina and Abrams 2009; Tulach 2008) and other media, such as blogs and talks
(Bloch 2006; des Rivières 2004). The advice offered in these contributions focuses
heavily on techniques for structuring the API to eliminate accidental complexity
(suggesting, for example, practical ways to distribute functionality among modules).
Besides naming conventions, few specific insights on documentation concerns are
typically provided.

3 Overview of the Research

We followed a multi-phase, mixed-method approach that involved successive re-
finements of our research questions to create knowledge grounded in the experience
of professional developers. In a first phase, we conducted an exploratory survey
to determine what makes APIs hard to learn? This survey identified inadequate
learning resources as a critical obstacle for developers learning new APIs. In a second
phase, we interviewed developers to understand API learning obstacles in detail,
with a special focus on the role of learning resources in the API learning process.
Finally, we conducted a follow-up survey to validate our hypothesis that inadequate
documentation is the most severe obstacle and to study the relationships between API
learning obstacles and demographic variables in the developer population.

This work focuses on the technical aspects of APIs and their documentation, and
does not attempt to relate our findings to any of the numerous available theories of
learning (Olson and Hergenhahn 2008). However, we assume as valid the six core
principles of adult learning proposed by Knowles et al. (2005), namely, that adult
learners (1) need to know why/what/how they learn; (2) are self-directed; (3) build
on prior experience; (4) are motivated by subjects of immediate relevance; (5) are
problem-centered, and (6) see learning for its intrinsic value. As such, we do not
report results that are implied by these principles (e.g., participants stating that they
learn by example).

3.1 Target Population

We drew participants from the worldwide population of Microsoft Software Devel-
opers (henceforth referred to as “developers”). The implications for generalizability
of the findings are discussed in Section 6. Microsoft’s software development staff
consists of roughly 30,000 engineers, of which most are developers, testers or
program managers. For the purpose of this research, we considered developers to be
all employees holding jobs whose title implies engagement in software development,

708 Empir Software Eng (2011) 16:703–732

but we excluded testing engineers due to the specialized nature of their work.
Specifically, the software development staff in the population we considered covers
four distinct groups:

– Software Development Engineers (or SDEs), whose primary responsibility is
software development;

– Lead SDEs. Although technically a management position, Lead SDEs are
typically involved in active software development along with their team;

– Architects, a multi-disciplinary role involving both program management and
software development;

– Other development staff, who typically specialize in one area, such as security,
or user experience.

Within one category, the seniority of developers is distinguished according to four
different ranks that correspond to increasing levels of recognition and responsibil-
ities. For example, SDEs rank from SDE to SDE 2, Senior SDE, and Principal
SDE (most senior). We note that at Microsoft, career ranks are not necessarily
related to years of professional experience. Developers in our population can also be
distinguished by the location of their workplace. Although the majority of developers
work at Microsoft’s main campus in Redmond, WA, a fraction of the total developer
population works in other locations worldwide.

3.2 Phase I: Exploratory Survey

We surveyed developers to uncover the types of obstacles they face when learning
new APIs. To ensure we did not bias the survey results with any preconceptions,
we left the main questions open-ended. The survey asked respondents to comment
on their most recent learning experience with a publicly-released API. Developers
were asked to describe their three most important obstacles. The survey instrument
is provided in Appendix A.

Because this survey also served to recruit participants for in-person interviews, we
constrained the sampling frame to that of Microsoft developers located in Redmond,
WA, USA (the final phase of the research targeted the worldwide developer
population). We randomly selected 1,000 developers from this pool and sent them
a link to the survey. For this survey no incentive was offered to participants.

Eighty developers (8%) answered the survey. The set of respondents constituted a
representative sample of the target population, cutting across job titles in proportion
to the target population, and reflecting on the use of a wide variety of APIs.1 Across
all job titles, respondents had on average 12.9 years of professional experience (self-
reported). The respondents also reported on their aggregated experience learning 54
distinct APIs covering a wide span of technologies, abstraction levels, and application
domains.

Examples of libraries the respondents were learning included a library that
provides access to personal information manager data on Windows Mobile-based
devices, classic windowing APIs, and Microsoft’s most recent web application devel-
opment platform.

1Details about the population of respondents can be found in a separate publication (Robillard 2009).

Empir Software Eng (2011) 16:703–732 709

Table 1 Obstacle categories (exploratory survey)

Obstacle related to... # resp.

Learning resources (e.g., documentation, code examples) 50
API structure (e.g., design, names of API elements) 36
Developer background (e.g., prior knowledge, professional training) 17
Technical environment (e.g., build tools, testing infrastructure, hardware) 15
Process (e.g., lack of time, interruptions by colleagues, other priorities) 13

We collected 165 free-form descriptions of obstacles respondents faced when
learning APIs. Each respondent described between one and three obstacles. We
analyzed these descriptions through a process of open-coding (Creswell 2007, p. 239),
which involves attaching short labels (“codes”) to text segments that share some
commonalities and iteratively merging and refining labels based on the themes that
emerge from the data. From this process, we elicited five dominant categories of
obstacles.

Table 1 shows the obstacle categories we elicited and the number of respondents
who made at least one response that fell in that category. The resulting categories
are clearly inter-related. For example, an API with a simple structure will require
fewer learning resources to master. Similarly, developers with little experience would
probably be expected to require more tutorial documentation than more experienced
ones. The purpose of these categories was to provide an initial set of topics for
our interviews in Phase II. To the extent that these categories are inter-related, the
informants were free to discuss them together. In addition to motivating our decision
to focus on documentation, our exploratory survey guided the subsequent research
by providing a more detailed collection of important themes (such as the use of code
examples in API learning) to explore further.

3.3 Phase II: Qualitative Interviews

The specific goals of the interviews were to get a detailed picture of the important
obstacles developers faced when learning new APIs, to get the context in which these
obstacles occurred, and to infer possible causes and explanations for these obstacles.
For this reason, we chose an open-ended, loosely-structured style of qualitative
interview (Weiss 1994), which consisted of asking participants to summarize their
work with the API and explain the obstacles they faced. In this way, participants
would naturally discuss their main concerns.

We interviewed 28 software developers recruited from respondents to the ex-
ploratory survey (24) and from personal contacts (4). Interviews lasted between
15 and 45 min and were audio-recorded (except one due to a malfunction of
the recording equipment). In addition to these systematic interviews of software
developers, we also interviewed other stakeholders in the API development process,
including one API usability researcher, two program managers responsible for API
design and reviews, and one lead content publisher responsible for producing API
documentation. These interviews provided additional perspectives on what we heard
from software developers. The interviews took place over a period of several months.
During this time, we interleaved interviews with qualitative analysis of the data. As
the main themes emerged, we focused the interviews on these themes. The data

710 Empir Software Eng (2011) 16:703–732

Table 2 List of informants # Title Exp.

1 SDE 2 20
2 SDE 2 10
3 Architect 17
4 SDE 2 5
5 SDE 2 18
6 Lead 2 15
7 SDE 10
8 Senior Lead 15
9 Senior Lead 24
10 SDE 2 4
11 SDE 7
12 Senior SDE 11
13 Senior SDE 15
14 SDE 6
15 SDE 2 13
16 Senior SDE 20
17 Senior Lead 15
18 Senior Lead 6
19 SDE 2
20 SDE 2 5
21 SDE 2 8
22 Principal SDE 33
23 SDE 2 10
24 Senior SDE 30
25 Principal Lead 23
26 SDE 3
27 Senior SDE 11

Overall: 1 Architect; 20 SDEs; 6 Team Leads

we collected for this phase included over 12 hours of recordings of 30 software
professionals, which we transcribed. The transcripts were then coded (Weiss 1994)
several times by one author and discussed extensively among both authors, in an
iterative process, to derive the main themes described in Section 5. Table 2 lists
the job title and years of experience of all the developers who participated in the
interviews. The identification number (left column) is used to link them to the
sources of evidence in Section 5.

Analyzing the transcripts revealed an important attribute of experiences described
by developers: the learning context they were describing. The learning context
captures the reasons and motivation for learning the API. Table 3 describes the five
learning contexts we elicited.

Table 3 Learning contexts for
participants

Context Learning the API...

Owning because the respondent joined the team developing it
Major to use as major component of production code
Minor to complete some minor task (e.g., bug fix)
Exp. to experiment with a technology
Hobby for a side project not critical to main work

Empir Software Eng (2011) 16:703–732 711

The analysis of the qualitative data we collected during this phase forms the
cornerstone of this study. As is typical in qualitative research, our completed report
“includes the voices of the participants, the reflexivity of the researcher, and complex
description and interpretation of the problem” (Creswell 2007, p. 37). In addition,
our qualitative analysis and our quantitative data obtained through the next phase of
our study together provide multiple, converging lines of evidence. The results of the
qualitative analysis are presented separately, in Section 5.

3.4 Phase III: Follow-up Survey

Phases I and II provided us with detailed accounts of how different factors interact
to facilitate or hinder developers learning new APIs. However, they did not provide
information about the possible links between characteristics of the developers and
their experience learning APIs. Additionally, the generalizability of the qualitative
findings is difficult to establish. We conducted a follow-up survey to address these
points. The survey instrument is provided in Appendix B.

We designed our survey taking into account what we had learned about API
learning obstacles. The survey asked developers to focus on the last API they had
learned and was designed in four parts, three of which are relevant to this research.

Demographics and API Learning Context We asked developers for their years
of professional experience, the API that they had last learned, the programming
language they used, and the learning context (Table 3).

Obstacle Severity We asked respondents to comment on the severity of five
different types of API learning obstacles. We describe each obstacle with the text
used in the survey.

– Background: Your background was not adapted to learning the new API. For
example: you were not familiar with the programming language or application
domain, your previous knowledge of a similar API (or a previous version of the
API) made it confusing to learn the new API.

– Structure: The way the API was structured or designed made it difficult to
understand. For example: it was not clear how to instantiate an object, there
were too many abstract classes, the names did not make sense.

– Technical Environment: The technical environment made it difficult to use the
API. By technical environment, we mean any technical aspects not directly
related to the design of the API itself. For example, the tools did not work well,
the API required extensive infrastructure to test, you could not get the builds to
work.

– Low-Level Documentation: Specific member-level usage details were not docu-
mented. For example, description of parameters, error codes.

– High-Level (or conceptual) Documentation: You did not find conceptual-level in-
formation explaining how to use the API. Consider “conceptual-level” informa-
tion to mean any type of information you need to use the API correctly that is not
typically associated with particular API members (classes/methods/functions).
For example, description of required concepts, the API’s execution model, non-
trivial code examples, usage patterns, best practices, mappings between scenarios
and API members.

712 Empir Software Eng (2011) 16:703–732

These categories map to the categories described in Table 1 with two exceptions.
First, we eliminated the Process category as it was the least reported and offered
limited insight into potential for improving APIs. Second, we split the documen-
tation categories into two categories representing, respectively, the class-member-
level reference documentation, and the other learning resources such as conceptual
overviews. We introduced this distinction because the interviews revealed that our
informants naturally distinguished between reference documentation of individual
API members and more general documentation entries offered as learning resources.
Because at Microsoft reference documentation for APIs is almost universally deliv-
ered in a specific format (not unlike the popular Javadoc-style for Java), the distinc-
tion between reference and conceptual documentation is objective. Unfortunately,
among developers there is no standard vocabulary to distinguish reference documen-
tation from conceptual documentation. For example, for reference documentation
terms such as “class-level” or “member-level” documentation are also used. To
paint over these differences we elected to use the very generic terms “Low-level”
(reference) and “High-Level” (conceptual) documentation.

Finally, we also asked developers to comment on other obstacles they might have
encountered. Respondents were asked to rate the severity of each obstacle according
to a six-value ordinal scale: Not an obstacle, trivial, moderate, severe, very severe,
blocker.

Solutions Respondents were also asked to rate 14 different potential solutions to
documentation-related obstacles using a Likert-scale. The solutions were derived
from proposals from the literature and from insights generated from the interviews.
Unfortunately after review we found that there were too many different ways
to interpret the descriptions of the solutions in the survey to provide reliable
insights for future work. For this reason, we did not use this part of the survey.
However, as part of this question respondents were also invited to comment on
other potential solutions to their problem in a free-form comment box. This part
of the question produced valuable data which we integrated in our qualitative
analysis.

We sent this survey to 2,000 randomly-selected software developers from Mi-
crosoft’s worldwide developer population, 1,936 of which were reachable. Partici-
pants in phases I and II of the research were explicitly excluded from the sampling
pool. Targeted developers had one week to complete the survey. As an incentive to
participate, all respondents who completed the survey were entered in a draw for a
$250 (US) gift card for an on-line store.

A total of 334 developers (17.3%) answered the survey. 56.8% of the respondents
were from the Redmond campus, and the rest from other locations. Table 4 shows
the geographic distribution of the population under study, our random sample of
1,936 developers, and the 334 respondents. Overall, the geographic distribution of
respondents very closely maps the distributions of both the sample and the total
population (<1.5% difference in ratios for the geographical categories used). The
maximum discrepancies are a 1.1% over-response by Redmond developers (with
respect to the corresponding ratio in the overall population), and a 1.3% under-
response by developers from Asian locations (including Australia). Respondents
had on average 9.8 years of professional experience (self-reported). The median was
8.5 years, and 82% of the respondents reported four or more years of experience.

Empir Software Eng (2011) 16:703–732 713

Table 4 Geographic
distribution of respondents

Region Population Sample Respondents
(%) (%) (%)

Redmond 55.7 53.6 56.8
(WA, USA)

Puget Sound 8.5 9.7 9.0
(WA, USA)

America 9.6 10.5 9.6
(other locations)

Europe 8.1 8.2 8.1
Asia and Australia 15.8 15.1 14.4
Other 2.3 2.9 2.1

4 Quantitative Results

Figure 1 shows the relative severity of each type of obstacle. For this figure, the
categories Blocker, Very Severe, and Severe were aggregated as “Severe”, and both
Not an obstacle and Trivial were aggregated as “Trivial”. Documentation-related
obstacles are perceived as the most severe by developers, followed by structure, and
other types of obstacles.

We analyzed the relationships between the severity variables of Fig. 1. A Pearson
R test between obstacle severity variables revealed no strong correlation (values
varied between 0.149 and 0.405 and were all statistically significant).

Observation 1 The severity variables are only weakly correlated (< 0.5), which indi-
cates that respondents perceive dif ferences in the types of obstacles.

In particular, the limited correlation of 0.377 between the two types of
documentation-related obstacles reinforces our decision to treat these types of docu-
mentation as distinct in our research. Figure 1 provides evidence that the qualitative

Fig. 1 Obstacle severity (follow-up survey)

714 Empir Software Eng (2011) 16:703–732

Table 5 Variations between
proportions in obstacle
severity

Relation / Relative severity < > =
Background ? Structure 151 56 124
Background ? Environment 116 91 124
Background ? Low-level docs 169 78 80
Background ? High-level docs 208 39 83
Structure ? Environment 76 143 112
Structure ? Low-level docs 131 87 109
Structure ? High-level docs 158 57 115
Environment ? Low-level docs 160 78 89
Environment ? High-level docs 195 55 80
Low-level Docs ? High-level docs 135 67 124

findings we made about documentation-related obstacles are likely to generalize to
developers outside the group of interviewed participants, since surveyed developers
also report documentation-related obstacles as the most severe.

We also analyzed the within-subject obstacle severity relationships through pair-
wise McNemar tests of variation between proportions.

For example, 46% of respondents rated Background types of obstacles as less
severe than Structure types of obstacles, 17% of respondents rated Structural
obstacles as less severe, and 37% rated the two obstacle types as equal in severity.
This variation in proportion is determined to be highly unlikely to appear randomly
(p < 0.0001), from which we infer that the fact that respondents rate Background
obstacles as less severe than Structure ones is statistically significant. Table 5 shows
the variations in proportions between all obstacle types. We performed the analysis
for all pairs of obstacle types and made the following observation:

Observation 2 The order of bars shown in Fig. 1 represents a statistically signif icant
progression in the perceived severity of obstacles, except for the relationship between
Background and Environment related obstacles (McNemar test of variation between
proportions, p = 0.01).

Using a chi-squared test of independence, we also explored the relationship
between characteristics of the population and the responses to the obstacle severity
variables. We did so by partitioning the respondents according to thresholds on
different demographic variables, and using the 3-valued partition on severity shown
in Fig. 1. Specifically, we explored the relationship between responses to severity of
all obstacles and the following variables:

– Overall experience. We partitioned the population into the 50% less and more
experienced developers.

– Extreme experience. We selected the groups 25% more experienced developers,
and everyone else.

– API learned. We compared all developers who had learned a legacy type of API
(Win32) against all developers who had learned an API of the more recent .NET
framework.

– Language Used. We compared all developers who were using C/C++ to access
the API with those who were using C#.

Empir Software Eng (2011) 16:703–732 715

– Learning Context. We compared the responses of developers who had declared
different learning contexts (see Table 3).2

Of the five partitions × five obstacles = 25 potential relationships between
demographics and obstacle severity, only two were statistically significant at the
0.01 level:3 (1) Structure and (2) high-level documentation-related obstacles faced
by developers learning Win32 APIs are significantly perceived as more severe that
those faced by learners of .NET APIs. At the 0.05 level, two additional relations
can be detected: low-level documentation-related obstactles are also perceived as
more severe by learners of Win32, and high-level documentation-related obstacles
are perceived as more severe by users of C/C++ (as opposed to C#). We thus note that
experience level and learning context were not significant enough factors to register
impact at the level of measure that we studied.

Overall, the survey-derived obstacle ranking of Fig. 1 can thus be considered
robust with respect to both developer experience and learning context because
neither factor is a predictor of severity.

5 Qualitative Analysis of Documentation-Related Obstacles

Our study identified inadequate API documentation as the most severe obstacle
facing developers learning a new API, and we decided to concentrate on this critical
type of obstacle. Indeed, “documentation-related obstacles” is a very broad (and
vague) area of concern, and we needed to determine what aspects of the API docu-
mentation impacts how well developers learn it. Through a qualitative analysis of the
interview and survey data (see Section 3.3), we elicited five dimensions of analysis
and, from these, isolated the factors that influenced developers’ perception of API
documentation-related obstacles. In this section, we describe each dimension of API
documentation, and link it with our quantitative results when appropriate. Based
on this analysis, we provide recommendations for prioritizing API documentation
efforts for each dimension.

Link to the Evidence We support our findings with qualitative evidence from the
interviews and the free-form responses from the survey respondents,4 and evidence
from the literature. When appropriate, we also link the findings to some of our
quantitative findings as described in Section 4.

We link all our findings to the qualitative data that supports it by labeling all
quotes with the participant responsible for the quote, and observations with the list of
participants whose quotes helped inform the observation. References to participants
are provided in brackets, where the participant number corresponds to those in
Table 2. For ease of interpretation, we also include the general professional titles

2To test with sufficiently large partitions, we aggregated the Owning and Major categories, and the
Experimental and Hobby respondents.
3After correcting the p-values for the simultaneous testing of multiple hypotheses using Holm’s
procedure (Westfall et al. 1999).
4Drawn only from the follow-up survey, since the interview participants were selected from the
exploratory survey.

716 Empir Software Eng (2011) 16:703–732

with the participant numbers (Dev for SDEs of all levels, Arch for architects, and
Lead for development leads of all levels). When observations were also informed by
survey responses, we include the label “Survey”. For example, the label [Dev 10,11;
Lead 25; Survey] means that the corresponding observation was based on quotes
from informants # 10 and 11 (who are developers), informant # 25 (who is a team
lead) and one or more survey responses.

It is important to note that the number of informants discussing a given theme
is not a reliable measure of how often this theme was encountered by developers
in general because open-ended interview techniques do not involve systematically
covering all areas of interest. The goal of this section is not to describe the frequency
of a phenomenon but to explain some of the human processes involved in this
phenomenon as experienced by developers. For a general picture of the obstacles
encountered by developers when learning APIs, we rely on the survey data as
described in Section 4.

5.1 Intent Documentation

A lot of the time when you’re writing software there’s an intent, you expect
something to work a certain way. You code it that way. And you hope that the
[documentation] team figures out what your intent was. [Arch 3]

The documentation of intent in an API provides information about why certain
API design decisions were made, and how the API is intended to be used. Capturing
and documenting intent incurs a cost. Why should intent be documented? How do
API users take advantage of intent documentation?

The interviews revealed the different reasons why developers wanted or needed to
learn about the intent behind the design of various APIs. At least eight participants
shed light on the benefits of providing design intent in API documentation. These
benefits can be separated into three classes.

Reasoning About the Correct and Ef f icient Way to Use the API Participants men-
tioned that knowledge of the intent behind the design of an API generally helped
“code efficiently without much friction” [Arch 3], but also helps developers avoid
misuse of the API through information about what “it’s designed for and what it’s
not designed for” [Lead 25], and avoid pitfalls:

Because another problem [...] is that there is documentation, it’s good, and then
you go ahead and take advantage of the features of the API, but you end up
using it in a way that the writers of the API didn’t quite mean for you to do it.
And at that point you can actually shoot yourself in the foot. [Dev 20]

Determining How to Implement Advanced API Usage Code This task was repeat-
edly described as one of the most central challenges when learning to use an API.
Intent documentation can help with this aspect through insights about why and
how a certain class should be used [Arch 3], or if there are many apparent ways
to implement a solution, which would be the best (i.e., which would be “intended”
by the API designers) [Dev 10,20; Survey].

Reasoning About Performance Characteristics The documentation of intent also
relates to the documentation of performance characteristics. Some participants had

Empir Software Eng (2011) 16:703–732 717

experienced difficulties where unexpected performance was thought to be caused by
going against the intent of the API [Lead 6; Dev 10]

Nowhere in there does it say, “and we intended to be used for a few graphics of
small size because the memory footprint is going to be this” [Arch 3]

Notwithstanding the benefits, documenting intent involves a tradeoff. Besides the
obvious cost of capturing and documenting intent during the API design process, and
the fact that additional information can bloat the documentation, not all participants
universally considered design intent to be of significant help. One respondent even
provided this word of caution:

Often developers use actual behavior, not intent. If we document the intent
(too much), then it becomes a must-fix bug to match the intent. [Survey]

The above quote corroborates the findings of Nykaza et al., that their subjects
“felt that the learning content should focus on how to do things, not necessarily why”
(Nykaza et al. 2002, p. 136).

Implication 1 Intent documentation should only be provided on an as-needed basis.
Sections of the API where correct usage is not self-evident, documentation to support
advance uses of the API, and performance aspects are areas likely to benef it from
intent documentation.

5.2 Code Examples

It’s tough to know the context of the example and yet it has to be very small,
and only highlight exactly what the concept in the API is that you’re looking
for. They have to work, too! [Lead 9]

Code examples are listings, of various length, that show an API being used.
We distinguish four categories of code examples: short code snippets intended to
demonstrate a specific aspects of the API; sequences of small code examples that,
together implement a small but non-trivial piece of functionality (tutorials); small
but complete and self-contained sample applications; production code which, when
available, can also be searched for examples of API usage. In most cases, code
examples are provided with a certain amount of context (such as natural language
explaining the concepts illustrated by the example).5 Although the related context
is likely to impact the effectiveness of the example for learning how to use the API,
informants were surprisingly quiet about the relation between code examples and
their context. One explanation could be that developers eagerly seek examples in
documentation pages, skipping over explanatory text. In any case, our following
discussion assumes that code examples are provided in their appropriate context.

Previous researchers have repeatedly observed that code examples are an essen-
tial element of API learning (Brandt et al. 2009; McLellan et al. 1998; Nykaza et al.
2002; Shull et al. 2000), and are used by developers for a whole range of purposes,
including “understanding the purposes of the library, its usage protocols, and its
usage contexts” (McLellan et al. 1998). Our data directly corroborates these findings,

5A notable exception would be examples returned as the result of queries to code search engines.

718 Empir Software Eng (2011) 16:703–732

but also allows to further contribute a detailed description of the attributes that make
examples valuable. Over 25 participants commented on the role of examples in their
API learning experience.

Example Complexity How complex6 should code examples be? Although examples
of different complexity will serve different purposes, informants provided many
insights about their desired level of complexity for code examples. A first observation
is that the pedagogical power of examples is perceived to decrease as the size of the
example grows, not only because it is longer, but also because it embodies a tangled
web of different functional concerns [Dev 2; Arch 3; Lead 8, 25; Survey].

[Longer examples have] really been informative in getting us going. But it
doesn’t mean we understand them, it just means we can copy them and get
them to work. [Arch 3]

However, examples can easily become too simple. Participants indicated that code
snippets exercising only one API method were of little value [Dev 1, 2, 26; Lead
9; Survey]. The ideal size for examples appears to be examples that demonstrate
single programming patterns, namely, ways to use a number of related API functions
together [Dev 2, 27].

So just looking at one method call, it didn’t really show the flow of everything
that you needed to do to tie it together. So it would have been really useful
there to have: “this is the sample code that shows, these are the steps to do it,
and you can kind of take that as a starting point”. [Dev 2]

Proposing a solution, one survey respondent indicated:

Don’t focus on documenting individual methods/classes so much as how they
are used together to achieve specific goals. [Survey]

In terms of how specific the examples are, one informant commented “I guess
examples are better if they are fairly general, not in what they’re trying to do, but in
showing you how to use the interfaces without a specific purpose.” [Dev 4]

Finally, one type of example that seemed to be consistently missing were examples
showing code to integrate multiple APIs [Dev 1].

Implication 2 Small examples that nevertheless demonstrate API usage patterns
involving more than one method call will be more useful than single-call examples.

Recommendations Participants perceived code examples not only as demonstra-
tions (“this is how you can use the API”), but as recommendations (“this is how
you should use the API”). [Dev 5]

Definitely, samples7 are the thing that helps the most, because you get some
guidance on how to use the API. [Dev 12]

6Complexity is informally defined as a combination of length of the example and amount of
interaction with the API.
7Participants routinely used the terms “sample” and “example” interchangeably. In the quotes, the
term “sample” does not necessarily refer to code samples as defined above.

Empir Software Eng (2011) 16:703–732 719

In the eyes of informants, good examples provide a guide to the “best practices”
for using the API [Dev 20, 21]

One of the difficulties of writing a sample, I think, is [...] that you want to
convey enough to the end-user, the application developer, how to use the API.
[Lead 25]

In fact, examples were also seen by some as the best way to convey this type of
knowledge [Dev 2; Lead 25].

Because they are perceived as recommendations, code examples are assessed in
terms of how authoritative and credible they are. The two main factors that impact
this quality measure are knowledge of, and respect for, the author of the code, and
evidence that the example is up-to-date [Dev 4, 10, 11, 22, 24, 26; Lead 18; Survey].
For this reason, developers with access to production code generally chose this option
[Dev 10, 18, 26; Lead 8]. Informants who retrieved examples from the Internet were
at times suspicious of their quality [Dev 4, 11, 22, 24].

Those examples would still run but I don’t think they have the most recent way
of doing stuff. [Dev 11]

Implication 3 Examples should be developed to demonstrate “best practices” for
using an API.

In this context we consider best practices to mean the most effective way to
combine API elements, as opposed to general best practices of programming (such
as extensive input validation and error checking, consistent naming, etc.). We realize
that in certain cases developing examples that follow all best practices for an API
would go against the goal of brevity described above.

An additional observation is that annotating examples with an explicit mention of
“authority” would save developers the trouble of continually having to figure it out.

5.3 Matching APIs with Scenarios

If it’s not clear how I match APIs with their scenarios, if I need to draw a circle
on the screen, and I don’t see something that clearly says, “this is how you
draw”, I will say that’s complex. [Dev 12]

A central challenge when learning APIs is discovering how to match “scenarios”
(a desired chunk of functionality, such as “drawing a circle on the screen”), with
the API elements that support this scenario. Although information about intent (see
above) can help meet the conceptual gap challenge [Survey], we discovered that
informants had high expectations for the API documentation to help them meet this
challenge. Over 24 participants commented on this challenge.

What I would really love to see would have been something that says “if
you’re trying to do something like this, this is the type of pattern you should
follow...”. [the documentation library] has great documentation on “here’s all
the methods on this control”, but what I always have trouble finding is “why
would I want to call any one of them over any one of the others?” [Dev 13]

720 Empir Software Eng (2011) 16:703–732

In addition to the fact that information on how to match scenarios to APIs might
be missing [Arch 3; Dev 4, 10; Survey] or present but misleading [Dev 19] this
challenge is complicated by the fact that the ability to map scenarios to APIs can
be made worse by the structure of the API [Dev 23; Lead 8, 25; Survey] and or the
background of the developers [Dev 1, 7, 10, 12, 13, 21, 22, 27; Lead 17; Survey].

The elements of API structure that impact an informant’s ability to map to
scenarios are the API’s abstraction level and work-step units (Clarke 2004). For
example, the practice of heavily overloading constructors for an object makes it
more difficult for developers to select the proper way to use the object of their need
[Lead 8]. Extensive webs of dependencies between objects also create problems for
developers:

The type was dependent on many other types, which made it more difficult for
me to know how things work in the big picture. [Survey]

Regarding the background, although knowledge of a previous API in a similar
domain should help developers learn new ones, in some cases this knowledge caused
problems:

Maybe the fact that I already knew a lot of other technologies and was always
trying to map what I knew to what I was seeing interfered with my learning.
[Dev 7]

We found that our informants had high expectations that APIs for the same
application domain (e.g., user interface components) would exhibit a similar design,
and were surprised and confused when they were not able to map scenarios they
knew how to implement with one API onto a new API or did not find explicit
information to that effect [Survey].

Implication 4 Matching scenarios to API elements is an area where documenta-
tion support is perceived as particularly helpful, and can compensate for hard-to-
understand API structure. Scenario-matching documentation should take into account
previous generations of APIs in the same domain (for example by including “bridge”
documentation catering to experts with other APIs).

5.4 Penetrability

So we thought we have terrible leaks, it’s really bad. Lots of debugging, we
actually went through the source code of [the API] to look at it and understand.
No, no, no, it’s normal. [Arch 3]

Penetrability is one of Clarke’s 12 cognitive dimensions for evaluating API usabil-
ity. It is defined as “how the API facilitates exploration, analysis, and understanding
of its components” (Clarke 2004, p. S7). When building APIs, designers must walk
a fine line between an over-exposure of the APIs internal elements (which would
violate the principle of information hiding (Parnas 1972)), and a design that makes
the behavior of the API completely impenetrable, and thus hard to learn. API
designers have discussed this challenge on many occasions (Fowler 2002; Larman
2001). Many participants in our study felt the need to understand or visualize how
the API works internally (while recognizing that some parts must remain hidden).

Empir Software Eng (2011) 16:703–732 721

Over 18 participants commented on penetrability issues. Our data sheds light on the
distinction between what must be transparent and what must remain opaque in API
design.

Participants have referred to their difficulty to reason about performance aspects
of the API that had direct consequences on the behavior of their client application
[Arch 3; Lead 9; Dev 10, 27; Survey].

I agree that encapsulation and hiding the internals is a good design choice for
the API. [...] But if you want to know how to use an API, understanding that
making a method call is actually going to create five threads, it’s going to start
these processes... So you do need to know the internals. [Lead 9]

Other prominent aspects mentioned by informants were a desire to mentally
predict the visual rendering of UI or graphics operations [Dev 7, 13; Lead 25] and
clearer error-handling behavior [Dev 7, 10, 12, 13, 22, 23; Lead 17].

A special case of penetrability issue occurs when methods transparently perform
multiple high-level tasks (e.g., load and parse a file in one operation). This type
of API design can lead to misinterpretations [Dev 20] and should be explicitly
documented.

A final, more subtle factor making API behavior impenetrable is when design
decisions result in API behavior that varies depending on classes of inputs. This type
of behavior was commonly referred to as “magic” [Arch 3; Dev 12, 20, 26].

Binding, for example, has a lot of magic. A lot of “if your class is this class then
we have a special behavior for it, if it’s not, it doesn’t” [Dev 12].

This type of behavior was consistently perceived as an obstacle:

And what I mean by awkward is, certain behavior, you would only understand,
if you know a bit about how the implementation behind them actually works.
So, that’s one of the things I didn’t quite like. [...] Usually when I use an API,
the main reason you use an API is to abstract something so you don’t need to
know the implementation details in the back. And for the [...] APIs there’s a
few things that, unless you really know how the whole thing works, it’s hard
to predict what the outcome is. And unpredictable APIs to me are the biggest
problem. If you don’t know exactly how what you’re calling is going to react, or
what to expect, this is basically the biggest problem. [Dev 20]

As a coping strategy, most informants who talked about penetrability issues
mentioned that the usual workaround for impenetrable API behavior was inspecting
the source code [Arch 3; Dev 10, 12, 22, 27; Lead 9, 18] and micro-experimentation
with the API [Arch 3; Dev 1, 13; Lead 18]. The first strategy can be problematic
because it can be very ineffective to do so, and in some cases developers may not
have access to the source code of the API. The second strategy can lead to decreased
productivity if the experimentation has less to do with learning the API and more
with reverse-engineering its behavior.

Implication 5 Explicit documentation on the performance consequences of API ele-
ments, better descriptions of error handling, and, for methods triggering signif icant
chunks of behavior, explanations of the abstract operations of the API, all have

722 Empir Software Eng (2011) 16:703–732

potential to decrease the amount of source code inspection and iterative prototyping
needed to learn the API.

5.5 Documentation Format

Some [documentation] pages talk about one method or have very little addi-
tional information and waste your time navigating through them. [Survey]

Many informants discussed the frustration of encountering boilerplate documen-
tation that merely rehashes the name of an API method, bloats the presentation with
derived information such as inherited members [Survey] or provides overly trivial
examples that simply show a single method call [Dev 1, 5, 12, 14, 19, 21, 22, 27; Lead
8, 9, 18, 25; Survey].

API documentation guidelines (such as those of Bloch 2006) and coding standards
generally emphasize the thoroughness of member-level API documentation. Our
study reveals that focusing on completeness of member-level documentation can
backfire not only because it takes away effort from the production of conceptual-
level documentation, but also because inappropriate member-level documentation
can have a negative effect on developer productivity. When, for example, developers
choose to navigate to a method documentation page and find nothing, the time they
took to navigate to the documentation and assess it is wasted. Specifically, since
most modern IDEs provide in-line descriptions of all methods in a type and the
corresponding documentation, the act of seeking additional information is generally
conscious:

But when I go to the documentation, I’m obviously saying “oh, that was not
enough, I need a little more information, explain to me with an example, or,
just tell me what it does...”. Something more than an expansion of the [method
signature]. [Lead 18]

Implication 6 Navigating to a documentation page is an implicit query. Boilerplate
member-level documentation will often not answer the query, and waste developer’s
time.

It should be possible to browse API documentation like a book. When trying
to learn an API it is nice to browse through it to get a more concrete feel as
to what it does. Basically I want to be able to repeatedly hit a ”next” button.
[Survey].

Many of our previous recommendations stress the importance of conceptual-level
documents to facilitate API learnability. But what is the best way to present API
documentation? Electronic documentation, such as that for APIs, can come in a wide
spectrum of fragmentation, from a long, single document to a web of tiny, ultra-
focused articles.

On this question, our participants came out strongly in favor of a relatively
continuous, unfragmented presentation. We inferred the following justifications for
this position:

A Continuous Narrative Provides a Single Place to Look and an Obvious Place to
Begin Many respondents were overwhelmed by the documentation on some APIs

Empir Software Eng (2011) 16:703–732 723

and could not easily figure out how to approach it [Survey]. Books (which are by
default continuous), were seen as especially useful for the first approach [Dev 1, 2, 5,
7, 12, 14, 21, 23; Lead 9].

It wasn’t a reference book it was almost like a novel. You could read from the
beginning to the end and it just described in a story-like fashion how to build
[the application]. So I thought that was really useful for getting the concepts.
[Dev 7]

Fragmentation Makes the Information Less Discoverable Other participants de-
scribed cases where they wasted a lot of time because they had not found the
information they needed (although it existed) [Arch 3; Dev 12, 19, 27; Survey].

So, that’s an example of, you know, you can dig it out of the docs post mortem,
after you know what happened, but you couldn’t predict that behavior ahead
of time from [the class-level documentation]. [Arch 3]

The Hyperlink Structure can be Disconcerting Many participants mentioned being
confused by the navigation structure. One provided the clue that misalignment with
the code structure may be problematic:

There’s a structure to the code and when documentation doesn’t follow that
structure it’s annoying. [Dev 4]

Some Developers are Used to Learning from Continuous Documents Another in-
teresting trend we noticed is that books were favored by older and more experienced
developers [Dev 5, 14; Lead 6, 9, 25].8 This finding may point to different learning
styles between different generations of developers.

But one of the things [that is] lacking, especially now that there is so much
information on the web, is: In the old days people would read a book, and you
could kind of go from Chapter 1 to the end, and it would take you through the
whole way of thinking. [Lead 6]

Implication 7 Some developers will look for a coherent, linear presentation of the
documentation (in particular for point-of-entry overviews); Fragmented collections of
hyperlinked articles can be overwhelming.

Comments on the practical implications of this recommendations are best left to
a survey respondent:

Improve locality of information [...] People who need to read API documenta-
tion are used to searching in large bodies of text, and navigation in a long page
is not new to them [...] It is a lot easier and faster to scroll back and forth on
the same long web page and use the browser’s search function than to navigate
among a dozen related pages. [Survey]

8Developer 14 was relatively new to the profession, but older than average in age.

724 Empir Software Eng (2011) 16:703–732

6 Experimental Critique

Our use of multiple sources of evidence helps paint a reliable picture of our
phenomenon of interest: API learning obstacles. Nevertheless, each of our three
experimental phases is subject to inherent threats that must be considered when
interpreting the results.

Our exploratory survey is based on a true random sample of a well-known
population (Microsoft-Redmond developers). Although we obtained a low response
rate, we found that the distribution of developer across job titles in the sample very
closely matched that of the population (Robillard 2009). For this survey the main
risk is non-response bias. In our case this risk is not significant because we were not
attempting to infer a property of a population (e.g., the percentage of developers who
had learned an API), but to explore the variety of API learning obstacles. If fact, our
questionnaire was naturally irrelevant to all developers who had not recently learned
an API. The actual experimental threat for this survey is therefore that obstacles
faced by non-respondents somehow were not represented in Table 1. Given that our
follow-up survey did not uncover any significant additional types of obstacles, we
judge this risk to be small.

Our follow-up survey is also based on a true random sample of a well-known
population (in this case of the entire population of Microsoft developers). Although
our response rate was twice as high, non-response bias also needs to be considered.
Although the same arguments as above can be made about the relevance of the
survey, in this case the risk is that non-respondents with API learning experience may
have had experiences where API learning was easy (and thus not worth reporting).
To mitigate this risk, we did not base our analysis on direct interpretations of the
severity ratios values in Fig. 1. Instead, all of our interpretations from this survey are
based on relations between obstacle types.

For the interviews (and the free-form survey responses), we followed a qualitative
approach. In qualitative research, one important concern is the role of the researcher.
Because results are based on an interpretation of detailed, context-rich data, it is
understood that this interpretation will be informed by the researcher’s experience.
In qualitative research, investigator bias is not a threat, but a desired attribute: the
investigators are the ones selecting the main themes for analysis, identifying the
relevance of data, and developing the hypotheses. This research was conducted while
both authors were full-time employees at Microsoft. We were thus able to understand
and interpret the survey responses and interviews in the exact corporate environment
where they applied.

Nevertheless, it remains important to consider threats to the quality and credibility
of the results. Corbin and Strauss (2007) propose a number of criteria to evaluate
the quality of grounded theory research, which are generally applicable to quali-
tative analysis. Prominent amongst these criteria is the question of “fit”. In other
words, how can we ensure that the results resonate with the professionals: both
our participants, and other stakeholders for which the research was intended. To
meet this criterion, we linked every observation with the related qualitative evidence
(Section 5). Our follow-up survey also included two open-ended questions that would
have detected a mismatch between our interpretation of the data and developers’
experience. For both the categories of learning contexts (Table 3) and the types
of obstacles (Section 3.4), our survey asked respondents whether an additional

Empir Software Eng (2011) 16:703–732 725

context/type of obstacle applied to them. We recorded only 3 responses for other
contexts (two of which were simply alternative ways to state proposed contexts).
In the case of other obstacles, we recorded 68 responses, but a detailed analysis
showed that almost all of them were simply detailed explanations that unequivocally
fell within a proposed obstacle type. Overall, our follow-up survey did not reveal
any significant new context or obstacle type. To confirm these conclusions with a
different source of evidence, we also procured advanced reports of our analysis to
important stakeholders within the organization, who commented positively and in
some cases vigorously acknowledged having had similar experiences.

Finally, our research was conducted within a single organization, and there are a
few notable ways in which our population may not reflect the population of software
developers at large. First, most the participants had access to either the teams who
created the APIs they were learning (e.g., through email lists) or to the source code
implementing the API, or both. This is often the case in large corporate settings
and in the open source community, but not in companies that rely on components
from outside suppliers, where developers may use strategies not represented in
this study. Second, the sampled population is fairly experienced (average of 9.8
years of professional experience), and there may be types of obstacles faced by
less experienced developers (in particular, students and new hires) that may not be
represented in this study.

7 Conclusions

When professional developers like the ones in our studies learn a new API, they
struggle not so much in the mechanics of using the API, but in understanding how
the API relates upwards towards its problem domain and downwards towards its
implementation. In the upwards direction, the study found that developers need
help mapping desired scenarios in the problem domain to the content of the API,
and in understanding what scenarios or usage patterns the API provider intends
and does not intend to support. In the downwards direction, developers want to
understand how the API’s implementation consumes resources, reports errors and
has side effects (e.g., rendering to the screen). Given the high-level, conceptual
nature of these issues, it is not surprising that developers prefer centralized, narrative
presentations to narrow, hyperlinked ones. This applies not only to text, but to code
examples, where showing a pattern of related calls is preferred to illustrations of
individual methods.

Based on our qualitative findings, we derived seven implications for prioritizing
API documentation efforts across five dimensions related to many different aspects
of an API’s life-cycle (from capturing intent during the early phases to choosing the
best way to format the documentation). An immediate corollary is that responsibility
for documenting an API cannot be cleanly separated from the responsibility for
designing the API, even though different skills are involved. In particular, only the
team designing the API controls issues like supported scenarios, design intent, and
implicit implementation behavior, which are critical to how easily the API can be
learned. Ultimately, our findings could be used to help coordinate the work of API
design and documentation teams, so that resources to help developers learn APIs
can be produced as cost-effectively as possible.

726 Empir Software Eng (2011) 16:703–732

Acknowledgements We thank the anonymous participants in our study for generously contributing
their time to this project, and the members of the Human Interactions in Programming group at
Microsoft Research for feedback and discussions on the work reported here. Additional thanks
to E. Duala-Ekoko, U. Farooq, G. Murphy, A. Ying, T. Ratchford, and the anonymous reviewers
for feedback on the paper. We are also grateful to Jose Correa of the McGill University Statistical
Consulting Service for his assistance with a statistical test.

Appendix A: Exploratory Survey

Exact text of the survey described in Section 3.2 for the questions used in the
research. This instrument also included questions whose answers were not included
in the research reported in this article. These questions have been removed.

MSR API Learning Survey

The Human Interactions in Programming (HIP) group in Microsoft Research is con-
ducting this survey to gather some initial data on Microsoft developers’ experiences
with learning APIs. This data will be used in part to design tools and resources to
help developers learn new APIs effectively. Your experiences and opinions would
make a big difference in this research. Any personally-identifying information that
you provide will be accessible only to the research team. For more information about
this survey or the corresponding project, contact [the investigator].

This survey will take about 5 min to complete. Please refresh your memory about
the API you learned the most recently. Published results will be anonymous. For
your input to be useful, you must complete the survey by [deadline].

After taking the survey click “Submit” to save your changes. This survey is not
anonymous

1. What is your primary job area?
2. How many total years of professional experience related to your job do you

have?
3. How many of these years were at Microsoft?

This part of the survey will concern only your most recent experience with an API
that you had to learn in your professional capacity. For this survey, consider that an
API is a reusable set of program elements (classes, methods, functions, etc.) that are
distributed and used together to provide higher-level functionality.

4. Name the last publicly-released API you learned:
5. What particular area of this API did you learn?
6. How many months ago did you start learning the API?
7. How many months ago did you last use the API?
8. How many hours in total would you estimate you’ve spent learning this API?
9. Were you also learning the programming language used to access the API?

[Yes, No]
10. Were you familiar with the application domain of the API you learned? (For

example, if you were learning WPF, were you already familiar with the creation
of GUIs?) [Yes, No]

Empir Software Eng (2011) 16:703–732 727

What obstacles made it difficult for you to learn the API? Obstacles can have to
do with the API itself, with your background, with learning resources, etc. List the
three most important obstacles, in order of importance (1 being the biggest obstacle).
Please be more specific than the general categories mentioned here.

14. Obstacle 1:
15. Obstacle 2:
16. Obstacle 3:
17. Do you have any additional comments about learning APIs?
18. Would you be willing to participate in future research about this topic?

[Yes, No]

Appendix B: Follow-up Survey

Exact text of the survey described in Section 3.4 for the questions used in the
research. This instrument also included questions whose answers were not included
in the research reported in this article. These questions have been removed.

API Learning Survey

The goal of this survey is to learn about your experience interacting with public
APIs and to collect your opinions on how to improve API documentation. You can
only complete this survey if you have had experience learning a public API that you
remember enough to comment on. By “learning an API”, we mean using an API for
the first time and engaging in activities that increase your knowledge of how this API
works.

The survey should take less than 10 minutes to complete. As our appreciation for
your time, participants who complete the survey will be entered in a draw for one
$250 [on-line store] gift certificate.

The contest rules can be found at [internal URL]. After taking the survey click
“Submit” to save your changes. This survey is not anonymous

1. How many years of professional experience do you have (decimals ok):

API Learning Obstacles

This part of the survey applies only to the last public API you have learned.

2. What is the last public API you have learned? Pick the best match or choose
“Other” (please specify below).

[Azure; LINQ; Entity Framework; WPF; WCF; WF; CardSpace; Winforms;
ASP.NET; ADO.NET; .NET Base Classes; Silverlight; XNA; Win32 (Admin);
Win32 (Diagnostics); Win32 (Graphics); Win32 (Networking); Win32
(Security); Win32 (System Services); Win32 (UI); Other].

3. If you chose “Other”, please specify:
4. What programming language did you primarily use to access this API? [C/C++;

C#; Visual Basic; JScript, JavaScript, or other web language; Other]
5. If you chose “Other”, please specify:

728 Empir Software Eng (2011) 16:703–732

6. What was the main reason for learning this API? [Your team started owning it;
You needed to use it extensively as part of your work; You needed to use it to
complete some specific tasks, but these were not the main part of your work;
You learned the API to experiment with new technology related to your job;
You learned the API for a hobby project, or for a side project not critical to
your work; Other (please specify)]

7. Other:

For each type of obstacle described below, please rate how severe this type of
obstacle was in your experience learning the API you mentioned above. [For
questions 8–12 and 14, possible answers were as follows:]

[Blocker (Led to work being abandoned or a different APIs used, could not be
realistically overcome); Very Severe (Led to significant delays and frustration, very
difficult to overcome); Severe (Led to delays and frustration, difficult to overcome);
Moderate (Led to delays and/or frustration, but could be overcome without excessive
difficulty); Trivial (Was easy to overcome); This was not an obstacle at all]

8. When learning the API you mentioned above, how severe was this obstacle:
Your background was not adapted to learning the new API. For example: you
were not familiar with the programming language or application domain, your
previous knowledge of a similar API (or a previous version of the API) made it
confusing to learn the new API.

9. When learning the API you mentioned above, how severe was this obstacle:
The way the API was structured or designed made it difficult to understand.
For example: it was not clear how to instantiate an object, there were too many
abstract classes, the names did not make sense.

10. When learning the API you mentioned above, how severe was this obstacle:
The technical environment made it difficult to use the API. By technical
environment, we mean any technical aspects not directly related to the design
of the API itself. For example, the tools did not work well, the API required
extensive infrastructure to test, you could not get the builds to work.

11. When learning the API you mentioned above, how severe was this obstacle:
Specific member-level usage details were not documented. For example, de-
scription of parameters, error codes.

12. When learning the API you mentioned above, how severe was this obstacle:
You did not find conceptual-level information explaining how to use the API.
Consider “conceptual-level” information to mean any type of information you
need to use the API correctly that is not typically associated with particular API
members (classes/methods/functions). For example, description of required
concepts, the API’s execution model, non-trivial code examples, usage patterns,
best practices, mappings between scenarios and API members.

13. If you encountered a type of obstacle not included in the above list, please
describe it here:

14. If you described an additional obstacle, how severe was this obstacle?
29. Do you have any additional ideas for improving high-level API documentation

that could help developers learn how to use APIs more efficiently? If so please
describe it here.

Empir Software Eng (2011) 16:703–732 729

Appendix C: Quantitative Survey Results

2. What is the last public API you have learned? Pick the best match or choose
“Other” (please specify below).

API Respondents
Other 54
LINQ 36
WPF 34
WCF 32
.NET Base Classes 32
Silverlight 24
Win32 (System Services) 17
Win32 (Networking) 16
ASP.NET 14
Win32 (Security) 14
Winforms 10
Azure 10
Win32 (UI) 8
Win32 (Graphics) 8
XNA 8
WF 5
Entity Framework 4
ADO.NET 4
Win32 (Diagnostics) 3
Win32 (Admin) 1

3. If you chose “Other”, please specify [Coded by categories]:

API category Respondents
Operating System 16
Development Tools 12
Web 7
Graphics/media 7
Networking 5
User Interface 3
Unknown 3
Business Applications 1

4. What programming language did you primarily use to access this API?

Language Respondents
C# 229
C/C++ 97
JScript, JavaScript, or other web language 2
Other 5
Visual Basic 1

730 Empir Software Eng (2011) 16:703–732

6. What was the main reason for learning this API?

API learning context Respondents (%)
You needed to use it extensively as part of your work 47
You needed to use it to complete some specific tasks, 22

but these were not the main part of your work
You learned the API to experiment with new technology 17

related to your job
You learned the API for a hobby project, or for a side 10

project not critical to your work
Your team started owning it 3
Other (please specify) 1

8–12. API Learning Obstacle Severity

Blocker Very Severe Moderate Trivial Not an
severe obstacle

High-level documentation 1 9 27 37 17 10
Low-level documentation 2 9 13 37 21 18
Structure 0 4 11 43 27 15
Technical environment 0 3 10 27 32 27
Background 0 1 6 32 29 32

References

Beaton J, Jeong SY, Xie Y, Stylos J, Myers BA (2008) Usability challenges for enterprise service-
oriented architecture APIs. In: Proc. IEEE symp. visual languages and human-centric comput-
ing, pp 193–196

Berglund E (2003) Designing electronic reference documentation for software component libraries.
J Syst Softw 68(1):65–75

Bloch J (2006) How to design a good API and why it matters. In: Companion to the 21st ACM
SIGPLAN symposium on object-oriented programming systems, languages, and applications,
pp 505–506

Bore C, Bore S (2005) Profiling software API usability for consumer electronics. In: Digest of int’l
conf. on consumer electronics, pp 155–156

Brandt J, Guo PJ, Lewenstein J, Dontcheva M, Klemmer SR (2009) Two studies of opportunistic
programming: interleaving web foraging, learning, and writing code. In: Proc. 27th int’l conf. on
human factors in computing systems, pp 1589–1598

Clarke S (2004) Measuring API usability. Dr Dobb’s Journal Special Windows/NET Supplement
Corbin J, Strauss A (2007) Basics of qualitative research: techniques and procedures for developing

grounded theory. Sage Publications
Creswell JW (2007) Qualitative inquiry and research design: choosing among five approaches. Sage

Publications
Cwalina K, Abrams B (2009) Framework design guidelines: conventions, idioms, and patterns for

reusable .NET Libraries, 2nd edn. Addison-Wesley

Empir Software Eng (2011) 16:703–732 731

des Rivières J (2004) Eclipse APIs: lines in the sand. EclipseCon Technical Talk. http://www.eclipse.
org/eclipse/development/apis/Eclipse-APIs-Lines-in-the-Sand.pdf

Ellis B, Stylos J, Myers B (2007) The factory pattern in API design: a usability evaluation. In: Proc.
29th int’l conf. on software engineering, pp 302–312. doi:10.1109/ICSE.2007.85

Feilkas M, Ratiu D (2008) Ensuring well-behaved usage of APIs through syntactic constraints. In:
Proc. 16th int’l conf. on program comprehension, pp 248–253

Fowler M (2002) Public versus published interfaces. IEEE Softw 19(2):18–19
Holmes R, Walker RJ, Murphy GC (2006) Approximate structural context matching: an approach

to recommend relevant examples. IEEE Trans Softw Eng 32(12):952–970
Hou D (2008) Investigating the effects of framework design knowledge in example-based framework

learning. In: Proc. 24th int’l conf. on software maintenance, pp 37–46
Hou D, Wong K, Hoover JH (2005) What can programmer questions tell us about frameworks? In:

Proc. 13th int’l workshop on program comprehension, pp 87–96
Jeong SY, Xie Y, Beaton J, Myers BA, Stylos J, Ehret R, Karstens J, Efeoglu A, Busse DK (2009)

Improving documentation for eSOA APIs through user studies. In: Proc. 2nd int’l symp. on end-
user development. LNCS, vol 5435. Springer, pp 86–105

Knowles MS, Holton III EF, Swanson RA (2005) The adult learner, 6th edn. Butterworth-
Heinemann

Ko AJ, Myers BA, Aung HH (2004) Six learning barriers in end-user programming systems. In: Proc.
symp. on visual languages and human centric computing, pp 199–206

Ko AJ, DeLine R, Venolia G (2007) Information needs in collocated software development teams.
In: Proc. 29th int’l conf. on software engineering, pp 344–353

Larman C (2001) Protected variation: the importance of being closed. IEEE Softw 18(3):89–91
Lutters WG, Seaman CB (2007) Revealing actual documentation usage in software maintenance

through war stories. Inf Softw Technol 49:576–587
McLellan SG, Roesler AW, Tempest JT, Spinuzzi CI (1998) Building more usable APIs. IEEE Softw

15(3):78–86
Nykaza J, Messinger R, Boehme F, Norman CL, Mace M, Gordon M (2002) What programmers

really want: results of a needs assessment for SDK documentation. In: Proc. 20th annual ACM
SIGDOC int’l conf. on computer documentation, pp 133–141

Olson M, Hergenhahn B (2008) Introduction to the theories of learning, 8th edn. Prentice Hall
Parnas DL (1972) On the criteria to be used in decomposing systems into modules. Commun ACM

15(12):1053–1058
Robillard MP (2009) What makes APIs hard to learn? The answers of developers. IEEE Softw

(November/December):27–34
Rosson MB, Carroll JM (1996) The reuse of uses in Smalltalk programming. ACM Trans Comput-

Hum Interact 3(3):219–253. doi:10.1145/234526.234530
Seaman CB (2002) The information gathering strategies of software maintainers. In: Proc. int’l conf.

on software maintenance, pp 141–149
Shull F, Lanubile F, Basili VR (2000) Investigating reading techniques for object-oriented framework

learning. IEEE Trans Softw Eng 26(11):1101–1118
Sillito J, Murphy GC, Volder KD (2008) Asking and answering questions during a programming

change task. IEEE Trans Softw Eng 34(4):434–451
Stylos J, Clarke S (2007) Usability implications of requiring parameters in objects’ constructors. In:

Proc. 29th int’l conf. on software engineering, pp 529–539
Stylos J, Myers BA (2007) Mapping the space of API design decisions. In: Proc. symp. on visual

languages and human-centric computing, pp 50–60
Stylos J, Myers BA (2008) Implications of method placement on api learnability. In: Proc. 16th ACM

SIGSOFT int’l symp. on the foundations of software engineering, pp 105–112
Stylos J, Graf B, Busse DK, Ziegler C, Karstens REJ (2008) A case study of API redesign for

improved usability. In: Proc. symp. on visual languages and human-centric computing, pp 189–
192

Tulach J (2008) Practical API Design: confessions of a Java framework architect. APress
Weiss RS (1994) Learning from strangers: the art and method of qualitative interview studies. The

Free Press
Westfall PH, Tobias RD, Rom D, Wolfinger RD, Hochberg Y (1999) Multiple comparisons and

multiple tests using the SAS system. SAS Institute Inc., Cary, NC

http://www.eclipse.org/eclipse/development/apis/Eclipse-APIs-Lines-in-the-Sand.pdf
http://www.eclipse.org/eclipse/development/apis/Eclipse-APIs-Lines-in-the-Sand.pdf
http://dx.doi.org/10.1109/ICSE.2007.85
http://dx.doi.org/10.1145/234526.234530

732 Empir Software Eng (2011) 16:703–732

Martin P. Robillard is an Associate Professor of Computer Science at McGill University, where he
heads the Software Evolution Research Group (SWEVO). His research focuses on the automated
analysis of software development artifacts to support software evolution and maintenance. He
received his Ph.D. and M.Sc. in Computer Science from the University of British Columbia and a
B.Eng. from École Polytechnique de Montréal. http://www.cs.mcgill.ca/∼martin.

Robert DeLine is a principal researcher at Microsoft Research, working at the intersection of
software engineering and human-computer interaction. His research group designs development
tools in a user-centered fashion: they conduct studies of development teams to understand
their work practice and prototype tools to improve that practice. He received his PhD from
Carnegie Mellon University in 1999 and his BS/MS from the University of Virginia in 1993.
http://research.microsoft.com/∼rdeline.

http://www.cs.mcgill.ca/~martin
http://research.microsoft.com/~rdeline

	A field study of API learning obstacles
	Abstract
	Introduction
	Related Work
	Overview of the Research
	Target Population
	Phase I: Exploratory Survey
	Phase II: Qualitative Interviews
	Phase III: Follow-up Survey

	Quantitative Results
	Qualitative Analysis of Documentation-Related Obstacles
	Intent Documentation
	Code Examples
	Matching APIs with Scenarios
	Penetrability
	Documentation Format

	Experimental Critique
	Conclusions
	Appendix A: Exploratory Survey
	MSR API Learning Survey

	Appendix B: Follow-up Survey
	API Learning Survey

	Appendix C: Quantitative Survey Results
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

