
Using Structure-Based Recommendations to

Facilitate Discoverability in APIs

Ekwa Duala-Ekoko and Martin P. Robillard

School of Computer Science, McGill University
Montréal, Québec, Canada

{ekwa, martin}@cs.mcgill.ca

Abstract. Empirical evidence indicates that developers face significant
hurdles when the API elements necessary to implement a task are not
accessible from the types they are working with. We propose an approach
that leverages the structural relationships between API elements to make
API methods or types not accessible from a given API type more dis-
coverable. We implemented our approach as an extension to the content
assist feature of the Eclipse IDE, in a tool called API Explorer. API Ex-
plorer facilitates discoverability in APIs by recommending methods or
types, which although not directly reachable from the type a developer
is currently working with, may be relevant to solving a programming
task. In a case study evaluation, participants experienced little difficulty
selecting relevant API elements from the recommendations made by API
Explorer, and found the assistance provided by API Explorer helpful in
surmounting discoverability hurdles in multiple tasks and various con-
texts. The results provide evidence that relevant API elements not ac-
cessible from the type a developer is working with could be efficiently
located through guidance based on structural relationships.

1 Introduction

Application Programming Interfaces (APIs) play a central role in modern-day
software development. Software developers often favor reuse of code libraries or
frameworks through APIs over re-invention as reuse holds promise of increased
productivity. Learning how to use APIs, however, presents several challenges to
both novice and expert developers [4,12,15,16]. One such challenge, referred to as
the discoverability problem, highlights the difficulty faced by a developer looking
for the types and methods of an API necessary to implement a programming
task [12,16]. Empirical evidence indicates that when working on a programming
task, most developers look for a main-type central to the scenario to be imple-
mented and explore an API by examining the methods and types referenced in
the method signatures of the main-type [16]. As a result, a developer may be at
a significant disadvantage when an API method essential to a task is located on
a helper-type not directly accessible from the main-type, or when other essential
types are not referenced in the signature of the methods on a main-type. For
instance, Stylos et al. observed that placing a “send” method on a helper-type
such as EmailTransport.send(EmailMessage), instead of having it on the main-
type such as EmailMessage.send(), significantly hinders the process of learning
how to use APIs; they observed that developers were two to eleven times faster

Fig. 1. Apache Commons wrapper for the JavaMail API placed the “send” method
on the main-type, and simplified the process of creating an email message object by
providing a default constructor.

at combining multiple objects when relevant API methods and types were ac-
cessible from the main-type [16]. A different study which looked at the usability
tradeoff between the use of the Factory pattern or a constructor for object con-
struction also reported that developers required significantly more time using a
factory than a constructor because factory classes and methods are not easily
discoverable from the main-type [4].

A potential solution to improving discoverability in APIs is to restructure
an API to make the methods and types essential to the use of a main-type
discoverable. For instance, moving the “send” method from EmailTransport to
EmailMessage and providing constructors for object construction instead of the
Factory pattern would improve discoverability. However, such a restructuring
may not always be beneficial as it could negatively impact other desirable fea-
tures of an API such as its performance and evolvability, and the client code
may also become broken. A second solution to the discoverability problem is to
provide an API wrapper. For instance, we are aware of over six API wrappers for
the JavaMail1 API, all aimed at simplifying the process of composing and deliv-
ering an email message. One such wrapper, provided by the Apache Commons
project, underscores the discoverability issues with the JavaMail API by placing
the “send” method on the main-type, and by simplifying object construction
through the use of a constructor (see Figure 1). The use of API wrappers to
resolve discoverabilty problems is promising but may be expensive, and intro-
duces maintenance and versioning problems. Furthermore, developing wrappers
introduces the risk of unwittingly altering the behavior of the original API.

In this paper, we propose a novel and an inexpensive approach for improving
the discoverability of API elements. Our approach is based on the intuition that
the structural relationships between API elements, such as method-parameter re-
lationships, return-type relationships and subtype relationships, can be leveraged
to make discoverable the methods and types that are not directly accessible from
a main-type. For instance, we can use the fact that EmailTransport.send(Email-

1 http://java.sun.com/products/javamail

http://java.sun.com/products/javamail

Message) takes EmailMessage as a parameter to recommend the “send” method
of the EmailTransport class when a developer looks for a “send” method, or
something similar, on the EmailMessage class. Similar recommendations can be
made for object construction from factory methods, public methods, or subtypes.
These can be accomplished without trading off other desirable API features to
make elements discoverable, or the need to create and maintain API wrappers.

To investigate our intuition, we built a recommendation system, called API
Explorer,2 which makes use of a special-purpose dependency graph for APIs to
provide recommendations based on the structural context in which assistance
is requested. We implemented API Explorer as a novel extension of the content
assist feature of the Eclipse IDE. Content assist in Eclipse, or IntelliSense as it is
called in Microsoft Visual Studio, is limited to showing only the methods avail-
able on the object on which it is invoked. API Explorer extends content assist
with support for recommending relevant methods on other objects, locating API
elements relevant to the use of a method or type, and also providing support for
combining the recommended elements. We evaluated API Explorer through a
multiple-case study in which eight participants were asked to complete the same
four programming tasks using four different real-world APIs, each task present-
ing multiple discoverability challenges. The results of the study was consistent
across the participants and the tasks, and show that API Explorer is effective in
assisting a developer discover relevant helper-types not accessible from a main-
type. The results also show that the use of structural relationships, combined
with the use of content assist to generate and present recommendations, could be
a viable, and an inexpensive, alternative when seeking to improve discoverability
in APIs. We make the following contributions:

– We present an approach that uses the structural relationships between API
elements to make discoverable helper-types not accessible from a main-type.

– We provide API Explorer, a publicly available plugin for Eclipse that embod-
ies our approach. API Explorer is the first tool, to our knowledge, that can
recommend relevant API methods on other objects through the content assist
feature of an IDE.

– We present a detailed analysis of data from 32 programming sessions of par-
ticipants using API Explorer with real-world APIs, showing how our approach
is effective in helping developers discover helper-types not reachable from a
main-type, and helping us understand the contexts in which the approach
would not be effective.

We continue in the next section with an example scenario that highlights typical
discoverability hurdles observed in previous studies on API usability.

2 Motivation

Consider a scenario in which a developer has to implement a solution to compose
and deliver an email message using the JavaMail API. Going through the docu-
mentation of JavaMail, the developer found Message, the main-type representing
2 API Explorer is available at: www.cs.mcgill.ca/~swevo/explorer

www.cs.mcgill.ca/~swevo/explorer

an email message. The developer then proceeds by attempting to construct an
object of type Message from its default constructor3 and encounters the first
discoverability hurdle: Message is an abstract class. Creating an object of type
Message requires three helper-types (MimeMessage, Session, and Properties), none
of which are directly accessible from Message (i.e., these helper-types are not ref-
erenced or reachable from any of the public members of Message). Eventually,
after spending some time going through the documentation, or code examples
on the Web, the developer would locate all the types necessary to construct a
Message object, and also the information on how these types should be combined.
Once Message is created and all the necessary attributes are set, the developer
then proceeds to send the email and encounters the second discoverability hurdle:
there is no method on the Message object that provides the “send” functionality.
The developer must therefore spend more time looking for a helper-type with a
method that could be used to send the Message object. The code completion fea-
ture of the IDE is not helpful because it can only display the methods available
on Message and provides no easy way to discover the existence of a helper-type
with a send method. Also, the traditional search tools that come with IDEs do
not provide direct support to locate multiple helper-types from a main-type.
A developer would have to combine the results from multiple tools (e.g., the
type hierarchy and reference search tools) and filter out the search results before
potentially finding the relevant helper-types.

This scenario describes a conceptually simple task but highlights discover-
ability hurdles commonly faced by developers in practice: “...in real world APIs
like Java’s JDK and Microsoft’s .NET, it frequently seems to be the case that
the classes [helper-types] one needs are not referenced by the classes [main-type]
with which one starts...” [16, p.2]. Thirteen out of twenty participants in a sep-
arate exploratory study we conducted to investigate the challenges developers
encounter when learning to use APIs experienced some difficulty locating the
helper-types relevant to implementing a programming task [2]. We observed that
the participants relied on imperfect proxies such as domain knowledge or their
expectation of how an API should be structured when looking for helper-types
not referenced by a main-type. These attributes are often not consistent across
different APIs, and may be misleading, resulting in unsuccessful searches and
wasted efforts. This observation raises two research challenges:

– How can we assist developers in efficiently discovering helper-types not acces-
sible from a main-type?

– How can we assist developers in the process of combining these related types
to implement a task?

We hypothesize that structural relationships between API elements can be lever-
aged as beacons to assist developers locate helper-types not accessible from a
main-type, and in combining these related types. In the next section, we dis-
cuss how API Explorer, a tool developed to investigate our hypothesis, could

3 Three separate studies observed that most developers, both novice and experts alike,
begin object construction by attempting to use the default constructor [4,15,16].

Fig. 2. API Explorer shows the developer the types required to construct an instance
of Message and generates code which illustrate how to combine these types.

Fig. 3. API Explorer recommends three send methods on the Transport class which
can be used for sending an email Message object.

have assisted the developer quickly surmount the hurdles encountered above.
We present the heuristics and algorithms enabling API Explorer in Section 4.

3 API Explorer

API Explorer generates recommendations that would assist a developer discover
helper-types not accessible from a main-type based on the structural context in
which help is requested.

Faced with an object construction hurdle, a developer would query API Ex-
plorer for assistance by invoking content assist after the assignment operator.
For instance, in the example above, the developer would enter Message m =, then
the key sequence Ctrl+Space, and API Explorer would instantly display two op-
tions for creating a Message object from MimeMessage (see Figure 2(A)). API Ex-
plorer can provide assistance for creating objects from constructors, subtypes,
factory methods, public methods, or static methods. Selecting a recommenda-
tion reveals a hoverdoc, containing a rationale, that explains why the element
was recommended, and the documentation of the recommended element to help
a developer determine its relevance in the given context (see Figure 2). Once the
developer makes a selection, API Explorer automatically expands the selected

Fig. 4. API Explorer combines structural analysis with synonym analysis to recom-
mends three send methods of the Transport class when a developer looks for a “for-
ward” method on the Message object.

recommendation into code that shows how the elements needed to create an
object of type Message should be combined (see Figure 2(B)).

API Explorer provides three options for discovering relevant methods on
helper-types. With the first option, API Explorer display methods that take an
object of type Message together with the public methods declared on Message

through the code completion feature of the Eclipse IDE. To minimize confu-
sion, we differentiated the recommendations of API Explorer using a different
icon and appended them after the methods of the main-type. Thus, a developer
browsing through the methods of Message using this enhanced code completion
feature (i.e., code completion in Eclipse with API Explorer installed) will also
come across the method Transport.send(Message). The second option requires
the developer to request explicit assistance from API Explorer. For instance,
the developer would enter “message.send”, where “message” is an object of type
Message, and API Explorer would recommend methods named “send” on other
types that take an object of type Message as parameter. In this case, API Ex-
plorer recommended three “send” methods of the Transport class, and generated
code of how these types should be combined once a recommendation is selected
by the developer (see Figure 3). The third option handles cases where a devel-
oper might search for a method prefix that does not match the name of any
method on the helper-types (e.g., searching for “message.forward” instead of
“message.send”). In this case, API Explorer combines structural analysis with
synonym analysis to recommend methods with a name similar to what the de-
veloper is looking for (see Figure 4). We continue in the next section with the
algorithms underlying API Explorer.

4 API Graph and Recommendation Algorithms
API Explorer relies on a specialized dependency graph for APIs, called API Ex-
ploration Graph, and incorporates algorithms that use the information contained
in the graph to generate recommendations based on the structural context.

4.1 API Exploration Graph
We use an API Exploration Graph (XGraph) to model the structural relation-
ships between API elements. In an XGraph, API elements are represented as

nodes; an edge exists between two nodes if the elements represented by the
nodes share one of several structural relationships.
Nodes: an XGraph uses two kinds of nodes to represent API elements: a node
to represent API types such as classes or interfaces, and a node to represent API
methods. We model a public constructor as a method that returns an object of
the created type.
Edges: an XGraph uses four kinds of edges to capture the relationships between
API elements:
– created-from edge: this edge exists between an API type, T , and an API

method, M , if the method M returns an object of type T . The created-from
edge captures object construction through constructors, static methods, or
instance methods.

– is-parameter-of edge: this edge exists between an API type, T , and an API
method, M , if the type T is a parameter of the method M .

– is-subtype-of edge: this edge is used to represent subtype relationships between
API types. It exists between the type Tk and the type Tm, if Tk is a subtype
of Tm.

– requires edge: is used to distinguish instance methods from class methods. A
requires edge exist between a method, M , and an API type, T , if an instance
of T must exist on which the method M must be invoked.

The XGraph is simple, but by combining the information encoded in multi-
ple edges, we are able to derive useful non-trivial facts about the relation-
ships between API elements. For instance, from knowing that MimeMessage is-
subtype-of Message, and that Message is-parameter-of Transport.send, we can
infer at least three facts: first, objects of type Message could be created from
MimeMessage; second, MimeMessage can be used whenever Message is expected;
and third, MimeMessage can also be sent using the “send” method of Transport.

ab s t r a c t Message {
pub l i c vo id s e tText (S t r i n g) }

MimeMessage extends Message {
pub l i c MimeMessage (S e s s i o n) }

Transpo r t {
pub l i c s t a t i c vo id sendEmai l (Message) }

Se s s i o n {
pub l i c s t a t i c Se s s i o n g e t I n s t a n c e (P r o p e r t i e s) }

Listing 1.1. A simplified version of the JavaMail API

Listing 1.1 shows a simplified version of the JavaMail API, and Figure 5 shows
the corresponding XGraph. JavaMail uses the types String and Properties from
the Java Runtime Environment (JRE). API Explorer maintains an XGraph of
the JRE, and automatically links it to the XGraph of APIs referencing types of
the JRE, as in Figure 5. We generate XGraphs from the binaries of APIs using
the Javaassist4 byte code analysis library, and it takes less than one minute to
4 www.javassist.org

Fig. 5. The XGraph of the simplified JavaMail API in Listing 1.1. The nodes in boldface
represent API types; the other nodes represent API methods, including constructors,
and the edges represent relationships between the nodes.

create an XGraph even for large APIs such as the JRE, which includes 3000 types
and 9300 methods. API Explorer uses the information in the XGraph to gen-
erate recommendations and code showing how the recommended API elements
should be combined. We present the recommendation algorithms in Sections 4.2
through 4.5, and use the sample API in Listing 1.1 and its XGraph to present
examples of the algorithms.

4.2 Object Construction Algorithm

The object construction algorithm (Algorithm 1) facilitates the discovery of fac-
tory methods, static methods, or subtypes that may be needed to construct an
object of a given API type, say T (input to the algorithm). The algorithm begins
by looking at the created-from edges of the node representing T in the XGraph
(lines 4 and 8). The xgraph.getNodes(T,edgeType) method (line 8) returns the
API element (a factory method or constructor) each created-from edge points
to, for every such edge found on T . The algorithm is designed to first search
for a way of creating an object of type T that does not involve its subtypes.
We did this to minimize the number of recommendations presented to a user.
If no recommendation for creating an object of type T without its subtypes is
found, the algorithm proceeds to look at the created-from edges of the subtypes
of T (lines 9 to 12). The algorithm uses the is-subtype-of edge to locate the sub-
types of T (line 10), then recursively calls the getObjectConstructionProposals
method for each subtype (lines 11 to 12). The algorithm continues down the
hierarchy until information on how to create an object of type of T is found, or
all the subtypes are exhausted. Upon completion, the algorithm presents a list
of recommendations showing different ways of creating an object of type T . We
present the code generation algorithm in Section 4.5 that recursively looks for
the parameters and dependencies of a selected recommendation, and generate
code showing how to combine them.

Example. Consider as an example a developer looking for assistance on how to
create an object of type Message. The algorithm begins by looking at the created-
from edges on the Message node. The Message node has no created-from edge;
the algorithm then proceeds by looking for subtypes of Message from which an
object could be created. The Message node, in this case, has a single is-subtype-
of edge pointing to MimeMessage. Next, the algorithm looks at the created-from

edges on the MimeMessage node, and finds MimeMessage(Session), a constructor
for creating a MimeMessage object. The algorithm, being aware that MimeMessage

is a subtype of Message, recommends MimeMessage(Session) as a way of creating
a Message object.

Algorithm 1: Object Construction
Input: T, xgraph /* the type T for which object construction

assistance is requested and the XGraph */

Output: recommendations /* a list of recommended API elements that

could be used to create an object of type T */

1 Var edgeType := created-from /* a valid edge in the XGraph */

2 recommendations := ∅
3 begin
4 recommendations := getObjectConstructionProposals(T, xgraph, edgeType)

5 function: getObjectConstructionProposals(T, xgraph, edgeType)
6 begin
7 Var proposals := ∅
8 proposals := xgraph.getNodes(T, edgeType) /* get the nodes in the

XGraph pointed to by the created-from edges of node T */

9 if proposals == ∅ then
10 Var subtypes = xgraph.getNodes(T, is-subtype-of)
11 foreach type ∈ subTypes do
12 proposals := proposals ∪

getObjectConstructionProposals(type,xgraph,edgeType)

13 return proposals

For simplicity, our example API has types with only a single object construc-
tion option. However, in practice, an API may provide multiple ways of creating
objects of a given type. For instance, the JavaMail API provides four options
for creating a Session object. In such situations, API Explorer presents all the
options to a developer to decide the most appropriate construction pattern in a
given usage context. As will be seen in Section 5, the participants of our case
study evaluation demonstrated little difficulty selecting a relevant recommenda-
tion when presented with multiple options.

4.3 Method Recommendation Algorithm

The method recommendation algorithm (Algorithm 2) is based on the obser-
vation that if a method a developer needs is not available on the type, T , the
developer is working with, then one of the methods which take T , or an ancestor
(a class, or an interface) of T , as a parameter may provide the needed function-
ality. The algorithm uses the is-parameter-of and the is-subtype-of edges of the
XGraph to recommend relevant methods on other objects.
The algorithm begins by looking at the API methods that take T as a parameter
using the is-parameter-of edges at the node T in the XGraph (lines 3, 12 to 15).
The algorithm verifies if the name of a method that takes T as a parameter
starts with the prefix entered by the user, and if so, adds that method to the list

of proposals. If the list of proposals is empty once all the methods that take T as
parameter have been examined, the algorithm uses synonym analysis to search
for, and recommend, API methods with a name similar to what the developer
is looking for. Our intuition is that, a developer looking for an API method to
send an email object, if not searching for a method prefixed “send”, may be
looking for something similar to “send”, such as “transmit” or “deliver”, instead
of something totally unrelated.

Algorithm 2: Method Recommendation
Input: T, prefix, xgraph /* the type for which a recommendation is being

requested, the prefix provided by the user, and the XGraph */

Output: recommendations /* list of recommended API methods */

1 recommendations := ∅
2 begin
3 recommendations := getMethodProposals(T, prefix, xgraph)
4 if recommendations == ∅ then
5 Var ancestors = T.getAncestors()
6 foreach type ∈ ancestors do
7 recommendations := recommendations ∪
8 getMethodProposals(type, prefix, xgraph)

9 function: getMethodProposals(T, prefix, xgraph)
10 begin
11 Var proposals := ∅
12 Var list := xgraph.getNodes(T, is-parameter-of)/* get the method nodes

pointed to by the is-parameter-of edges of node T */

13 foreach method ∈ list do
14 if method.nameStartsWith(prefix) then
15 proposals := proposals ∪ method

/* synonym analysis */

16 if proposals == ∅ then
17 Set prefixSet = getSynonyms(prefix)
18 foreach method ∈ list do
19 Set methodSet = getSynonyms(method.getName())
20 if methodSet ∩ prefixSet �= ∅ then
21 proposals := proposals ∪ {method}

22 return proposals

The synonym analysis part of the algorithm (lines 16 to 21) re-examines all
the API methods that take T as parameter. The synonym analysis begins by
generating the synonym set for the prefix entered by the user (line 17); then for
each method of the is-parameter-of edges of T, the algorithm extracts its prefix
and generates its synonym set. The methods whose synonym set have one or more
elements in common with the synonym set of the prefix entered by the user are
added to the list of proposals (lines 20 to 21). API Explorer uses the WordNet5

5 http://wordnet.princeton.edu/

dictionary to generate the synonym sets. We also augmented WordNet with
common words such as “insert”, “put”, and “append” often used interchangeable
in APIs, and by developers, but which are not necessarily synonyms in the
English vocabulary.

The method recommendation algorithm may not find a relevant method
amongst the methods that take T as a parameter. In this case, the algorithm
searches for API methods that take an ancestor of T as a parameter (lines 4
to 8). The algorithm uses the is-subtype-of edges at T to located its ancestors
(line 5), and for each ancestor, calls the getMethodProposal method for recom-
mendations (line 6 to 8). Upon completion, the algorithm presents a list of API
methods with a prefix matching, or similar, to that entered by the developer,
and with object of type T as a parameter.
Example. Consider as an example a developer looking for a “send” method
on a MimeMessage object. The algorithm begins by looking at the is-parameter-
of edges of the MimeMessage node, searching for methods prefixed “send” that
take MimeMessage as a parameter. The MimeMessage node, however, has no is-
parameter-of edge; the algorithm then looks for a supertype of MimeMessage by
moving up its is-subtype-of edge, and finds the type Message. Next, the algorithm
looks at the is-parameter-of edges of the Message node and, this time, finds an
edge pointing to the static method sendEmail(Message) on the Transport class.
The algorithm does not terminate once the first “send” method is found; it
searches for all methods prefixed “send” that can accept a MimeMessage object
by looking at other is-parameter-of edges on the current node and on other
nodes up the hierarchy. In this example, the algorithm would recommend the
only method it found, Transport.sendEmail(Message), to the developer with the
knowledge that MimeMessage is a subtype of Message.

4.4 Relationship Exploration Algorithm
In our work with APIs, we have observed cases in which a developer has identified
two or more types relevant to their programming task, but remains uncertain
about how these types are related [2]. Unfortunately, direct support for such an
inquiry is unavailable. A developer wanting to verify the relationship between
the types T1 and T2 must either combine the results of multiple search tools, or
go through the documentation of at least one of the types before determining
whether or not they are related. Using the XGraph, our relationship exploration
algorithm (Algorithm 3) can help a developer efficiently explore the relationships
between API types.

The algorithm takes a input an array of API types and the XGraph, and
outputs the relationships between the types, if any. Given a single API type
typeArray[0], the algorithm can locate other API types related to it (lines 3 to 4).
The xgraph.getRelatedTypes(typeArray[0]) method (line 4) returns a list of types
related to typeArray[0] through the is-parameter-of, is-subtype-of, or the created-
from edge of the XGraph. Given two API types typeArray[0] and typeArray[1],
the algorithm looks for method-parameter or return type relationships between
the types (lines 5 to 9). For typeArray[0], the algorithm first retrieves the list
of all the API methods defined on typeArray[0] (line 6). Then, for each method

on typeArray[0], the algorithm checks whether the method takes an object of
type typeArray[1], or its ancestor, as a parameter, or has typeArray[1], or its
subtype (represented as <:) as a return type. If so, that method is added to the
list of related elements (lines 7, 10 to 16). This same procedure is repeated for
the type typeArray[1] (lines 8 to 9), and the relationships between the types are
presented to the user.

Algorithm 3: Relationship Exploration
Input: typeArray[], xgraph /* an array of API types and the XGraph */

Output: relations /* a list of related API element */

1 begin
2 relations := ∅
3 if typeArray.length == 1 then
4 relations := relations ∪ xgraph.getRelatedTypes(typeArray[0])

5 else if typeArray.length == 2 then
6 Var listOfMethods0 = xgraph.getMethods(typeArray[0])
7 relations := relations ∪ getRelationships(typeArray[1],listOfMethods0)
8 Var listOfMethods1 = xgraph.getMethods(typeArray[1])
9 relations := relations ∪ getRelationships(typeArray[0],listOfMethods1)

10 function: getRelationships(T, listOfMethods)
11 begin
12 Var relationships := ∅
13 foreach method ∈ listOfMethods do
14 if method.getReturnType() <: T OR T ∈ method.getParameters()

then
15 relationships := relationships ∪ method

16 return relationships

Example. Consider as an example a developer wanting to explore the relation-
ships of MimeMessage. The developer will begin by issuing a query to the rela-
tionship exploration algorithm to identify the types related to MimeMessage. The
algorithm uses the edges of the XGraph to locate types related to MimeMessage: in
this case, the algorithm would reveal that MimeMessage is related to both Message

and Transport using the is-subtype-of and the is-parameter-of edges of the
XGraph. The developer may then explore the relationship between MimeMessage

and one of the related types (e.g., Transport) by selecting Transport. The al-
gorithm then looks at the edges that connect MimeMessage to Transport in the
XGraph to provide an explanation of how they are related. The algorithm re-
turns within a second of the query, revealing that MimeMessage and Transport are
related through the Transport.sendEmail(Message) method. Traditional “refer-
ence search” features, such as that provided in the Eclipse IDE, are unable to
determine that MimeMessage is related to Transport.sendEmail(Message) because
they are not inheritance-aware. Our relationship exploration algorithm therefore
complements existing “reference search” tools.

4.5 Code Generation Algorithm

The code generation algorithm is triggered only when a recommendation is se-
lected. This algorithm is intended to show a developer how to correctly co-
ordinate the main-type and helper-types. If the selected recommendation is a
constructor, the algorithm first determines whether or not it has parameters. If
the constructor has no parameters, the algorithm generates code showing how
to use the default constructor. For constructors with parameters, the code gen-
eration algorithm first generates an identifier for the non-primitive parameters,
and for each non-primitive parameter T, calls the object construction algorithm
to determine how to create an object of type T. The algorithm uses the method-
parameter relationship to determine how the statements should be ordered and
how they relate to each other.

If the selected recommendation is an API method, the algorithm uses the
requires edge to determine whether or not the method is static. For a non-static
method, the algorithm begins by calling the object construction algorithm to
create an object of the type on which the method is defined, before invoking
it. Then, for each non-primitive parameter T of the selected method, the code
generation algorithm calls the object construction algorithm to determine how
to create an object of type T. For a static API method (i.e., method without a
requires edge), the algorithm only has to create objects for each non-primitive
parameter. The algorithm does not create objects for non-primitive parameter
types already available from the context in which API Explorer was invoked
— it uses variables in the context that match a given parameter type. For in-
stance, if a developer selects Transport.send(Message) from the recommenda-
tions on how to send a Message object m1, the code generation algorithm will
not create a new Message object, but will pick m1 from the context, and output
Transport.send(m1).

4.6 Design rationale

We designed our approach with the awareness that a main-type may have sev-
eral helper-types, with each helper-type relevant to a different programming
scenario. For instance, the type Message of the JavaMail API has the method
Transport.send(Message) as a helper-type for sending email objects, and the
method SearchTerm.match(Message) as a helper-type for locating email objects
that satisfy a given search criterion. Similarly, an API type may have several
object construction patterns, with each pattern relevant to a different usage sce-
nario. Our approach does not attempt to guess which helper-type is relevant
for a given programming scenario; it recommends all valid helper-types in a
given structural context, and allows the developer to select the most appropri-
ate helper-type for a given programming scenario. We designed our approach
this way for two reasons: first, a heuristic that attempts to narrow down the list
of recommended help-types by removing those considered irrelevant in a given
scenario may inadvertently hide a helper-type most appropriate for a given sce-
nario. Such a mistake will further undermine discoverability, the very problem
our approach is intended to solve. To avoid hampering discoverability, we opted

for a design that relies on the developer to select the helper-type most appropri-
ate for a given task. Second, our experience working with APIs indicates that
developers have little problem selecting relevant API elements from a list of
recommendations. We therefore expect that developers will have little difficulty
selecting the most appropriate helper-type from a list of possible helper-types
for a given programming task. We discuss the extent to which our expectations
were valid in Section 5.

5 Evaluation
Our evaluation had two goals: first, to show the extent to which our assumptions
about the API exploration behavior of developers, and their ability to select
relevant recommendations, are reflected in realistic API usage contexts; and
second, to understand the contexts in which API Explorer may be helpful in
discovering helper-types not accessible from a given main-type. Given that we
were interested in studying how the approach supports people (as opposed to the
performance of algorithms taken in isolation), we favored a qualitative evaluation
methodology. We reasoned that a qualitative evaluation of our approach in the
context of several programming tasks will enable us to reliably evaluate the
assumptions and observations on which our approach is based, and to understand
the contexts in which the approach would not be effective.

5.1 Case Study Design
We used a case study methodology to evaluate our approach. Yin introduces the
case study methodology as “an empirical inquiry that investigates a contempo-
rary phenomenon within its real-life context” [20, p. 13], and Easterbrook et al.
explains that the case study methodology is particularly suited for evaluating
software tools “where the context is expected to play a role in the phenomena” [3,
p. 297], as in the case of API Explorer. For example, Holmes and Murphy used
a case study evaluation to provide an in-depth understanding of how and why
their Strathcona tool was helpful, ICSE ’05 [6].

In the case study methodology, the cases (programming tasks, in our setting)
are selected to represent the phenomenon being studied, and each case is con-
sidered as a replication, rather than a member of a sample [3,20]. Furthermore,
our case study methodology emphasizes generalization to similar contexts (i.e,
if the selected cases supports our hypotheses, then it is expected that similar
cases will be supported by our approach), not statistical generalization [20, p.
31]. The goal of our case study was to answer the following questions:
Q.1 To what degree are our assumptions about the API exploration behavior of
developers reflected in practice?
Q.2 In which ways can structural relationships help when trying to increase the
discoverability of API elements necessary to solve a task?
Q.3 Would a developer be able to select a helper-type relevant to their task
when presented with a list of possible helper-types?
Q.4 In which situations would API Explorer not be helpful, and why?

A. Programming tasks.
Our approach is intended to assist developers locate helper-types not accessible

from a type they may be working with. We therefore selected programming
tasks that typified the discoverability hurdles our approach is intended to solve.
Three of the tasks (the Email, XML, and Chart tasks) selected for the study
have been the subject of previous studies that investigated the discoverability
problem [2,16].
Email task: we asked the participants to use the JavaMail API to implement a
solution that would compose and deliver an email message. To complete the task,
a participant needed to create and configure at least four API types, all created
from factory methods or subtypes, and needed to discover a key relationship
between Message and Transport to send the email message. We used version
1.4.2 of the JavaMail API, which has five packages and 91 non-exception classes.
XML task: we asked the participants to use the Java API for XML Processing
(JAXP)6 to verify whether the structure of an XML file conforms to a given
XML schema file. This task required the combination of at least four API types
(Validator, Schema, SchemaFacotry, and Source); we selected this task to evalu-
ate the object construction feature because of the unique challenges it presents
— all the required types are abstract with no subtypes; the types must be cre-
ated from factory or public methods (e.g., Validator can only be created from
Schema.newValidator()). We used version 1.4 of the JAXP API, which has 23
packages and 207 non-exception classes.
Chart task: we asked the participants to use the JFreeChart7 API to create
a pie chart and to save the chart to a file in a graphic format. To complete
this task, a participant needed to coordinate at least five API types, and had to
discover the relationship between JFreeChart, the type for representing charts,
and ChartUtilities, the type needed to save the chart. We used version 1.0.13
of the JFreeChart API, which has 37 packages and 426 non-exception classes.
PDF Task: we asked the participants to use the PDFBox8 API to implement a
solution to merge two PDF files. This task required the combination of just two
API types: PDFDocument and MergerUtility. However, the relationship between
PDFDocument and MergerUtility (related through an “append” method on Merg-

erUtility) cannot be determined through synonym analysis since “merge” is
not a synonym of “append”. We were interested in investigating whether the
participants would be able to use other features of API Explorer to discover
this key relationship. We used version 1.2.1 of the PDFBox API, which has 31
packages and 307 non-exception classes.

B. Study participants.
We recruited eight participants (henceforth referred to as P1, ..., and P8) through
our departmental mailing list. Our participants reported between 1.5 and 3 years
of experience programming with Java, with a median Java programming experi-
ence of 2.5 years. All the participants had at least six months experience working
with the Eclipse IDE. None of the participants, with the exception of P1, had

6 jaxp.dev.java.net
7 jfree.org/jfreechart
8 pdfbox.apache.org

used any of the four APIs in the study; P1 had used the JFreeChart API in
the past, but in a task different from ours and could not remember the types
provided by the API.

C. Study procedure.
We provided each participant with a tutorial of the features of API Explorer
before the study began, and asked the participants to use API Explorer when-
ever they believed a feature it provides could be helpful. We also provided each
participant with a description of the tasks and the documentation of the APIs.
The four tasks were completed in the same order by the participants, and the
participants were allowed a maximum of forty minutes per task. We asked the
participants to think-aloud whenever API Explorer was used to allow us to un-
derstand why the assistance of API Explorer was needed, why the participant
selected a given recommendation, and whether or not the assistance provided by
API Explorer was helpful. We also used screen capturing software to document
all the actions of the participants. To avoid influencing the behavior of the par-
ticipants, we did not inform them of which types of an API were relevant to each
task, or which type of an API to start from; the decision of how to approach
each task was left to each participant.

5.2 Results

The study produced a total of over 16 hours of screen captured videos and ver-
balizations of eight participants using API Explorer in 32 different programming
sessions. Our analysis of the data from the study focused on the questions the
study was designed to answer. We begin by presenting task-level observations
that show the degree to which the API exploration behavior of the participants
supports the hypothesis on which our approach is based (Q.1). For each task, and
for each participant, we provide observations on how the participant approached
the task, and the degree to which API Explorer was effective in helping the par-
ticipant discover helper-types not accessible from a main-type. Then, we present
episode-level observations: an analysis of all the instances in which API Explorer
was used by each participant, the degree to which a participant was able to se-
lect relevant recommendations, and the discoverability contexts in which API
Explorer proved helpful (Q.2 and Q.3). Lastly, we look at situations in which
API Explorer was not helpful (Q.4).

A. Tasks-Level Observations.
The first question (Q.1) was intended to investigate the degree to which the
behavior of our participants supports our main hypothesis (when working on a
task, a developer typically starts from a main-type central to the programming
scenario before looking for helper-types) and to evaluate the degree to which API
Explorer would be helpful in discovering relevant helper-types. Due to space
restrictions, we present a detailed outline of the observations from the Email
task, and summarize the observations from the other tasks in Table 19.

9 A detailed outline of how the participants approached each task, and how they used
API Explorer is available at: www.cs.mcgill.ca/~swevo/explorer/evaluation/

www.cs.mcgill.ca/~swevo/explorer/evaluation/

Table 1. A summary of the results of how the participants approached each task, their
effectiveness in using API Explorer (APIX) to locate helper-types not accessible from
a main-type, and the API Explorer feature (SA — synonym analysis, EC — enhanced
code completion, RE — relationship exploration, OC — object construction) used to

make the discovery. The check mark (�) represents Yes, and � represents No.

P1 P2 P3 P4 P5 P6 P7 P8

Email Task
Started from Message, then
looked for Transport

� � � � � � � �

Found Transport.send from
Message using APIX

� � � � � � � �

Feature used EC SA SA SA EC SA SA EC

Chart Task
Started from JFreeChart,
then looked for ChartUtil

� � � � � � � �

Found ChartUtil.write from
JFreeChart using APIX

� � � � � � � �

Feature used EC SA SA EC — — EC SA

PDF Task
Started from PDFDoc, then
looked for MergerUtil

� � � � � � � �

Found MergerUtil.append
from PDFDoc using APIX

� � � � � � � �

Feature used EC RE EC EC EC EC EC —

XML Task
Started from Validator, then
looked at Schema

� � � � � � � �

Found
Schema.newValidator()
from Validator using APIX

� � � � � � � �

Feature used OC — OC OC OC — OC OC

All eight participants started the Email tasks by looking for a type rep-
resenting an email message. They all found the abstract class Message from
the documentation and proceeded to query API Explorer for assistance on
how to create an object of type Message. API Explorer provided two recom-
mendations: MimeMessage(Session) and MimeMessage(Session,InputStream), both
constructors from the subtype MimeMessage; seven of the participants selected
MimeMessage(Session), P5 selected MimeMessage(Session,InputStream) thinking
InputStream is needed to set the email content. P5 later reverted to MimeMessage-

(Session). After selecting MimeMessage(Session), API Explorer provided four
recommendations on how to create a Session object from factory methods, and
all the eight participants selected Session.getInstance(Properties), to complete
the process of creating a Message object.

The participants approached the next part of the task, sending the email mes-
sage, differently. P1 started with the documentation in search for assistance on
how to send the message but did not find Transport. He then browsed through the

methods of Message using the enhanced code completion (EC) feature of Eclipse
when he noticed Transport.send(Message) amongst the recommendations of API
Explorer. P5 and P8 also used the EC to discover Transport.send(Message) di-
rectly from Message. Participants P2, P3, P4, P6, and P7 all used the synonym
analysis (SA) feature of API Explorer to query for a recommendation for “Mes-
sage.send”, and received four recommendations from which they discovered three
different “send” methods on the Transport class.

We present a summary of the observations from the other tasks in Table 1. For
each task, we indicate whether the participant started from the main-type before
looking for the helper-type, whether the participant was able to use API Explorer
(APIX) to discover the helper-type directly from the main-type, and the API
Explorer feature that was used to make the discovery. For the Chart task, seven
of the eight participants started from the main-type JFreeChart before looking
for the helper-type ChartUtilities. Only P6 started from ChartUtilities before
looking for JFreeChart, and this occurred because P6 had difficulties finding
the main-type and happened to stumble on ChartUtilities. Six of the eight
participants successfully used APIX to discover ChartUtilities directly from
JFreeChart. P5 did not attempt to use APIX to look for a helper-type; he came
up with an improvised solution that created a BufferedImage from JFreeChart.
For the PDF task, all the eight participants started from the main-type PDFDocument
before looking for the helper-type MergerUtility, and seven of the participants
successfully used APIX to discover MergerUtility directly from PDFDocument. P8
used synonym analysis with “PDFDocument.merge” but got no recommenda-
tions. He made no attempt to use other features of APIX, such as the enhanced
code completion, that could have helped him discover MergerUtility; he came
up with an improvised solution for merging the documents.

Five of the eight participants in the XML task started with the main-type
Validator; the other three started with the helper-type Schema. The domain that
provided support for validation had only six classes, with Schema at the top of the
list, and Validator at the end: that could have influenced the three participants
that started with Schema. Six of the participants used the object construction
feature to discover how to create a Validator object from Schema.newValidator(),
the other two used the documentation.

The results were consistent across the eight participants and in most of the
tasks: the participants typically began exploring an API from the main-type
before looking for a relevant helper-type, and successfully used API Explorer
to discover relevant helper-types directly from a main-type.

B. Episode-Level Observations.
To answer questions Q.2, Q.3, and Q.4, we analyzed all the segments of the
screen captured videos, which we called episodes, corresponding to instances in
which a participant used API Explorer to discover API elements relevant to a
task. In our analysis, we focused on the degree to which a participant was able
to select API elements relevant to a task from the recommendations of API
Explorer, the discoverability contexts in which the assistance of API Explorer

Table 2. A summary of all the instances in which API Explorer was used by each
participant for the various contexts (object construction [OBJ], looking for relevant
methods on other types [METH], and exploring the relationships between types [ER]).

of usage
episodes

average # of
recommendations

unable
to select

API Explorer
not helpful

P1 OBJ 16 6.3 0 0
METH 4 5 0 0
ER 1 0 0 1

P2 OBJ 12 5.5 0 0
METH 4 4.2 0 2
ER 4 6 0 1

P3 OBJ 11 7.8 0 0
METH 3 8.2 0 0
ER 8 3.5 1 1

P4 OBJ 16 6.3 0 0
METH 3 9.1 0 0
ER 5 5.9 0 0

P5 OBJ 14 7 0 0
METH 2 15.2 0 0
ER 3 0 0 0

P6 OBJ 12 8.3 0 0
METH 4 5.1 0 1
ER 5 3.6 0 0

P7 OBJ 11 7.1 1 1
METH 3 8.6 0 0
ER 1 5.5 0 0

P8 OBJ 14 6.2 0 0
METH 2 8.4 0 0
ER 3 1.7 0 0

TOTAL 161 2 7

was requested, and whether or not the assistance provided was helpful. We con-
sider the assistance provided by API Explorer helpful if its recommendations
contains an API element relevant to a given request, and if the participant was
able to recognize and select the relevant element. The results of the analysis are
summarized in Table 2.

The third column (# of usage episodes) of Table 2 shows the number of
episodes where API Explorer was used, per participant and per discoverability
context. For instance, P1 used API Explorer 21 times: four times to discover
relevant methods on other API types (row METH), 16 times to discover API
elements necessary to construct an object of a given API type (row OBJ), and
once to look for types related to a given API type that could be used to per-
form a given operation (e.g., types related to PDFDocument that could be used
for merging; row ER). The participants requested the assistance of API Ex-

plorer a combined total of 161 times. The fourth column presents the average
number of recommendations per episode for each of the different discoverability
contexts. The average number of recommendations ranged from about 2 to 15
recommendations per episode.

The fifth column presents the number of episodes in which a participant
was unable to select or recognize an API element relevant to a task from the
recommendations made by API Explorer. We observed only two instances in
which a participant was unable to select a relevant API element from the rec-
ommendations of API Explorer. In the first instance, P3 had requested the list
of API types related to PDFDocument while looking for a type that could be
used for merging PDF files. API Explorer provided a list with 12 API types,
including MergerUtility, but P3 failed to notice it because it was not visi-
ble, and P3 did not scroll to examine the entire list. In the second instance,
P7 had requested for assistance on how to create a Schema object, and re-
ceived eight recommendations: P7 selected DocumentBuilder.getSchema() instead
of SchemaFactory.newSchema(File), but later reverted to SchemaFactory.newSchema-

(File) when she realized a schema file was provided for the task. API Explorer
was not helpful in only seven of the 161 episodes in which it was used (last
column): we address these situations below where we look at the limitations of
our approach.

The participants experienced little difficulty selecting API elements relevant
to a given programming scenario when presented with a list of possible helper-
types. API Explorer also proved mostly helpful when looking for helper-types
relevant to creating an object, relevant helper-methods on other objects, and
when looking for types related to a given API type that could be used to
perform a given operation.

C. Limitations of our approach.
Our approach will not be helpful if the relationships between API elements can
only be determined at runtime. The last column of Table 2 shows other situations
in which our approach was not helpful: these involve the synonym analysis and
relationship exploration features of API Explorer.

The effectiveness of our synonym analysis algorithm depends on API meth-
ods respecting naming conventions such as method names beginning with action
verbs, not acronyms, and on the ability of a developer to provide a prefix that
match, or is a synonym to the name of a relevant method on a helper-type.
In two instances, P2 and P8 had sought for assistance on how to merge PDF
files using synonym analysis with “PDFDocument.merge” but received no rec-
ommendation. This was expected as “merge” is not a synonym of the “append”
method on MergerUtility. We had designed the PDF task to see whether the
participants would be able to use other features of API Explorer to discover
MergerUtility from PDFDocument. In particular, to address the limitations of the
synonym analysis feature, we enhanced the default Eclipse code completion fea-
ture with the ability to display not only the methods defined on type T , but also
the API methods that take an object of type T as a parameter. For instance,

a developer browsing through the methods of Message using this enhanced code
completion feature will also come across the method Transport.send(Message).
Thus, a relevant helper-method not recommended by synonym analysis will be
discovered when the developer looks through the methods of T . As shown in
Table 1 (PDF task), six of the eight participants were able to use the enhanced
code completion feature to discover MergerUtility directly from PDFDocument.

Our relationship exploration algorithm has two limitations: it can not identify
the API types that throw a given exception, and can only identify direct relation-
ships between API types. P1 had looked for types related to SendFailedException

that could be used to send an email message but was misinformed that there
was no related type, although this exception is thrown by Transport. This oc-
curred because the current version of our XGraph does not support types related
through thrown exceptions. However, P1 subsequently discovered Transport.send

with the assistance of the method recommendation feature of API Explorer. P2
was misinformed that Document is not related to Source, although they are re-
lated through DOMSource(Document), a constructor of a subtype of Source. This
occurred because our relationship exploration algorithm does not consider in-
direct relationships between API elements. We plan on extending our XGraph
and algorithms to show API types that throw a given exception and to support
indirect relationships between API elements.

5.3 Summary
Overall, the results of the study were consistent across the participants and for
most of the tasks: the participants began exploring the APIs from a main-type
before looking for the helper-types, and were mostly successful at using API
Explorer to locate helper-types not accessible from a main-type. The partici-
pants also experienced little trouble selecting relevant elements when presented
with multiple recommendations. Our understanding of the domain enabled us
to select tasks from real-world APIs with discoverability hurdles typical to those
that have been identified in the literature [4,16]. We therefore expect our ob-
servations to generalize to similar contexts, namely, when seeking to make API
elements not directly accessible from a given API type more discoverable. The
participants expressed four reasons why they considered the assistance provided
by API Explorer helpful:

– Saves time (P2, P3, P4, P5, P7, P8): “It would have taken me a lot of time to
go [to the documentation] and find which class will have a merge functionality.
Using the tool, I could find MergeUtility directly from PDFDocument” – P2.

– Increases awareness (P1, P4, P6, P7, P8): “this is another thing I really like.
A lot of times when you look at an API, you look at just the first constructor
and use that. API Explorer shows me other better options that I wouldn’t
have looked for.” – P1.

– Serves as a reminder (P1): “I couldn’t remember the proper way of using it
[the JFreeChart class] and was reminded by the tool” – P1.

– Unmasks hidden relationships (P1, P2, P4, P5, P7, P8): “If you want to save
something, you would like to say object.save() but that option is usually

not provided; usually, it is something.save(object) [that is provided]. It [API
Explorer] is useful because it can make the association between the object you
want to save and the method that you need to call” – P1.

API Explorer recursively shows a participant how to create and relate objects
necessary to use a selected recommendation, even if the required objects comes
from commonly used types. Two participants (P4 and P6) complained that this
was not necessary for commonly used types such as the String class: “telling
me how to construct a String might not necessarily be the most helpful thing
because it is commonly used.” – P6.

5.4 Threats to validity
As indicated in Section 5.1, our method of choice for evaluating API Explorer
was the case study, which emphasizes exploration of the relation between a phe-
nomenon and its context as opposed to generalization. In particular, the diversity
of APIs and programming languages present factors which limits the generaliz-
ability of the results of our study. First, API Explorer will not be helpful for APIs
without helper types, or APIs without indirect object construction patterns such
as the Factory pattern. The same is true for an API with a well-written API
documentation that include actual usage examples. History, however, suggests
that we are far from these ideals: there are situations where it seems reasonable
to provide a Factory, instead of a constructor, and to provide helper-types. It
is for such situations that we envisage tools such as API Explorer to remain
helpful in facilitating discoverablity in APIs. Second, although the tasks used in
our evaluation were drawn from real-world APIs, it is likely that they did not
uncover every discoverability hurdle that could occur in practice. In particular,
very few indirect relationships, a feature not currently supported by API Ex-
plorer, were uncovered by the evaluation. As future work, we plan on extending
API Explorer to support indirect relationships and to conduct further studies
to evaluate this feature. Lastly, some APIs have the notion of an internal API,
intended to be used by the designers only, and the public API, for general use.
The current version of API Explorer does not take these differences in account
when making recommendations; there is therefore the possibility that recom-
mendations made by API Explorer may be from the internal API, a practice
discouraged by API designers.

6 Related work

Improving Code Completion Tools. Previous work on code completion sys-
tems focused either on re-ordering the list of methods accessible on a given type,
or on predicting the method of an API type most likely to be called next in a
given context. Robbes et al. modeled the change history of systems as atomic
operations and used this history to predict the method of an object most likely
to be called next in a given context [11]. Bruch et al. used example code in code
repositories to improve the ordering of the list of suggested methods [1]. These
previous works can only suggest or re-order elements accessible on the object
on which code completion is requested. API Explorer is a novel extension of

code completion, capable of suggesting relevant methods on other objects, and
providing support for locating elements relevant to the use of a given API type.

Other IDE Tools. IDEs provide tools that could be used to search for places
where an API type is referenced, and potentially, locate elements not structurally
accessible from a given type. These tools are suited for code comprehension,
not API exploration, and there is no evidence that a participant from any of
the previous studies even attempted to use these tools when learning how to
use APIs [2,4,15,16]. On the contrary, observations from previous studies indi-
cated that the content assist feature is the most widely used when exploring
APIs [15,16].

Documentation Improvement Tools. Some efforts on facilitating the dis-
covery of API elements have focused on improving the API documentation. Kim
et al. proposed eXoaDocs [9], a tool that integrates code snippets mined from
source code search engines into the Java API documentation, making factory
methods or subtypes necessary for object construction discoverable. Jadeite [17]
uses usage statistics of the types and methods of an API from code examples
found on the Web to help developers find commonly used API elements from
the documentation, and also integrates code snippets on how to construct ob-
jects of API types in the documentation. Jadeite also has a concept, similar to
our method recommendation feature, known as a “placeholder” which allows a
developer to annotate the documentation with the name of a method expected
to be located on a given API type, and to link the “placeholder” to an actual
method of the API that should be used instead. API Explorer, in contrast, au-
tomatically identifies relevant methods on other API types using the structural
relationships between API elements, and presents this information through the
code completion feature of the IDE. Furthermore, Jadeite and eXoaDocs re-
quire large collections of example usages of APIs. API Explorer, in contrast, is
lightweight, leveraging the structural relationships between API elements, not
collections of code examples, to make API elements discoverable.

Example Recommender Tools. These tools leverage the proliferation of code
examples on the Web and open-source repositories to make learning how to use
APIs easier; they differ in the approach used to retrieve code examples and
in the kind of support afforded to API users. CodeBroker [19] uses comments
and method signatures written by the programmer to recommend methods from
code repositories. Strathcona [6] uses the structural context of the code under
development such as the parent class of the framework type being extended,
and the signature of API methods to retrieve relevant code examples from a
repository. MAPO uses pattern mining techniques to identify code snippets and
method call sequence that show how to use a given API method [21]. Prospec-
tor [10], ParseWeb [18], and XSnippet [13] take queries of the form “source-type
→ destination-type”, and recommend code examples that show how to get the
destination-type from the source-type. Jiang et al. [8], Salah [14], and Hey-
darnoori [5] proposed tools which use dynamic analysis of the interaction be-
tween sample applications and APIs to identify valid usage scenarios and valid

call sequence of API methods. Code Conjurer [7] uses test cases written by pro-
grammers to retrieve example usages of APIs element from code repositories.

Prospector and XSnippet are the most similar to API Explorer because they
combine the use of code examples with the structural relationships between
API elements such as return types and method parameters to identify relevant
method call sequences that link a source-type to a destination-type. However,
the support provided by Prospector and XSnippet is limited to object construc-
tion only, and for both tools to work, a developer is expected to provide both a
source-type and a destination-type. As observed in our case study, and also in
a previous API usability study [2], a developer may not even be aware of the nec-
essary destination-type. With API Explorer, developers can obtain object con-
struction support with only a source-type. Furthermore, API Explorer extends
these works by using structural relationships to make relevant API methods not
accessible from an API type discoverable.

7 Conclusion

Learning how to use APIs is major part of a software developer’s job. Even ex-
perienced developers must learn newer parts of an existing API, or newer APIs,
when working on a new project. This paper addresses one of the challenges de-
velopers face when learning a new API: discovering relevant helper-types not
accessible from a main-type they are working with. We have proposed an ap-
proach that leverages structural relationships to make relevant API elements
not accessible on a given API type discoverable. We implemented our approach
in a tool called API Explorer, and evaluated the approach through a multiple-
case study in which eight participants replicated four programming tasks with
several discoverability hurdles. The results of the study was consistent across
the participants and the tasks: API Explorer effectively assisted the participants
to locate helper-types not accessible from a main-type in different discoverabil-
ity contexts. The participants also experienced little difficulty selecting relevant
API elements from the recommendations of API Explorer. The results provide
initial evidence that the use of structural relationships to make API elements
discoverable could be a viable, and an inexpensive, alternative to API wrappers
or API restructuring when seeking to improve discoverability in APIs.

References

1. Marcel Bruch, Martin Monperrus, and Mira Mezini. Learning from examples to
improve code completion systems. In Proceedings of the 7th joint ESEC/FSE,
pages 213–222, 2009.

2. Ekwa Duala-Ekoko and Martin P. Robillard. The information gathering strategies
of API learners. Technical report, TR-2010.6, School of Computer Science, McGill
University, 2010.

3. Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian. Se-
lecting empirical methods for software engineering research. In Guide to Advanced
Empirical Software Engineering, pages 285–311. Springer London, 2008.

4. Brian Ellis, Jeffrey Stylos, and Brad Myers. The factory pattern in API design:
A usability evaluation. In Proc. of the 29th International Conf. on Software Eng.,
pages 302–312, 2007.

5. Abbas Heydarnoori. Supporting Framework Use via Automatically Extracted
Concept-Implementation Templates. PhD thesis, School of Computer Science, Uni-
versity of Waterloo, 2009.

6. Reid Holmes and Gail C. Murphy. Using structural context to recommend source
code examples. In Proc. of the 27th International conf. on Software Eng., pages
117–125, 2005.

7. Oliver Hummel, Werner Janjic, and Colin Atkinson. Code conjurer: Pulling
reusable software out of thin air. IEEE Software, 25:45–52, 2008.

8. Juanjuan Jiang, Johannes Koskinen, Anna Ruokonen, and Tarja Systa. Construct-
ing usage scenarios for API redocumentation. In Proc. of the 15th International
Conf. on Program Comprehension, pages 259–264, 2007.

9. Jinhan Kim, Sanghoon Lee, Seung won Hwang, and Sunghun Kim. Adding ex-
amples into java documents. In Proc. of the International Conf. on Automated
Software Eng., pages 540–544, 2009.

10. David Mandelin, Lin Xu, Rastislav Bod́ık, and Doug Kimelman. Jungloid min-
ing: helping to navigate the API jungle. In Proc. of the International conf. on
Programming language design and implementation, pages 48–61, 2005.

11. R. Robbes and M. Lanza. How program history can improve code completion. In
Proc. of the 23rd Conference on Automated Software Eng., pages 317–326, 2008.

12. Martin P. Robillard and Robert DeLine. A field study of API learning obstacles.
Empirical Software Engineering — To appear, 2011.

13. Naiyana Sahavechaphan and Kajal Claypool. Xsnippet: mining for sample code.
In Proceedings of the 21st OOPSLA, pages 413–430, 2006.

14. Maher Salah, Trip Denton, Spiros Mancoridis, Ali Shokoufandeh, and Filippos I.
Vokolos. Scenariographer: A tool for reverse engineering class usage scenarios from
method invocation sequences. In Proc. of the 21st International Conf. on Software
Maintenance, pages 155–164, 2005.

15. Jeffrey Stylos and Steven Clarke. Usability implications of requiring parameters in
objects’ constructors. In Proc. of the 29th International Conf. on Software Eng.,
pages 529–539, 2007.

16. Jeffrey Stylos and Brad A. Myers. The implications of method placement on
API learnability. In Proc. of the 16th International Symposium on Foundations of
Software Eng., pages 105–112, 2008.

17. Jeffrey Stylos, Brad A. Myers, and Zizhuang Yang. Jadeite: improving API doc-
umentation using usage information. In Extended abstracts on Human factors in
computing systems, pages 4429–4434, 2009.

18. Suresh Thummalapenta and Tao Xie. Parseweb: a programmer assistant for reusing
open source code on the web. In Proc. of the 22nd International conf. on Automated
software Eng., pages 204–213, 2007.

19. Yunwen Ye, Gerhard Fischer, and Brent Reeves. Integrating active information
delivery and reuse repository systems. In Proc. of the 8th International Symposium
on Foundations of software Eng., pages 60–68, 2000.

20. Robert K. Yin. Case Study Research: Design and Methods. Sage, second edition,
2003.

21. Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. MAPO: Mining and
recommending API usage patterns. In ECOOP 2009, pages 318–343. 2009.

	Using Structure-Based Recommendations to Facilitate Discoverability in APIs

