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Abstract—Planning a complex software modification task
imposes a high cognitive burden on developers, who must
juggle navigating the software, understanding what they see
with respect to their task, and deciding how their task should
be performed given what they have discovered. Pragmatic reuse
tasks, where source code is reused in a white-box fashion, is an
example of a complex and error-prone modification task: the
developer must plan out which portions of a system to reuse,
extract the code, and integrate it into their own system. In this
paper we present a recommendation system that automates
some aspects of the planning process undertaken by developers
during pragmatic reuse tasks. In a retroactive evaluation,
we demonstrate that our technique was able to provide the
correct recommendation 64% of the time and was incorrect
25% of the time. Our case study suggests that developer
investigative behaviour is positively influenced by the use of
the recommendation system.

Keywords—pragmatic software reuse tasks; triage decisions;
recommendation systems; structural relevance; cost; source
code analysis; retroactive evaluation.

I. INTRODUCTION

In industrial practice, pragmatic reuse tasks arise when
a developer wants to reuse existing functionality that was
not designed to be reused as needed [1]. When exploring
the source code they want to reuse, developers balance two
competing concerns: the desire to reuse as much code as
possible to obtain the needed functionality for their task,
and the desire to eliminate as much irrelevant reused code
as practical. This latter restriction is essential, as every piece
of code is dependent on other source code elements; if the
developer is not careful, they may unwittingly add spurious
functionality that will increase maintenance costs or can
cause problems in their system. Unfortunately, it is generally
difficult for developers to determine the relevance and cost of
reusing a piece of code through simple inspection, and then
to make an informed decision about the tradeoff involved.

As developers navigate through the source code, they
create a plan of their reuse activity, either explicitly or
mentally: What elements should I reuse? Should I truncate
this dependency? What is the cost of reusing this element?
The cost associated with reusing an element is related to
the number of elements that may also need to be brought
over to the target system because the element is dependent

upon them. Unfortunately, creating these plans places a high
cognitive burden on the developer; this increases the likeli-
hood of making a mistake, either by reusing an expensive
dependency without realizing it, or rejecting an inexpensive
dependency that was relevant to their task.

Previous work provides an environment (called Gilligan)
for supporting the planning [1] and performance [2] of
pragmatic reuse tasks. In a previous study [3], it was shown
that Gilligan can result in the faster implementation of a
reuse plan and a higher rate of success. However, Gilligan
still leaves significant room for improvement: developers
often make poor decisions about the structural relevance
and reuse cost of individual program elements as they
create their plan, although they generally recognize them
eventually. These poor decisions cause developers to waste
time investigating infeasible reuse paths and confound their
understanding of the system.

Our goal in this paper is to automatically provide rec-
ommendations to developers as they create their reuse plan
about the relevance and cost of any element they are
investigating. These recommendations are also adaptive: as
the developer triages elements in their reuse plan, the rec-
ommender adjusts its notion of which elements are relevant
to the task. Reliably creating these kinds of recommenda-
tions can be difficult because developers decide about the
elements they want to reuse not just in terms of cost and
structural relevance, but also in terms of other factors such
as semantics and perceived code quality.

The recommendation system that we have incorporated
into the Gilligan environment is based on two measures:
structural relevance and cost of reuse. We extend the Suade
structural relevance algorithm [4] to operate within the
context of pragmatic reuse decisions, and integrate it into
Gilligan. The cost-of-reuse measure is based on the shape
of the graph of depended-upon descendants of an element:
few nearby descendants means that the cost will be relatively
low; an exponential decay model is used to represent this
intuition.

We evaluated our approach by replaying the sessions of
16 developers as they performed two pragmatic reuse tasks
using Gilligan in a controlled experiment. We generated a
recommendation for each decision they made during their



task, at the instant before they made it, to see what support
we would have given them for that decision. In addition,
we undertook an informal case study to observe whether
the recommender was likely to affect developer behaviour,
either positively or negatively.

Section II outlines the existing Gilligan environment and
illustrates a scenario that would benefit from greater support.
Related work is discussed in Section III. Our approach
is detailed in Section IV. We evaluate our approach in
Section V. Section VI discusses other issues.

This paper contributes an automated recommendation
approach for pragmatic reuse triage decisions, combining an
existing structural relevance algorithm with a novel, locally-
weighted fan-out measure to model cost of reuse.

II. MOTIVATION

In this section we describe the Gilligan environment
for pragmatic reuse tasks, outline a scenario in which a
developer uses Gilligan for such a task, and describe the
resulting issues and others that we have observed.

A. Gilligan Environment

The Gilligan environment helps developers to plan and
perform pragmatic reuse tasks [1]–[3]. Developers inves-
tigate the source code they are considering for reuse by
using a tree-based abstraction of the fan-out portion of the
program dependency graph; from any source code element
that is investigated, the elements upon which that element
depends, either immediately or transitively, must be dealt
with to ensure that any required elements are reused while
irrelevant elements are eliminated. Gilligan surfaces these
depended-upon elements through static analysis, saving the
developer from having to navigate through, and reason
about, many different source code files while trying to
identify the relevant and irrelevant elements.

As developers investigate source code elements, they
make triage decisions by deciding to accept (“I want to
reuse this element”) or reject (“I don’t want to reuse this
element”) each element (a third option exists—remap (“I
have similar functionality I want to use instead of reusing
this element”)—but we do not consider it in this current
work; see Section VI). Gilligan also automatically triages
elements that are common between the source and target
systems; this occurs when libraries or frameworks are shared
between the systems. Rejecting (or remapping) an element
causes its descendants to be rejected implicitly when they be-
come otherwise unreachable. Triage decisions are stored as a
pragmatic-reuse plan. This plan can be mostly automatically
enacted; that is, Gilligan takes the plan and automatically
copies the code from the source system, modifies it, and
integrates it into the developer’s target system. This relieves
the developer of much of the manual effort associated with
performing these tasks.

B. Scenario

Consider a developer undertaking the task of parsing
a file encoded in the Quicken Interchange Format (QIF).
Rather than starting from scratch, they choose to search for
existing QIF parsers online; the developer finds the Java-
based jGnash1 project, which seems to meet their needs.

The developer starts their reuse task by searching through
the jGnash source code to find a starting point for
their investigation; this yields QifParser.parseFull-
File(File). Selecting this element and starting the Gilli-
gan reuse environment, the developer begins their investiga-
tion.

Gilligan provides an investigative view with three panes,
each of which consists of a tree that has multiple columns of
additional information for each element in the tree. Figure 1
shows the developer’s initial view for this task after selecting
parseFullFile(File). The leftmost pane shows the
list of elements that the developer has triaged or is investi-
gating; the middle pane shows the direct dependencies of the
developer’s selection; the rightmost pane shows the transitive
closure of dependencies of the selection. Three additional
columns within each pane show the decision the developer
has made (as a colour), and two numbers, one enumerating
the number of direct dependencies and the other enumerating
the number of dependencies in the transitive closure.

As the developer navigates through the dependencies in
the system, they triage each one by deciding whether to reuse
it (annotated in green), or to reject it (annotated in red). At
any time they can press a single button to enact the plan
wherein the accepted elements are copied to their system
and automatically modified to resolve a large proportion of
the resulting compilation errors from this copy operation.
After triaging dependencies for 15 minutes the developer
realizes that they have navigated down into a myriad of de-
pendencies in the jgnash.engine package and feels like
they are off-track. After a few minutes they realize that their
acceptance of the QifTransaction._account field, of
type Engine, led them down this path. By scrutinizing
_account they realize that the code they are reusing only
uses the field once, and in a way that is irrelevant to their
task; they decide to reject the field rather than reuse the
dozens of irrelevant classes it transitively depends on.

Identifying that _account should have been rejected
was difficult for the developer for two reasons: first, they
could not tell that the field was lightly used by the code
they were reusing; second, they could not tell the transitive
burden of the field—in QifTransaction it simply looks
like another one-line field.

C. Issues

Gilligan surfaces elements to the developer for consider-
ation, and makes it clear what has and has not been triaged.

1http://jgnash.sf.net



Figure 1. The Gilligan environment.

We have previously observed [3] that, while Gilligan can
significantly increase the speed and quality with which a
developer can perform a pragmatic reuse task, developers
still take a long time to make triage decisions and frequently
make incorrect decisions that they later must revisit and
revise. Gilligan provides two simple indications of the cost
of reusing an element: the count of immediately depended-
upon elements and the count of elements in the transitive
closure of dependencies. Several industrial developers who
have used Gilligan have requested that the tool provide
explicit advice about how a given element should be triaged,
and we have found that the two counts do not implicitly help
much in this regard. Something more is needed.

III. RELATED WORK

Software reuse has long been advocated as a mechanism
to reduce development time, increase developer productivity,
and decrease defect density [5]–[9]. Subsequent studies
have been performed to provide initial validation of such
claims [10]–[13].

The act of reusing source code that was not designed to be
reused as needed, in a particular context, has been known by
many monikers: code scavenging [7], ad hoc reuse [14], op-
portunistic reuse [15], and copy-and-paste reuse (also known
as cut-and-paste or copy-and-modify) [16]. We choose the
term pragmatic reuse because each of the above monikers
carry negative connotations, while we believe that pragmatic
reuse tasks can be appropriate and effective [17]–[19].
Indeed, non-black-box reuse tasks are not atypical; Selby
et al. [20] found that 47% of the reused source code within
NASA—an organization committed to reuse—was reused in
a non-black-box manner.

Many of the problems impeding the successful reuse of
software are cognitive in nature [21]. In order to overcome
these cognitive impediments, Fischer [21] argues that more
information is not needed, but that the information that
is currently available must be structured more effectively.
He further argues that tools must support the developer in

safely investigating alternative reuse scenarios. Gilligan and
our present attempt at extending it with a recommendation
system provide precisely this support.

Krueger [7] states, “In practice, the overall effectiveness
of [pragmatic software reuse] is severely restricted by its in-
formality”. Frakes and Kang [22] identify two impediments
to pragmatic reuse tasks: first, they state that development
tools may not be effective at promoting reuse; second,
they note that the lack of process associated with these
hampers reuse efforts. Other researchers have identified
similar issues [23]–[25]; the previous work on Gilligan [1]–
[3] directly addresses these.

Cordy [17] provides many reasons why industrial organi-
zations reuse code via clones instead of refactoring the code
base; three primary rationales are raised: refactoring does
not immediately better an organization’s financial situation;
the risk associated with refactoring a system may not be
acceptable; and the redundancy provided by clones isolates
their subsystems better. Toomim et al. [18] argue that there
are cognitive costs associated with abstraction and that copy-
and-paste development provides a mechanism to avoid some
of these costs. Such approaches are designed to address the
issue of copying code within a single system; instead, our
primary intent is to enable developers to reuse large-scale
functionality from external systems more effectively.

A number of systems [26]–[28] extract reusable code
based on structural factors, but without consideration of the
specific task to be supported.

Garlan et al. [29] point out some of the major hurdles
involved in pragmatic reuse tasks; in particular, the fact
that there can be deep conflicts between the code to be
reused and the target system where it is to be reused.
Such “architectural mismatches” point to why attempts to
simply reuse the transitive closure of dependencies from a
key starting point, will not always lead to successful reuse
tasks. CodeGenie [30] extracts code slices from existing
systems based on test cases selected by the developer; slicing



amounts to extracting the transitive closure of dependencies.
In addition, dependencies only tell us how some starting
point interacts with the rest of the original system; some of
these dependencies may simply be irrelevant in the target
system, and should be removed when practicable to avoid
long-term costs from maintenance.

The FEAT tool [31] helps developers to create descrip-
tions of scattered software, called concerns. A concern in
FEAT is a graph where the nodes are software elements and
the edges are the relationships between them. A pragmatic-
reuse plan (see Section II) is also a graph, but extends the
nodes to include triaging information that capture how the
structural element should be managed when the pragmatic
reuse task is performed.

IV. APPROACH

Our approach applies software dependency analysis in
a novel and dedicated context: the recommendation of
software elements that can be pragmatically reused in a
white-box fashion. To achieve this, we leverage an existing
recommendation algorithm [4] for structural relevance of
a given programmatic element (Section IV-A), modified to
fit our context (Section IV-B); and we develop a measure
for estimating the structural cost of reusing that element
(Section IV-C). A tension exists between the relevance of
an element and its cost; we provide a general model for
the combination of these two factors in order to arrive at
recommendations about whether or not to reuse an element
(Section IV-D). This general model is instantiated and eval-
uated in Section V.

A. Background: Structural Relevance

Topology analysis of software dependencies is a technique
to produce recommendations for software navigation based
on the topology of a software dependency graph [4]. This
technique was implemented in a tool called Suade. Although
at least three structure-based recommendation tools have
been described in the literature [4], [32], [33], the Suade
approach was a good candidate for our application due to
its ready availability, support for Java, and most of all, our
extensive experience with it. The following summary of this
technique is adapted from previous work [34].

The idea behind Suade’s algorithm is to rank elements
based on the closeness of their structural association with
program elements in a set of interest that represents a
developer’s context of investigation (e.g., all the fields and
methods related to a change task).

The Suade algorithm assumes the presence of a set of ele-
ments, the interest set, known to be related to a task. It then
analyzes the topology of the structural dependency graph
that includes the elements from the interest set and their
immediate structural neighbours (e.g., callers, callees, etc.),
to rank all the structural neighbours in order of estimated
likelihood to also be of interest. The algorithm takes into

account two heuristics involving the structural relationships
between elements: specificity and reinforcement. Specificity
evaluates the “uniqueness” of a dependency between a given
element and its structural neighbours. For example, imagine
that the element x in the interest set {x, y} calls five other
elements, x1 through x5, and that y is called by two other
elements, y1 and y2; then y1 and y2 are considered more
specific to the interest set than x1 through x5. Elements with
higher specificity are ranked higher than those with lower
specificity.

Reinforcement evaluates the strength of the intersection
between the interest set and the structural dependents of
a given element. For example, imagine that the interest
element x is related to five other elements x1 through
x5, and that four of these elements—x1 through x4—are
already in the interest set; then the remaining element (x5)
is considered heavily reinforced. On the other hand, if none
of the dependents are also in the interest set, the algorithm
does not consider the elements to be reinforced. Elements
with higher reinforcement are ranked higher than those with
lower reinforcement.

The algorithm works by separately analyzing the “calls”,
“called by”, “accesses” and “accessed by” relations. First, it
obtains, for each element in the interest set, all elements
related to it by the relation type currently analyzed. For
example, for the relation type “called by”, it obtains all
callers of each method in the interest set. A formula is
then used to produce, for each related element, a degree
of potential interest for the element that is based on the
specificity and reinforcement heuristics. The results of the
analysis of each relation are then merged. In the end, the
algorithm produces a single ordered set of elements directly
related to the interest set.

B. Merging Suade with Gilligan

Pragmatic-reuse plans consist of a set of structurally
related elements that provide some piece of functionality that
a developer wants to reuse. As such, using Suade to provide
the developer with a measure of structural relevance could be
beneficial because it can give insight to the importance of an
element. The recommendations provided by Suade are also
adaptive; Suade adapts its recommendations as the developer
triages additional elements.

Suade’s algorithm generates recommendations for all el-
ements in the program dependency graph (comprised of
method call and field reference relationships) that are related
to elements in the interest set; it also leverages the transpose
relationships within the program dependency graph, so both
“x depends on y” and “y is depended upon by x” relations
are considered in the analysis. In contrast, Gilligan does
not consider transpose relations; only outgoing dependencies
are displayed in the Gilligan user interface. Gilligan also
considers inheritance and “uses” relationships, which Suade
does not. A “uses” relationship will arise when a type is



referenced by a method (e.g., as a parameter or return type),
but a specific method call or field access might not be made
on that type. Additionally, fields have a uses relationship on
their type.

Suade represents structural relevance as a normalized
value between 0 and 1. If an element is not related to the
interest set, Suade does not recommend it. As such, Gilligan
will display a value of “n/a” beside it to indicate that it is not
structurally related to the context set. Similarly, since Suade
is generating recommendations for the inclusion of potential
elements, it does not assign a degree to any element already
in the interest set.

Merging the two algorithms required three modifications
to the Suade algorithm.

1. Rejected elements: We consider the triaged elements
in Gilligan to form the interest set for Suade; accepted and
rejected elements are then treated differently for Suade’s
analysis. An element within the transitive closure of any
accepted element will be assigned a degree as per the
standard implementation of Suade; an element within the
transitive closure of any rejected element will be assigned a
degree of 0. The intuition for this design is that any element
that is structurally related to a rejected element will also
not be pertinent to the context. If an element lies in the
transitive closure of more than one element, the highest
resulting degree is assigned to it.

2. Constants: We modified Suade such that, if a method
accesses a constant field, that field will have a degree at least
as high as the method that accessed it. The intuition behind
this is that constants are often an essential part of a method’s
functionality and thus can be thought of as an extension of
the method itself.

3. Types: The third modification entailed giving a
structural relevance degree to each type, based on how
heavily its members were depended on by the interest set.
This modification was added to give users a feel for how
connected a particular type is to the interest set. A type’s
degree is equal to the average of all the degrees of its
members. Only types with members that are structurally
related to the interest set will receive a degree. If this
condition is met, elements that are not structurally related
to the interest set but reside in the type, are considered to
have a degree of 0 in this calculation. If an interest element
resides in the type, it is considered to have a degree of 1 in
this calculation.

Through the integration with Suade, we have reduced one
of Gilligan’s analytic shortcomings: Gilligan provides a tree-
view of the reuse plan for simplicity and ease of navigation
for the developer [35]; unfortunately, this can obscure the
fact that some elements are more relevant to a reuse task
than others (e.g., a method that is called multiple times from
several different locations) that may otherwise be visible by
examining a graph of the program’s structure. While the
awareness of structural relevance is necessary for evaluating

these tasks, it is not sufficient as sometimes the cost of
a dependency may overwhelm its structural relevance; to
help identify these situations, we next introduce a means to
capture the cost of a structural element.

C. Reuse Cost Measure

Equation 1 defines the cost of accepting an element x
in terms of the number of its descendants, weighted by an
exponential decay function of distance from x.

cost(x) =
dmax∑
d=1

|Desc(x, d)| · eα(d−1) (1)

The variable d represents the distance of a descendant from x
(i.e., the length of the shortest path from x to the descendant)
and α represents a decay constant. We define Desc(x, d)
as the set of descendants of x at distance d from x.
For example, if method a() calls methods m1() through
m8(), references the type String, and calls length()

on String, |Desc(a(), 1)| would equal 10. Also it should
be noted that all members of the type String will be in
Desc(a(), 2), except length().

The intuition behind this is that there is an inherent cost
whenever an element is accepted into a pragmatic reuse plan.
Elements with many nearby dependencies require the user
to invest more of their time investigating these elements and
fixing dependency conflicts, than for an element that has few
or mostly distant dependencies. The likelihood that distant
elements will ever be triaged is far lower than nearby ones.

The cost measure is represented by an unbounded non-
negative real, although in practice we have found that this
number tends to usually remain below 30.

1) Calibrating the cost measure: To calibrate the cost
measure, we created a set of scenarios concerning patterns of
fan-out from elements to their descendants and subjectively
estimated how we thought the cost should be reported for
each (see Table I). These scenarios derive solely from our
general experiences with fan-out and how importantly one

Table I
SCENARIOS USED TO CALIBRATE THE COST MEASURE. THE

“DISTANCE” COLUMNS INDICATE THE NUMBER OF CHILDREN AT THAT
DISTANCE FROM THE ROOT (WHICH HAS DISTANCE 0 FROM ITSELF).

“COST” IS A SUBJECTIVE ESTIMATE OF WHAT THE RESULTING COST OF
REUSING THE ROOT SHOULD BE.

Case Distance Cost

1 2 3 4 5 6 7

a 1 12 11 33 16 4 0 3–7
b 37 1 1 1 1 1 1 37.1–37.5
c 11 1 27 1 1 1 1 11.5–12.5
d 1 1 1 1 3 9 27 1.1–1.5
e 1 1 1 1 9 3 27 1.1–1.5
f 2 4 8 16 13 0 0 4–20
g 2 4 8 0 0 0 0 2.5–5
h 43 0 0 0 0 0 0 43
i 20 1 1 1 20 0 0 20.2–20.5



needs to avoid traversing the dependency path in some situa-
tions. For example, in Case b, the root possesses 37 children,
but only one of these has a long chain of single descendants;
thus, one would have to pay for the immediate cost of the
children, but moving beyond that level would involve little
cost, and we estimated the total cost of accepting the root
as a little over 37 elements. Conversely, a fan-out with an
exponential growth pattern (like Case f) will likely have a
much higher cost, but when exponential growth does not
begin until some distant level of descendant (like Cases d
and e) the impact of the exponential growth does not imply
an immediate cost.

The result of this informal investigation led us to choose
α equal to –1.5 as a reasonable value. No formal regression
was conducted, since the estimated costs are subjective
and represent ranges. Further, objective calibration was
needed before the cost measure could be used within the
recommender (see Section V-A), so this informal procedure
sufficed.

D. Combining Cost with Relevance

Structural relevance and reuse cost are largely independent
measures, both from a philosophical perspective and from
our empirical investigations. As such, our recommendation
model combines them by considering the space that they
describe as orthogonal dimensions. Since our goal is to more
effectively focus the developer’s attention on elements that
will require careful attention, we chose to produce three-
valued recommendations: for some parts of the space, it
recommends acceptance; for others, rejection; and for others,
it cannot confidently accept or reject and so yields “no
recommendation” (or equivalently, “none”).

Roughly, the space is divided into regions for recom-
mendation as illustrated in Figure 2; Section V-A describes
how we calibrate the locations (slopes and intercepts) of
the lines indicated. We use straight lines for simplicity
and because it is not apparent that more sophisticated
curves would improve our results. Our intuition for these
regions is as follows. Elements with very low cost ought
to be recommended for acceptance, as the time spent in
carefully considering them would not lead to significant
savings (defining “very low” is left to calibration). Elements
with structural relevance measures of 0 or “n/a” should
likely be treated specially. Elements with sufficiently high
structural relevance but low cost ought to be recommended
for acceptance, since it is likely that these are pertinent to the
task, and the amount of irrelevant code that will be brought
in is expected to be small. Elements with sufficiently low
structural relevance but high cost ought to be recommended
for rejection, as they are unlikely to be pertinent and will
entail the inclusion of a sizeable amount of irrelevant code
if accepted. For the region in between, it is unclear whether
accepting or rejecting is truly warranted. These half-planes
defining the regions overlap, and determining which half-

plane should take precedence in the overlap is a matter for
calibration.

The general model for the recommendation system is a set
of three regions, Raccept, Rreject, and Rnone, where each region
Ri consists of a unique (not necessarily connected) portion
of the plane spanned by the cost measure and the structural
relevance. Each region also defines a recommendation ri
if the element falls within it (ri = i). The three regions
must not overlap and they must cover the plane completely;
thus, any two fully-specified regions will imply the third.
An illustration of the idea is presented in Figure 2.
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Figure 2. The conceptual recommendation regions in the space of structural
relevance versus reuse cost.

V. EVALUATION

To evaluate our approach, we first calibrate our recom-
mendation model against a few data sets (Section V-A); we
then retroactively apply the calibrated model to recorded
developer sessions to see how the recommendations could
have helped them for these tasks (Section V-B). Finally,
we perform the experimental tasks ourselves again, using
the recommender, to see how having the recommendations
changes how we perform the tasks (Section V-C).

A. Calibrating the Recommender

We use the decision logs for three successful pragmatic
reuse plans we performed in the past to calibrate the recom-
mender: (1) reusing a charting component from Azureus2;
(2) reusing the NMEA parser from the Gpsylon project3;
and (3) reusing the lines of code counter from the Metrics
project4. Each of these tasks involved reusing more than
400 LOC from at least 8 classes.

2http://azureus.sf.net v2.4.0.2
3http://gpsmap.sf.net v0.5.2
4http://metrics.sf.net v1.3.6



Each region of the recommendation model can have an
arbitrary boundary. Consider the straight lines that we have
used (one vertical line, one horizontal line, and two arbi-
trary lines): there are 6 independent parameters in defining
them, plus the order of precedence of their defined half-
planes is also essentially independent, yielding up to an
additional 24 permutations. As a result, even with the simple
boundaries under consideration, we are dealing with over
100 degrees of freedom. Attempting to formally optimize
the general model would be a daunting task, not warranted
at this early stage of investigation.

Instead, we plot each triaged element (there were 386 in
total) for the three tasks in terms of its structural relevance
at the instant before triaging the element, and its reuse cost
according to the measure in Equation 1. We then roughly
overlay the model of Figure 2 on this plot and attempt to
fit it according to the data. We try a few variations within
the space defined by the degrees of freedom that seem most
promising. When some reasonable options are found, a local
hill-climbing technique is used in an attempt to improve the
results.

1) Estimating model quality: The model quality is eval-
uated by means of “ROC analysis” (e.g., [36]). We can
consider rejection recommendations to be positive events,
and acceptance recommendations to be negative events
(occurrences of no recommendation are ignored in this
analysis). A true positive case is one in which a rejection
recommendation for an element concurs with an actual re-
jection of that element during the developer investigation; a
false positive is one in which a rejection recommendation for
an element coincides with the developer having accepted that
element. True and false negatives are analogously defined.
(We consider the question of whether the developer’s actions
represent “reality” in Section V-B.)

The true positive rate (TPR) is the ratio of true positive
events to the sum of true positive events and false negative
events; it represents the rate at which an element that should
be rejected is recommended as such. Similarly, the false
positive rate (FPR) is the ratio of false positive events to
the sum of false positive events and true negative events;
it represents the rate at which an element that should be
accepted is recommended as such.

A tradeoff exists between TPR and FPR; while an ideal
recommender will have a TPR of 1 and an FPR of 0, the
imprecision inherent in most tasks where recommenders are
useful means that this ideal is rarely achievable. A recom-
mender that makes random guesses will describe a straight
line in the space spanned by FPR vs. TPR (specifically,
the line FPR = TPR); a recommender that is of better
quality will tend to lie further away from the line of random
guesses [36]. Thus, we can measure the distance between
the point plotted and the line of random guesses and use it
as a measure of model quality as determined by a particular
data set. (ROC analysis usually involves defining curves in

the tradeoff space as thresholds are varied, but the high
dimensionality of our situation led to our decision to keep
this analysis simple.) We can also normalize the measure
against the maximum possible distance (

√
0.5) from the line

of random guesses so the normalized measure D̂ varies in
[0, 1] usually (models worse than random are possible, but
easily corrected [36]).

2) Model configurations: Our initial models consist of
rough attempts at defining half-planes overlain on the data
plot. After settling on the most promising candidates, local
hill climbing is used to try to improve them relative to
D̂. Five configurations are tried, as presented in Table II.
Configurations 1 and 3 were not competitive and are dropped
from further consideration.

Table II
INITIAL CANDIDATE MODEL CONFIGURATIONS.

Cfg Regions D̂

1 Raccept =
[cost(x) ≤ 1] ∨ [cost(x) ≤ 50 rel(x)− 30],

Rreject =
[cost(x) > 1] ∧ [rel(x) 6= n/a] ∧ [rel(x) > 0.01] ∧
[cost(x) ≥ 50 rel(x) + 1] 0.06

2 Raccept =
[cost(x) ≤ 1] ∨ [cost(x) ≤ 50 rel(x)− 30],

Rreject =
[cost(x) > 1] ∧ {[rel(x) = n/a] ∨ [rel(x) ≤ 0.01] ∨
[cost(x) ≥ 50 rel(x) + 1]} 0.32

3 Raccept =
[rel(x) 6= n/a] ∧ [rel(x) > 0.01] ∧ {[cost(x) ≤ 1] ∨
[cost(x) ≤ 50 rel(x)− 30]},

Rreject =
[rel(x) 6= n/a] ∧ [rel(x) > 0.01] ∧
[cost(x) ≥ 50 rel(x) + 1] 0.12

4 Raccept =
[rel(x) 6= n/a] ∧ [rel(x) > 0.01] ∧
{[cost(x) ≤ 1] ∨ [cost(x) ≤ 50 rel(x)− 30]},

Rreject =
[rel(x) = n/a] ∨ [rel(x) ≤ 0.01] ∨
[cost(x) ≥ 50 rel(x) + 1] 0.32

5 Raccept =
[cost(x) ≤ 50 rel(x)− 30] ∨
{[cost(x) < 50 rel(x) + 1] ∧ [cost(x) ≤ 1]} ,

Rreject =
[cost(x) ≥ 50 rel(x) + 1] ∨
{[cost(x) > 1] ∧ [rel(x) = n/a]} 0.33

Local hill-climbing succeeded in improving Configura-
tions 2 and 5 to D̂ = 0.37. For Configuration 2, Rreject
moved slightly to be bounded by a relevance of 0, and for
both configurations, the key bounding line of Raccept (with
slope and intercept of 50 and –30, respectively) had its
slope and intercept changed to 20 and –20, respectively.
Configuration 4 was improved marginally (by less than
0.005) by moving the relevance boundary in the same
manner (for both Raccept and Rreject) and by changing the
slope and intercept of the key bounding line for Raccept to
40 and –20, respectively; the resulting Configuration 4’ is



shown in Table III.

Table III
CONFIGURATION 4’, SELECTED FOR USE AS THE CALIBRATED MODEL.

Raccept = [rel(x) 6= n/a] ∧ [rel(x) > 0] ∧
{[cost(x) ≤ 1] ∨ [cost(x) ≤ 40 rel(x)− 20]},

Rreject =
[rel(x) = n/a] ∨ [rel(x) ≤ 0] ∨ [cost(x) ≥ 50 rel(x) + 1]

Table IV
CONFUSION MATRIX VALUES FOR THE LEADING CONFIGURATION

CONTENDERS.

Cfg Reject Accept None

TP FP TN FN

2’ 51 31 145 43 116
4’ 78 90 128 28 62
5’ 51 31 145 43 116

From the confusion matrix values for the calibration tasks
(shown in Table IV), we can see that Configurations 2’
and 5’ yielded identical results for the calibration data.
Configuration 4’ trades off more false rejects for fewer false
accepts and fewer non-recommendations. In our context,
false accepts are a potentially more severe problem, since
they more likely lead to spurious paths being investigated.
(We discuss the implications of false positives in Sec-
tion VI.) Thus, we favour Configuration 4’ (repeated for
clarity in Table III and illustrated in Figure 3) and use it as
the calibrated model.

B. Retroactive Developer Experiment

We previously performed a controlled laboratory experi-
ment whereby 16 developers (7 industrial; with an overall
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Figure 3. Calibrated recommendation regions in the space of structural
relevance versus reuse cost, for Configuration 4’.

average of 6 years of development experience) performed
two pragmatic reuse tasks, one using Gilligan and the other
with standard IDE tools [3]. During the experiment the
developers’ actions were extensively logged, enabling us to
see every decision they made and its timing.

In this evaluation we consider only the 16 experimental
trials where developers were using the Gilligan treatment
to perform their task—all these were successful by the
criteria of the experiment (defined by successfully running
a provided test harness). These trials involved two prag-
matic reuse tasks. In the first, the developer needed to
reuse the QIF parser from the jGnash5 project (34 kLOC);
this involved reusing at least 950 LOC spread between at
least 10 classes. In the second, the developer needed to
reuse some functionality to retrieve related artists from the
aTunes6 project (33 kLOC); this involved reusing at least
500 LOC spread between at least 10 classes. The jGnash task
represented a straightforward reuse task whereby the needed
functionality was fairly well modularized; the aTunes task
represented a more complex reuse task because the needed
functionality was highly coupled to the rest of the project.

For each trial, we utilize only triage actions made by the
developer as they created their reuse plan. We consider the
set of decisions that remained until the end of the task to
have been correct; we consider any decision that was altered
to have been incorrect.

We replay each session by executing the decisions in
chronological order, recording the values that would have
been displayed by Suade’s algorithm and our cost measure
at the instant the decision was made. Using these values
and our calibrated model, we then determine the recom-
mendation that would have been made. From this data we
can recreate the developer’s environment at each decision
point and evaluate if using our combined approach could
have been beneficial, by either helping them make their
decision more quickly or by avoiding bad decisions. In
total, this evaluation considers 2,567 decisions made by the
developers.

During their tasks developers made 1,186 accept decisions
and 777 reject decisions correctly, by our definition. Table V
provides an overview of decisions where developers initially
made the wrong choice, along with a measure of how long

5http://jgnash.sf.net v1.11.6
6http://atunes.org v1.6.0

Table V
INCORRECT DECISIONS (THE DEVELOPER CHANGED THEIR MIND).

Decision Path Occurrences Mean Time
(#) (seconds)

Accepted ⇒ Accepted 35 596
Accepted ⇒ Rejected 455 107
Rejected ⇒ Rejected 59 387
Rejected ⇒ Accepted 55 178



those incorrect decisions lasted before they were revised; we
can clearly see that developers were generally optimistic: the
most frequently made mistake (75% of the time) was ac-
cepting an element that should have been rejected. Through
our observations during the experimental sessions, we can
say that these decisions were generally made because the
developer failed to appreciate the cost associated with the
element they initially thought they should (or should not)
reuse.

The results of retroactively generating recommendations
for each decision are given in Table VI. Overall, we are able
to provide the correct recommendation 64% of the time, no
recommendation 11% of the time, and are incorrect 25% of
the time. This corresponds well to how often the developers
themselves were unable to give the correct decision on their
first try (24%; 604 of 2567 decisions).

Examining the participant sessions, we notice that devel-
opers sometimes made choices that were questionable; to
address these outliers, we look at the decisions that at least
75% of the developers made in common by the conclusion
of their task. These results are shown in Table VII. What
is surprising here is that they are so similar to Table VI
(69% correct, 14% none, 17% incorrect) as we would have
expected a larger difference. The greatest change is that our
error rate for acceptance recommendations decreases.

Table VI
RECOMMENDER ACCURACY COMPARED TO PARTICIPANT DECISIONS IN
EXPERIMENTAL SESSIONS. CONFUSION MATRIX CLASSIFICATIONS ARE

SHOWN WHERE APPROPRIATE. PERCENTAGES ARE RELATIVE TO THE
CLASS OF DEVELOPER DECISION.

Dev. Decision Occurrences Recommendation

(#) Accept None Reject
(%) (%) (%)

Accept (A) 1186 64 (TN) 7 29 (FP)
Reject (R) 777 18 (FN) 8 75 (TP)

A⇒A 35 80 (TN) 9 11 (FP)
A⇒R 455 29 (FN) 22 50 (TP)
R⇒R 59 37 (FN) 39 24 (TP)
R⇒A 55 58 (TN) 25 16 (FP)

Table VII
RECOMMENDER ACCURACY COMPARED TO DEVELOPER DECISIONS

WHERE AT LEAST 6 OUT OF 8 PARTICIPANTS MADE IDENTICAL FINAL
DECISIONS.

Dev. Decision Occurrences Recommendation

(#) Accept None Reject
(%) (%) (%)

Accept (A) 952 78 (TN) 11 12 (FP)
Reject (R) 631 18 (FN) 9 74 (TP)

A⇒A 32 91 (TN) 9 0 (FP)
A⇒R 401 29 (FN) 25 46 (TP)
R⇒R 52 40 (FN) 44 15 (TP)
R⇒A 37 57 (TN) 43 0 (FP)

C. Recommendation Case Study

The retroactive experiment provides insight into how well
the recommender agreed with the decisions made by devel-
opers while they performed their task, but provides little
perspective on how these recommendations would actually
have influenced how they performed their task. We perform
the two experimental tasks with the assistance of the rec-
ommender to see how we agree with the recommendations
and whether it changes how we approach each task. Both
tasks are completed successfully according to the original
experiment’s criteria.

Figure 4 shows how the recommendations are shown to
the user in the modified Gilligan user interface. Recom-
mendations are shown in three colours: red (reject), green
(accept), and yellow (no recommendation). We also chose
to include the Suade value (Topo column) and cost measure
(Cost column) to enable differentiation between multiple
elements with the same recommendation.

An overview of the recommendations and corresponding
decisions for the two tasks is given in Table VIII. While
performing the two tasks we never have to contradict an
explicit accept or reject recommendation. When using the
recommender we do find the amount of code we reuse
increases (by 10% to 15%) as we often chose to reuse
“cheap” elements rather than trying to ensure they are
absolutely relevant to our task.

The most interesting observation from the case study is the
effect the non-recommendations have on how we investigate.
While navigating through the system we gravitate to these
yellow recommendations and in every case investigate them
more carefully than the accept recommendations. By select-
ing one of these elements, we glance at its dependencies to
get a sense of why it has not received an accept or reject rec-

Figure 4. Gilligan augmented with structural relevance, cost, and recom-
mendation columns.



Table VIII
RECOMMENDATIONS AND CORRESPONDING DECISIONS DURING THE

CASE STUDY.

Recommendation Decision Events (#)

jGnash aTunes

A A 72 37
A R 0 0

NR A 0 0
NR R 1 3
R R 1 5
R A 0 0

NR⇒A 8 6

ommendation. For example, in the aTunes task, Closing-
Utils.getConnection() receives a yellow classifica-
tion; looking at its dependencies we found Proxy.get-
Connection() that in turn had a yellow classification.
By investigating Proxy we found it to be dependent on a
two String fields (user and password); by accepting
these two fields, Proxy.getConnection() changed
from yellow to green; accepting this caused the initial
getConnection() method to change to green as well.
Essentially, the recommendations shape how we investigate
each task and direct us to those areas where we need to
most carefully make our decisions. The number of times we
investigate an element that is initially yellow but becomes
green while exploring its dependencies is listed on the last
line of Table VIII.

VI. DISCUSSION

In this section, we examine several issues not discussed
to this point, some of which remain to be addressed.

Providing accurate recommendations for complex tasks
is hard: Developers differ in their decisions for a variety of
reasons including semantics, perception of quality, or per-
sonal style. Trying to capture such rationales in an automatic
recommender does not seem practicable to us. It is for this
reason that our recommender is adaptive to the developer’s
choices, to actively assist them whatever their rationale for
decisions. Looking at the participant session logs, we see a
lot of variation in decisions on the same element that did
not affect the developers’ ability to successfully complete
the task. For example, both experimental tasks employ a
logging framework to log error messages; many developers
decided to reject the logger and all its fields and methods,
as it was not directly relevant to their task. Others chose to
reuse this functionality because they decided that enhanced
logging was worthwhile and was inexpensive to reuse. In
these cases the developer must be the final arbiter of what
functionality they want to reuse and what they do not want
to reuse; a recommender can simply provide them the means
to make a more informed decision.

An alternative approach would be to enable developers to
provide explicit feedback on recommendations (e.g., through

a thumbs up/down feature), allowing the recommendation
algorithm to be adapted dynamically, possibly even for all
developers within an organization. Such ideas remain to be
investigated.

Observations from applying the recommender: Because
the participants in the retroactive experiment did not have
access to our recommender when they performed their tasks,
they were unable to benefit from the properties we observed
the recommender to impart in these case studies. From
our experience, we believe the recommender significantly
enhances a developer’s ability to reject an element knowing
that it has an unacceptable number of dependencies. At
the same time, the recommender also effectively identifies
elements that have very low reuse cost, which enables
developers to spend less time on these less important el-
ements and instead focus on their task more effectively.
From our preliminary case study we believe that developers
will agree with the recommendations more often than in the
retroactive evaluation, as their presence alters how elements
are investigated and reasoned about.

Recommender limitations for our model: Developers
investigating pragmatic-reuse plans can accept, reject, or
remap elements according to how they want to reuse them.
Our recommender does not provide any hints for remapping
elements, as it does not leverage any information about the
target system. We believe that recommending reasonable
remapping opportunities may be possible, but will require
significant further research.

Implications of false positives: Ultimately, we expect
falsely accepted elements to have little impact on the func-
tionality, but if their numbers grow too large, long-term
maintenance costs will be excessive. Thus, while a detailed,
manual consideration of all the elements may improve the
quality of the reused code, this can be delayed to a later
refactoring/clean up stage. In contrast, growing the “no rec-
ommendation” region of the model too much would progres-
sively decrease the overall potential for the recommender to
produce savings in effort from manual investigation. And
finally, false rejection recommendations will truncate useful
functionality, so falsely rejected elements are likely to be
the most serious case for consideration: while resulting
compilation errors are easy to detect, a rejected method
call with subtle side effects can be more difficult to notice.
However, our sense at this point is that a developer can
use the recommendations to focus their attention effectively,
thereby saving time, rather than blindly following them. A
future study will be needed to test this hypothesis.

Validity: We have compared our recommender against
more than 2,500 developer decisions performed by real
developers performing two pragmatic reuse tasks in a
controlled environment. While this has provided evidence
that our recommender can model the kinds of decisions
developers really make while planning these tasks, the
validity of these observations is hampered by the fact that



the developers did not have the recommender when they
performed their tasks. By performing the tasks ourselves we
gained initial confidence that, from a usability perspective,
the recommender will be valuable for developers. However,
ultimately, evidence from the field will provide the best
assessment of developers’ reactions to the recommendations,
and provide the insights we need to improve the technology.

VII. CONCLUSION

Triaging structural elements while planning pragmatic
reuse tasks is a cognitively burdensome, manual process.
Developers must constantly flip between different source
files to gain a sense of how relevant and expensive an
element may be to reuse. While previous work has had
success in helping developers to more easily collect and
to navigate through this information, we have noticed that
developers have a difficult time in identifying and applying
notions of reuse cost and structural relevance. Making the
right decisions during the triage process is crucial, as a single
poor decision may cause an explosion in the scope of the
task that makes it infeasible; conversely, rejecting the wrong
element may cause the code to not function the way the
developer expects.

We have developed a recommendation system intended
to facilitate the decision-making process; we have created
a ternary recommender that suggests for developers to
accept an element that is important, to reject an element
that is overly expensive for its apparent relevance, or to
more closely investigate its tradeoffs. We evaluated this
recommender by comparing it to more than 2,500 decisions
made by developers in a previous controlled experiment.
Our findings show that our recommender delivers the wrong
recommendation less than 25% of the time and is most
effective at helping developers identify those dependencies
that should be rejected from a task (18% error). Using
these recommendations, we expect developers will be able
to undertake more complex reuse tasks in less time.
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