
In Proceedings of the 18th International Conference on Automated Software Engineering, pp. 225–234.
IEEE Computer Society Press, October 2003.c©IEEE, 2003

Automatically Inferring Concern Code from Program Investi gation Activities

Martin P. Robillard and Gail C. Murphy
Department of Computer Science
University of British Columbia

2366 Main Mall, Vancouver, BC
Canada V6T 1Z4

Abstract

When performing a program evolution task, developers
typically spend a significant amount of effort investigating
and re-investigating source code. To reduce this effort, we
propose a technique to automatically infer the essence of
program investigation activities as a set of concern descrip-
tions. The concern descriptions produced by our technique
list methods and fields of importance in the context of the
investigation of an object-oriented system. A developer can
rely on this information to perform the change task at hand,
or at a later stage for a change that involves the same con-
cerns. The technique involves applying an algorithm to a
transcript of a program investigation session. The tran-
script lists which pieces of source code were accessed by a
developer when investigating a program and how the dif-
ferent pieces of code were accessed. We applied the tech-
nique to data obtained from program investigation activi-
ties for five subjects involved in two different program evo-
lution tasks. The results show that relevant concerns can
be identified with a manageable level of noise.

1. Introduction

When performing a program evolution task, developers
expend a significant amount of effort investigating source
code. The goal of this investigation activity is typically to
answer specific questions about the implementation of var-
ious mechanisms affecting the modification. For example,
before undertaking the addition of a feature to a graphi-
cal user interface, a developer may want to identify where
menus are created, and how commands are passed to the
different menu items. As another example, in a database
system, a developer may need to understand an undocu-
mented protocol for accessing a record object. Finding the
answers to such questions, or concerns, requires examining
source code that is typically scattered in many locations. In
a large system, developers can realistically examine only a

small subset of the source code as part of a program evolu-
tion task. Determining which pieces of the code to examine
is a complex problem that cannot be solved automatically
with source code analysis techniques. Typically, devel-
opers determine which source code to examine through a
combination of reasoning and informed guesses that build
on their skills and experience. This process is naturally
fraught with errors and dead-ends. Successive iterations
are typically needed to identify the pieces of source code
relevant to the task.

There are several advantages to documenting hard-
earned knowledge about the implementation details of var-
ious concerns. For instance, the developer performing the
change can use the documentation to help make the mod-
ification systematically and in a robust fashion [4, 7, 10].
In the longer term, other developers performing similar
changes may be able to use the knowledge without need-
ing to perform all of the time-consuming program investi-
gation. However, concerns are rarely documented because
it is difficult for a developer to know how to document the
concerns investigated, and the potential benefits may not
outweight the costs of documenting the concerns.

To address this problem, we present a technique to au-
tomatically infer the essence of the program investigation
performed by developers, so that the results of this activ-
ity can be documented as a set of concern descriptions at a
negligible cost. The concern inferencing algorithm we de-
scribe extracts a user-specified number of elements from all
of the elements considered during the program investiga-
tion. It then groups these elements into clusters represent-
ing potential concerns. To document concerns stemming
from a program investigation task, a developer presented
with the results of our technique has only to invalidate use-
less clusters, and to name and save useful ones.

The algorithm is based on what source code a devel-
oper examined during a program investigation session, and
on how the developer moved between different pieces of
source code. The algorithm takes as input a program inves-
tigation transcript obtained by recording, in sequence, ev-



ery change in the source code that is visible to a developer,
and the cause for the change (e.g., selecting an element in
a code browser, viewing the result of a search, etc.). The
inference algorithm takes into account a variety of factors,
namely, the order of program elements in the sequence, the
way in which elements were accessed, and whether there
exists in the source code structural program relationships
between the elements examined. For a specified number of
program elements, the algorithm produces a set of clusters
that constitute candidate concerns.

We applied our algorithm to data obtained from two dif-
ferent evolution tasks. Each task was replicated with dif-
ferent developers. We found, not surprisingly, that results
varied between developers and tasks. However, in all cases,
we were able to obtain concerns describing interactions rel-
evant to the change task out of hundreds of elements exam-
ined during the investigation.

The rest of this paper is structured as follows. In Sec-
tion 2, we present an example motivating our research. In
Section 3, we describe the format of the investigation tran-
scripts we use as the input to our algorithm. In Section 4
we describe our inference algorithm. In Section 5, we re-
port on the concerns obtained by running our algorithm on
data obtained from two evolution tasks, and discuss the in-
fluence of various factors on the results. We discuss related
work in Section 6 and conclude in Section 7.

2. Motivation
To illustrate the motivation and benefits of our research,

we use the example of a program evolution task on a text
editor application. In this application, any changed and un-
saved file buffer is saved in a special backup file at regu-
lar intervals (e.g., every 30 seconds). This frequency can
be set by the user through an Options page brought up
through the execution of a menu command in the appli-
cation’s menu bar. If the application crashes with unsaved
buffers, the next time it is launched, it will attempt to re-
cover the unsaved files from the automatically-saved back-
ups. A user can disable the auto-save feature by specifying
the auto-save frequency as zero. However, this option is
undocumented, and can only be discovered by inspecting
the source code.

One day, Bob is asked to modify the application to
support the disabling of the auto-save feature explicitly
through a check box in the graphical user interface. Since
the code base for the text editor is much too large to analyze
as a whole, Bob focuses on understanding how the auto-
save feature is implemented. In doing so, he asks himself
questions, such as “how is the auto-save command timed?”.
He then proceeds to investigate the code to answer these
questions (or concerns). This investigation might involve
false turns and the examination of unrelated code, but in the
end, it will (hopefully) involve examining source code that

answers his questions. In our case, let us assume that the
implementation of the timing of the auto-save command
involves five methods scattered in three different classes.
Because it is a fairly simple mechanism, Bob makes a men-
tal note of it, and proceeds to investigate another question
related to the change. After completing the modification,
Bob moves on to another project and forgets much of what
he has learned about the auto-save feature.

Months later, Alice is asked to modify the auto-save fea-
ture to use a new library that supports the auto-saving of ob-
jects. At some point in the preparation for the change, she
wonders: “How is the auto-save command timed?” From
the bug database for the project, Alice determines that Bob
had previously performed a change related to the auto-save
feature. Alice thus asks Bob for a short briefing. Unfortu-
nately, the only thing Bob remembers about the change is
that there is some class calledAutosave that is involved
in it. To understand the actual details of how the auto-save
feature is implemented, Alice has to spend time investigat-
ing the code, in effect re-doing some of Bob’s work.

A more desirable situation would be for Alice to be able
to start with some description of how the auto-save com-
mand is timed in the text editor. With our concern inference
algorithm, we envision the following scenario. While Bob
investigates the program, the integrated development envi-
ronment he uses logs the code he examines, and the vari-
ous commands he uses to navigate between different areas
of the code. When he is done and commits the change, a
concern inference algorithm automatically executes on the
transcript of his program investigation and opens a win-
dow listing, for example, three sets of methods represent-
ing potential concerns he investigated. Bob does not see
the relevance of two of them but the third one lists five
methods involved in the implementation of the auto-save
command. Even though Bob only ended up modifying one
of the five methods, he decides that the five methods im-
plement the concern. He names the concern “Code to time
the auto-save command”, and saves it in a database of con-
cerns. The whole procedure takes less than one minute.
Developers working on subsequent tasks that involve the
auto-save feature can now query the database to determine
what Bob considered relevant to the timing of the auto-save
command. Furthermore, this information is more descrip-
tive than the single method affected by the change, which
would be available by searching through the revision con-
trol system for the project.

3. Investigation Transcripts
The inference of concerns from program investigation

activities requires a transcript of the operations performed
by a developer. Informally, a transcript records all of the
source code visible to a developer during a program investi-
gation session, and the sequence in which different areas of

2



the code are viewed. In discussing the areas of source code
under consideration by a developer, our unit of granularity
is the method declaration and, in some cases, field declara-
tion. Other elements normally present in source code, such
as class declarations and comments, are not considered. We
chose this approach because the concerns inferred by our
algorithm are expressed only in terms of class members.

For our purpose, we formally define aprogram investi-
gation transcriptas an ordered set ofinvestigation events
E = {e1, ..., en}. An event corresponds to a change in the
set of method declarations visible to a developer. We de-
fine a method declaration as visible if it is completely or
partially visible in theactiveeditor window of a software
development environment. If multiple editor windows are
visible, then only the one with the focus of the windowing
system is considered visible. Because, in many cases, all
field declarations can appear at once to a developer, we did
not consider it useful to include field declarations as a part
of the transcript, except in special circumstances described
below.

An evente consists of a tuple(D, c, X). The setD lists
identifiers for all of the method declarations (and certain
field declarations) visible immediately after the event. The
elementc is a category value describing what caused the
event. It can take the following values:

• B: the content of the active editor changed as the result
of selecting an element in a code browser.

• C: the content of the active editor changed as the result
of following a cross-reference between two elements.

• R: an editor window was recalled from an existing
buffer of visible windows, such as a history list or
tabbed pane.

• L : the content of the active window changed as the
result of scrolling up and down in a file.

• K : the content of the active window changed as the
result of a keyword search.

The last tuple element,X , is an ordered set of elements
representing extra information about the event. For browser
events (B), X contains a single identifier representing the
declaration that was accessed through the browser. For ex-
ample, if a developer selects method M2 from a browser
window and reveals co-located methods M1 and M3 in
addition to M2, then the event would be transcribed as
({M1, M2, M3}, B, {M2}). For a cross-reference event
(C), X = {x1, x2} contains the identifiers of both the do-
main (x1) and the range (x2) of the cross-reference. For a
keyword event (K ), X contains an identifier representing
the declaration in which the keyword was found. For all
other events,X = ∅. For browser, cross-reference, and

keyword events, if the setX contains a field declaration,
then this declaration is included in the setD. Otherwise,
fields declarations are ignored.

During the investigation of a program, a new evente is
created every time the setD of visible elements changes.
Figure 1 shows an example of a segment of investigation
transcript. The first line shows an event corresponding to
method B137 being revealed as the result of a keyword
search. The next event corresponds to methods F29, F30,
and F31 being revealed as a result of accessing method
F30 through a cross-reference from B137 (F29 and F31 are
also visible because they are co-located with F30). Method
B137 is then recalled from a previous view. Then field
B24 is displayed through a browser access (with co-located
method B167). Finally, the file is scrolled to reveal B168
and hide B24.

B137 K B137
F29,F30,F31 C B137,F30
B137 R
B24,B167 B B24
B167,B168 L

Figure 1. Example investigation transcript

4. Inference Algorithm

Given a program investigation transcript, our aim is to
automatically extract potentialconcern descriptions. At
this stage, what we signify by the term concern description
is a group of program elements (method and field declara-
tions) that are related in the investigation, and that are po-
tentially involved in the implementation of an actual user-
level concern. For simplicity, when it is clear from the con-
text whether we are referring to a user-level concern or a
concern description, we shall use the term concern inter-
changeably. We propose an algorithm that can generate
concern (descriptions) based on a calculation of how re-
lated different elements were during a program investiga-
tion session. Our concern inference algorithm is divided in
three phases. A first phase assigns, to each element in the
setD of every event, a probability that this element was
actually examined by the developer. A second phase cal-
culates a metric of correlation for every pair of elements
in the transcript. The third phase generates a set of con-
cerns based on the correlation metric calculated in the sec-
ond phase.

4.1. Calculating Probabilities

As we mentioned in Section 3, to each eventei corre-
sponds a setDi of method (or field) declarations visible to
the developer. However, at any point of the investigation,

3



1: for all ei = {Di, ci, Xi} ∈ E do
2: for all di,j ∈ Di do
3: wi,j ← 1
4: if (ci = B ∨ ci = K) ∧ di,j = xi,1 then
5: wi,j ← wi,j + α

6: else ifci = C ∧ di,j = xi,2 then
7: wi,j ← wi,j + α

8: end if
9: if ci+1 = C ∧ di,j = xi+1,1 then

10: wi,j ← wi,j + α

11: end if
12: end for
13: end for

Figure 2. Calculating probabilities

the developer was not necessarily examining each one of
the declarations in the corresponding setDi. To account
for the fact that, at each event, the developer is probably
focusing on only one or two of the visible declarations, we
assign a probability to every elementdi,j of the setDi of
every event.

We determine the probability of an element being exam-
ined by first assigning a weightwi,j to each element. The
weight for an element is based on the category of event (c)
and the additional informationX . Certain conditions, as
expressed in the algorithm of Figure 2, increase the weight
of an element by a confidence parameterα.

Informally, the weight of an element in an event is in-
creased if the element is the same as the element in the
extra information set (X) in a browser or keyword event
(lines 4–5), or if the element is the same as the range ele-
ment of a cross-reference event (lines 6–7). Additionally,
the weight of an element is increased if it is the domain of
a following cross-reference event (lines 9–10).

Once all the weights are calculated, we can determine
corresponding probabilities.

p(di,j) =
wi,j∑n

k=1
wi,k

For example, usingα = 5, the probabilities for the
second event in figure 1 are:p(F29) = 1

8
= 0.125,

p(F30) = 6

8
= 0.75, p(F31) = 1

8
= 0.125.

4.2. Calculating the Correlation Metric

Our algorithm infers concerns by analyzing the correla-
tion between different pairs of elements potentially exam-
ined by a developer. The intuition behind this idea is that
if a developer focuses on a pair of elements, then there is
a possibility that the relations between the two elements in
the pair bears an important significance to the task. Thus,
the underlying principle of our concern inference algorithm

is to determine how strongly different pairs of elements are
related in the context of the program investigation. To do
so, the algorithm takes the set of all elements present in the
transcript, analyses every possible combination of two ele-
ments, and assigns a correlation metric to each pair. The
correlation metric is based on an analysis of how close
two elements are in the investigation sequence, the cate-
gory of event for each element, and whether the elements
are directly related in the program (for example, through
a method call). The analysis also takes into account the
probabilities calculated for each element.

The correlation algorithm is configured through nine pa-
rameters,β0, β1, β2, βB, βC , βR, βL, βK , βS , and one
function on the program investigated,related(x, y). The
first three parameters weight the importance of two ele-
ments being displayed consecutively (β0), or being sepa-
rated by only one (β1), or two (β2) elements. The next five
parameters are factors weighting the importance of differ-
ent event categories on the investigation. For example, an
element revealed as the result of scrolling (L ) might not
be as significant as an element revealed through a cross-
reference (C). The parameterization allows flexibility in
determining this importance. The last parameter,βS , fac-
tors in the importance that two elements beactually re-
lated in the program. This is determined by the function
related(x, y), which returns true if there is a direct struc-
tural link betweenx andy in the program. For two ele-
ments (field or method)x andy, relatedreturns true if

• x callsy (or vice-versa),

• x accesses (field)y, or

• x implements or overridesy (or vice-versa).

The algorithm we use to generate the correlation metric
mi,j between two elements is presented in Figure 3. This
algorithm first determines the list of all elements revealed
during the program investigation (line 1). For every un-
ordered pair of elements (lines 2–3), it proceeds through all
the events (line 4). First, an initial value of the correlation
metric is determined: If one element of the pair is present
in an event and the other element of the pair is present in
the following event, then the correlation metric is assigned
the valueβ0 multiplied by the probability of each element
(lines 6–10). Otherwise, the metric is zero. Second, the
metric is adjusted to take into account the category of the
next event (lines 11–12). Finally, the metric is adjusted
to take into account whether the two elements in the pair
are structurally related (lines 22–24). These three steps are
then repeated for a comparison of events separated by one
event (using the parameterβ1), and then by two events (us-
ing β2).

4



1: Let D∗ = {d1, ..., dn} =
⋃m

i=1
Di

2: for i = 1 to n do
3: for j = i + 1 to n do
4: for all ek = (ck, Dk, Xk) ∈ E do
5: mi,j ← 0
6: if di ∈ Dk ∧ di,j ∈ Dk+1 then
7: mi,j = p(ek, di) · p(ek+1, di,j) · β0

8: else ifdi ∈ Dk+1 ∧ di,j ∈ Dk then
9: mi,j = p(ek+1, di) · p(ek, di,j) · β0

10: end if
11: if ck+1 = C then
12: mi,j = mi,j · βC

13: else ifck+1 = R then
14: mi,j = mi,j · βR

15: else ifck+1 = L then
16: mi,j = mi,j · βL

17: else ifck+1 = K then
18: mi,j = mi,j · βK

19: else ifck+1 = S then
20: mi,j = mi,j · βS

21: end if
22: if related(di, di,j) then
23: mi,j = mij

· βS

24: end if
25: {Repeat withk andk + 2, usingβ1.}
26: {Repeat withk andk + 3, usingβ2.}
27: end for
28: end for
29: end for

Figure 3. Calculating correlation metrics

4.3. Generating Concerns

Once all the pairs have an associated correlation metric,
we can generate concerns. The concern generation phase of
the algorithm is parameterized in terms of the approximate
number of elements desired in all of the concerns reported
by the algorithm (η). To generate concerns for a number of
elementsη, we list pairs of elements generated in the pre-
vious phase in decreasing value ofm until the number of
different elements in all of the pairs is equal toη (or η +1).
Finally, we group the elements into clusters by taking the
transitive closure of every relation represented by a pair in
the set of selected pairs. For example, let us assume that
for a certain transcript, parameters, andrelated function,
η = 5 yields the following pairs: [A,B][B,C][D,E]. In this
case, the algorithm would produce two concerns: [A,B,C],
and [D,E]. Once a list of concern descriptions is produced,
a developer can choose which descriptions represent the
implementation of actual and useful concerns considered
during the program investigation, and name and save the
useful descriptions for later use.

5. Empirical Evaluation

We have investigated the usefulness and accuracy of our
algorithm using data from two replicated studies of pro-
gram evolution. In both studies, developers were asked to
investigate a program in the context of an evolution task
using the Eclipse platform, an integrated development en-
vironment for Java [6]. For each study, we have analyzed a
transcript of the program investigation and have produced
a list of concerns with different configurations of the al-
gorithm parameters. This section describes the state of
our implementation of the support for concern inference,
describes the different parameter configurations we have
tried, briefly describes the studies from which we have col-
lected the data, and discusses the results of our investiga-
tion.

5.1. Implementation Status

To obtain the results described in this paper, we have
generated the program investigation transcripts manually,
based on a movie of the the screen recorded during the stud-
ies using screen capturing software at full resolution. Al-
though this approach is suitable for the evaluation of the al-
gorithm, use of our approach will require this step to be au-
tomated. It should be possible to automate the production
of investigation transcripts with appropriate instrumenta-
tion of the Eclipse platform. We implemented the concern
inference algorithm in Java. To provide therelated func-
tion, we created databases of relations for each case using
the bytecode analyses of the FEAT tool (version 2.1.8) [7].

5.2. Configurations

Based on a combination of intuition and experimenta-
tion, we have designed five parameter configurations for
the concern inference algorithm intended to emphasize dif-
ferent styles of investigation. In general, we found that the
algorithm was fairly stable. All parameters require a mini-
mum variation in the order of10−1 (and often in the order
of 100) to affect a change to the result. The configurations
we considered are the following (see Table 1 for the corre-
sponding parameter values):

1. BasicA configuration based on our intuition of what
should be clues to important elements in the program
navigation. Essentially, linear progression based on
closeness in the event sequence, more weight on struc-
tural, browser, and keyword events, and less on recall
and local.

2. Neighbors A configuration only taking into account
events directly succeeding each other. That is, with
parametersβ1 = 0, andβ2 = 0.

5



Table 1. Configuration parameter values
C. β0 β1 β2 βB βC βR βL βK βS

1 3 2 1 1.3 1.5 1.1 0.1 1.4 1.5
2 3 0 0 1.3 1.5 1.1 0.1 1.4 1.5
3 3 2 1 1.3 1.5 1.1 0.1 1.4 1.0
4 3 2 1 1.5 2.0 0.5 0.0 1.5 2.0
5 3 2 1 1.3 1.3 1.0 0.3 1.3 1.2

3. No Structure A configuration only taking into ac-
count actions of the developer, ignoring underlying
structure (i.e.,βS = 1).

4. Structure A configuration putting emphasis on tran-
sitions motivated by structural hints.

5. GuessesA configuration putting relatively more
weight on guessing and browsing.

5.3. Studies

The first set of data is taken from a previous study of
program evolution [8]. This study involved programmers
making a change to the jEdit text editor.1 jEdit consists
of approximately 65 000 non-comment, non-blank lines of
source code, distributed in 20 packages. In the study, sub-
jects were asked to enhance a feature of jEdit pertaining
to the automatic backup of unsaved buffers. Before mak-
ing the change, the subjects were asked to investigate the
code of jEdit for one hour and to take notes as necessary.
During this time they were not allowed to modify the code
or run the debugger. The subjects were also provided with
clues consisting of two classes relevant to the change. After
the program investigation phase, the subjects were asked to
implement the change. From this study we use data from
three of the subjects, coded C2-C4 (in reference to [8]). By
studying how each subject performed the change, we could
determine four important pieces of information about the
source code that needed to be considered during the task:

• Recovery: A method call performed to recover from
an auto-save backup file.

• Timer interval: A method call to change the interval
of the auto-save timer.

• Auto-saving: A method call to save a file buffer in
response to an auto-save timer event.

• Buffer management: The accesses to a field repre-
senting the auto-save backup file.

1Version 4.6-pre6, http://www.jedit.org.

To evaluate the results of our algorithm on a different
task, we performed another program investigation study. In
this second study, we asked two developers to investigate
how they would improve a weakness in the implementa-
tion of jHotDraw2, a Java drawing application consisting
of approximately 14 600 non-comment, non-blank lines of
code distributed in 11 packages. The change posited in this
study regarded an incompatibility between commands is-
sued through a menu in the graphical user interface and the
actual commands supported by a figure on the drawing can-
vas. In this study, the subjects were asked to investigate the
code of jHotDraw for 45 minutes to plan how they would
execute the change. As opposed to the jEdit study, the sub-
jects were not given any initial hint, and were allowed to
modify the program to insert print statements. They were
not allowed to use the debugger, and were not required to
perform the change.

By studying the code of jHotDraw, examining the code
investigated by the subjects, and interviewing the subjects,
we determined two important pieces of information about
the source code that were relevant to the change:

• Command menus: A set of methods and classes to
build the menus and associate command to each menu
item.

• Figure listeners: The event-handling system required
to detect when the selection of a figure has changed.

In both studies, we recorded all of the activities of the
subjects using the Camtesia screen recording program3 op-
erating at 5 frames/seconds and a resolution of 1280 x 1024
pixels. The resulting movies contained enough informa-
tion to allows us to produce transcripts as described in Sec-
tion 3.

5.4. Results

Table 2 describes the size of the transcripts produced by
60 minutes of investigation (subjects C2, C3, and C4) and
45 minutes of investigation (subjects J1 and J2). The sec-
ond column lists the number of investigation events, and
the third column lists the number of different program ele-
ments visible to a developer during the investigation.

Using α = 5 as our confidence parameter, we applied
each of the configurations described in Table 1 to each
transcript, requesting in each case the concerns for 12 el-
ements (i.e.,η = 12). For each subject, we present the
results in a table. The first column of the table represents
an identifier for each concern. The second column presents

2Version 5.3, http://www.jhotdraw.org.
3http://www.techsmith.com

6



Table 2. Characteristics of transcripts
Subject Nb. Events Nb. Elements

C2 123 71
C3 175 102
C4 204 105
J1 260 200
J2 142 152

Table 3. Results for Subject C2
Id Concern 1 2 3 4 5

1 A,B X X X X
2 A,B,C X

3 D,E X X X
4 D,E,M X
5 D,E,M,P,Q,R X

6 F,G X
7 F,G,H X X
8 F,G,H,K X
9 F,G,H,K,L X

10 I,J X X X X

11 K,L X

12 M,N X X X

13 K,O X

the different concerns as sets of elements.4 The remain-
ing columns list the five configurations: an X indicates that
the concern denoted by the row was produced for that con-
figuration. For each subject, alternative descriptions of a
single user-level concern are grouped together and sepa-
rated by double lines. To simplify the presentation of the
results, we have converted our element codes into sequen-
tial letters (for each study, a code represents the same ele-
ment between subjects). For each subject, we discuss the
results based on three evaluation criteria: variability inthe
number of concerns, variability in the number of elements
identified, and relevance of the concerns. We give a general
comparison of the data between subjects in Section 5.5.

For subject C2 (Table 3) applying the five configurations
produced 13 different concerns involving 18 different ele-
ments. Within the 13 concerns generated, three of the im-
portant pieces of information described in section 5.3 were
identified: recovery (D,E, in concerns 3,4,5),timer in-
terval (G,H, in concerns 7,8,9), andauto-saving (I,J, in
concern 10). Other elements are, to varying degrees, less
relevant and would probably not be worth saving as a con-
cern description. The important relations were identified
by most of the configurations. The most successful con-

4Because the algorithm selects pairs of elements, as opposedto single
elements, some parameter configurations resulted in 13 elements being
identified.

Table 4. Results for Subject C3
Id Concern 1 2 3 4 5

1 D,E,M,N,P,R,S,T X X
2 D,E,M,N,P,R,S,T,V X
3 D,E,M,N,R,S,T X
4 D,E,M,P,R,S,T,V X

5 G,H X X X X X

6 F,U X X X X

7 K,W,X X

Table 5. Results for Subject C4
Id Concern 1 2 3 4 5

1 I,J,Q,Y X X
2 I,J,K,M,W,X,Y,CC X
3 I,J,M,Q,Y,BB X
4 I,J,M,Y,CC X

5 K,X X X
6 K,W,X X

7 F,AA X X
8 F,Z,AA X
9 F,Z,AA,DD X

10 G,H X X X X X

11 M,BB X X

figuration in this case was 1 (basic), closely followed by 3
(no structure). This means the subject naturally navigated
along the structure, so that existing relations did not need
to be factored in.

For subject C3 (Table 4) the five configurations pro-
duced more homogeneous results than C2: 7 different con-
cerns involving 16 different elements. Moreover, concerns
1 to 4 are essentially the same concern, with a variation
of one or two elements. This concern represents the in-
teractionbuffer management. Variations on this concern
capture how an auto-save backup file is deleted and the var-
ious situations in which it is deleted. It is a useful concern,
which integrates the interactionrecovery(D,E). Of the four
concerns (1-4), concern 1 is the most accurate. It is present
in configurations 1 (basic) and 3 (no structure). Other con-
cerns generated for this subject include the important inter-
action timer interval (G,H, concern 5, present in all five
configurations). Concern 6 is spurious, and concern 7 rep-
resents the three methods of the class provided as a starting
point for the task. In the case of subject C3, the most useful
configurations are 1 (basic) and 3 (no structure), as in the
case of C2.

For subject C4 (Table 5) the five configurations pro-
duced 11 different concerns involving 15 different ele-
ments. Concerns 1 to 4 capture the interactionauto-saving
(I,J). Concerns 5 and 6 list some of the methods of a class

7



Table 6. Results for Subject J1
Id Concern 1 2 3 4 5

1 A,B,C X X X X X

2 D,E X X
3 D,E,F,G X
4 D,E,F,G,O X
5 D,E,F,G,P,Q X
6 F,G X
7 F,G,M X

8 H,I X X
9 H,I,J X

10 J,K X X
11 J,K,L X X

12 M,N X X

Table 7. Results for Subject J2
Id Concern 1 2 3 4 5

1 R,S,T,U,V,W,X,Y,Z X
2 R,S,T,U,V,W,Z,FF,HH X
3 R,S,T,U,W,X,Y,Z,DD,EE,FF,GG X
4 R,S,T,U,W,X,Z,FF,II X
5 R,T,U,V,W,Y,Z,FF,HH X

6 AA,BB,CC X X X

used as a hint. Concern 10, identified in all configura-
tions, is exactly the interactiontimer interval (G,H). All
the other concerns are not useful. Given this assessment,
configurations 1 (basic), and 2 (neighbors) yield the results
that would be most likely to be useful, although the distinc-
tion is not as sharp as in the case of C2 and C3.

In the case of the jHotDraw study, for subject J1 (Ta-
ble 6) the five configurations produced 12 different con-
cerns involving 17 different elements. Concern 1 is a sub-
set of the interactions relevant to the conceptcommand
menu identified in Section 5.3. Concerns 2 to 7 include
different elements related to the construction of the appli-
cation’s menu bar, with the most accurate being concern 5.
The other concerns cannot be considered helpful informa-
tion. In this case, configuration 5 (guesses) yields the most
useful concerns.

Finally, for subject J2 (Table 7) the concern inference
algorithm produced six different concerns involving 13 dif-
ferent elements. Concerns 1 to 5 are essentially small vari-
ations on one major set of elements, which mostly repre-
sents interactions implementing the concernfigure listen-
ers. Concerns 1 and 4 are equally accurate, with six rele-
vant elements out of nine. These correspond to configura-
tions 1 (basic) and 4 (structure). Concern 6 can be consid-
ered spurious.

5.5. Discussion

Besides helping us assess the feasibility of inferring
concerns automatically from program investigation activ-
ities, this study allowed us to make several observations.
We discuss these observations and how we plan to move
forward on this research.

Successful configurations

In most cases (C2, C3, C4, and J2), configuration 1 (ba-
sic) yielded the most useful results. This follows our intu-
ition that transitions between elements in the source code
based on browser selection, cross-references, and keyword
searches are more important than transitions uncovering el-
ements by scrolling or recalling previous views. In two
cases (C2 and C3), configuration 3 (no structure) also
yielded good results. Configuration 3 adds no additional
weight to a sequence of investigation involving two ele-
ments directly related in the code. One possible explana-
tion for the fact that this configuration was successful for
C2 and C3 is that both of these subjects were very orga-
nized in their program investigation, investigating elements
that were related in the first place [8]. In the case of J1, con-
figuration 5 (guesses) was the most successful. This agrees
with the behavior of J1, who mostly read source code by
browsing up and down the declaration of classes matching
general regular expressions. The case of J1 was the least
successful application of our algorithm.

Effects of scrolling

Given the nature of the transcripts we use, scrolling a file
while investigating code has a drastic effect on the number
of events generated. When scrolling, the set of elements
visible in an editor window can change as often as multiple
times per second. If an element is visible in many of such
events, there is a risk that this element will be selected as
relevant on the basis that it is involved in many transitions.
Our algorithm deals with this situations in two ways. First,
an element revealed through browsing does not have a high
associated probability (see Section 4.1). Second, the effect
of browsing can be mitigated through a low value ofβL.
For example, withβL = 0.1 andβB = 1.0, an element
would have to be present in 10 local events before becom-
ing more important than an element revealed a single time
through a browser access.

Transcript boundaries

The setting of the jHotDraw study had a few differences
with the jEdit study. An important one is that subjects in
the jHotDraw study were not given any hints about where
to start investigating the code. This resulted in a much
broader search for both subjects. This observation is re-
inforced by the fact that no elements identified in the con-

8



cerns for J1 overlapped with the ones identified for J2. In
contrast, the concerns generated for subjects C2, C3, and
C4 were much more focused, and useful, than the ones gen-
erated for J1 and J2. These observations seem to indicate
that not all of the span of a program investigation session
should be used to infer concerns. This raises the important
question of when should a program investigation transcript
begin and end. Ideally, a developer should be able to deacti-
vate transcript recording when performing broad searches,
or while “being stuck”, and reactivate the recording when
performing more productive investigation. The resulting,
more focused, transcripts should yield more accurate con-
cerns.

False positives

As expected, every application of the algorithm resulted in
some false positives (or spurious concerns) being gener-
ated. This is expected given the nature of the data analyzed.
However, anecdotally, we have found that forη = 12, the
number of concerns is low; examining and rejecting false
positives in this case is not effort-consuming. Although we
do not know if this result will generalize, we do not expect
the effort to be significant enough to detract users from us-
ing the technique given the potential benefits.

Future work

We envision the complete integration of the approach into a
development environment that would allow users to choose
between different configurations before generating con-
cerns. This will require research into the optimization of
certain configurations for certain investigation styles. Al-
ternatively, it might be possible to add a phase to the tech-
nique to automatically detect the best configuration based
on general characteristics of the program investigation as
can be determined by a cursory examination of the tran-
script. Finally, we plan to integrate the resulting concerns
into FEAT [7], a specialized tool we have developed to rep-
resent concerns in source code. This tight integration with
FEAT will allow users to immediately see the structural re-
lations between the different elements in the concerns pro-
duced by the algorithm and to modify and complete the
representations identified by the algorithm. The complete
and integrated approach should render the documentation
of concerns seamless in the program evolution work flow.

6. Related Work

Impact analysis describes a category of analysis tech-
niques aiming to determine the impact of a modification
on a software system. Under this banner, a wealth of ap-
proaches have been proposed to identify the code imple-
menting one or more features in a system. We discuss

here the approaches that automatically produce results at
the source code level, and that are closest to our work.

The Software Reconnaissance technique developed by
Wilde et al. identifies features in source code based on a
analysis of the execution of a program [15, 16]. Software
Reconnaissance determines the code implementing a fea-
ture by comparing a trace of the execution of a program
in which a certain feature was activated to one where the
feature was not activated. A tool, TraceGraph, was devel-
oped to support the visualization of the difference between
execution traces, to help identify and locate the code imple-
menting specific features [5]. The technique was applied to
various systems, including three industrial systems consist-
ing of between 10 and 28 kLOC of C or C++ code [14]. Re-
sults have shown that the technique can be effective to find
good starting points for program investigation. However,
Software Reconnaissance, like any dynamic analysis ap-
proach, depends on the availability and quality of test cases.
In contrast, our approach is based on source code, and can
be applied to incomplete or incorrect code. More impor-
tantly, the features expressible at the user level may not
necessarily correspond to concerns a developer wishes to
investigate. Often, developers must investigate code over-
lapping different features to understand enough of the sys-
tem to respect the existing design. Because it is indepen-
dent of the execution of specific features, our approach is
flexible enough to capture any subset of a program as a
concern.

Slicing [11, 13] is an analysis technique that identifies
all the statements in a program that can influence the value
of a variable at a specific location. As such, slicing can be
used in maintenance activities to help find and manage the
code related to a specific statement [2]. For the purpose
of automatically detecting concerns, one major limitation
of slicing is that only one type of concern can be identified:
code related through a control- and data-flow criterion. An-
other drawback of slicing is that it does not discriminate
between interesting and boilerplate code. Our approach is
intended to address this problem by factoring in a metric of
how relevant different methods are based on how and how
often they were examined by a developer.

Some design recovery techniques have been proposed
to identify code that would constitute a candidate for refac-
toring into a module or object (e.g., [9, 12]). These ap-
proaches are typically based on the analysis of relations
between different program elements, such as “x usesy”,
using clustering algorithms, or concept analysis. In prac-
tice, the results of applying these techniques correspond to
scattered concerns. However, the resulting concerns are not
task-specific: developers cannot infer concerns related toa
specific feature. In contrast, our approach allows the iden-
tification of smaller concerns, which would typically be a

9



subset of the modules identified by clustering algorithms.
Although our approach also partially relies on structural in-
formation, it factors in the focus of the developers during
program investigation. This allows us to use the algorithm
to infer concerns that are of immediate interest to program
developers.

7. Conclusion

In this paper, we have described a technique to infer
concerns based on the program investigation activities of
developers. Our technique integrates elements of static
analysis, but its originality lies in its focus on analyzing
the source code a developer examines when investigating a
program. Our technique can be parameterized to account
for different styles of program investigation.

The evaluation of the technique was based on data ob-
tained from five subjects performing two different tasks.
We showed that, in every case, at least one relevant con-
cern was identified. Since the amount of information to be
generated by our concern inference algorithm is parameter-
izable, the number of false positive (or spurious concerns)
can be adjusted. In our case, we used the algorithm to in-
fer concerns involving 12 program elements. This number
resulted in a very manageable level of information. We
also observed that the success of the concern inference al-
gorithm seems to be tied to how organized the program in-
vestigation activities are: Broad and disorganized searches
produce vague and incomplete concerns, while more fo-
cused program investigation can yield a high proportion
of useful and precise concerns. This situation can be ad-
dressed by not recording the program investigation activi-
ties during broad investigation.

Using our technique, which we plan to refine and fully
integrate in a software development environment, it is pos-
sible to easily and rapidly generate descriptions for differ-
ent concerns developers investigate in source code. These
concern descriptions can then be used as supporting doc-
umentation during program evolution tasks, as a basis to
plan refactorings [1], and potentially to help port a system
to an aspect-oriented language [3].

Acknowledgments

This work was funded by an NSERC research grant, a Uni-
versity of British Columbia graduate fellowship, and an
IBM Eclipse Innovation Award. The authors are grateful
to Alex Brodsky and to the anonymous referees for their
useful comments.

References

[1] M. Fowler. Refactoring—Improving the Design of Existing
Code. Object Technologies Series. Addison-Wesley, 2000.

[2] K. B. Gallagher and J. R. Lyle. Using program slicing in
software maintenance.IEEE Transactions on Software En-
gineering, 17(8):751–761, August 1991.

[3] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In M. Akşit and S. Matsuoka, editors,
Proceedings of the 11th European Conference on Object-
oriented Programming, volume 1241 ofLecture Notes in
Computer Science, pages 220–242. Springer-Verlag, June
1997.

[4] S. Letovsky and E. Soloway. Delocalized plans and pro-
gram comprehension.IEEE Software, 3(3):41–49, May
1986.

[5] K. Lukoit, N. Wilde, S. Stowell, and T. Hennessey. Trace-
Graph: Immediate visual location of software features. In
Proceedings of the International Conference on Software
Maintenance, pages 33–39. IEEE Computer Society, Octo-
ber 2000.

[6] Object Technology International, Inc. Eclipse platform
technical overview. White Paper, July 2001.

[7] M. P. Robillard and G. C. Murphy. Concern Graphs: Find-
ing and describing concerns using structural program de-
pendencies. InProceedings of the 24th International Con-
ference on Software Engineering, pages 406–416, May
2002.

[8] M. P. Robillard and G. C. Murphy. A study of program
evolution involving scattered concerns. Technical Report
CS-2003-06, Department of Computer Science, University
of British Columbia, March 2003.

[9] M. Siff and T. Reps. Identifying modules via concept
analysis. IEEE Transactions on Software Engineering,
25(6):749–768, November/December 1999.

[10] E. Soloway, J. Pinto, S. Letovsky, D. Littman, and R. Lam-
pert. Designing documentation to compensate for delo-
calized plans.Communications of the ACM, 31(11):1259–
1267, November 1988.

[11] F. Tip. A survey of program slicing techniques.Journal of
Programming Languages, 3(3):121–189, September 1995.

[12] A. van Deursen and T. Kuipers. Identifying objects using
cluster and concept analysis. InProceedings of the 21st
International Conference on Software Engineering, pages
246–255. ACM, May 1999.

[13] M. Weiser. Program slicing.IEEE Transactions on Soft-
ware Engineering, 10(4):352–357, July 1984.

[14] N. Wilde and C. Casey. Early field experiences with the
software reconnaissance technique for software compre-
hension. InProceedings of the International Conference
on Software Maintenance, pages 312–318. IEEE, 1996.

[15] N. Wilde, J. A. Gomez, T. Gust, and D. Strasburg. Locating
user functionality in old code. InProceedings of the Confer-
ence on Software Maintenance, pages 200–205. IEEE Com-
puter Society, November 1992.

[16] N. Wilde and M. Scully. Software reconnaissance: Map-
ping program features to code.Journal of Software Main-
tenance: Research and Practice, 7:49–62, January 1995.

10


