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Abstract In software development projects, unit test names contribute to the
overall quality of the tests. Developers often encode contextual information in the
test names to enhance the readability and maintainability of tests. However, this
information lacks a formal structure, and thus cannot be systematically used to
support software development practices such as documentation and test refactor-
ing. Additionally, large test suites can remain hard to read and maintain, even
with descriptive test names. To address these limitations, we propose to identify
common types of information encoded in test names using prevalent test naming
conventions. We introduce a novel rule-based approach, called Sift4J, to automat-
ically extract latent semantic information encoded in the name of a unit test.
Information fragments we can extract from test names include the name of the
method under test, a description of the state of the object under test, and the
expected result of executing the unit under test. We demonstrate how to perform
multi-dimensional classification of unit tests using this information. We evaluate
the performance of Sift4J on two samples of unit tests: our development set and
a previously-unseen evaluation benchmark. The results show that we can extract
sufficient information from test names to assist in meaningfully reorganizing the
tests in test classes.
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1 Introduction

Readability and maintainability are key quality attributes for unit tests [7]. Test
method names often have an impact on test suite readability and maintainabil-
ity [33], as they are one immediate source of information for understanding the
intent of test suites. Developers can benefit in multiple ways from descriptive
names. For example, descriptive names can help developers understand the intent
of the unit test without reading the test body [5]. Thus, developers often encode
semantic information in the test names (e.g., the name of the unit under test,
the feature under the test, or the expected outcome of the test). However, the
encoding of information along these different dimensions is not checked by the
compiler, and can thus be prone to inconsistencies [27] and be difficult to use by
tools. In addition, long test suites can remain hard to read and maintain even with
descriptive test names. To help overcome these problems, we investigate what im-
portant information developers commonly include in test method names, to what
extent this information can be automatically identified, and how this information
can help organize a test suite. Our investigation is conducted in the context of
software development in Java using the JUnit testing framework.

We first identify common types of information encoded in test names by elicit-
ing prevalent test naming conventions. Based on these findings, we propose a novel
rule-based approach, called Sift4J, for extracting information fragments from Java
unit tests and encoding this information explicitly as Java annotations. Sift4J
comprises a collection of semantic fragment extraction rules, each of which is as-
sociated with a family of test naming conventions. Sift4J uses an ensemble of
information extraction techniques that include textual analysis using regular ex-
pressions, static analysis of the test code, and natural language processing to
convert the information in test names to Java annotations. The benefits of con-
verting informal metadata about tests into annotations are manifold: they provide
a statically-checked consistent information schema (the annotation types), and
support improved analysis and manipulation of the tests by annotations proces-
sors. As a proof of concept of the usability of the information we can extract from
tests, we developed an IntelliJ plug-in to allow users to browse and organize the
tests in a test class according to the various dimensions determined by the infor-
mation fragments in test names (e.g., to group them by the focal method targeted
by each test).

We evaluated Sift4J by measuring its accuracy on two samples of unit tests:
our development set and a previously-unseen evaluation benchmark of Java unit
tests that use JUnit framework. The results show that we can extract sufficient
information from test names to assist in meaningfully reorganizing the tests in test
classes. This work makes the following contributions:

1. A general and language-independent formulation of the problem of semantic
information fragment detection in a unit test name;

2. A catalog of naming conventions and their corresponding semantic information
fragments types identified from a sample of Java unit tests;

3. A benchmark of unit test names and their naming conventions;
4. The design of a tool to automatically extract the semantic information frag-

ments from Java unit tests that use the JUnit framework, and a proof-of-



Supporting Multi-dimensional Unit Test Classification 3

concept plug-in that performs multi-dimensional classification on the Java tests
annotated by Sift4J;

5. Empirical data evaluating the performance of Sift4J tool for extracting infor-
mation from tests.

The remainder of this paper is structured as follows. Section 2 discusses rele-
vant past research and presents a precise formulation of the semantic information
fragment detection problem. Section 3 details a formative study of test name con-
ventions, including its methodology, and presents the resulting types of semantic
information fragments and prevalent naming conventions we identified. Section 4
describes the design of the Sift4J tool for extracting information fragments from
test names, including a number of information extraction techniques and a dis-
cussion of its limitations. It also presents how multi-dimensional test classification
can be achieved within an integrated development environment (IDE). Section 5
presents the design and outcome of an evaluation study, followed by a conclusion
in Section 6. This article is complemented by a online dataset [31].

2 Information Fragments in Test Names

This research is predicated on the observation that the names of unit tests com-
monly encode information about different properties of the test, and this informa-
tion may be systematically organized through a naming convention. For example,
a test named testIsHorizontal False for a class representing a geometric line encodes
two pieces of information about the test: the name of the method being tested
(isHorizontal), and the expected outcome of the evaluation of this unit under test
(in this case, a return value of false). In this example, the information fragments
are made prominent with the help of two syntactic features: a test prefix marker
(test), and a separator ( ), and the applied naming convention can be expressed as
test[FocalMethod] [ExpectedResult].

We henceforth refer to a cohesive piece of information about a unit test as a
semantic information fragment (or simply, fragment). We hypothesize that frag-
ments can be extracted from the names of unit tests with the help of naming
conventions. As this work is scoped in the context of the Java language, we con-
sider that a unit test corresponds to a test method as identified by the JUnit
framework, and that the name of the test is simply the test method’s simple
name. A test name can be tokenized into a sequence of tokens based on lexical or
syntactic features, such as case or the use of separators. The example above would
be tokenized as test,Is, Horizontal, , False.

2.1 Related Work

There is ample evidence that developers informally encode semantic information
as fragments in unit test names. This evidence can be found both in the grey and
the scientific literature, and is easily confirmed by inspection of test suites (see
Section 3). In terms of grey literature, numerous blogs mention conventions for
naming unit tests that involve different kinds of semantic encoding (e.g., [10,11,13,
20,29]). A common piece of advice is to encode the name of the unit under test (or
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focal method [6]) in the test name. Another common recommendation is to include
a description of the expected behavior of the unit under test (same references).
There is currently no common standard for structuring this information in tests,
and practices vary. Some conventions require prefix markers (typically test), while
some omit this marker. Likewise, token separation can be done using different
lexical features (e.g., CamelCase or snake case), or explicit tokens such as should

and when, or any combinations of the various possible alternatives.
Previous research also provides, directly or indirectly, useful insights about the

kinds of information that is or should be part of a test name. Test-to-code traceabil-
ity techniques aim to discover the link between test code and the code being tested
(e.g., [6, 22, 24–26, 28]). The motivation for this research is that this link, useful
for various test suite maintenance activities, can be lost if it is not documented.
Explicitly providing the name of the focal method in the test name thereby helps
avoid the cost of recovering this link. Ghafari et al.’s work, in particular, focused
on recovering focal methods using data-flow analysis [6].

Past work has also addressed the challenges of automatically generating names
for unit tests, or test templates from test names. From these efforts, we can learn
about properties of the information that is recommended to be present in test
names by the designers of the various approaches. Zhang et al. proposed to lever-
age information in test names to generate an implementation template for the
test [37]. Their proposal relies on the assumption that the test name would follow
a “well-defined grammatical structure” that consists of an “action phrase” followed
by a “predicate phrase”, both expressed as verb phrases. In later work, the same re-
search group proposed a technique to go the other way, and automatically generate
a test’s name that “summarizes the test’s scenario and the expected outcome” [38].
Similarly, Daka et al. proposed a technique to generate names that follow a three-
part naming convention to generate descriptive test method names, including the
method under test, the state under test, and the expected behavior [5]. Wu and
Clause devised a pattern-based approach to compare test names and their corre-
sponding bodies [34]. In doing so, they also considered three types of information
from both the test method name and body: action, predicate, and scenario. Wu
and Clause further leveraged this information and proposed a uniqueness-based
approach to generate test names [35,36]. Another interesting approach was intro-
duced by Allamanis et al. to predict the test name from the test body using a
neural probabilistic language model [1].

In addition, Peruma et al. used grammatical patterns to interpret test names
for the purpose of supporting their evolution [23]. As part of this work, they
observed an impressive variety of ways to express test information in test names.
The previous work has shown that descriptive test method names are an asset
for improving the quality of unit tests, and that it is reasonable to expect that
tests can follow some naming convention. However, we found that there is no
agreement on what information should be included in test method names and,
more importantly, there is no uniform way to express this information.

Finally, previous research has also provided indirect insights on how to manage
large test suites. Greiler et al. showed that the low cohesive test methods grouped
in the same class may result in test smells [8]. Kochhar et al. [12] conducted open-
ended interviews to identify 29 hypotheses that describe characteristics of good
test cases, and surveyed 261 practitioners to validate these hypotheses. Most of
their respondents agree that large test cases are hard to understand and maintain,
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and the use of tags or categories is helpful to manage test suites in practice,
for example, for running a specific set of tests at a time. JUnit provides a set
of annotations to tag test cases. In particular the @Nested and @Tag annotations
can be used to help organize test suites. The @Nested annotation can be used to
further group test methods inside nested classes. The @Tag annotation is intended
to declare a tag for the corresponding test classes or methods, which can be then
be used to filter which tests are executed. Another related research is from Li
et al. [15], who predefined a catalog of 21 stereotypes, which are mostly JUnit
API-based. They also developed a tool to automatically generate the stereotypes
from the test methods and tag the tests with the generated stereotypes, which can
assist navigation/classification of a group of tests.

2.2 Problem Formulation

If we accept that a test name is likely to follow a naming convention containing
information about the test, we wish to extract this information from the name by
leveraging the naming convention. We define the problem of extracting semantic
information fragments from test names (fragment extraction for short) as a func-
tion that takes as input a test name and its context, and produces a sequence of
tagged fragment tuples {(F1, T1), ...(Fn, Tn)}. In a tuple (F, T ), F is a substring
of the test name and T is a configurable tag that describes the nature of the frag-
ment. In practice, the context for a test name is the code base that contains the
test together with its necessary dependencies. A sequence of tagged fragments can
be characterized by the types of fragments it tags.

Returning to our example above, one solution to the fragment extraction of
testIsHorizontal False could be, in a given context:

Method–Result: {(isHorizontal, Method), (False, Result)}.

Designing a technique to solve the fragment extraction problem requires a
precise understanding of the types of fragments that it is possible to encounter in
practice. We conducted a formative study to elicit these types.

3 Types of Semantic Information Fragments

We conducted a formative study to answer the questions what types of seman-
tic fragments can we find in unit tests written in Java? How do they manifest?
The answers to these questions provide a framework for extracting semantic in-
formation fragments in unit tests based on current practice. The study consisted
in assembling a diverse sample of unit tests, then inspecting each test in context
and manually classifying the information fragments in its name using a qualitative
coding process. The context for a unit test name includes the source code of the
test suite, including the test itself, which we leveraged for the classification.
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3.1 Methodology

We used GitHub Search and the GitHub Search API1 to collect 100 public repos-
itories with Java test code. We considered a repository eligible if it was tagged
by GitHub as containing Java code, and if it contained at least 50 test files. We
define a test file as any file that 1) has the .java extension and 2) contains the string
test in its path, and 3) uses the JUnit framework.2 We conducted the query on
27 November 2022 and selected the 100 most-starred repositories that met these
inclusion criteria.3

Next, we sampled unit tests from the 100 repositories with the goal of recording
as many different test name structures as possible for a reasonable manual inspec-
tion effort. For this purpose, we randomly sampled one test class per repository,
and inspected all its test methods as identified with the @Test annotation. For each
test, we assigned a label to describe the naming convention used for the test. We
then repeated the entire process until we reached saturation, which we defined
as inspecting 20 consecutive test classes without encountering a new naming con-
vention. We reached saturation after three iterations, thereby collecting data on
1263 test methods from 300 classes.4 Of these methods, 18 had names that clearly
captured no information about the test (e.g., methods named simply test, or test1).
We discarded these methods from further analysis, leaving us with a data set of
1245 unit tests. We then collapsed the set of naming conventions into a set of
convention families, each capturing a different sequence of information fragments
about a test.

Eliciting Naming Convention We labeled each test using a combination of key-
words, separators and placeholders to represent a naming convention. For example,
we would assign the label test[Focal Method] [Expected Result] to the method testIsHori-

zontal False. We derived the labels describing each naming convention using a man-
ual inspection process informed by the grey literature on naming conventions for
unit tests (see Section 2.1). In a test name, keywords and separators can be readily
identified by recognizing substrings such as test or when. Identifying instances of
placeholders is a more important task as its outcome determines the types of infor-
mation fragments we can detect from test names. For this purpose we considered
different groups of tokens in the test name and attempted to match them with
common testing concepts discussed in the grey literature, creating new types of
placeholders as necessary. A single investigator conducted this analysis.

Defining Convention Families Our focus is on the type of information we can
extract from tests. To pave over insignificant differences in encoding style, we
analyze our findings in terms of naming convention families. We group naming
conventions together in a family if they differ only in terms of delimitation style
(e.g., camelCamel case vs. snake case) and/or choice of explicit token (e.g., test,

1 github.com/search and docs.github.com/rest, resp.
2 We used the GitHub API to check if test files contained the string junit.
3 In practice, we retrieved the 300 most-starred Java repositories and analyzed each in

decreasing order of stars until we collected 100 with testing code.
4 When repeating the process, we ensured that any test class selected from a previously-

sampled repository was located in a different package from any of the test classes previously
sampled from this repository.
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return, with). For example, we grouped the conventions [Method]Test and test [Method]

together in the Method Only family. Finally, given a convention family, we can
trivially extract all the fragment types used as placeholders. For example, from the
convention family Method–Result we extract the information fragments (Focal)

Method and (Expected) Result.

3.2 Results

Table 1 lists the fragment types we cataloged, together with statistics of their
observation frequency in our data set of 1245 test methods. The third column
(Obs.) provides the number of tests whose name included a semantic fragment of
the corresponding type. The fourth column (Prop.) divides this number by 1245
to provide a ratio. The sum of ratios exceeds 100% because test names can include
multiple fragments.

Table 1 Types of Semantic Information Fragments Observed in a Sample of Java Unit Tests

Fragment
Type

Description Obs. Prop.

Method Refers to the method under test. The method should be
called within the test.

464 37%

Abbreviated
Method

Refers to a subset of the tokens that form the name of
the focal method.

96 8%

Class Refers to the class under test. 82 7%
State Refers to input state related to Focal Method 630 51%
Result Refers to the expected outcome of the test case, including

exception.
428 34%

Scenario A general description of the focus of the test when no
category applies that would be more specific.

225 18%

Table 2 lists the convention families we observed, with their frequency. Eigh-
teen types of convention with at least ten instances cover 96% of our sample test
(1195/1245). The Method Only family is the most prevalent, constituting 16%
of the observations. These observations show that the vast majority of test names
encode at least one semantic information fragment.

As expected, the main practices we detected involve specifying the name of the
focal method (37%). This practice also has the advantage of being unambiguous.
Except when testing overloaded or overridden methods accessed polymorphically,
it can be possible to refer to precisely the method under test. To a certain extent,
precise references are also possible for values of variables and arguments. Unfor-
tunately, the same cannot be said of vaguer concepts such as State or Scenario.
Our research explores how to resolve ambiguous references to this kind of seman-
tic information through a heuristic approach that combines regular expression
matching, static analysis, and natural language processing.
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Table 2 Naming Convention Families Observed in a Sample of 1245 Java Unit Tests

Convention Family Frequency

Method Only 204
Method–State 136
Result Only 134
State Only 123
Scenario Only 123
Result–State 113
Method–State–Result 49
Abbreviated Method Only 47
Class Only 46
Abbreviated Method–State 44
Scenario–State 40
State–Result 35
Class–State 24
Method–Result 21
Scenario–Result 18
State–Scenario–Result 14
Scenario–State–Result 12
Result–Method–State 12
Method–Result–State, Method–Method 7
Result–Scenario 6
Method–Class 4
State–Scenario, Scenario–Class 3
Class–Method–Method, Abbreviated Method–State–Result,
Method–State–Method, State–Abbreviated Method–Result,
Method–Method–State, Method–State–State

2

Method–State–Result–State, Class–Method,
Scenario–State–State, Scenario–Abbreviated Method,
Method–State–Scenario–Result, Class–Scenario,
Scenario–Class–Result, Scenario–Result–State

1

3.3 Limitations

A main limitation of the study is that the sample is not uniformly random and
therefore cannot support the inference of fragment type proportions to a broader
population of unit tests. However, such inference was not the goal of study. The
differences in proportions we observe are sufficiently distinct to help us prioritize
the development of basic classification rules. For example, having observed 464
instances of unit tests that name the focal method in the test name in some of
the most popular Java projects on GitHub, we have confidence that we are not
attempting to support an exotic practice. The second limitation concerns the ac-
curacy of the manual classification. Classifying fragment types according to the
protocol described above amounts to a program understanding task, which can
leave some room for personal interpretation. We deemed it unnecessary to employ
two coders to calculate inter-rater reliability for this task for two reasons. First,
it is a low-subjectivity task as many placeholders map directly to program con-
structs (e.g., focal method, parameter name). Second, minor mischaracterizations
have limited practical impact as we are primarily interested in the diversity of
information types as opposed to the precise frequency of their occurrence in our
data set. Our data set is also available for independent verification.
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1 @Test
2 @FocalMethod(‘‘IsEmpty’’)
3 @State(‘‘CollectionIsEmpty’’)
4 @ExpectedResult(‘‘ReturnTrue’’)
5 public void testIsEmpty whenCollectionIsEmpty thenReturnTrue() {
6 Collection<Object> testCollection = new ArrayList<>();
7 assertTrue(‘‘Should return true because collection is empty’’,
8 CollectionUtils.isEmpty(testCollection));
9 }

Fig. 1 A Sample Unit Test with Annotated Semantic Information Fragments

4 Extracting Semantic Information From Tests

We contribute the design of a technique for extracting information fragments from
unit tests, as formulated in Section 2.2. We implemented a prototype for Java
we call Sift4J (for Semantic Information From Tests for Java). Sift4J serves as a
proof of concept of the feasibility of extracting information fragments from Java
unit tests. The prototype is structured as a rule engine with a collection of semantic
fragment extraction rules applied sequentially to a unit test. Each rule is associated
with a naming convention family as identified in Table 2. The input to Sift4J
is a test file and associated code base. The output is an updated version of the
input test file with Java annotations indicating any detected information fragment.
The listing of Figure 1 shows an example of unit test annotated with Sift4J. We
developed the Sift4J prototype through iterative design informed by a development
set consisting of a sample of 442 units tests. The composition of this development
set is detailed in Section 5.

4.1 Overall Architecture

The Sift4J rule engine is implemented in Java and operates by parsing an input
Java source file containing unit tests, and then providing these tests to a number
of extraction rules. Figure 2 provides a view of the essential elements of the Sift4J
design.

«interface»
Rule

RuleEngine
Code Fact
Extractor

Java Parser

*

1

Fig. 2 Sift4J Overall Design

The RuleEngine relies on a CodeFactExtractor to obtain the list of unit tests for a
Java source file. These unit tests are returned in the form of a MethodDeclaration

Abstract Syntax Tree (AST) node. The CodeFactExtractor relies on the JavaParser
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library to parse source files and resolve as many of the symbols therein as possible.5

The RuleEngine class can be configured with any number of instances of type Rule. An
instance of Rule provides the computation necessary to detect a naming convention
from a test’s name according to a given heuristic (e.g., by linking text in the method
name to a production focal method). An instance of type Rule is employed by calling
an apply method with a method declaration node representing a unit test as input.
Applying a rule returns an optionally empty convention encoding six potentially-
empty string instances representing the types of semantic fragments we identified
in our formative study (see Section 2.2). The returned convention is empty if the
rule does not match the input test. If the application of a rule successfully detects a
convention and returns a non-empty result, the remaining rules are short-circuited
(i.e., not executed). In our design, a rule falls into one of two categories: single-
fragment or multiple-fragment. These categories are represented as abstract classes
in our design. A rule is defined by extending the corresponding class, instantiating
it, and adding the instance to the rule engine’s list of rules.

We designed and implemented a number of predefined extraction rules to
demonstrate the approach and support experimentation. As targets for our pre-
defined rules, we chose to implement support for all convention families for which
we had observed over ten instances in our formative study (see Table 2). However,
in the list of 18 target conventions, two were not amenable to automatic detec-
tion via heuristics: Scenario Only, and Scenario–Result. Because of a lack of
structure and constraints for expressing scenarios described in free-form text (e.g.,
testCreatingStreamAfterClose), there is no explicit feature we could rely on to design
extraction rules for these families. We implemented support for extracting infor-
mation fragments for all 16 remaining convention families. These predefined rules
are not intended to cover all conventions potentially in use, but they enable our
further empirical investigation. To support the pragmatic eventuality that some
projects may use idiosyncratic conventions to name their unit tests, we engineered
our solution as a flexible framework that allows users to define an open-ended
collection of arbitrary custom rules.

4.2 Extraction Techniques

We designed Sift4J’s predefined rules using a combination of four extraction tech-
niques: 1) Matching against well-defined conventions encoded as regular expres-
sions, which we call convention patterns; 2) Using static analysis to match the
test name to code elements from the body of the test; 3) Using natural language
processing to infer fragment types from parts of speech (e.g., noun phrase), which
we refer to as grammatical patterns; 4) Detecting fragments from the presence of
selected keywords at specific positions in the test name. Table 3 reports the subset
of techniques we employ for each rule.

Convention Patterns A number of test naming conventions use a well-defined
and unambiguous pattern than can be readily detected, e.g., the convention
given[State] then[Result]. We refer to such practices as convention patterns. We use

5 We used JavaParser version 3.25.1 configured with a symbol solver that combines the
JavaParserTypeSolver and the ReflectionTypeSolver.
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Table 3 Extraction Techniques Applied in Predefined Rule Set. The convention types are
listed in the same order as they are applied by Sift4J.

Convention Static Gramm.
Convention Type

Pattern Analysis Relations
Keywords

Class Only ✓
Method Only ✓
Abbreviated Method Only ✓
Result–Method–State ✓ ✓
Method–State–Result ✓ ✓
State–Scenario–Result ✓
Scenario–State–Result ✓
Method–State ✓ ✓ ✓ ✓
Class–State ✓ ✓ ✓
Method–Result ✓ ✓ ✓
Abbreviated Method–State ✓ ✓ ✓ ✓
Result–State ✓ ✓ ✓ ✓
State–Result ✓ ✓ ✓ ✓
Scenario–State ✓ ✓
State Only ✓ ✓
Result Only ✓ ✓ ✓

a regular expression to detect instances of the convention and extract the corre-
sponding fragments. In our example, the instance of the convention can be detected
with the regular expression given(\w+) then(\w+) as part of executing the State–

Result rule. For example, for the input test givenEmptySets thenExpectNoChanges,
the resulting sequence of semantic fragments is extracted as {(EmptySets: State),
(ExpectNoChanges: Result)}. We encoded 53 such patterns elicited from our de-
velopment set. The majority (25/53) start the test name with either should or
testShould, e.g., should [Result] when [State]. This extraction technique is the only
one capable of extracting fragments of type Scenario, because in some naming
conventions the scenario is a placeholder in a well-defined pattern, e.g., [Sce-

nario] with[State] returns[Result].

Static Analysis We use static analysis to link the text in the test method name to
the program entities in the test. The static analysis strategy depends on the type of
semantic fragments to be extracted. For example, a test named testGetResources can
be linked to a focal method getResources if a call to such a method can be detected in
the body of the test. Table 4 provides additional details, and Section 5.3.1 reports
on the sensitivity analysis we conducted to determine the similarity thresholds.

Grammatical Patterns We observed in the formative study that certain grammat-
ical structures can be indicative of the presence of a specific type of semantic
information. For example, a prepositional phrase (e.g., withNull), appearing after
a method name is likely to describe the input State of the focal method (e.g.,
test isHorizontal withNull). Table 5 documents the grammatical patterns we observed
and leverage. We use the part-of-speech (POS) tagger of the Stanford Core NLP
library [17] to perform the grammatical structure analysis.
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Table 4 Static Analysis Strategies for Extracting Semantic Fragments

Fragment
Type

Extraction Technique Tagged Text

Method /
Abbreviated
Method

Combine independent heuristics to compute a
score following the strategy of White et al. [32].
Obtain the name of all methods called di-
rectly in the test, compute four case-insensitive
similarity measures between the name of the
method called and test name, and add the re-
sults. The similarity measures are: exact match,
exact containment, Levenshtein distance, and
longest common subsequence.

The (partial) name of
the called method
identified as similar to
the test name.

Class Use the same approach as above. Instead of col-
lecting method calls, we collect classes of the
objects created as well as the classes passed to
the focal method as method arguments within
the test body.

The name of the class
identified as similar to
the test name.

State Generate a state description based on the
API-Coverage goal following the strategy of
Daka [5]. Obtain the names and values of all
arguments declared in the test method and, if
the name is longer than one character, check if
they are contained in the unit test name. If not,
generate a description to describe the collected
arguments based on their type and quantity,
and identify if the description is similar to part
of the test name.

The name of the
argument or the
generated state
description identified.

Result Generate a result description based on the as-
sert statement type following the strategy of
Zhang [38]. Obtain the last assert statement in
the test body, generate a description based on
the assertion type and the arguments passed
to the assert statement, and identify if the de-
scription is similar to part of the test name. For
testing exceptions, we attempt three strategies:
1. Use the expected attribute of JUnit’s @Test
annotation 2. Detect the try–catch idiom 3. An-
alyze calls to JUnit5’s assertThrows method.

The generated result
description or the
name of the exception
identified.

Keywords We also leverage the simple heuristic that certain common terms in
a method name can indicate the presence of specific types of information frag-
ments [23]. For example, the terms empty, single, double are likely to describe the
quantity of the input passed to the method under test, implying that the fragment
is State. We seeded a glossary of keywords based on the cues present in our devel-
opment set. The glossary consists of a set of keywords associated with one of two
positions in the test name: starting, or within. Each keyword is then associated
with a fragment type (either State or Result). As this technique is used as a last
resort (see Section 4.3), we purposefully kept the glossary minimal.6 In practice,
this glossary could be tailored to specific projects for best performance.

6 For example, we only defined 18 starting position keywords associated with the type State.
These include: single, double, multi, empty, invalid, null, and default.
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Table 5 Grammatical Patterns for Semantic Information Fragments. In the column Pattern,
parts of speech are abbreviated as follows: NP: Noun Phrase; PP: Prepositional Phrase; ADJP:
Adjectival Phrase; VP: Verb Phrase

Rule Pattern Example

Method–State Method + NP edgesConnecting disconnectedNodes
(edgesConnecting: Method)

Method + PP retryTimesPredicateWithZeroRetries
(retryTimesPredicate: Method)

Method + ADJP testGetInReplyTo empty
(GetInReplyTo: Method)

Abbreviated Abbreviated testGetRep 1bytechar
Method–State Method + NP (GetRep: Abbreviated Method)

Abbreviated testFitForEqualProcecesses
Method + PP (Fit: Abbreviated Method)
Abbreviated testResourceSetsNull
Method + ADJP (ResourceSets: Abbreviated Method)

Class–State Class + NP namespace invalidFormat
(namespace: Class)

Class + PP testLogicDeleteByPrimaryKey
(LogicDelete: Class)

Class + ADJP asyncExpiry pending
(asyncExpiry: Class)

Method–Result Method + VP isValid shouldValidateConfigRepo
(isValid: Method)

State–Result State + VP aUUIDStringReturnsAUUIDObject
(aUUIDString: State)

Result–State VP + State shouldIncreaseCounterWithNegativeValues
(WithNegativeValues: State)

Scenario–State NP + State cycleOfMixedWithImmutableRoot
(WithImmutableRoot: State)

4.3 Rule Implementation

Our implementation strategy for predefined rules follows an opportunistic ap-
proach with fallbacks. In other words, we try to detect if a test name matches an
extraction rule by using the most precise technique first (i.e., convention patterns),
and then falling back onto progressively less precise alternatives as necessary. In
the case of extraction rules for multiple fragments, some rules can take into ac-
count the partial matching of the test’s name by one technique when applying
other techniques. For this reason, the rule meta-heuristic differs slightly for rules
to extract a single fragment (Algorithm 1) from rules to extract more than one
fragment (Algorithm 2).

Our use of a combination of alternative extraction techniques for information
fragments implies the possibility that more than one rule can match an input test.
To address this eventuality, we order the rules by decreasing expected likelihood of
a correct match. The specific strategy we used is to first apply rules based only on
static analysis, since they are the most precise. Then we order rules in descending
number of fragments they detect, as detecting each fragment involves additional
checks that can reject a spurious match. Table 3 shows the rule execution order
we selected. Once a rule successfully detects a convention, the remaining rules are
skipped.
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1 public void testIpAddress whenInitializedFalse() {
2 service.ipAddress(IP ADDRESS);
3 String ipAddress = Whitebox.getInternalState(service, ‘‘ipAddress’’);
4 assertEquals(‘‘IP address should be set to the IP address that was specified’’,

IP ADDRESS, ipAddress);
5 }

Fig. 3 A Sample Unit Test Employing the Method–State Naming Convention

We illustrate how the rules are applied and executed by walking through a test
from test class ServiceTest of the Spark project (perwendel/spark, see complete details
in our online dataset [31]). Figure 3 shows the code of the unit test from which
we wish to extract information fragments. This test employs the Method–State
naming convention because it consists of the keyword test, followed by the name
of the method under test (ipAddress), and a description of the state under test
(whenInitializedFalse).

Once Sift4J has instantiated the rule engine and parsed the code, it cycles
through the rules one by one. The first rule it considers is Class Only (see
Table 3). As this is a single fragment rule, its implementation follows Algorithm 1.
First, it checks if the name matches a convention pattern (lines 2–5), which it
does not. Second, the string is preprocessed to convert it to the normalized form
ipAddressWhenInitializedFalse (line 6). The execution then attempts to recover the class
name using static analysis (line 7), which fails because the preprocessed name does
not contain the name of the test class. Finally, since for the Class Only rule there
are no applicable keywords (line 10), the rule fails (line 13) and the rule engine
cycles to the next rule.

Algorithm 1 One-Fragment Convention Rule Extraction Algorithm
Input: U: Unit Test Declaration
Output: C: a Convention Instance

1: n← Unit Test Name
2: if n follows a Convention Pattern then
3: f ← applyRegularExpression(n)
4: return buildConvention(f)
5: end if
6: n← preprocess(n) ▷ Remove underscores, “test”, and related tokens
7: f ← performStaticAnalysis(U)
8: if f matches n then
9: return buildConvention(f)
10: else if n starts with Special Term then
11: return buildConvention(f)
12: end if
13: return Empty

After cycling through subsequent rules, which all fail because the test name
does not match their requirements, the rule engine reaches rule Method–State.
This is a multiple-fragment rule, whose implementation follows Algorithm 2. The
first part of the execution is similar to Algorithm 1: the execution fails to detect
a convention pattern, and normalizes the test name (lines 2–6). Execution moves
to the static analysis strategy, which attempts to produce two fragments from the
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code of the test (line 7). The first fragment is the name of a method called within
the body of the test which is also contained in the name of the test, in our case,
ipAddress. In the implementation of the Method–State rule, we attempt to create
a second fragment by checking if the name of the parameter or argument values
are contained in the remainder of the test name, as described in Table 4. Interest-
ingly, here the heuristic produces a false positive because it detects IP ADDRESS,
the parameter to ipAddress as a description of the state. However, the rule’s imple-
mentation is robust to this imprecision because the test name does not end with
the spurious state fragment ipAddress (line 8), so the execution attempts to match
the condition on line 11, which it does because the normalized name starts with
ipAddress, producing a remainder of WhenInitializedFalse (line 13). This remainder is
then checked for grammatical relations or keywords. Because the keyword When is
associated with a state fragment, the rule returns the convention: Method–State:
{(ipAddress, Method), (WhenInitializedFalse, State)} and short-circuits applying the
remainder of the rules.

Algorithm 2 Two-Fragments Convention Rule Extraction Algorithm
Input: U: Unit Test Declaration
Output: C: a Convention Instance

1: n← Unit Test Name
2: if n follows a Convention Pattern then
3: f1, f2← applyRegularExpression(n)
4: return buildConvention(f1, f2)
5: end if
6: n← preprocess(n) ▷ Remove underscores, “test”, and related tokens
7: f1, f2← performStaticAnalysis(U)
8: if n starts with f1 ∧ ends with f2 then
9: return buildConvention(f1, f2)
10: end if
11: if n starts with f1 ∨ ends with f2 then
12: f ← the matched fragment
13: remain ← remove f from n
14: if remain follows Grammatical Relation ∨ starts with Special Term then
15: return buildConvention(f, remain)
16: end if
17: end if
18: return Empty

4.4 Limitations of Rule-Based Semantic Fragment Extraction

We opted for a rule-base approach to provide a direct traceability between infor-
mation fragments and source code. In addition to providing a clear rationale for
the detection of a fragment through the rule family employed to detect it, the
use of a rule-based approach provides clear guidance for developers wishing to
encode semantic fragments in their test name. The limitations of Sift4J are thus
a manifestation of the fundamental limitations of rule-based systems applied to
our context. First, not all information can be encoded by following conventions.
Second, a heuristic approach to match natural language is imprecise and incom-



16 Ziming Wang, Martin P. Robillard

1 @Test
2 public void testFloorDoubleNumber()
3 {
4 assertEquals(0, Floor.floor(0.1));
5 assertEquals(1, Floor.floor(1.9));
6 assertEquals(=2, Floor.floor(=1.1));
7 assertEquals(=43, Floor.floor(=42.7));
8 }

Fig. 4 Example of reuse term in information semantic fragment.

plete by nature. Third, the performance of the approach is impacted by technical
aspects of the extraction techniques.

The first limitation is a reflection that test names are often in free-form natural
language that does not follow any detectable convention. In our framework, this
situation is explicitly captured by convention families with potentially unspecified
fragments, such as State, Result, or Scenario (see Table 2). In cases where develop-
ers use free-form text to describe a scenario that involves an arbitrary collection of
code elements, there is no clear traceability principle that can be used to identify
semantic fragments. For example, if a test is named sanity to indicate that the test
case is validating the basic functionality for a method, Sift4J will be unable to
extract an information fragment from the name. This limitation is compounded
by the fact that, even when a project uses a well-defined test naming convention,
it is possible that not all test names consistently follow that convention. Consis-
tency is especially impacted by the challenges of co-evolving test and code [27,30].
For example, if a production method named getParams is renamed params, but the
corresponding test testGetParams is not updated accordingly, Sift4J will not detect
an instance of the Method Only convention.

A second limitation is that, because test names do not have to follow a formal
structure checked by the compiler, ambiguities can occur, or the heuristic rules
can be insufficiently precise to detect the encoded information. An example of
ambiguity is a test named maxDelayIsNotMissedTooMuch making a call to a production
method named is. In this case, Sift4J will falsely identify is as the focal method.
Another example we have seen in practice is of a test named testFloorDoubleNumber,
whose focal class and focal method are both named Floor (see Figure 4).

The third limitation is that the implementation of all four of our extraction
techniques (Section 4.2) impacts the performance of the approach. For Convention
Patterns, the implementation needs to include patterns used in a project for the
approach to be applicable. Similarly, the Keywords approach will be sensitive to
the glossary used as hints that certain tokens represent certain types of fragments,
and these can vary from project to project. The static analysis technique relies on
the correct parsing and type resolution of incomplete Java source code, which is
itself an approximate process. We rely on JavaParser’s built-in JavaSymbolSolver to
resolve overloaded method calls. However, this implementation has its own lim-
itations and bugs. As for matching the names of detected methods to the test
name, we rely on a threshold value. We conducted a sensitivity analysis to gain
confidence that our choice of threshold was sound (see Section 5.3.1), but operat-
ing the tool in a significantly different context may require a different threshold
parameter. Finally, a word may have a different part-of-speech POS than usual in
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a software-specific context [4, 9, 19], which could negatively impact the result of
the Grammatical Patterns technique. However, the performance of the Stanford
Part-of-Speech Tagger has previously been considered satisfactory on analyzing
the grammar pattern of software identifiers [2, 23, 34]. Our primary means for
mitigating the technical limitations of extraction techniques is our reliance on a
fallback approach, wherein we systematically apply the most precise approach first
and only rely on less precise alternatives when no other option succeeds.

4.5 Multi-dimensional Test Classification

Once unit tests are annotated with semantic information fragments (as illustrated
in Figure 1), it becomes straightforward to use an annotation processor to reorga-
nize a test file to group tests according to the different dimensions that correspond
to the different information types. For example, a test class could be organized
by focal test method, by common input states (e.g., an empty structure), or by
expected result (e.g., all tests for conditions throwing exceptions).

As a proof of concept, we implemented a test organization tool as an Intel-
liJ plug-in we refer to as the Sift4J plug-in. The Sift4J plug-in allows a user to
semi-automatically restructure a test file by leveraging the information fragments
therein. By default, the plug-in groups the unit tests based on the most frequent
semantic fragment type observed in the test file (e.g., Method). The plug-in also
supports multiple levels of grouping (for example, first by Method, then State).
Although multi-level grouping is likely excessive for small test classes, the feature
allows exploring latent test suite design strategies for large test classes.

In addition to allowing developers to browse the tests in a class by different
semantic groups, the plug-in also supports the option to encode a desired grouping
in the test file. For this purpose we use the @Nested annotation provided by the
JUnit5 framework. The @Nested annotation was originally designed to help organize
tests into classes that can share the scaffolding available via an instance of their
enclosing class. We additionally leverage this feature to signal that a group of unit
tests shares the same semantic fragments, and thereby encode the relationship
among several groups of tests.

We illustrate the workflow supported by the Sift4J plug-in with a walk-through
of a relatively simple test file called CollectionUtilsTest.java This class contains tests of
the miscellaneous collection utility methods. The test class contains six test cases.
Conveniently, the test names consistently adhere to the Method–State–Result con-
vention family. To automatically annotate tests with semantic fragment informa-
tion, one would right-click on the target test class file in the IntelliJ project view
and select the Run Sift4J command. The identified semantic fragments are then
shown in a view provided by the plug-in and organized in a method × fragment
table (see Figure 5). Because of consistent test naming, each test case in the in-
put class happens to be correctly tagged by Sift4J. However, the use of the Sift4J
plug-in is independent of the performance of the automated fragment extraction
process. For imperfect fragment extraction outcomes, developers can adjust the
fragment annotations by editing the test file as desired. It is also possible to en-
vision adoption scenarios where fragments are manually created at test creation
time, or the possibility of automatically injecting annotations using in-house tools
(e.g., relying on traceability to test plans).
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Fig. 5 View of the Sift4J plug-in. Buttons on the left side from top to bottom are: Classify by
Default, Classify by Method Fragment, Classify by Class Fragment, Classify by State Fragment,
Classify by Result Fragment, Classify by Scenario Fragment.

In any case, once tests are annotated with semantic information fragments,
developers can use the plug-in to explore and/or refactor the test suite structure.
Developers can select one of the classification strategies by clicking a correspond-
ing button. Each classification strategy prioritizes grouping unit tests based on a
different type of semantic fragment.

In the case of CollectionUtilsTest, for sake of illustration we refactor the test class
first into two nested classes based on the Method information fragment type, as two
focal methods are detected: isEmpty and isNotEmpty. Within each class, we further
group the test cases based on the most frequent fragment value, excluding those
already used. For the isEmpty class, two test cases shared the same Result fragment,
ReturnFalse, so we generate a new nested class to group the tests accordingly, and
follow a similar process for the isNotEmpty class.

5 Evaluation

Our goal was to evaluate Sift4J as a means to assess the feasibility of recovering
semantic information fragments about unit tests in existing code. Once recovered,
information fragments can be explicitly encoded via annotations, and thus provide
long-term added value to the code base. However, multi-dimensional unit test
classification is not a current practice and unit test naming conventions are neither
standardized nor systematically followed in practice [27]. Hence, an estimate of the
effort involved in recovering information fragments from code can guide adoption
efforts. We designed a benchmark study to answer two research questions:

RQ1: How effective is Sift4J at correctly identifying conventions associated with
predefined rules?
RQ2: For a correctly identified convention, how effective is Sift4J at extracting
semantic information fragments encoded in test names?

5.1 Benchmarks

We developed and evaluated Sift4J by leveraging benchmarks of unit tests se-
lected from existing Java projects. The design goals for our benchmarks were
to collect existing tests from recognized code bases that exhibit diverse naming
conventions. To meet these goals, we used a sampling strategy that combined pur-
posive sampling of GitHub repositories with constrained random sampling within
these repositories [3].
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In developing the approach we leveraged a development set consisting of all
the tests in 100 Java test classes randomly sampled from the 300 selected for our
formative study (Section 3). For each test class included in the development set,
we recorded the name of the selected repository, the name of the selected test class,
and the names of all the test methods within the selected test class. For each test
method, the first author manually determined the applicable convention family.

To evaluate the approach on unseen data, we created an evaluation set of 100
Java test classes by randomly selecting 100 additional test classes from the data
collected in our formative study. We followed the same sampling procedure as
described in Section 3.1, with an additional constraint that each test class should
have at least ten test methods. We added this additional constraint because our
multi-dimensional test classification approach targets test classes with many tests,
as there is no point in spending effort organizing a class with only a handful of
tests. Hence, selecting classes with a high number of tests better aligns our sample
with the natural target for our approach.

Our benchmark thus consists of a total of 200 test classes combined from the
development and evaluation sets. The development set contains 442 unit tests and
the evaluation set contains 1398 unit tests. The larger number of tests in our
evaluation set is the consequence of our constraint to only select classes with at
least ten test methods.

Table 6 Benchmark Composition. Each row represents one convention family for which Sif44J
provides a fragment extraction rule. For both the development and evaluation sets, the columns
labeled Tests report the number of tests where the corresponding convention is expected, and
the columns labeled Classes report in how many different classes these tests are located. The
rows are presented in decreasing number of occurrences in the evaluation set.

Convention
Development Set Evaluation Set

Tests Classes Tests Classes

Method Only 95 31 367 54
Method–State 50 14 251 49
Result–State 59 12 187 26
Method–State–Result 9 3 87 10
Result Only 29 10 73 16
Abbreviated Method Only 13 10 62 18
Method–Result 8 3 47 19
Class–State 12 4 46 5
State–Scenario–Result 9 2 46 4
State Only 25 9 44 14
AbbreviatedMethod–State 28 6 27 10
Scenario–State 8 5 14 5
Class Only 20 15 8 2
State–Result 10 2 5 3
Scenario–State–Result 4 2 4 1
Result–Method–State 12 1 0 0

Applicable Conventions 391 1268
+ Inapplicable conventions 51 130

Total 442 1398
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Table 6 shows the composition of our benchmark in terms of expected con-
vention families. For each convention family for which Sif44J provides a fragment
extraction rule, we report the number of corresponding tests and the number of
classes in which these tests are distributed. As we are applying Sift4J to randomly-
selected test code, some unit tests in the benchmark do not follow any of the
conventions we can detect. To capture this important factor of the evaluation, we
define applicable tests as the set of benchmark tests whose expected convention is
implemented by the predefined rules. The development set contains 391 applicable
tests out of the 442 tests (88.5%), and the evaluation set contains 1268 applicable
tests out of the 1398 tests (90.7%).

Our benchmark thus collects a curated collection of tests from existing test
suites that exhibits a diversity of test naming practices, with a number of tests for
each convention in approximate proportion to the frequency we observed them in
our formative study (see Section 3).7 Given our purposive sampling procedure, we
do not claim that the relative proportions in the test naming practices represented
in the benchmark are representative of the general population of Java test suites.
The complete benchmark is available in our online dataset [31].

5.2 Evaluation Metrics

A data point in our evaluation is the application of Sift4J to a given unit test.
The expected convention (family) for a unit test is the convention (family) used
for the unit test as annotated by the first author (see Table 2). In this section,
we henceforth refer to convention families simply as conventions for short. The
detected convention is the convention output by Sift4J.

We answer the research questions in terms of two metrics: accuracy and Cohen’s
kappa (κ). Accuracy provides a simple overview of the performance of the approach
through the ratio of tests for which Sift4J can detect the expected convention. We
use two formulations of accuracy. Accuracyg (global) is the ratio of tests for which
the detected convention is the expected convention over all tests. In contrast,
Accuracya (applicable) is the ratio of tests for which the detected convention is the
expected convention over applicable tests. The two metrics allow us to evaluate
two different aspects of the approach: Accuracya represents the performance of
the current implementation of Sif4J’s predefined rules, while Accuracyg gives an
overview of the performance of the approach we could expect if we deployed it in
practice.

In addition to overall performance, we also study the performance for each
predefined convention. For this purpose we use Cohen’s κ (kappa) statistic [14].
For each convention, we construct a 2 × 2 confusion matrix that distinguishes
expected vs. not-expected in one dimension and detected vs. not-detected in the
other. We use the κ statistics for this evaluation to mitigate the effect of class
imbalance.8

7 As a result of the random sampling, the Result–Method–State convention has no cor-
responding test in the evaluation benchmark. We accept this limitation as a trade-off for using
random sampling to avoid potential bias in the construction of the benchmark, because the
rule is a permutation of the Method–State–Result, which is well covered, and because the
implementation of the rule was covered in the development set.

8 For each convention except the most popular ones, most tests will naturally be classified
as not expected, leading to a class imbalance. In such cases, a large proportion of matches is
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Our second research question only considers cases where Sift4J detected the
correct convention for a unit test. For such cases, we compute the fragment-level
accuracy Accuracyf as the number of correctly identified fragments over the total
number of expected fragments for all tests for which the correct convention was
detected in a class.

5.3 Results

We separately present the evaluation results for the development set and evaluation
set.

5.3.1 Development Set

The accuracy over applicable tests (accuracya) is 96.7%, while the accuracy over
all tests (accuracyg) is 85.5%. Table 7 documents the causes of classification errors
for the development set. For a given test, a false negative corresponds to Sift4J
not triggering any rule when one is expected; a false positive corresponds to Sift4J
triggering a rule when none is applicable, and a misclassification corresponds to
selecting the incorrect rule (in effect a matching false positive–false negative pair).
The table organizes the causes of classification errors in six categories, also dis-
cussed in Section 4.4. For each category, we report the total number of occurrences
(Tot.), which we further break down in terms of the number of occurrences that
are false negatives (FN), or misclassifications (Mis.). Over 391 applicable tests, we
observed 5 false negatives and 8 misclassifications (there were no unmatched false
positives).

Table 7 Causes of classification errors in the development set. The columns indicate the total
number of occurrences (Tot.), the number of false negatives (FN), the number of misclassifi-
cationss (Mis.).

Cause Tot. FN Mis.

Reuse of a term 3 0 3
High level of abstraction 3 2 1
Idiosyncratic naming style 3 1 2
Limitation of the POS Tagger 2 0 2
Thresholding problem 2 2 0

Total 13 5 8

First, we observed that, in three cases, a common term used in a method’s name
as well as in the name of its declaring class caused a misclassification. Second, we
observed in three separate cases that use of high-level language led to ambiguities
and corresponding misclassifications. For example, a test named testDiscoveryBlock-

ingDisabled describes the state of the test where a parameter ...discovery.blocking.enabled
is set to false. However, this caused a false negative of the State Only rule, as the

not informative as they could occur by chance. The κ statistics accounts for this factor so that
higher κ values robustly represent higher agreement beyond what can be expected by chance.
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Fig. 6 Sensitivity of threshold to small variations

State fragment is described using natural language that inverses the polarity of
the state. Third, the use of idiosyncratic names, including uncommon separation
tokens in tests and poor production method name, contributed to errors. Fourth,
we noted two cases of errors caused by limitations of the POS tagger. One example
was a test named isTypeOf declaredType. In Java programming, declaredType usually
refers to the type of a variable used in the declaration, which is expected to be
tagged as noun phrase, but the Stanford POS Tagger identified it as a verb phrase.
Finally, two errors could be traced to the threshold used for evaluating the sim-
ilarity between the identified text from the test and the test name impacted the
results. For example, a test named testFitForSameInputDifferentQuery was associated
with the focal method named fitProcess. In this case, the calculated similarity score
between two texts was below the selected threshold, resulting in a false negative.

To determine the threshold value, we conducted a sensitivity analysis by run-
ning Sift4J on the development set with different values of threshold and computed
the overall accuracy. Figure 6 shows the sensitivity of the threshold to small vari-
ation (0.1) on our development set. While we consider the current threshold (0.5)
to be a reasonable choice for our data set, the ideal threshold value may vary
between projects [32].

In summary, the majority of the classification errors are consistent with the
limitations discussed in Section 4.4, and thus confirm opportunities to improve the
performance of the tool. For instance, using a POS Tagger designed for software
engineering contexts, implementing more convention rules, etc.

Table 8 shows the evaluation results for each convention. We observed κ values
greater than 0.8 for each convention rule, indicating that each convention rule is
fit for purpose to detect the expected convention [14].

In addition, 604 out of 614 expected information fragments within the develop-
ment set were correctly identified. The accuracy over fragment-level (Accuracyf) is
thus near perfect (0.98). The few classifications errors we observed were caused by
the order of common convention patterns. One example is a test named shouldDo-
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DefaultFormatForNestedCaseEndConditionWithFunctionsKeywords, which matches two pre-
defined convention patterns: testShould(\w+)For(\w+) and testShould(\w+)With(\w+).
The extraction result is affected by execution order of these patterns. Overall, the
results of the evaluation on the development set confirm that the implementation
of the predefined rules adequately captures the salient features of the development
set.

Table 8 Cohen’s Kappa per Convention on the development set. The columns indicate the
number of true positives (TP), the number of false positives (FP), the number of true negatives
(TN), the number of false negatives (FN).

Convention TP FP TN FN κ

Class Only 20 0 422 0 1.00
Result–Method–State 12 0 430 0 1.00
State–Scenario–Result 9 0 433 0 1.00
Method–State–Result 9 0 433 0 1.00
Scenario–State-Result 4 0 438 0 1.00
Method Only 93 0 347 2 0.99
Abbreviated Method–State 27 0 414 1 0.98
Result–State 58 2 381 1 0.97
Result Only 27 0 413 2 0.96
Method–State 49 4 388 1 0.95
State–Result 9 0 432 1 0.95
State Only 24 2 415 1 0.94
Abbreviated Method Only 12 1 428 1 0.92
Method–Result 8 2 432 0 0.89
Scenario–State 8 2 432 0 0.89
Class–State 9 0 430 3 0.85

5.3.2 Evaluation Set

The accuracy over applicable tests (accuracya) is 94.2% (compared to 96.7% for
the development set), while the overall accuracy for all tests (accuracyg) is 85.4%
(compared with 85.5% for the development set). For our evaluation set, we ana-
lyzed additional dimensions of the assessment to gain insight on how the approach
performs in different contexts.

Applicability by Repository The applicability of Sift4J can be expected to vary
from project to project as a consequence of project’s adoption of test conventions.
Figure 7 summarizes how applicable Sift4J is to the sampled class or classes in
each repository in our data set. Each bar represents one of the 76 repositories
in our data set. The height of each bar represents the number of applicable tests
divided by the number of tests sampled from this repository. For close to half of the
repositories (36/76), all the tests we sampled have a corresponding rule to detect
information fragments. For most of the remaining (37/76), a majority of the tests
have corresponding rules. For only three of the repositories, a small proportion of
the sampled tests have an applicable rule. For the test classes in the project with
lowest applicability, google/gson, 11 of the 13 tests have a name that follows the
convention family Scenario Only, which we cannot support (see Section 4.1).
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Fig. 7 Sift4J Applicability by Repository. Each bar represents the relative number of appli-
cable tests for a repository.

Performance by Repository We considered the performance of Sift4J in terms
of Accuracya per repository. Figure 8 summarizes the ratio of applicable tests
with a correct classification for the sampled class or classes in each repository.
Interestingly, although the Accuracya factors out inapplicable tests, the shape
of the distribution is similar to the one we observed for applicability.9 In this
case, Sift4J performed with 100% accuracy for the sample tests in 45 of the 76
repositories, with an additional 13 repositories with accuracy above 90%. Only
a few repositories exhibit accuracy below 75%. For the repository with poorest
performance, mybatis/mybatis-3, the tests follow conventions in the Method Only,
Method—State, or similar families, but prefixed the test with the keyword should

instead of the more usual test. Customizing the rules to account for this case
requires a trivial adjustment.
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Fig. 8 Sift4J Accuracya by Repository. Each bar represents the Accuracya per repository.

Extraction Techniques Employed We profiled the execution of Sift4J to report
which extraction technique were employed in the identification of each fragment
extraction rule. Table 9 provides this data, which confirms that all extraction tech-
niques play a role in the identification of fragments from the names of unit tests in
our benchmark. Furthermore, all extraction techniques are associated with a com-
parable number of incorrect classification, in the range 3.0-6.0%. These numbers

9 The bars in the figure are ordered by increasing value and the order of repositories differs
between the two figures. The Pearson correlation between applicability and Accuracya is 0.123.
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suggest that, while incremental improvements are possible, the fallback system of
heuristics we designed is balanced and fit for purpose.

Table 9 Number of time each fragment extraction technique was used in the applicable rule
triggered, for correct vs. incorrect classifications.

Extraction Technique Correct Incorrect Total

Convention Patterns 363 12 (3.5%) 375
Static Analysis 779 24 (3.0%) 803
Grammatical Patterns 172 11 (6.0%) 183
Keywords 233 10 (4.1%) 243

Causes of Classification Errors We observed low applicable accuracy for two spe-
cific test classes: NetUtilsTest (36%) and ResourcesTest (29%). The NetUtilsTest class
has seven classification failures due to the same misspelling of test as tet. In the
ResourcesTest class of the mybatis-3 repository mentioned above, all 12 errors are
caused by idiosyncratic names that do not follow any supported convention. Both
of these cases point to issues with the naming of tests rather than the engineer-
ing of our extraction approach. Table 10 shows the reasons for all failure cases
and their occurrences in the evaluation set, comprising 35 false negatives and 39
misclassifications among applicable tests. In general, the causes for classification
errors align with those observed in the development set. The predominant cause
of errors is idiosyncratic names, characterized by four specific issues: improper
use of marker tokens, poor production method names, typographical errors, and
variations in word forms. For example, a focal method named click is manually
traceable through the terms clicks and clicking in the test name, resulting in a mis-
classification. The reason high level of abstraction impacted the accuracy of the
State Only and Result Only convention families. Additionally, the reason selection
of threshold values predominantly affected the Abbreviated Method Only and Ab-

breviated Method–State convention families. Table 11 shows the evaluation results
for each convention rule on the evaluation set. Compared to the performance of
each rule in the development set, the majority of the convention rules maintain a
high Cohen’s kappa value (≥0.8), except for the Abbreviated Method–State rule.
The primary reason for the lower agreement in the Abbreviated Method–State rule
can be attributed to the typographical errors and the thresholding effect.

Fragment Classification For the second research question, 1999 out of 2005 ex-
pected information fragments within the evaluation set were correctly identified.
The accuracy over fragment-level (Accuracyf) remains nearly perfect. All classifi-
cation errors are due to the use of different word forms. For example, a test named
resolvesRelativeUrls associated with a production method name resolve, however, the
use of the third person singular form of the verb leads to a false classification.
Overall, the results of applying Sift4J on the evaluation set is comparable to those
obtained on the development set, showing that Sift4J can effectively detect the
corresponding naming convention and extract the correct sequence of information
fragments.
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Table 10 Causes of classification errors in the evaluation set. The columns indicate the total
number of occurrences (Tot.), the number of false negatives (FN), the number of misclassifi-
cationss (Mis.).

Cause Tot. FN Mis.

Reuse of a term 6 1 5
High level of abstraction 17 13 4
Idiosyncratic naming style 33 8 25
Limitation in POS Tagger 4 2 2
Selection of threshold value 14 12 2

Total 74 35 39

Table 11 Cohen’s Kappa per Convention on the evaluation set. The columns indicate the
number of true positives (TP), the number of false positives (FP), the number of true negatives
(TN), the number of false negatives (FN).

Convention Rule TP FP TN FN κ

Class Only 8 0 1390 0 1.00
State–Scenario–Result 46 0 1352 0 1.00
Scenario–State–Result 4 0 1394 0 1.00
Method Only 354 0 1031 13 0.98
Method–State–Result 83 0 1311 4 0.97
Method–State 236 4 1143 15 0.95
Result–State 183 18 1193 4 0.93
Method–Result 42 2 1349 5 0.92
Result Only 67 7 1318 6 0.91
Abbreviated Method Only 52 1 1335 10 0.90
State–Result 4 0 1393 1 0.89
Class–State 44 9 1343 2 0.88
State Only 35 2 1352 9 0.86
Scenario–State 14 6 1378 0 0.82
Abbreviated Method–State 22 8 1363 5 0.77
Result–Method–State 0 0 1398 0 N/A

5.4 Discussion

The results of applying Sift4J to our benchmark surface a number of important
insights. First, the high accuracy we observe validates the design and feasibility of
the approach. Specifically, for all the 16 predefined conventions we implemented,
Sift4J correctly identifies the tests with the corresponding convention (RQ1) and,
given a correct convention, almost all information fragments can be properly re-
trieved (RQ2). These results are based on applying the approach to 1840 different
tests in 200 different test classes sampled from 96 different GitHub repositories of
Java projects.

Second, the variation in applicability and performance between repositories
highlights that the performance of approach is context-dependent. Figures 7 and 8
show that, while the approach can be directly applied to, and exhibits high per-
formance on, the classes sampled from most repositories in our benchmark, it is
not universally the case. The main limitation of our benchmark study is that the
sample we use is not representative. For this reason, it is not possible to use our
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overall results to predict the performance of the approach on a given project. How-
ever, the extent to which a given software project will be amenable to automatic
extraction of information fragments from tests can be better estimated from a
study of its test naming practices informed by our detailed statistics and quali-
tative analysis of misclassifications. Essentially, a project that makes systematic
use of naming conventions that can be analyzed precisely will be a good match for
fragment extraction, whereas a project that does not use naming conventions for
tests will not.

Our results also provide useful insights into the relative accuracy of various
fragment extraction strategies, as realized by convention rules in our approach.
Tables 8 and 11 report on how accurately each convention can be identified. The
consistency between the development and evaluation sets is noteworthy: the Class
Only convention, as well as the three-fragment rules based on convention patterns,
show near perfect precision, whereas the more heuristic rules involving the detec-
tion of, e.g., State or Result fragments without the benefit of a convention pattern,
fare less well. This insight can help estimate the cost of recovering information from
existing projects. For example, for projects that use a convention pattern of the
type Scenario–State–Result, converting the fragments into annotations should in-
volve a minimal amount of effort for adjusting misclassifications. In contrast, a
project with naming conventions that use more approximate information, such
as abbreviations of focal method names in test names, or that rely on the infer-
ence of state from grammatical patterns, is likely to involve more work resolving
misclassifications.

As for forward engineering, two approaches are possible: either to adopt a
systematic convention and to extract fragments automatically, or to encode frag-
ments directly as test metadata using annotations. The main benefit of recovering
fragments from test names is that it avoids perturbing the test writing process:
developers can continue to write tests as before. The tradeoff in this case revolves
around succinctness vs. expressivity of the selected naming conventions. For exam-
ple, adopting Method Only is easy to apply, but results in less information encoded
in test names, whereas three-fragment convention patterns are more verbose, but
provide information in multiple dimensions. As for encoding information directly
as annotations, the benefit is an immediate and precise encoding of test metadata,
at the initial cost of writing the annotations manually.

Our analysis of the misclassifications we encountered provides additional guid-
ance for developers wishing to improve the quality of their test suites. For instance,
using a linter to check test prefix markers (i.e., test) would already have avoided
issues in our benchmark tests. Other issues we noted point to the need for explicit
conventions for how to handle situations such as expressing polarity for Boolean
variables (e.g., using NotEnabled instead of disabled for a property enabled), avoiding
encodings based on grammatical patterns, and ensuring that uncommon conven-
tions have a corresponding implementation (e.g., when using tokens other than test

to mark tests). By surfacing these varied concerns, our results illustrate how nam-
ing tests can be a consequential code quality concern that could deserve attention
when developing test suites.

Finally, one observation from our formative study, which is reflected in our
benchmark, is that most of the tests we sampled use conventions that encode only
one or two fragments (see Table 3). One way to improve the descriptiveness of test
names is thus to increase the adoption of naming convention patterns that encode
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additional information, such as Method–State–Result. Another avenue could be
the combination of effective naming conventions with automated test tagging [15],
template-based documentation [18], or summarization techniques (e.g., [16,21]).

6 Conclusion

Motivated by the observation that test names often encode latent semantic in-
formation and the difficulty of maintaining large test suites, we designed Sift4J,
a novel rule-based approach to automatically extract the semantic information
fragments encoded in the name of a unit test.

The design of Sift4J was informed by the related work on test-to-code trace-
ability and by a formative study of popular Java projects, in which we identified
36 families of test naming conventions that encoded five different types of informa-
tion: the name of the focal method (possibly abbreviated), the name of the focal
class, the input (state) for the test, the expected result, or a scenario describing
the behavior under test.

We designed Sift4J as a rule engine to detect 16 of the most popular nam-
ing convention families we encountered to automatically extract information frag-
ments from test names, and to convert them into Java annotations. Specifying test
metadata as annotation allows tools to analyze and reorganize tests suites based
on different dimensions, such as the focal method or a certain type of input state
(e.g., null values). We illustrated a proof of concept of this potential with a plug-in
for an integrated development environment.

We evaluated Sift4J on a benchmark consisting of 1840 different tests in 200
different Java test classes sampled from 96 different GitHub repositories. The re-
sults show an accuracy of 94.2% for detecting an applicable convention family
when evaluated on the subset of tests not used to develop the approach. A de-
tailed analysis of the classification errors showed that many are due to imprecise
terms in test names. We conclude that, for projects that follow good test naming
conventions, extracting information fragments from test names is a realistic and
effective avenue for enriching test suites with additional metadata.
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