A Field Study of Developer Documentation Format

Mathieu Nassif

mnassif@cs.mcgill.ca
McGill University
Montréal, Canada

ABSTRACT

Documentation facilitates the transfer of knowledge among pro-
grammers and helps them become familiar with new technologies.
However, the effectiveness with which a reader can find informa-
tion in a document depends on its presentation format. In a prior
publication, we presented Casdoc, a novel dynamic format for code
examples. In this work, we synthesized five documentation presen-
tation guidelines from prior research on programmer information
needs and search behaviors. We then used Casdoc as an instrument
to evaluate the impact of these guidelines in a field study with 326
students who used 126 documents over several months. Participants
overwhelmingly chose to use Casdoc instead of a static baseline
format. We observed that interactive documents can contain more
information without distracting its readers. We also found some
limitations that authors should consider when applying the guide-
lines, such as the large impact of small differences in visual cues to
help readers navigate a document.

CCS CONCEPTS

« Software and its engineering — Documentation; « Social
and professional topics — Computer science education; - Human-
centered computing — Field studies; Web-based interaction;
Interactive systems and tools.

KEYWORDS

field study, softare documentation, documentation format, dynamic
documentation, code examples

ACM Reference Format:

Mathieu Nassif and Martin P. Robillard. 2023. A Field Study of Developer
Documentation Format. In Extended Abstracts of the 2023 CHI Conference
on Human Factors in Computing Systems (CHI EA ’23), April 23-28, 2023,
Hamburg, Germany. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3544549.3585767

1 INTRODUCTION

Documentation is a major asset to programmers learning a new soft-
ware system. This importance has been recognized by researchers,
who proposed many techniques to generate documents (e.g., [9,
13, 14, 26, 30]). However, high-quality documentation must not
only contain sufficient relevant information to address the needs
of its consumers: it must also be presented in a way that allows

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CHI EA °23, April 23-28, 2023, Hamburg, Germany

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9422-2/23/04.

https://doi.org/10.1145/3544549.3585767

Martin P. Robillard

martin@cs.mcgill.ca
McGill University
Montréal, Canada

consumers to effectively find that information. As documentation
becomes more complex and addresses the needs of a larger audi-
ence, its usefulness increasingly relies on an effective presentation
format to avoid common issues such as appearing too verbose or
technical, or lacking background information [2].

Despite the importance of a document’s format on its quality, the
effectiveness of different presentation styles is not well understood.
Technical writers use various strategies to present information [4],
but without empirical insights to guide their decisions. Thus, they
risk wasting efforts authoring documents that are ultimately un-
dermined by an ineffective format.

To improve software documentation practices, we investigated
the impact of presentation features on documentation quality. We
focused on interactive presentation features to deliver tailored con-
tent to a wide audience, as past work has demonstrated the value
of interactivity in online documents [35, 37, 48]. Our investigation
focuses on the presentation of code examples in tutorial resources.
We synthesized five presentation guidelines from prior work on
programmer information needs and search behaviors, and evalu-
ated these guidelines in a field study with over 300 participants
who consulted instrumented documents over approximately seven
months.

As part of the study environment, we used a novel dynamic
format, named Casdoc, which we designed and presented in a prior
publication [34]. Casdoc presents code examples with additional
annotations that readers can selectively reveal and hide. Casdoc
contrasts with the more common static layout of web-hosted docu-
mentation, reminiscent of printed books. The field study revealed
that participants overwhelmingly favored Casdoc over a baseline
format. The ability to only reveal the desired concise fragments
avoided the common sources of distraction caused by additional
content that a reader is not interested in. The study also elicited pos-
sible limitations that must be controlled. For example, selectively
revealing information may cause readers to miss useful information
if they do not know that they need it. Furthermore, small differences
in the visual navigation hints can largely bias navigation behavior.

2 RELATED WORK

Prior research on documentation formats include the work of Curtis
et al., who studied the symbology (e.g., natural language compared
to ideograms) and spatial arrangement of documents [12], and of
van der Meij et al., who reviewed the evolution of printed end-
user tutorials [45]. More recently, researchers have investigated
new media of documentation, such as video-based tutorials [29,
31, 47]. Past contributions also include guidelines and techniques
to generate high-quality videos [11, 46] and code-based learning
environments [35, 49]. Although they target relevant issues, these
contributions do not address modern text-based online documents,
which remain prevalent in the software documentation landscape.

https://orcid.org/0000-0003-0211-7256
https://orcid.org/0000-0002-0248-1384
https://doi.org/10.1145/3544549.3585767
https://doi.org/10.1145/3544549.3585767
https://doi.org/10.1145/3544549.3585767

CHI EA °23, April 23-28, 2023, Hamburg, Germany

Different techniques have also been proposed to improve the
navigability of documents through various aids, for example by de-
composing issue discussions based on an argumentation model [50]
or highlighting sentences in Stack Overflow threads to help pro-
grammers decide whether a post is relevant to their needs [32].
These techniques can mitigate some issues related to an ineffective
presentation of information, but they do not address the problem
at its source. Closer to our work, Horvath et al. proposed a tool to
create annotations on web pages [18]. Similar to their work, we
propose to augment documents with annotations, but we focus
on annotations produced as part of the documentation authoring
process.

Researchers and practitioners have also argued for and proposed
techniques to add interactivity in online documents for the general
public. For example, Victor argues that online documents should fa-
vor active reading by allowing readers to interact with the author’s
arguments and claims [48]. Hohman et al. reviewed different tech-
niques used to make documents such as news articles and research
demonstrations interactive [17]. The application context of, e.g., an
average reader of a news article differs from that of a programmer
trying to use an unfamiliar API for a specific task. However, better
understanding interactivity features of general-purpose documents
can help improve programmer-specific documents, and vice versa.

Past studies have elicited different types of information that pro-
grammers use in different contexts 5, 6] and their relation to differ-
ent types of documents [1, 3, 23, 28, 38]. Other researchers have fo-
cused on information seeking behaviors of programmers [7, 21, 40].
Pirolli and Card compared them to predators searching for preys,
i.e., information, in documents [36]. Others have elicited more nu-
anced personality profiles that vary among programmers [8, 22].
This line of work is crucial to understand the documentation needs
of programmers, but more research is required to correctly translate
their findings into actionable guidelines to design documents.

3 DOCUMENTATION PRESENTATION
FEATURES UNDER STUDY

Documentation formats can vary across many dimensions. In this
work, we studied text-based learning resources delivered through a
web interface, with the goal of comparing a static and a dynamic pre-
sentation strategy. Within this theme, we focused on five concrete
guidelines, each associated with a research question.

RQ1: Do programmers prefer an interactive format over
a static one for software documents?

RQ2[A-E]: What is the impact of [the guideline] on the
navigation behaviors of the readers of a document?

3.1 Presentation Guidelines

We synthesized the following five guidelines from prior work on
programmer information needs [5, 6, 16, 25, 41, 43] and documen-
tation reading behaviors [7, 10, 24, 32, 42].

A. Focus on Code Examples: The document format should
emphasize high-quality code examples and help readers locate
them. Tutorial authors recognized the importance of good code
examples [15]. Some tutorials are even accompanied by curated

Mathieu Nassif and Martin P. Robillard

sets of standalone examples with minimal additional explanations.!

Code examples capture concrete partial solutions that programmers
can copy and adapt to their needs. Hence, programmers commonly
choose to first read the code examples in a document, and refer to
the surrounding text only if some information is ambiguous [7]. The
absence of code examples is also generally considered a negative
aspect of a document [33, 39].

B. Reveal Information Gradually: The document format should
reveal only some parts of the content at a time, ideally based on
the needs of the reader. Being overly verbose and containing in-
sufficient information are two common, yet conflicting issues of
documentation [2]. A document should contain enough information
to satisfy the needs of a large audience. However, even if some infor-
mation is present in a document, if a reader cannot find it quickly,
they are likely to look for another document instead [27, 51]. Ex-
posing readers to only parts of a document at a time can mitigate
both issues. Collapsible HTML components can be used for that
purpose, allowing readers to choose which information to reveal ?
Tabbed containers can also be used to show information relevant
for alternative technologies. The document thus caters to a larger
audience while allowing readers to see only the information about
the technology they prefer.3

C. Split Information into Small Fragments: The document
format should consist of concise, self-contained fragments. It is
common for programmers to read a document out of sequence [7]:
they may look for a specific section related to their needs, skip
information that they already know, or go back to an earlier point
in the document to find background information about a concept. A
set of concise and decoupled fragments can support such navigation
behaviors. For example, the structure of API reference documenta-
tion consists of one fragment per API element, and it is generally
not necessary to read one particular fragment to understand an-
other.* As an additional benefit, explicit fragments are easier to
reuse to generate or augment other documents, e.g., for advanced
query-answering systems [13, 19].

D. Structure Information with Explicit Hints: The document
format should include clear hints, separate from the main text, to
guide readers as they navigate the structure of a document. Nav-
igating within the content of a document is an important aspect
of searching for information [36]. Clear navigation links can help
reduce this within-document navigation effort, so that readers find
the information they seek before they start looking elsewhere [51].
For example, traditional navigation aids, such as a table of contents,
can remain visible and mark the reader’s position as they scroll
down.® Structural hints can provide a sense of location when read-
ers navigate the document, particularly when they use small steps

'E.g., https://www.w3schools.com/java/java_examples.asp and https://www.
programiz.com/java- programming/examples

2E.g., the FAQs document of Amazon API Gateway uses a collapsible element for the
answer of each question: https://aws.amazon.com/api-gateway/faqs/

3E.g., Android Developer Guides uses this strategy to show equivalent code examples
either in Kotlin or Java: https://developer.android.com/guide

4E.g., the API reference documentation for the Java standard libraries, https://docs.
oracle.com/en/java/javase/17/docs/api/index.html

5E.g., most modern IDEs, as well as Casdoc, can dynamically deliver the reference
documentation of an API element that appears in the code.

®E.g., the table of contents of spaCy’s official tutorial is always visible in the left margin,
https://spacy.io/usage/spacy-101

https://www.w3schools.com/java/java_examples.asp
https://www.programiz.com/java-programming/examples
https://www.programiz.com/java-programming/examples
https://aws.amazon.com/api-gateway/faqs/
https://developer.android.com/guide
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://spacy.io/usage/spacy-101

A Field Study of Developer Documentation Format

to locate the target information rather than trying to jump directly
to it [42].

E. Support the Integration of External Content: The docu-
ment format should provide a systematic way to integrate informa-
tion from external sources. The extensive prior work on documenta-
tion generation and information retrieval (e.g., [26, 44]) constitutes
a valuable opportunity to increase the coverage of a document.
However, as the trustworthiness, authoritativeness, and tone of im-
ported content can vary, it is important to clearly identify its source
and to avoid inserting fragments that could degrade the quality of
the original parts of a document. For example, Treude and Robillard
implemented an approach to insert content from Stack Overflow in
a floating box in the top right corner of reference documentation
to avoid the risk of corrupting its original content [44].

3.2 Casdoc Documentation Format

In the field study, Casdoc served as an instrument to assess the
impact of each guideline on the navigation behaviors of partici-
pants. In addition, Casdoc’s implementation also demonstrates the
feasibility of implementing all guidelines in a single format and
constitutes a concrete example of the application of each guideline.
Our previous publication [34] describes the format in detail, and
we summarize the most important aspects below.

Casdoc is an interactive format centered around code examples.
The initial view of a Casdoc document consists of a high-quality
top-level code example (Figure 1, left). Markers (blue underlines
and gray brackets) indicate the presence of explanations, initially
hidden, about some code elements. Readers reveal these explana-
tions in floating annotations by hovering over the marker (Figure 1,
middle). The annotation automatically disappears when the cursor
leaves the marker or the annotation itself, allowing readers to reveal
and hide annotations by moving the cursor over the code example.

Readers can also find markers inside an annotation, pointing
to further nested annotations (Figure 1, right). Annotations are
concise, as supporting details, e.g., a concept definition, are moved
to nested annotations. Clicking on an annotation marker pins the
annotation to the document. Readers can resize and move pinned
annotations to personalize the presentation of information. To keep
readers aware of the implicit graph structure of annotations, pinned
nested annotations show a breadcrumb trail that readers can use to
open a parent annotation. A search bar allows to locate information
in any annotation, and two buttons allow to undo and redo the
pinning actions.

Finally, Casdoc documents automatically import the reference
documentation of standard library types and methods. This external
content is inserted in their own annotations (Figure 1, middle), or
in a separate part of a combined annotation if the marker for an
original explanation would conflict with the anchor of reference
documentation.

4 FIELD STUDY DESIGN

The field study took place during two consecutive sections of a third-
year undergraduate course on software design with an important
programming component. We provided part of the the pedagogical
material that students used during the course and analyzed their

CHI EA °23, April 23-28, 2023, Hamburg, Germany

interaction with the documents to answer our research question.”
Each document we provided was available in two formats: a tra-
ditional, static format to use as a baseline, and the Casdoc format.
Two different instructors, including one author of this paper, taught
the two sections.

4.1 Ethical and Scientific Considerations

We designed the field study to maximize the ecological validity of
the collected evidence and minimize the risks on participants. As
members of the target audience for programmer documentation,
students used the documents to satisfy genuine information needs.
They accessed the documents through a public website, just like
any other online resource.

We took great care not to pressure students into using a doc-
umentation format they were not comfortable with. We ensured
that no personally identifiable data was collected and made this
constraint explicit to students, so that they would not fear that
their participation in the study or their preference of document
format may affect their performance in the course. Also, students
did not have to participate in the study to access all documents in
the baseline format on the same website, to avoid giving an unfair
advantage in the course to participants. Finally, we designed the
study to be minimally disruptive, to avoid unnecessary distractions
for students and to limit cognitive biases related to being observed.
Due to this constraint and to preserve the anonymity of participants,
we excluded data collection methods such as surveys, interviews,
and feedback forms.

These considerations encouraged participants to use the format
they found the most valuable, even if it was the baseline format.
Hence, we interpret a preference for one format as evidence of
higher fitness for purpose of the format.

4.2 Document Creation

We prepared the corpus of documents for the study by inserting
additional explanations in documents taken from the companion
website of the course’s textbook.2 The companion website contains
exercise statement, solution descriptions, and 126 code examples: 72
of them implement code described in the textbook (i.e., chapter code)
and the other 54 show some solutions to the exercises (i.e., solution
code). We only modified code examples, as exercise statements and
solution descriptions were already sufficiently detailed.

For each code example, both formats contained the same ad-
ditional explanations: the baseline format showed them as code
comments, whereas Casdoc showed them as interactive annotations.
Casdoc documents also contained the reference documentation of
standard types and methods. The baseline format did not contain
this external content to avoid extremely long code comments.

4.3 Data Collection

Participants accessed the documents on a public website. In the first
course section, only the augmented code examples were hosted on
the website. For the second section, we also hosted exercise state-
ments and solution descriptions, without modification, to group all

"We only collected data from students who provided informed consent. The study was
approved by our institutional ethics review board.
8https://github.com/prmr/DesignBook

https://github.com/prmr/DesignBook

CHI EA °23, April 23-28, 2023, Hamburg, Germany

Mathieu Nassif and Martin P. Robillard

public static Connection createConnection()
{
try
{
string connectionurl = "jdbe:m
Connection connection = Driveri
return connection;

catch (SQLException e)

ager . getConne:

1://localhost : 800!

tionurl);

public static Connection createConnection() ‘Search wi .
{
try © public interface Connection extends Wrapper,

{ AutoCloseable
string conn¢
connection’}
return conng
A connection (session) with a specific database. SQL statements are
Catoh (SQLExpep! ©XeIed and resuls ae etumed witin the ontet of a connecion.

public static Connection createconnection() earch vithin popover Bl B
{
try
{
string connectionurl = "
connection connection =

//1ocalhost
nager . getConn:

base1";
nectionurl);

@ DriverManager x

DriverManager JDBG drivers

e.printstackTrace();
return null;
¥ }
1 }

e.printstackTrace();
return null;

When getconnection is called, Drivertanager triesto | [

This is required to then establish a connection with the
database specified by connectionurl

JDBG Driver s a software component that
enables java application to interact with the

Figure 1: Casdoc Document in its Initial View (left); With a Floating Annotation (middle); With Pinned and Nested Annotations

(right)

Table 1: Events Collected During the Field Study

Event Origin IDs Details

Visit any page” server D

Consent to study server P/S

Withdraw consent server P

Start new session server P/S

Open code example server P/S/D format
Change format server P/S/D new format
Open/Close annotation client ~ P/S/D annotation ID
Interact with marker client ~ P/S/D marker ID
Use search widget client ~ P/S/D query; selection(s)
Use navigation widgets client ~ P/S/D result

“This event was only collected during the second section of the course.

documents in a single location and increase the adoption rate of
the study’s website.

We instrumented the documents with asynchronous JavaScript
functions to send events to an HTTP POST endpoint of the study’s
website when participants interacted with Casdoc’s features. As
the baseline format did not have any interactive feature, there was
no event to log. However, the website also logged every document
request by each participant in either format, allowing us to follow
which document they consulted. For the second section of the
course, we modified the website to additionally log all document
requests, regardless of whether it was made by a participant but
without capturing any information about the request origin. These
additional events allowed us to assess the selection bias in our
results.

To follow events performed by different participants, we stored
three HTTP cookies in a participant’s browser. When a participant
consented to the study, the website generated a random ID, sent
in a persistent cookie that also served as proof that they agreed
to participate in the study. The website also sent a second random
ID in a session cookie. This cookie was reset when a participant
closed and reopened their browser. Finally, a third persistent cookie
retained the last format used by the participant, so that the next
document would be opened in the same format. The value of this
cookie was set by default to the Casdoc format when a participant
consented to the study.

4.4 Collected Events

Table 1 summarizes the types of events we collected. The first six
types of events are generated by the website, whereas the last four

Table 2: Summary Statistics of the Collected Data

Property Section 1 Section2 Total
Study length (days) 104 102 206
All document requests” - 19594 -
Code example requests” - 14 644 -
Enrolled students 165 321 486
Participants 124 202 326
Sessions 176 541 717
Opened code examples 827 6511 7338
Logged interactions 2795 15570 18365

“including from non participating students

types are generated by JavaScript functions and sent through the
HTTP POST endpoint. For each event, the website stored the type
of event and a timestamp, as well as the related participant (P),
session (S), or document (D) IDs and additional details as described
in the last two columns of Table 1. Table 2 gives an overview of the
data we collected. In total, 326 participants generated over 18 000
interaction events while consulting 7338 code examples.

4.5 Limitations

HTTP cookies and AJAX requests are not as reliable as a controlled
research environment, e.g., in a laboratory setting. A participant
who cleared their cookies or changed web browsers during the study
could be assigned multiple IDs. However, rigorously establishing
the identity of participant would require the collection of personal
information. To limit this threat, most of our analyses do not depend
on the precise disambiguation of participants.

Although unlikely, it was also possible for a malicious individual
to send artificial events to the POST endpoint. We mitigated this
threat with a strategy based on a cryptographic function to detect
tampering attempts, and by generating key events (e.g., opening a
document) on the server side. We found no inconsistencies in the
collected data.

Our participant sample is also susceptible to a selection bias.
Students who participated in the study may be disproportionately
enthusiastic about trying new technologies, whereas students sat-
isfied with the baseline format did not need to be participants to
use it. We assessed the magnitude of this bias by comparing the
number of code example requests by participants (6578) to all re-
quests received by the website (14 644) during the second section.
These statistics show that our analysis ignores 55.1% of document
requests. Some of these requests likely originate from students who

A Field Study of Developer Documentation Format

did not try Casdoc, but others may be due to web crawling bots.
Nevertheless, the collected data captured the behavior of at least a
considerable portion of our sampling frame.

Finally, as we only experimented with two formats, our results
must be interpreted with care when applied to other formats. Stu-
dents could have preferred a different baseline format over Casdoc,
and some presentation guidelines that were beneficial to Casdoc
could become detrimental if implemented differently or for a differ-
ent type of documents. Further studies are required, using different
formats and methodologies, to fully understand how the format of
a document impacts its quality.

5 RESULTS

We reassembled the flat list of events into a meaningful structure
to analyze our results. The actions of each participant are split into
sessions, i.e., a period of continuous usage of the website. During a
session, a participant viewed code example documents. Participants
performed different actions on code examples, such as viewing an
annotation and using the search widget. We considered all events
performed within 15 minutes of consenting to the study as part of
a learning period. We excluded the data of all participants who did
not interact with the website beyond their learning period.

We observed that some participants left their browser open for
many days or weeks, in which case the session ID cookie was never
reset. Thus, we split long sessions whenever a participant did not
generate any event for two consecutive hours. Within each session,
opening a document initiates a new code example view, and all
subsequent actions performed on this document are associated with
this view. After artificially splitting long sessions, any document
that remained opened initiates a new code example view in the
second part of the session if the participant performed any action
on the document. A single session can contain multiple views of
the same document, if it is closed and reopened, and multiple views
of different documents can overlap.

We grouped successive events associated with the same Casdoc
annotation as a single annotation view action. Each annotation view
starts with zero or more hovering events, optionally followed by a
pin event, and a final optional unpin event. We grouped together
multiple hovering events if they were less than five seconds apart, to
account for participants accidentally moving outside the marker and
immediately going back to it. To avoid spurious events, a hovering
event was generated only if the participant hovered for at least one
second over a marker.

As each keystroke in the search widget generated a new event,
we grouped all events that incrementally built towards a single
search query, as well as subsequent interactions with the search
results, as a single search action. Each use of the breadcrumbs and
the undo and redo buttons constitutes a separate action.

Table 3 describes the results of our field study. Only a minority
of participants tried the baseline format at any point during the
course, and the majority of them changed back to the Casdoc format
shortly after. This suggests a positive answer to RQ1: participants
generally preferred Casdoc over the static baseline.

As documents in both the baseline format and Casdoc were cen-
tered around code examples, we could not assess directly whether

CHI EA °23, April 23-28, 2023, Hamburg, Germany

Table 3: Metrics and Results by Research Question

RQ Metric Section 1 Section 2
Participants 54 150
Sessions by all participants 155 1060
Unique code examples 123 126
Code example views by all participants 677 6093
Unique original annotations 417 417

* For technical reasons, three code examples were not available during the first course
section. We fixed this issue for the second section.

1 Preference for a Dynamic Format
Participants who used only Casdoc 49 129
Participants who tried the baseline format 5 21
.. only during the learning phase 1 9
.. for only one document 2 5
.. for only one session (2+ documents) 1 1
.. changed more than once 0 4
.. kept baseline format until the end 1 5

Finding: Most participants only used Casdoc, and most of those who tried both formats
changed back to Casdoc within the same session.

2A Focus on Code Examples

Server-side code example requests - 11268
.. chapter code - 8857
.. solution code - 2411

Server-side exercise statement requests — 2539

Server-side solution description requests - 5787

Solution code view per solution description 0.417

Finding: Participants found value in documents centered around cude examples, to
support the rest of the course material.

2B Reveal Information Gradually

Annotation views 356 1889
Annotation view per code example view 0.528 0.322
% code example view with 1+ annotation views 17.8% 14.2%
% original annotations never viewed 42.2% 60.9%
% participants who used annotations 64.8% 76.7%

Finding: Most participants used annotations to find further information about elements
of the code examples, but only for a minority of documents.

2C Split Information into Small Fragments

Annotation views 356 1889
.. using only unpinned annotations 311 1632
Code example views with 1+ annotation views 120 832
.. with 4+ annotation views 93 696
% original annotation views that are nested 18% 9.4%

Finding: Participants mostly viewed annotations in floating boxes, suggesting that they
can grasp the information quickly. Participants did not often have to combine information
from many fragments to satisfy their needs.

2D Structure Information with Explicit Hints

Secondary navigation aid usage 4 210
.. search bar 4 208
.. undo/redo buttons 0 1
.. breadcrumbs 0 1

% code examples with navigation aid usage 0.4% 2.7%

Annotation views due to navigation aids 0.6% 1.4%

Annotation views due to code example marker 187 1272
.. blue underline under the anchor 157 1039
.. grey bracket marker in the left margin 30 233

% code example markers that are blue underlines 63% 63%

Finding: Participants did not rely often on secondary navigation aids, suggesting that the
markers are effective navigation hints. However, small differences in the visual appearance
of markers impacted their effectiveness.

2E Support the Integration of External Content

Annotations with only 3rd-party content 1148 1112
Ratio of 3rd-party to original annotations 2.75 2.67
% annotation views with only 3rd-party content 36.0% 25.7%

Finding: API reference documentation augmented code examples with a considerable
number of annotations. These imported annotations were used by participants, represent-
ing a quarter to over a third of all annotation views.

CHI EA °23, April 23-28, 2023, Hamburg, Germany

participants found this guideline beneficial. We observed that stu-
dents looked at code examples—mainly chapter code—more often
than exercise statements and solution descriptions. The number of
solution code requests did not significantly increase or decrease
as the course progressed, but was rather correlated to requests to
solution descriptions (Kendall’s 7 = 0.78, p = 0.0059 [20]). As a
preliminary answer to RQ2A, these observations suggest that docu-
ments focused on code example are useful to at least a considerable
proportion of our participants.

Most participants used annotations to find further information
about the code examples. They looked at a total of 356 and 1889
annotations during the first and second sections, respectively. Nev-
ertheless, we observed that for most code example views, partici-
pants did not use annotations. This is not surprising, as the original
code examples were designed to be self-contained by the textbook’s
author. When participants looked at annotations, we found that
they did not pin the annotation most of the time, and looked only
rarely at nested annotations. Thus, we conclude for RQ2B and
RQ2C that a gradual reveal of concise information fragments al-
lows readers to grasp key information without being distracted by
information they do not need, but it may also hide information that
the reader does not know they need. To answer RQ2D, we interpret
the low usage of secondary navigation aids, i.e., the search bar, undo
and redo buttons, and breadcrumbs, as evidence that annotation
markers clearly show the structure of each document, allowing par-
ticipants to locate the information they needed. However, we also
observed a disproportionately low usage of one type of markers:
gray brackets found in the left margin of a document. This negative
bias highlights the importance of seemingly small differences in
visual cues.

Finally, we observed that importing reference documentation
largely increased the number of annotations, which contributed to
a considerable proportion of annotation views. Hence, to answer
RQ2E, we see that integrating third-party content resulted in a
tangible improvement of the documents for a minimal effort.

6 CONCLUSION

We conducted a field study to evaluate five presentation guidelines
for web-hosted text-based software learning resources that we
synthesized from prior work. The study used a novel presentation
format, Casdoc, that dynamically reveals information based on the
readers’ needs. During two sections of a course, we collected over
18 000 interaction events from 326 students accessing documents
as part of their learning material. The data we collected suggest
that interactive documents that selectively reveal only part of their
content at a time are preferable to static documents. Our results
also provide a better understanding of the benefits and limitations
of the five guidelines we synthesized from prior work. For example,
although visual cues can help readers understand the structure of a
document, small graphical variations in the clues can have a large
impact on their usefulness. This work will hopefully encourage
researchers and technical writers to investigate in more detail the
many possible design variations for presenting textual information,
as part of the overall quality of a document.

ACKNOWLEDGMENTS

This work was funded by the Natural Sciences and Engineering
Research Council of Canada.

Mathieu Nassif and Martin P. Robillard

REFERENCES

[1] Emad Aghajani, Csaba Nagy, Mario Linares-Vasquez, Laura Moreno, Gabriele

Bavota, Michele Lanza, and David C. Shepherd. 2020. Software Documentation:

The Practitioners’ Perspective. In Proceedings of the IEEE/ACM 42nd International

Conference on Software Engineering. Association for Computing Machinery, New

York, NY, USA, 590-601.

Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Marquez, Mario Linares-Vasquez,

Laura Moreno, Gabriele Bavota, and Michele Lanza. 2019. Software Documenta-

tion Issues Unveiled. In Proceedings of the IEEE/ACM 41st International Conference

on Software Engineering. IEEE Computer Society, Los Alamitos, CA, USA, 1199-

1210.

Deeksha Arya, Jin L. C. Guo, and Martin P. Robillard. 2020. Information Cor-

respondence between Types of Documentation for APIs. Empirical Software

Engineering 25, 5 (2020), 4069-4096.

Deeksha M. Arya, Mathieu Nassif, and Martin P. Robillard. 2020. A Data-Centric

Study of Software Tutorial Design. IEEE Software 39, 3 (2020), 106-115.

Stefanie Beyer, Christian Macho, Massimiliano Di Penta, and Martin Pinzger. 2020.

What kind of questions do developers ask on Stack Overflow? A comparison

of automated approaches to classify posts into question categories. Empirical

Software Engineering 25, 3 (2020), 2258-2301.

Abir Bouraffa and Walid Maalej. 2020. Two Decades of Empirical Research

on Developers’ Information Needs: A Preliminary Analysis. In Proceedings of

the IEEE/ACM 42nd International Conference on Software Engineering Workshops.

Association for Computing Machinery, New York, NY, USA, 71-77.

[7] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer.
2009. Two Studies of Opportunistic Programming: Interleaving Web Foraging,
Learning, and Writing Code. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. Association for Computing Machinery, New York,
NY, USA, 1589-1598.

[8] Margaret Burnett, Anicia Peters, Charles Hill, and Noha Elarief. 2016. Finding

Gender-Inclusiveness Software Issues with GenderMag: A Field Investigation.

In Proceedings of the CHI Conference on Human Factors in Computing Systems.

Association for Computing Machinery, New York, NY, USA, 2586-2598.

Raymond P. L. Buse and Westley Weimer. 2012. Synthesizing API Usage Examples.

In Proceedings of the 34th International Conference on Software Engineering. IEEE

Computer Society, Los Alamitos, CA, USA, 782-792.

Kaibo Cao, Chunyang Chen, Sebastian Baltes, Christoph Treude, and Xiang Chen.

2021. Automated Query Reformulation for Efficient Search Based on Query

Logs From Stack Overflow. In Proceedings of the IEEE/ACM 43rd International

Conference on Software Engineering. IEEE Computer Society, Los Alamitos, CA,

USA, 1273-1285.

Pei-Yu Chi, Sally Ahn, Amanda Ren, Mira Dontcheva, Wilmot Li, and Bjérn

Hartmann. 2012. MixT: Automatic Generation of Step-ty-Step Mixed Media

Tutorials. In Proceedings of the 25th annual ACM symposium on User interface

software and technology. Association for Computing Machinery, New York, NY,

USA, 93-102.

Bill Curtis, Sylvia B. Sheppard, Elizabeth Kruesi-Bailey, John Bailey, and Debo-

rah A. Boehm-Davis. 1989. Experimental Evaluation of Software Documentation

Formats. Journal of Systems and Software 9, 2 (1989), 167-207.

Rodrigo Fernandes Gomes da Silva, Chanchal K. Roy, Mohammad Masudur Rah-

man, Kevin A. Schneider, Klérisson Paixdo, Carlos Eduardo de Carvalho Dantas,

and Marcelo de Almeida Maia. 2020. CROKAGE: effective solution recommenda-
tion for programming tasks by leveraging crowd knowledge. Empirical Software

Engineering 25, 6 (2020), 4707-4758.

[14] Sonia Haiduc, Jairo Aponte, Laura Moreno, and Andrian Marcus. 2010. On the

Use of Automated Text Summarization Techniques for Summarizing Source

Code. In Proceedings of the 17th Working Conference on Reverse Engineering. IEEE

Computer Society, Los Alamitos, CA, USA, 35-44.

Andrew Head, Jason Jiang, James Smith, Marti A. Hearst, and Bjérn Hartmann.

2020. Composing Flexibly-Organized Step-by-Step Tutorials from Linked Source

Code, Snippets, and Outputs. In Proceedings of the CHI Conference on Human

Factors in Computing Systems. Association for Computing Machinery, New York,

NY, USA, 1-12.

[16] Andrew Head, Caitlin Sadowski, Emerson Murphy-Hill, and Andrea Knight. 2018.

When Not to Comment: Questions and Tradeoffs with API Documentation for

C++ Projects. In Proceedings of the ACM/IEEE 40th International Conference on

Software Engineering. Association for Computing Machinery, New York, NY, USA,

643-653.

Fred Hohman, Matthew Conlen, Jeffrey Heer, and Duen Horng (Polo) Chau.

2020. Communicating with Interactive Articles. Distill 5, 9 (2020), e28. https:

//distill.pub/2020/communicating- with-interactive-articles

[18] Amber Horvath, Michael Xieyang Liu, River Hendriksen, Connor Shannon, Emma

Paterson, Kazi Jawad, Andrew Macvean, and Brad A Myers. 2022. Understanding
How Programmers Can Use Annotations on Documentation. In Proceedings of

5

&

—_
=t

[5

[6

[

[10

[11

[12

(13

=
&

[17

https://distill.pub/2020/communicating-with-interactive-articles
https://distill.pub/2020/communicating-with-interactive-articles

A Field Study of Developer Documentation Format

the CHI Conference on Human Factors in Computing Systems. Association for
Computing Machinery, New York, NY, USA, 69:1-16.

[19] Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang. 2018. API

Method Recommendation without Worrying about the Task-API Knowledge

Gap. In Proceedings of the 33rd ACM/IEEE International Conference on Automated

Software Engineering. Association for Computing Machinery, New York, NY, USA,

293-304.

Maurice G Kendall. 1938. A new measure of rank correlation. Biometrika 30, 1/2

(1938), 81-93.

[21] Amy J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006. An
Exploratory Study of How Developers Seek, Relate, and Collect Relevant In-
formation during Software Maintenance Tasks. IEEE Transactions on Software
Engineering 32, 12 (2006), 971-987.

[22] Amy J. Ko and Bob Uttl. 2003. Individual Differences in Program Comprehension
Strategies in Unfamiliar Programming Systems. In Proceedings of the 11th IEEE
International Workshop on Program Comprehension. IEEE Computer Society, Los
Alamitos, CA, USA, 175-184.

[23] Timothy C. Lethbridge, Janice Singer, and Andrew Forward. 2003. How Software
Engineers Use Documentation: The State of the Practice. IEEE Software 20, 6
(2003), 35-39.

[24] Jiakun Liu, Sebastian Baltes, Christoph Treude, David Lo, Yun Zhang, and Xin Xia.
2021. Characterizing Search Activities on Stack Overflow. In Proceedings of the
29th ACM Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering. Association for Computing
Machinery, New York, NY, USA, 919-931.

[25] Mingwei Liu, Xin Peng, Andrian Marcus, Shuangshuang Xing, Christoph Treude,

and Chengyuan Zhao. 2021. API-Related Developer Information Needs in Stack

Overflow. IEEE Transactions on Software Engineering 48, 11 (2021), 4485-4500.

Mingwei Liu, Xin Peng, Andrian Marcus, Zhenchang Xing, Wenkai Xie, Shuang-

shuang Xing, and Yang Liu. 2019. Generating Query-Specific Class API Sum-

maries. In Proceedings of the 27th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering.

Association for Computing Machinery, New York, NY, USA, 120-130.

[27] Lori Lorigo, Bing Pan, Helene Hembrooke, Thorsten Joachims, Laura Granka,

and Geri Gay. 2006. The influence of task and gender on search and evaluation

behavior using Google. Information Processing & Management 42, 4 (2006), 1123—

1131.

Walid Maalej and Martin P. Robillard. 2013. Patterns of Knowledge in API

Reference Documentation. IEEE Transactions on Software Engineering 39, 9 (2013),

1264-1282.

[29] Laura MacLeod, Andreas Bergen, and Margaret-Anne Storey. 2017. Documenting
and sharing software knowledge using screencasts. Empirical Software Engineer-
ing 22, 3 (2017), 1478-1507.

[20

[26

[28

[30] Paul W. McBurney and Collin McMillan. 2014. Automatic Documentation Gen-
eration via Source Code Summarization of Method Context. In Proceedings of
the 22nd International Conference on Program Comprehension. Association for
Computing Machinery, New York, NY, USA, 279-290.

[31] Parisa Moslehi, Juergen Rilling, and Bram Adams. 2022. A user survey on the

adoption of crowd-based software engineering instructional screencasts by the
new generation of software developers. Journal of Systems and Software 185
(2022), 111144
[32] Sarah Nadi and Christoph Treude. 2020. Essential Sentences for Navigating
Stack Overflow Answers. In Proceedings of the IEEE 27th International Conference
on Software Analysis, Evolution and Reengineering. IEEE Computer Society, Los
Alamitos, CA, USA, 229-239.
Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns. 2012. What
Makes a Good Code Example? A Study of Programming Q&A in StackOverflow.
In Proceedings of the 28th IEEE International Conference on Software Maintenance.

[33

[34

[35

[36

@
=

[38

[39

[40

[41

[42]

=
&

[44

[45

o
=

[51]

CHI EA °23, April 23-28, 2023, Hamburg, Germany

IEEE Computer Society, Los Alamitos, CA, USA, 25-34.

Mathieu Nassif, Zara Horlacher, and Martin P. Robillard. 2022. Casdoc: Unob-
trusive Explanations in Code Examples. In Proceedings of the 30th IEEE/ACM
International Conference on Program Comprehension. Association for Computing
Machinery, New York, NY, USA, 631-635.

Stephen Oney and Joel Brandt. 2012. Codelets: Linking Interactive Documentation
and Example Code in the Editor. In Proceedings of the SSIGCHI Conference on Human
Factors in Computing Systems. Association for Computing Machinery, New York,
NY, USA, 2697-2706.

Peter Pirolli and Stuart Card. 1999. Information Foraging. Psychological Review
106, 4 (1999), 643—675.

Plotly, Inc. 2021. Plotly JavaScript Open Source Graphing Library. https:
//plotly.com/javascript/ Last accessed 2023-03-03.

Daniele Procida. 2017. Diataxis documentation framework. https://diataxis.fr/
Accessed 2022-07-30.

Martin P. Robillard. 2009. What makes APIs hard to learn? Answers from Devel-
opers. IEEE Software 26, 6 (2009), 27-34.

Martin P. Robillard and Christoph Treude. 2020. Understanding Wikipedia as a
Resource for Opportunistic Learning of Computing Concepts. In Proceedings of

the 51st ACM Technical Symposium on Computer Science Education. Association
for Computing Machinery, New York, NY, USA, 72-78.

Christoffer Rosen and Emad Shihab. 2016. What are mobile developers asking
about? A large scale study using stack overflow. Empirical Software Engineering
21, 3 (2016), 1192-1223.

Jaime Teevan, Christine Alvarado, Mark S. Ackerman, and David R. Karger. 2004.
The Perfect Search Engine Is Not Enough: A Study of Orienteering Behavior in
Directed Search. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. Association for Computing Machinery, New York, NY, USA,
415-422.

Christoph Treude, Ohad Barzilay, and Margaret-Anne Storey. 2011. How Do
Programmers Ask and Answer Questions on the Web? (NIER Track). In Proceed-
ings fo the 33rd International Conference on Software Engineering. Association for
Computing Machinery, New York, NY, USA, 804-807.

Christoph Treude and Martin P. Robillard. 2016. Augmenting API Documen-
tation with Insights from Stack Overflow. In Proceedings of the 38th ACM/IEEE
International Conference on Software Engineering. Association for Computing
Machinery, New York, NY, USA, 392-403.

Hans van der Meij, Joyce Karreman, and Michaél Steehouder. 2009. Three Decades
of Research and Professional Practice on Printed Software Tutorials for Novices.
Technical Communication 56, 3 (2009), 265-292.

Hans van der Meij and Jan van der Meij. 2013. Eight Guidelines for the Design
of Instructional Videos for Software Training. Technical Communication 60, 3
(2013), 205-228.

Hans van der Meij and Jan van der Meij. 2014. A comparison of paper-based and
video tutorials for software learning. Computers & Education 78 (2014), 150-159.
Bret Victor. 2011. Explorable Explanations. http://worrydream.com/
ExplorableExplanations/ Last accessed 2023-03-03.

Bret Victor. 2012. Learnable Programming. http://worrydream.com/
LearnableProgramming/ Last accessed 2023-03-03.

Wenting Wang, Deeksha Arya, Nicole Novielli, Jinghui Cheng, and Jin L. C. Guo.
2020. ArguLens: Anatomy of Community Opinions On Usability Issues Using
Argumentation Models. In Proceedings of the CHI Conference on Human Factors in
Computing Systems. Association for Computing Machinery, New York, NY, USA,
1-14.

Wan-Ching Wu, Diane Kelly, and Avneesh Sud. 2014. Using Information Scent
and Need for Cognition to Understand Online Search Behavior. In Proceedings
of the 37th International ACM SIGIR conference on Research & development in
information retrieval. Association for Computing Machinery, New York, NY, USA,
557-566.

https://plotly.com/javascript/
https://plotly.com/javascript/
https://diataxis.fr/
http://worrydream.com/ExplorableExplanations/
http://worrydream.com/ExplorableExplanations/
http://worrydream.com/LearnableProgramming/
http://worrydream.com/LearnableProgramming/

	Abstract
	1 Introduction
	2 Related Work
	3 Documentation Presentation Features Under Study
	3.1 Presentation Guidelines
	3.2 Casdoc Documentation Format

	4 Field Study Design
	4.1 Ethical and Scientific Considerations
	4.2 Document Creation
	4.3 Data Collection
	4.4 Collected Events
	4.5 Limitations

	5 Results
	6 Conclusion
	Acknowledgments
	References

