
CReN*: A Tool for Tracking Copy-and-Paste Code Clones
and Renaming Identifiers Consistently in the IDE

* http://www.clarkson.edu/~dhou/projects/CReN

Patricia Jablonski
Engineering Science, School of Engineering

Clarkson University, Potsdam, NY 13699

jablonpa@clarkson.edu

Daqing Hou
Electrical and Computer Engineering

Clarkson University, Potsdam, NY 13699

dhou@clarkson.edu

ABSTRACT

Programmers often copy and paste code so that they can reuse the
existing code to complete a similar task. Many times,
modifications to the newly pasted code include renaming all
instances of an identifier, such as a variable name, consistently
throughout the fragment. When these modifications are done
manually, undetected inconsistencies and errors can result in the
code, for example, a single instance can be missed and mistakenly
not renamed. To help programmers avoid making this type of
copy-paste error, we created a tool, named CReN, to provide
tracking and identifier renaming support within copy-and-paste
clones in an integrated development environment (IDE). CReN
tracks the code clones involved when copying and pasting occurs
in the IDE and infers a set of rules based on the relationships
between the identifiers in these code fragments. These rules
capture the programmer’s intentions, for example, that a particular
group of identifiers should be renamed consistently together.
Programmers can also provide feedback to improve the accuracy
of the inferred rules by specifying that a particular instance of an
identifier is to be renamed separately. We introduce our CReN
tool, which is implemented as an Eclipse plug-in in Java.

Categories and Subject Descriptors

D.1.5 [Programming Techniques]: Object-oriented

Programming. D.2.3 [Software Engineering]: Coding Tools and

Techniques – Object-oriented programming. D.2.6 [Software

Engineering]: Programming Environments – Integrated

environments. D.3.2 [Programming Languages]: Language
Classifications – Java, Object-oriented languages.

General Terms

Verification, Reliability, Languages, Human Factors.

Keywords

Abstract syntax tree, code clone, consistent renaming, copy-and-
paste programming, Eclipse integrated development environment,
error detection, intent inference, Java.

1. INTRODUCTION
One reason why programmers copy and paste code is to reuse
existing code as a template. In this type of copy-and-paste
programming, the programmer sees a similarity in the software
solution of a previous task and the current task, and intends to
modify the newly pasted code accordingly. A common
modification to the new code is to rename all instances of an
identifier, such as a variable name, consistently throughout the
fragment. We refer to such changes as the consistent renaming
usage pattern.

When programmers manually modify a code fragment to rename
all of an identifier’s instances, for example, they may miss an
instance, resulting in an inconsistency or error that may go
undetected by the compiler and themselves. We consider any
unintended inconsistent renaming of identifiers as an error.

Copying and pasting code results in code clones, which are
similar code fragments (an average of 10 lines of code) that are
repeated throughout the larger source code. Programmers cannot
always remove and replace these clones with a procedure,
sometimes making clones unavoidable. Other times, for example,
with code fragments that are less than 10 lines of code, it may not
be practical to extract them into procedures.

There are examples from literature that show an inconsistent
renaming of identifiers within a copy-and-pasted clone in
production code. Three examples are shown in Figure 1.

The first example in Figure 1, published in a paper by Li, et al.,
[3] is from the file memory.c in Linux version 2.6.6. The original
code fragment (on the left) is a for loop that is copied and pasted
and then modified. In the modified pasted code fragment (on the
right), the programmer intended to change all instances of the
array name “prom_phys_total” to “prom_prom_taken”. The
programmer unintentionally did not change one instance of the
array’s name (in the last line). The compiler did not detect this
error because “prom_phys_total” is still in scope. In this example,
the for loop was copied and pasted within the same function: void
__init prom_meminit(void), which begins at line 68 in memory.c
(not shown).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ETX’07, October 21–22, 2007, Montréal, Québec, Canada.
Copyright 2007 ACM 0-00000-000-0/00/0000…$5.00.

The second example that is shown in Figure 1, from a paper by
Liblit, et al., [4] is code that is part of the GNU command “bc”, in
the file storage.c. The original copied code fragment (on the left)
is a function named “more_variables” that allocates a larger
amount of memory for the “variables” array. It then copies the
values over from the smaller array “old_var” to the larger array
“variables” (in the first for loop), and then fills in the rest of the
space in the “variables” array with NULL. In the modified pasted
code fragment (on the right), the function’s name was renamed
from “more_variables” to “more_arrays”, the type “bc_var” was
renamed to “bc_var_array”, and all instances of the arrays
“old_var”, “variables”, and “v_names” were renamed to
“old_ary”, “arrays”, and “a_names”, respectively. However, one
instance of the variable “v_count” in this function was missed and
not renamed to “a_count” (in the second for loop’s condition).
Because “v_count” is defined as a global variable, this copy-paste
error is not detected by the compiler.

Figure 1’s third example is from a paper by Jiang, et al., [2] and is
code in the file dependency.c from the GCC Fortran compiler. In

this example, the identifier “l_stride” in the if statement’s
condition is also used in the if statement’s body. However, in the
modified code fragment, the “r_stride” identifier was supposed to
be left as “l_stride”. This is a different type of error than the other
two, but is still an inconsistency in renaming that was not caught
by the compiler or the programmer during development.

All of the examples presented here contain inconsistent renaming
errors that were found in existing production source code (there
are also many more examples of this in practice). We hope to
prevent this type of error from occurring at all, by catching it
during program development. This should be more cost effective
than detecting and fixing inconsistent renaming errors after they
have happened. Existing tools typically involve computationally
expensive, sophisticated algorithms, like statistical bug isolation
[4], or running a clone detection tool followed by a number of
error detection and pruning algorithms, which still results in many
false positives [2, 3]. However, we believe that our consistent
renaming tool (CReN) complements existing error detection tools,
which are still needed to find potential errors in legacy code.

 The Original Copied Code Fragment The Modified Pasted Code Fragment (Buggy)

1 File: linux-2.6.6/arch/sparc64/prom/memory.c (lines 92-99)

for(iter=0; iter<num_regs; iter++){
 prom_phys_total[iter].start_adr =
 prom_reg_memlist[iter].phys_addr;
 prom_phys_total[iter].num_bytes =
 prom_reg_memlist[iter].reg_size;
 prom_phys_total[iter].theres_more =
 &prom_phys_total[iter+1];
}

File: linux-2.6.6/arch/sparc64/prom/memory.c (lines 111-118)

for(iter=0; iter<num_regs; iter++){
 prom_prom_taken[iter].start_adr =
 prom_reg_memlist[iter].phys_addr;
 prom_prom_taken[iter].num_bytes =
 prom_reg_memlist[iter].reg_size;
 prom_prom_taken[iter].theres_more =

 &prom_phys_total[iter+1]; //error
}

2 File: bc-1.06/bc/storage.c (lines 118-150)

void
more_variables ()
{
 int indx;
 int old_count;
 bc_var **old_var;
 char **old_names;

 /* Save the old values. */
 old_count = v_count;
 old_var = variables;
 old_names = v_names;

 /* Increment by a fixed amount and allocat...
 v_count += STORE_INCR;
 variables = (bc_var **) bc_malloc (v_count...
 v_names = (char **) bc_malloc (v_count*siz...

 /* Copy the old variables. */
 for (indx = 3; indx < old_count; indx++)
 variables[indx] = old_var[indx];

 /* Initialize the new elements. */
 for (; indx < v_count; indx++)
 variables[indx] = NULL;

 ...
}

File: bc-1.06/bc/storage.c (lines 152-185)

void
more_arrays ()
{
 int indx;
 int old_count;
 bc_var_array **old_ary;
 char **old_names;

 /* Save the old values. */
 old_count = a_count;
 old_ary = arrays;
 old_names = a_names;

 /* Increment by a fixed amount and allocat...
 a_count += STORE_INCR;
 arrays = (bc_var_array **) bc_malloc (a_co...
 a_names = (char **) bc_malloc (a_count*siz...

 /* Copy the old arrays. */
 for (indx = 1; indx < old_count; indx++)
 arrays[indx] = old_ary[indx];

 /* Initialize the new elements. */

 for (; indx < v_count; indx++) //error
 arrays[indx] = NULL;

 ...
}

3 File: gcc-4.0.1/gcc/fortran/dependency.c (lines 414-415)

if (l_stride != NULL)
 mpz_cdiv_q (X1, X1, l_stride->value.integer);

File: gcc-4.0.1/gcc/fortran/dependency.c (lines 422-423)

if (l_stride != NULL)

 mpz_cdiv_q (X2, X2, r_stride->val... //error

Figure 1. Three examples from literature that show an inconsistent renaming of identifiers in the pasted code fragment.

2. USAGE SCENARIOS
In this section, we demonstrate how CReN would catch each of
the identifier renaming errors in the three examples from Figure
1 in the scenario that each of these programs is currently being
written in the IDE. The examples have been rewritten in Java.

In each example, when the original code fragment is copied and
pasted, CReN will group identifiers within a code fragment and
map pairs of identifiers that are at the same location in the
copied and the pasted code fragments. When the code is initially
pasted, the pasted fragment is identical to the original. This
makes the identifier mapping possible, with modifications being
tracked as they happen.

In the first example in Figure 1, the for loop is copied and
pasted from lines 92-99 to lines 111-118 in the memory.c file.
CReN detects this and, with support from the ASTs, extracts a
rule stating that all occurrences of the identifier
“prom_phys_total” in lines 93-98 should be changed to the same
identifier in the new copy. With this rule, when the programmer
changes any instance of “prom_phys_total” in the pasted code
fragment to “prom_prom_taken” all of the other instances (in
the group) will also be renamed to “prom_prom_taken”
consistently, as shown in Figure 2. Hence, CReN will be able to
prevent the missed renaming shown in the first cell of the buggy
column in Figure 1.

Figure 2. CReN consistently renames all instances of

“prom_phys_total” to “prom_prom_taken” in the fragment

when any one instance of “prom_phys_total” in the fragment

is modified.

In the second example in Figure 1, the entire function is copied
and pasted from lines 118-150 to lines 152-184 in the file
storage.c. CReN detects the copying and pasting and, from the
ASTs, extracts a rule that states that all occurrences of the
identifier “v_count” in lines 118-150 should be changed to the
same identifier in the new copy. With this rule, when the
programmer changes any instance of “v_count” in the pasted
code fragment to “a_count” all of the other instances (in the

group) will also be renamed to “a_count” consistently, as shown
in Figure 3. CReN will be able to prevent the missed renaming
that is in the second for loop shown in this example.

Figure 3. CReN consistently renames all instances of

“v_count” to “a_count” in the fragment when any one

instance of “v_count” in the fragment is modified.

The third example in Figure 1 is different from the other two. In
this example, an if statement was copied and pasted from lines
414-415 to lines 422-423 in the dependency.c file. CReN
detects the copying and pasting and, from the ASTs, extracts a
rule that states that all occurrences of the identifier “l_stride” in
lines 414-415 should be changed to the same identifier in the
new copy. With this rule, when the programmer changes any
instance of “l_stride” (for example, the bottom “l_stride”) in the
pasted code fragment to “r_stride”, all of the other instances (in
the group, for example, the top “l_stride”) will also be renamed
to “r_stride” consistently. However, according to Jiang, et al.,
[2] while the GCC developers confirmed that the inconsistency
(one “l_stride” and one “r_stride”) is a bug, it is not for this

reason. In fact, the programmers intended to not rename either
of the instances of “l_stride” in this clone at all. We don’t focus
on this case exactly, since we expect the pasted code to be
modified (we consider the type of copy-and-paste where code is
reused as a template as opposed to exact duplication), but CReN
would still be able to alert the programmer of the inconsistency.
When the other instance of “l_stride” is being renamed to
“r_stride”, programmers should then realize that they didn’t
intend to make either modification. (This is still different from
the case when the programmer intends to rename an instance of
an identifier independently from the others. We directly provide
the functionality in CReN for the programmer to be able to
remove an instance of an identifier from a group that is to be
renamed consistently together).

3. THE CReN TOOL
Our consistent renaming (CReN) tool is an Eclipse plug-in
written in and for Java. Once installed, CReN starts
automatically listening to document activity in the Eclipse IDE’s
editor. To capture information about the source code, CReN
uses the AST API of the Eclipse JDT framework. Abstract
syntax trees (ASTs) allow CReN to establish relationships of the
copy-and-pasted code, and infer knowledge about consistent
renaming. Such knowledge is then used to help programmers
consistently rename identifiers in the clone fragments. This tool
also interacts with the programmer to incrementally refine the
inferred knowledge, ensuring that the knowledge matches the
programmer’s intentions. Conceptually, the CReN tool consists
of two parts: tracking copy-and-paste clones and performing the
consistent identifier renaming.

CReN automatically tracks the clones involved when the
copying and pasting operations happen in the IDE. Because of
this, no clone detection tool or manual selection of clones is
needed. The CReN tool keeps track of and continuously updates
the related clones’ locations and all identifiers’ locations within
each clone. Specifically, CReN represents a clone region by the
Java file name where the clone is located, and its range location
in the file (offset and length). A clone group, which in general
can contain two or more members, is also tracked. With support
from Eclipse, clone and identifier locations can be updated
automatically when edits happen to the Java files that contain
the clones. On the user interface, CReN highlights the
statements of the copy-and-paste clones with a bar on the left-
hand side of the editor pane (red for the original code and blue
for the copies) so that programmers can visualize and manage
their copy-and-paste activity in the IDE, which could help avoid
errors and navigate a clone group.

CReN automatically renames identifiers within a clone when
any identifier in the defined group is renamed by the
programmer. Identifiers are put into the same group if they share
the same binding, or the same name when bindings are not
available. The programmer can also provide feedback to CReN,
eliminating a specific identifier from the group so that it can be
modified individually. This new rule will be automatically
applied to all members of the same clone group. Data about
clones and the inferred rules are persisted between sessions.

4. RELATED WORK
Some features in Eclipse can help with consistent renaming.
There are also some published tools that manage and track code
clones and a few other tools that focus on copy-paste error
detection in the context of traditional clone detection.

4.1 Related Eclipse Features
The Find & Replace, Refactoring (Rename), and Linked
Renaming features in Eclipse can assist a programmer with
consistently renaming identifiers in the IDE. Each has its own
set of limitations and differences from CReN.

Find & Replace in Eclipse allows the programmer to find
specified text and replace it with another text. Find & Replace is
simply a text-based search and has no knowledge of the
structure of the program. It does not infer intent and must be
initially requested by the programmer. In addition, Find &
Replace is not limited to within a clone code fragment, so the
programmer must know where renaming in the clone begins and
ends and manually replace only those instances.

The Rename refactoring allows the programmer to rename
various program elements. As such, binding is an important
condition for it to work, which is not necessary for CReN.
Furthermore, Rename is automatically applied to the whole
project instead of a clone.

Linked Renaming allows the programmer to rename identifiers
within a file scope. The Rename refactoring applies to the whole
project instead. Furthermore, Linked Renaming neither works
with code that does not type check nor renames identifiers only
within a clone as CReN does.

4.2 Clone Tracking Tools
There are some published tools (Codelink [5] and CloneTracker
[1]) that focus on managing and tracking code clones to help
programmers make more consistent code modifications among
them. Both tools require manual clone selection first. Both can
help keep modifications consistent between code fragments, for
example, if there is a common modification that is needed
between all related clones. However, these tools do not infer
change rules within a code fragment, which is where we define
the consistent renaming usage pattern.

Codelink, which is an extension to XEmacs developed by
Toomim, et al., implements the concept of Linked Editing [5].
In the Codelink editor, the programmer has to manually select
the clones in order to link them. Once the code fragments are
linked, modifications made in one clone can be made to all of
the others that it is linked to simultaneously, or edits can be
made to a single clone individually.

More recently, Duala-Ekoko, et al., presented a clone tracking
system named CloneTracker, which they implemented as an
Eclipse plug-in using ASTs [1]. They introduced the concept of
Clone Region Descriptors (CRDs) and created a new method of
Simultaneous Editing. CloneTracker relies on the output of the
SimScan clone detection tool and requires the programmer to
manually select the clone groups of interest to be documented.
Once the clone groups are identified, CloneTracker translates
the location of all clone regions from a file name and line range
notation into CRDs. Instead of using the clone’s exact text or its

physical location in the file, the CRD technique uses syntactic,
structural, and lexical information (the clone region’s alignment
with code blocks) to determine its relative location in a file.
While this technique has some benefits, it only gives an
approximate location.

4.3 Error Detection Tools
Few tools are made to detect copy-and-paste errors, and those
that do (CP-Miner [3] and the DECKARD-based tool [2])
utilize clone detection techniques on existing source code. Each
tool attempts to first detect the copy-and-paste clones and then
report any inconsistencies as potential errors. As a result, many
false positives occur (both in the clone detection and error
detection phases) and human intervention is required to
consequently confirm or deny a reported bug as real. This
process of finding errors “after-the-fact” is not the most effective
way by itself to handle the creation and existence of bugs. We
believe that it is better to prevent and detect bugs during
software development while the programmer can fix mistakes on
the spot.

CP-Miner, developed by Li, et al., [3] is the first known tool to
do error detection in addition to clone detection. CP-Miner uses
data mining techniques to more efficiently detect copy-and-paste
code clones in existing, large software systems. Furthermore,
CP-Miner is able to detect beyond exact clones and identify
clones that have insertions, deletions, and modifications in them.
It actually has an option to return only copy-and-paste clones
with identifier renaming. For inconsistency and error detection,
Li, et al., use “identifier mapping” such that an identifier is
considered consistent when it always maps to the same identifier
(which could be a different name) in the other fragment and it is
inconsistent when it maps itself to multiple identifiers. Of
course, false positives remain and actual bugs still need to be
verified manually. Li, et al., conclude that copy-and-paste error
detection should be provided in an IDE like Microsoft Visual
Studio, but this feature is not yet available in the IDE.

More recently, Jiang, et al., developed a DECKARD-based tool
[2] to detect bugs based on the clone’s surrounding code, called
its context. This tool has a clone detection component and an
inconsistency or error detection component. First, Jiang, et al.,
use their clone detection tool, named DECKARD, to detect code
clones in existing source code. The identifier renaming error,
which Jiang, et al., call a “type-3 inconsistency”, is determined
by traversing the parse trees of clones and counting all of the
unique identifiers that are visited. In particular, they count all
identifiers, including macros, variable names, function names,
type names, data fields, etc. (not including keywords and
punctuations) and they do not distinguish between each kind of
identifier. Their heuristic claims that a “type-3 inconsistency”
exists if the two code fragments contain different numbers of
unique identifiers. The process of simply counting unique
identifiers, by itself, produces many false positives. As a result,
manual inspection of the inconsistencies returned by the tool is
still required. Jiang, et al., also suggest that automated tools
could help prevent programmers from making copy-and-paste
errors, such as identifier renaming errors, in the future.

5. CONCLUSION AND FUTURE WORK
The renaming of identifiers in source code can be error-prone
for programmers to perform manually. Automated tool support
in the integrated development environment (IDE) is needed to
assist programmers with code modification in order to ensure
code consistency. The CReN tool is our first step in inferring
programmer’s intent to help combat copy-paste errors,
specifically with a focus on the consistent renaming usage
pattern.

In the future, we would like to add some features to CReN. First,
we would like to include support for the consistent renaming of
any kind of identifier (right now it just renames variable names).
We would also allow programmers to revert their intention of
taking an identifier out of a consistently-renamed group. Also,
instead of having CReN automatically decide when two clones
become unrelated as a result of excessive editing, we would like
to leave this decision to the programmers by allowing them to
take clones out of a clone group.

In addition, we would like to generalize where consistent
renaming is done. Right now CReN does consistent renaming
just within a clone (copy-and-pasted code fragments). In the
future, we would like to support consistent renaming within any
user-defined scope. Furthermore, while CReN currently infers
rules across all clones (for example, when a specific instance of
an identifier is removed from the group to be renamed together,
its corresponding identifier instance in all related clones is also
removed), it does not apply the renaming itself across all of
those related clones. We would like to possibly include this type
of consistent modification feature into CReN (similar to linked
editing or simultaneous editing). This feature would provide
structural synchronization between members of a clone group.
This would make CReN an all-in-one consistent renaming tool.

6. REFERENCES
[1] E. Duala-Ekoko and M.P. Robillard, “Tracking Code

Clones in Evolving Software”, ACM SIGSOFT-IEEE

International Conference on Software Engineering (ICSE),
2007.

[2] L. Jiang, Z. Su, and E. Chiu, “Context-Based Detection of
Clone-Related Bugs”, European Software Engineering

Conference (ESEC) and ACM SIGSOFT International

Symposium on the Foundations of Software Engineering

(FSE), 2007.

[3] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: A
Tool for Finding Copy-paste and Related Bugs in
Operating System Code”, USENIX-ACM SIGOPS

Symposium on Operating Systems Design and

Implementation (OSDI), 2004.

[4] B. Liblit, A. Aiken, A.X. Zheng, and M.I. Jordan, “Bug
Isolation via Remote Program Sampling”, ACM SIGPLAN

Conference on Programming Language Design and

Implementation (PLDI), 2003.

[5] M. Toomim, A. Begel, and S.L. Graham, “Managing
Duplicated Code with Linked Editing”, IEEE Symposium

on Visual Languages – Human Centric Computing

(VLHCC), 2004.

