
Supporting Empirical Studies by Non-Intrusive Collection
and Visualization of Fine-Grained Revision History

Jacky Chan, Alan Chu and Elisa Baniassad
Programming Practices Laboratory

Department of Computer Science and Engineering
The Chinese University of Hong Kong

{jacky, achu, elisa}@cse.cuhk.edu.hk

ABSTRACT
This paper presents a code-revision history collection and vi-
sualization Eclipse plugin for use in empirical studies of pro-
grammers. The revision history is collected non-intrusively,
and does not depend on CVS-checkin. The visualizations
allow for detailed viewing of the code changes for an indi-
vidual file, and also for an overview of the alterations to a
project. In this paper we describe the plugin, and also give
examples of our own uses for the plugin for empirical work.

1. INTRODUCTION
When developers are creating and modifying a code base,

they carry out many gradual and incremental code change
activities. Studying these activities for the sake of finding
patterns and analyzing their nature requires non-intrusive
monitoring of programmer behavior, intense scrutiny of pro-
grammer actions, and high-level visualizations of their pat-
terns of activity. There are, however, currently no publicly
available tools of which we are aware, for monitoring and vi-
sualizing developers’ fine-grained code changes with enough
detail to allow in-depth analysis.

In order to support our own empirical work, we developed
an Eclipse plugin for non-intrusive collection and visualiza-
tions of revision histories. The visualizations need to serve
three purposes:

1. depict a high-level view of the code changes made dur-
ing software evolution to allow investigators to identify
phases of development

2. capture language independent code changes

3. capture changes to the code that are not checked in
explicitly by the programmer

While the plugin is tailored for our specific empirical ques-
tions, we believe that they have broader applicability for
empirical studies of programmers.

The plugin consists of three components: an export of
the local history maintained by Eclipse, a visualization that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ETX ’07 Montréal, Québec, Canada
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Eclipse Platform

Revision
Collector

History
Exporter

Graphical
Visualizer

Other Tools...

Tabular Visualizer

Figure 1: The Plugin Architecture

shows a high-level view of the history of an individual file,
and a second visualization that shows an overview of the
project’s revision history.

In this paper we present the plugin’s architecture, imple-
mentation, and usage, and discuss how each component of
it has, and might be further used for empirical studies.

2. PLUGIN ARCHITECTURE
The architecture of our plugin is depicted in Figure 1. It

consists of three components: a history exporter, a graphical
visualizer and a tabular visualizer. Each of these depend on
revision collection within the current version of Eclipse.

Revision Collector: Using particular Eclipse settings, re-
visions are captured by this component each time a
programmer saves or compiles his/her code. The revi-
sions are then stored into a local repository.

History Exporter: This component retrospectively
extracts the Eclipse history of fine-grained language-
insensitive code revisions from the local repository into
a collection of XML files. These files can then be used
for analysis by external tools.

Visualizers (graphical and tabular): These compnents
provide visualizations of the revision histories. The
first provides a history flow, and depicts fine-grained
code changes as colored bars. The second is a tabular
view, which provides a revision chart, showing the files
that have been changed during revisions. Each of these
summarizes developers’ behavior, and thus facilitate
the identification of developer patterns of activity.

2.1 Revision Collector
Code revisions are collected by the Eclipse built-in func-

tion “Local History” (available since Eclipse 3.0), which au-
tomatically stores each revision for the sake of undo and
backup. Auto-save should be disabled so that revisions are
punctuated by developer-intended saves or compiles.

To configure Eclipse 3.0+ to capture the correct informa-
tion, the following settings must be applied1:

1. In Eclipse, select menu Window > Preferences...;

2. Select Workbench > Local History (for 3.0) or

General > Workspace > Local History (for 3.1+);

3. Increase ‘‘Days to keep files’’ to the expected

duration of the software project (e.g. 365);

4. Set ‘‘Maximum entries per file’’ to 10000;

5. Set ‘‘Maximum file size (MB)’’ to 100;

6. Select Workbench (for 3.0) or

General > Workspace (for 3.1+);

7. Check ‘‘Perform build automatically on resource

modification’’ (for 3.0) or

‘‘Build automatically’’ (for 3.1+);

8. Check ‘‘Save all modified resources automatically

prior to manual build’’ (for 3.0) or

‘‘Save automatically before build’’ (for 3.1+);

9. Set ‘‘Workspace save interval (in minutes)’’

to 9999;

10.Apply all the settings.

The Eclipse repository mechanism is implemented as a
Memento [3] pattern, which stores the internal states of an
object for later restoration. The Originator interface is the
IFile interface; the Memento interface is the IFileState in-
terface, each found in the package
org.eclipse.core.resources. After the above settings have
been applied, the full revision history can be retrieved by
calling the getHistory() method defined in the IFile in-
terface.

After these settings have been applied, the Eclipse plat-
form is able to collect local history for each source file, and
the plugin we developed can be installed at any moment to
facilitate the use of the revision history.

Another approach might have been to have an automatic
CVS-check-in each time a file is saved or compiled, how-
ever, this would have resulted in revision-loss each time a
file name is changed. We made use of Eclipse’s Universal
Unique Identifier (UUID) for the file, rather than the file-
name.

2.2 History Exporter
The History Exporter component retrieves the revision

history from the local repository and converts it into XML
for the other components to use. The wizard can be invoked
by selecting File>Export, or by right-clicking the resources
and selecting Export. Within the Export wizard, several
categories will be available; the file history is found under
the “Other” category. Then the developer can choose the
resources to be exported, and choose the destination for the
export. After the export, each source file has its own history
XML file (named “<current-filename> .hist.xml”).

1It may seem inconvenient apply these settings manually,
however, applying the settings before plugin installation al-
lows the plugin to be installed after the monitoring period
is over.

The XML history format is depicted in Figure 2. The
node timestamp contains the creation time of the revision,
with precision up to milliseconds. The node value can be
an empty node, or it can contain CDATA value, which is a
serialized string of the revision.

<file>

<history>

<revision>

<timestamp>1173065453000</timestamp>

<value><![CDATA[XXXXXXXXX]]></value>

</revision>

<revision>

...

</revision>

</history>

</file>

Figure 2: Sample XML History File Format

The exported history files are then used as inputs for the
two visualization components, or can be used by other ex-
ternal analysis tools.

2.3 Graphical Visualizer as History Flow
The graphical visualizer is intended to render information-

rich graphics to provide an overview of revision history of an
individual source file. This is done by delimiting revisions
into lexeme blocks and linking them together into a history
flow as introduced by [7]. The history flow visualization is
then integrated into an Eclipse view.

2.3.1 Algorithm for Delimiting Revisions
We devised an n-revision differencing algorithm to iden-

tify fine-grained insertions and deletions in the revisions of
a system. The algorithm extends the Heckel’s differencing
algorithm [5] to compare code bases by different revisions
in a lexeme-by-lexeme basis rather than line-by-line. After
running Heckel’s differencing algorithm n− 1 times on n re-
visions, lexemes are generated as in Figure 3. The algorithm
is described below.

We define a system S having n revisions r1, r2, ..., rn

as a tuple of revisions S = 〈r1, r2, ..., rn〉, and each revi-
sion ri is a string of characters representing the code base of
that revision. Each revision is tokenized into a tuple of lex-
emes, i.e. lex(r) = 〈l1, l2, ...〉 where r ∈ S, and lj is a string
of characters without whitespaces. For example, lex(“The
quick brown fox jumps over the lazy dog”) = 〈“The”, “quick”,
“brown”, “fox”, “jumps”, “over”, “the”, “lazy”, “dog”〉.

The Heckel’s differencing algorithm can then be defined as
a function operating on tuples of lexemes of two revisions as
its input, and the output of the algorithm is a pair of tuples
of integers s and t representing the results of the algorithm
with length |lex(ri)| and |lex(rj)| respectively. Formally,

H(ri, rj) = 〈s, t〉 where

ri, rj ∈ S,

s ∈ ({x ∈ N : 1 ≤ x ≤ |lex(rj)|} ∪ {−1})|lex(ri)| and

t ∈ ({y ∈ N : 1 ≤ y ≤ |lex(ri)|} ∪ {−1})|lex(rj)|

.
Heckel’s differencing algorithm works by identifying if the

xth lexeme in the lexeme tuple of the ith revision, i.e. lex(ri)

Figure 3: The Steps of the n-revision Differencing
Algorithm: 1) Get the revisions; 2) Tokenize re-
visions into lexemes; 3) Run Heckel’s differencing
algorithm for every revision pairs

is “identical” to the yth lexeme in the lexeme tuple of the
jth revision (lex(rj)), then s(x) = y and t(y) = x. The
algorithm can also identify the xth lexeme in lex(ri) as not
appearing in lex(rj), and it will set s(x) = −1. Similarly,
if the yth lexeme in lex(ri) is identified as not appearing in
lex(rj), then t(y) = −1.

n-revision differencing algorithm utilizes Heckel’s differ-
encing algorithm by running it on the revisions of the code
base sequentially in a pair-wise manner, i.e.

〈H(r1, r2), H(r2, r3), ..., H(rn−1, rn)〉 =˙
〈s12, t12〉, 〈s23, t23〉, ..., 〈s(n−1)n, t(n−1)n〉

¸
.

The sequence of results is then combined to form a his-
tory sequence for each lexeme in each revision. The history
sequence traces the location of the lexeme retrospectively to
the revision in which the lexeme was inserted. The nota-
tion h(i, j) denotes the history sequence of the jth lexeme
in the ith revision in the system, and h(i, j) can be defined
recursively as

h(i, j) =

h(i − 1, t(i−1)i(j)) • 〈j〉 t(i−1)i(j) 6= −1

〈j〉 t(i−1)i(j) = −1

where • concatenates two tuples, i.e. 〈s1, ..., sm〉•〈t1, ..., tn〉 =
〈s1, ..., sm, t1, ..., tn〉, 1 ≤ i ≤ |S| and 1 ≤ j ≤ |lex(ri)|.

The lexemes in each revisions are then grouped into lex-
eme blocks such that each adjacent lexeme in the lexeme
block has adjacent history sequence. For example, the lex-
emes having the history sequences 〈2, 4, 5, 7〉, 〈1, 3, 4, 6〉, and
〈3, 5, 6, 8〉 would all belong to the same lexeme block.

The predicate same(h1, h2) is defined to be true if and
only if the two lexemes having the history sequences h1 and
h2 are in the same lexeme block:

same(h1, h2)
def
= (|h1| = |h2|) ∧ (h1(i)− h2(i) = n)

where h1, h2 are two history sequences,

∃n ∈ Z, and ∀ i ∈ [1..min(|h1|, |h2|)]

We can then group the lexemes in one revision into lexeme
blocks by using the same(h1, h2) predicate. The function

block(i, j) returns a set representing the lexeme block which
contains the jth lexeme in ith revision.

block(i, j) = {k ∈ [1..|lex(ri)|] : same(h(i, j), h(i, k))}
where 1 ≤ i ≤ |S| and 1 ≤ j ≤ |lex(ri)|

For each revision i we can find all lexeme blocks by using
the following function.

revision blocks(i) = {block(i, j) : ∀ j ∈ [1..|lex(ri)|]}

2.3.2 Viewing History Flow in Eclipse
Lexeme blocks are visualized as a history flow [7] like the

one depicted in Figure 4. The implemention of history flow
under Eclipse uses Apache Batik2 as the back-end canvas
engine. It can then be panned, and zoomed, or exported to
SVG format.

The history flow view shows the time-lapse of code changes.
Horizontal bars represent code revisions; the most recent re-
vision is at the bottom. The length of the bar indicates
the length of the code base. Each bar consists of one or
more lexeme blocks, each separated by a small space. A
vertical link connects lexeme blocks that originated from an
earlier revision. If a developer adds code, the lexeme block
representing that code will not have a link to the previous
horizontal bar. Each revision is assigned a random color; the
lexeme blocks representing the code added in that revision
are filled in that color. Deleted code can be recognized by
lexeme blocks with no vertical links extending from them.
Code within the lexeme blocks can be viewed by pointing at
them.

Figure 4 gives an example of how history flow changes
interactively as the code changes. Code in the figure has
been colored to reflect their representative lexeme-block.

1. In the first revision, a class ETX07 was created (dark
blue).

2. Next, the programmer declared an instance variable
log for logging activity and a constructor (purple).

3. The programmer then initialized the instance variable
log in constructor by instantiating the Log object, and
also declared three more methods start(), suspend()
and stop(). (magenta)

4. Next, logging functionality (red) was introduced into
three of the methods in revision 4. These new lexeme
blocks are inserted in the corresponding locations into
the long magenta lexeme block from Revision 3.

5. Finally, the programmer deleted the method suspend().
This is indicated by the two lexeme blocks in Revision
3, with no linked lexeme blocks in Revision 4.

Here, we can see that initially, the code length increases
showing implementation of functionality, and then decreases
during a refactoring/reworking phase. Also, the activity
pattern evident for this code base is that the developer first
implemented the skeleton of their methods, and then ex-
panded the code base to add implementation details. If there
is any question about the contents of a revision, the code
contained in a lexeme block can be viewed by mouse-over.
This visualization affords a high-level view of each change
the programmer makes, without the need to investigate each
revision in detail manually.
2http://xmlgraphics.apache.org/batik/

http://xmlgraphics.apache.org/batik/

Figure 4: Annotated History Flow Mapped with Java Code in Multiple Revisions

2.4 Tabular Visualizer as Revision Chart
The Revision chart is a tabular representation of revisions

of all the project’s files in chronological order (Figure 5).
Files are sorted by revision order.3

File1.java
File2.java
File3.java

File/Time Feb 30
13:39

Feb 30
13:41

Feb 30
13:53

Feb 31
09:29

Feb 31
14:00

Feb 31
14:05

Feb 31
14:06

Feb 31
20:00

Figure 5: A Portion of Revision Chart

The revision chart view allows developers to view project-
wide revision histories. This gives insight into the relation-
ships between files (whether files are changed together fre-
quently), and also to visualize the progress of the project.

We have used this revision chart for analysis of several
code bases, including the Crossia4 code base, whose revision
chart is shown in Figure 6. This revision chart shows three
patterns that we also found in revision histories for other
code bases: the sloped-line at the beginning of the chart, the
cluster in the middle, and the scatter in the latter portion
of the chart. In all the cases we considered, the sloped-line
indicated a cascade of file-creation, with no implementation.
The middle cluster represented the main development phase,
and the scatter portion at the end indicated the maintenance
phase.

While these are very general assessments, they show that
this visualization can be helpful in assessing overall program-
mer behavior. We are currently exploring the potential of
this visualization for the sake of deeper and more detailed
analysis on programmer activity patterns.

3Currently, this view is not fully integrated into the Eclipse
IDE, but will be in subsequent versions.
4http://www.crossia.com/: Crossia is a web-based online
job-finder and social-networking site. It spans over 500 sys-
tem files, with over 50K LOC and 2.5K revisions.

Figure 6: Annotated Revision Chart of Crossia

3. RELATED WORK
Eick et al [2] first coined the term Software Visualization.

They developed SeeSoft as a line-oriented view where code
files resemble vertical lines and colors show recent changes.
The code difference is line-based, and revisions were from a
legacy versioning system called ECMS. Voinea et al [8] de-
veloped CVSscan with multiple-view visualization using re-
visions from CVS repositories. It visualizes one file at a time,
where each revision is shown in a column. Code in revisions
are compared to get the global line positions and visualized
according to those positions. Colors are used to represent
different meanings such as code status, authors and other
metrics. These tools differ from ours in that our tool is
based on Heckel’s diff [5] our differencing is lexeme-based.
Our tool also uses Eclipse’s local-history function to collect
data finer-grained than ECMS and CVS, and does not re-
quire developer intervention beyond ensuring that Eclipse’s
default history values are maintained.

Zimmermann [9] presented an Eclipse plugin APFEL which

http://www.crossia.com/

relies on CVS repositories. Revisions are delimited by tokens
in abstract syntax tree in Java, such as modifiers, method
calls and keywords. The case study in his paper was con-
ducted for identifying crosscutting concerns, pairing of vari-
able names and renaming variables. The intent of this work
is very related to our own, however, CVS-checkin informa-
tion does not provide fine-grained change tracking within
revisions, and we wished to perform analysis of developer
behavior that is not necessarily punctuated by check-ins.

Independently, but simultaneously to our work, Harald
Kästel-Baumgartner5 developed an Eclipse plugin using his-
tory flow to visualize code changes. The plugin retrieves
revision data from CVS repositories and is imported into
its own database. The code difference is line-based. Code
lengths are represented in vertical axis while revisions are
in horizontal axes. It looks very similar to our own history
flow. However, the file history views focus on highlight-
ing authorship of code rather than on propagation of code
changes.

D’Ambros and Lanza [1] visualized CVS and Bugzilla data
to uncover the relationship between evolving software and
the way it is affected by software bugs. They developed two
visualizations, in which one of them called the TimeLine
View. It is similar to our revision chart because it marks
revisions in files through time. It also marks bug reports on
the view, with colors to show authorship. However, how the
file orders is not mentioned, while file list sorted by chrono-
logical order in our view shows temporal locality among files.

Hayashi [4] developed an Eclipse plugin for monitoring de-
velopers’ coding behavior to support refactoring activities.
His approach detects every keystroke and stores a modi-
fication whenever there is an abstract syntax tree change
in Java. Robbes’s SpyWare [6] detects and stores atomic
changes such as creation and deletion of a node in abstract
syntax tree in Smalltalk, and composite changes such as
refactorings and bug fixes. It also has a line-chart to show
the results of different metrics. Their work can collect fine-
grained revisions non-intrusively, but are limited to only one
programming language, while our tool is language-insensitive.

4. SUMMARY AND FUTURE WORK
In this paper, we proposed a new non-intrusive approach

for collecting and visualizing fine-grained code file revision
history information. The approach is provided through an
Eclipse plugin with three components: a history exporter,
individual-file history flow delimited by lexeme blocks, and
project-wide revision charts.

We believe with the support from the plugin, researchers
can investigate programmer behavior, and allow analysis
of how development processes relate to developer activity
phases (for instance,do programmers engage in refactoring
more aggressively when engaging in agile processes?) and
exploration of cultural and demographic questions about de-
velopers, allowing for comparison of development patterns
between developers with differing cultural background, gen-
der, or educational background.

Additional features will be implemented for the plugin in
the future, where some are listed below:

Incorporation of Developers’ Activities The current
plugin only supports a local repository in Eclipse, such

5http://www.filehistory.de/

that usually only one developer’s activity is monitored
for in-process analysis. We are working on synchroniz-
ing multiple local repositories with a centralized repos-
itory.

Integrated Visualizations in Eclipse History flow is im-
plemented based on Apache Batik, which is a Swing
application, while Eclipse is an SWT application. Their
interaction is not smooth, and its performance still
needs to be improved. The Revision chart is presented
as HTML for the sake of prototyping, and it will be
well integrated with Eclipse in a view in upcoming ver-
sions.

History Analysis as a Guide We intend to explore how
the visualizations provided can be used to aid software
development tasks.

5. ACKNOWLEDGEMENTS
We would like to thank Edmund Liu and Henry Tang from

Crossark Ltd. for providing the histories for our case study.

6. REFERENCES
[1] M. D’Ambros and M. Lanza. Software bugs and

evolution: A visual approach to uncover their
relationship. Proceedings of 10th European Conference
on Software Maintenance and Reengineering, pages
227–236, 2006.

[2] S. Eick, J. Steffen, and E. Sumner Jr. Seesoft-A Tool
for Visualizing Line Oriented Software Statistics. IEEE
Transactions on Software Engineering, 18(11):957–968,
1992.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: elements of reusable object-oriented software.
Addison-Wesley Longman Publishing Co., Inc. Boston,
MA, USA, 1995.

[4] S. Hayashi, M. Saeki, and M. Kurihara. Supporting
Refactoring Activities Using Histories of Program
Modification. IEICE Transactions on Information and
Systems, 89(4):1403–1412, 2006.

[5] P. Heckel. A technique for isolating differences between
files. Commun. ACM, 21(4):264–268, 1978.

[6] R. Robbes. Mining a Change-Based Software
Repository. Proceedings of the Fourth International
Workshop on Mining Software Repositories, 2007.

[7] F. Viégas, M. Wattenberg, and K. Dave. Studying
cooperation and conflict between authors with history
flow visualizations. Proceedings of the SIGCHI
conference on Human factors in computing systems,
pages 575–582, 2004.

[8] L. Voinea, A. Telea, and J. van Wijk. CVSscan:
visualization of code evolution. Proceedings of the 2005
ACM symposium on Software visualization, pages
47–56, 2005.

[9] T. Zimmermann. Fine-grained Processing of CVS
Archives with APFEL. In Proceedings of the 2006
OOPSLA Workshop on Eclipse Technology eXchange,
New York, NY, USA, October 2006. ACM Press.

http://www.filehistory.de/

	Introduction
	Plugin Architecture
	Revision Collector
	History Exporter
	Graphical Visualizer as History Flow
	Algorithm for Delimiting Revisions
	Viewing History Flow in Eclipse

	Tabular Visualizer as Revision Chart

	Related Work
	Summary and Future Work
	Acknowledgements
	References

